Knowledge

Chow group

Source đź“ť

4977: 7862:
predicts that these groups are finitely generated. Moreover, the rank of the group of cycles modulo homological equivalence, and also of the group of cycles homologically equivalent to zero, should be equal to the order of vanishing of an L-function of the given variety at certain integer points.
4633: 7184: 7803: 1864: 6590: 1584:
Rationally equivalent cycles defined by hypersurfaces are easy to construct on projective space because they can all be constructed as the vanishing loci of the same vector bundle. For example, given two homogeneous polynomials of degree
5129: 4785: 6122: 7432: 4712: 7550:), these homomorphisms form a ring homomorphism from the Chow ring to the cohomology ring. Intuitively, this is because the products in both the Chow ring and the cohomology ring describe the intersection of cycles. 7537: 6744: 3654: 2367: 6857: 4459: 4385: 2902: 1679: 7696: 617: 1719: 7098: 2265: 5925: 1915: 6325: 5473: 8128:
gave the current standard foundation for Chow groups, working with singular varieties wherever possible. In their theory, the intersection product for smooth varieties is constructed by
2473: 798: 719: 7019: 5583: 6471: 5675: 6389: 2758: 7225: 6903: 4431: 3941: 2188: 7090: 6455: 6426: 4741: 4020: 3839: 3536: 4272: 2415: 2115: 2007: 6628: 3129: 2153: 1477: 6780: 2797: 2604: 1141: 6228: 6183: 5797: 5373: 4777: 1221: 961: 303: 6923: 4086: 3436: 3155: 7319: 7056: 6151: 4198: 3770: 3971: 2317: 1711: 1019: 5278: 5181: 4972:{\displaystyle CH^{\bullet }(F_{a})\cong {\frac {CH^{\bullet }(\mathbb {P} ^{1})}{(\zeta ^{2}+aH\zeta )}}\cong {\frac {\mathbf {Z} }{(H^{2},\zeta ^{2}+aH\zeta )}}} 5060: 3181: 987: 460: 4156: 4109: 7245: 6248: 6012: 5992: 5972: 5952: 5837: 5817: 5759: 5739: 5715: 5695: 5643: 5623: 5603: 5536: 5516: 5493: 5393: 5322: 5302: 5245: 5225: 5201: 5152: 5049: 5029: 5005: 4451: 4312: 4292: 4238: 4218: 4129: 4060: 4040: 3991: 3879: 3859: 3810: 3790: 3740: 3720: 3697: 3677: 3556: 3456: 3402: 3382: 3362: 3342: 3283: 3263: 3243: 3045: 3025: 3005: 2985: 2965: 2945: 2925: 2688: 2668: 2648: 2628: 2565: 2545: 2521: 2501: 2285: 2208: 2071: 2027: 1603: 1569: 1541: 1521: 1501: 1432: 1412: 1385: 1365: 1345: 1307: 1287: 1267: 1181: 1161: 1099: 1079: 1059: 1039: 921: 901: 881: 858: 838: 818: 759: 739: 680: 660: 640: 547: 527: 503: 483: 434: 411: 391: 367: 343: 323: 267: 244: 220: 196: 172: 152: 132: 101: 3491: 3318: 3223: 3084: 1961: 1247: 8116:
gave an influential proof that the intersection product is well-defined on cycles modulo rational equivalence for a smooth quasi-projective variety, using
6023: 8666: 7350: 7659:), with the same formal properties as in topology. The Chern classes give a close connection between vector bundles and Chow groups. Namely, let 7926:(tensored with the rationals) with strong properties. The conjecture would imply a tight connection between the singular or etale cohomology of 4650: 7463: 8076:. The key advantage of this extension is that it is easier to form quotients in the latter category and thus it is more natural to consider 6636: 4628:{\displaystyle CH^{\bullet }(\mathbb {P} (E))\cong {\frac {CH^{\bullet }(X)}{\zeta ^{r}+c_{1}\zeta ^{r-1}+c_{2}\zeta ^{r-2}+\cdots +c_{r}}}} 8218:
Bloch, Algebraic cycles and higher K-groups; Voevodsky, Triangulated categories of motives over a field, section 2.2 and Proposition 4.2.9.
8019:" and more generally a bivariant theory associated to any morphism of schemes. A bivariant theory is a pair of covariant and contravariant 7886:) of the cycle map from the Chow groups to singular cohomology. For a smooth projective variety over a finitely generated field (such as a 3564: 2322: 6785: 4317: 2809: 1608: 8671: 8146: 7850:
over a number field. It is an open problem whether all Chow groups are finitely generated for every variety over a number field. The
7679: 111: 7798:{\displaystyle K_{0}(X)\otimes _{\mathbf {Z} }\mathbf {Q} \cong \prod _{i}{\mathit {CH}}^{i}(X)\otimes _{\mathbf {Z} }\mathbf {Q} .} 1859:{\displaystyle X={\text{Proj}}\left({\frac {\mathbb {C} }{(sf+tg)}}\right)\hookrightarrow \mathbb {P} ^{1}\times \mathbb {P} ^{n}} 555: 8097: 463: 71:. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general. 7179:{\displaystyle {\begin{matrix}S'\times _{S}X&\to &X\\\downarrow &&\downarrow \\S'&\to &S\end{matrix}}} 8630: 8533: 8500: 7820:
Some of the deepest conjectures in algebraic geometry and number theory are attempts to understand Chow groups. For example:
104: 59:) in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is 8597: 8315: 8125: 8012: 3409: 2221: 5847: 1872: 8553:(1932), "La serie canonica e la teoria delle serie principali di gruppi di punti sopra una superficie algebrica", 6253: 5401: 7986:
should be finite-dimensional; more precisely, it should map isomorphically to the group of complex points of the
6585:{\displaystyle f:\operatorname {Spec} \left({\frac {\mathbb {C} }{(f(x)-g(x,y))}}\right)\to \mathbb {A} _{x}^{1}} 764: 685: 8042:
This is in a sense the most elementary extension of the Chow ring to singular varieties; other theories such as
8517: 8121: 8008: 6931: 5541: 3700: 3405: 8039:. The name "bivariant" refers to the fact that the theory contains both covariant and contravariant functors. 5648: 8307: 7859: 7809: 6399:
Note that non-examples can be constructed using blowups; for example, if we take the blowup of the origin in
6185:. The localization sequence can be extended to the left using a generalization of Chow groups, (Borel–Moore) 8084:, which has been constructed only in some special case and which is needed in particular to make sense of a 6330: 2287:, then the vanishing loci of a generic section of both line bundles defines non-equivalent cycle classes in 8661: 4241: 3048: 2693: 506: 8656: 8156: 8108:
in the theory of algebraic curves. For higher-codimension cycles, rational equivalence was introduced by
6862: 5718: 4390: 3887: 2158: 8622: 8589: 7616:, this homomorphism can be identified with a ring homomorphism from the Chow ring to etale cohomology. 4132: 3679:
is the class of a hyperplane (the zero locus of a single linear function). Furthermore, any subvariety
2420: 6431: 6402: 4717: 3996: 3815: 3512: 8085: 4246: 2372: 7192: 8331: 7825: 7341: 3265:
are subvarieties of complementary dimension (meaning that their dimensions sum to the dimension of
2076: 1966: 6598: 8379: 7064: 3089: 2120: 1437: 6752: 5304:, and some of the deepest problems in number theory are attempts to understand this group. When 8117: 8077: 7683: 5281: 2763: 2570: 1107: 48: 8236:
Voisin, Hodge Theory and Complex Algebraic Geometry, v. 1, section 12.3.3; v. 2, Theorem 9.24.
6201: 6156: 5770: 5346: 4746: 4647:
can be readily computed using the projective bundle formula. Recall that it is constructed as
4159: 1543:(or more generally, a locally Noetherian normal factorial scheme ), this is isomorphic to the 1190: 930: 272: 8448: 8129: 8081: 8054: 8016: 7566: 6908: 4065: 3415: 3134: 7970:
is "infinite-dimensional" (not the image of any finite-dimensional family of zero-cycles on
7253: 7035: 6130: 5124:{\displaystyle 0\rightarrow X(k)\rightarrow CH_{0}(X)\rightarrow \mathbf {Z} \rightarrow 0.} 4177: 3745: 8640: 8607: 8543: 8510: 8477: 8410: 8072:
The theory of Chow groups of schemes of finite type over a field extends easily to that of
7570: 7557:, the cycle map from the Chow ring to ordinary cohomology factors through a richer theory, 4163: 3949: 2290: 1684: 992: 107: 68: 8574: 5254: 5157: 8: 8141: 8024: 7919: 7562: 3321: 3187: 3160: 1480: 966: 439: 44: 7454: 4138: 4091: 64: 8581: 8043: 8028: 7671: 7558: 7554: 7230: 6233: 6191: 6186: 5997: 5977: 5957: 5937: 5841: 5822: 5802: 5744: 5724: 5700: 5680: 5628: 5608: 5588: 5521: 5501: 5478: 5378: 5307: 5287: 5230: 5210: 5186: 5137: 5034: 5014: 4990: 4644: 4436: 4297: 4277: 4223: 4203: 4114: 4045: 4025: 3976: 3864: 3844: 3795: 3775: 3725: 3705: 3682: 3662: 3541: 3441: 3387: 3367: 3347: 3327: 3268: 3248: 3228: 3030: 3010: 2990: 2970: 2950: 2930: 2910: 2673: 2653: 2633: 2613: 2550: 2530: 2524: 2506: 2486: 2270: 2193: 2032: 2012: 1588: 1554: 1526: 1506: 1486: 1417: 1397: 1370: 1350: 1312: 1292: 1272: 1252: 1166: 1146: 1084: 1064: 1044: 1024: 906: 886: 866: 843: 823: 803: 744: 724: 665: 645: 625: 532: 512: 488: 468: 419: 396: 376: 370: 352: 328: 308: 252: 229: 205: 199: 181: 157: 137: 117: 86: 20: 4987:
For other algebraic varieties, Chow groups can have richer behavior. For example, let
3461: 3288: 3193: 3054: 1920: 1226: 8626: 8593: 8529: 8496: 8465: 8398: 8393: 8311: 8101: 8066: 8032: 7904: 7808:
This isomorphism shows the importance of rational equivalence, compared to any other
52: 40: 8570: 8562: 8550: 8457: 8388: 8151: 8109: 8105: 7987: 7875: 7605: 6117:{\displaystyle CH_{i}(Z)\rightarrow CH_{i}(X)\rightarrow CH_{i}(X-Z)\rightarrow 0,} 5496: 3507: 1548: 56: 32: 8431: 8418: 6127:
where the first homomorphism is the pushforward associated to the proper morphism
8636: 8603: 8539: 8525: 8506: 8492: 8473: 8406: 8301: 8073: 8062: 8036: 7952: 7891: 7864: 7687: 5341: 2009:. This can be used to show that the cycle class of every hypersurface of degree 8484: 8443: 8113: 7879: 6015: 5325: 5204: 5052: 5008: 3320:
is equal to the sum of the points of the intersection with coefficients called
1681:, we can construct a family of hypersurfaces defined as the vanishing locus of 1184: 247: 28: 1223:
by the subgroup of cycles rationally equivalent to zero. Sometimes one writes
8650: 8614: 8469: 8402: 8370: 7963: 7915: 7851: 7625: 7427:{\displaystyle {\mathit {CH}}_{i}(X)\rightarrow H_{2i}^{BM}(X,\mathbf {Z} ).} 5765: 60: 8263:
Voisin, Hodge Theory and Complex Algebraic Geometry, v. 2, Conjecture 11.21.
8189: 8035:, which is a contravariant functor that assigns to a space a ring, namely a 6153:, and the second homomorphism is pullback with respect to the flat morphism 3412:'s intersection theory constructs a canonical element of the Chow groups of 226:
coefficients. (Here and below, subvarieties are understood to be closed in
7887: 5248: 1544: 55:. The elements of the Chow group are formed out of subvarieties (so-called 7453:
is smooth over the complex numbers, this cycle map can be rewritten using
4707:{\displaystyle F_{a}=\mathbb {P} ({\mathcal {O}}\oplus {\mathcal {O}}(a))} 2117:
can be used to establish a rational equivalence. Notice that the locus of
7943:
be a smooth complex projective surface. The Chow group of zero-cycles on
7855: 7636: 5329: 2800: 2607: 8272:
Voisin, Hodge Theory and Complex Algebraic Geometry, v. 2, Theorem 10.1.
7532:{\displaystyle {\mathit {CH}}^{j}(X)\rightarrow H^{2j}(X,\mathbf {Z} ).} 8566: 8100:) was studied in various forms during the 19th century, leading to the 2907:
The product arises from intersecting algebraic cycles. For example, if
7340:
over the complex numbers, there is a homomorphism from Chow groups to
6739:{\displaystyle g(\alpha ,y)=(y-a_{1})^{e_{1}}\cdots (y-a_{k})^{e_{k}}} 7974:). The Bloch–Beilinson conjecture would imply a satisfying converse, 3649:{\displaystyle CH^{*}(\mathbb {P} ^{n})\cong \mathbf {Z} /(H^{n+1}),} 8461: 8446:(1956), "On equivalence classes of cycles in an algebraic variety", 7604:, there is an analogous cycle map from Chow groups to (Borel–Moore) 2362:{\displaystyle \operatorname {Div} (C)\cong \operatorname {Pic} (C)} 6852:{\displaystyle \{\alpha _{1},\ldots ,\alpha _{k}\}=f^{-1}(\alpha )} 840:.) The definition of the order of vanishing requires some care for 63:, the Chow groups can be interpreted as cohomology groups (compare 8281:
Voisin, Hodge Theory and Complex Algebraic Geometry, v. 2, Ch. 11.
4743:. Then, the only non-trivial Chern class of this vector bundle is 8080:
of algebraic spaces. A much more formidable extension is that of
8020: 5328:, the example of an elliptic curve shows that Chow groups can be 4380:{\displaystyle \zeta =c_{1}({\mathcal {O}}_{\mathbb {P} (E)}(1))} 2897:{\displaystyle CH^{i}(X)\times CH^{j}(X)\rightarrow CH^{i+j}(X).} 223: 7581:) maps isomorphically to Deligne cohomology, but that fails for 1674:{\displaystyle f,g\in H^{0}(\mathbb {P} ^{n},{\mathcal {O}}(d))} 8015:
extended the Chow ring to singular varieties by defining the "
3131:
is the sum of the irreducible components of the intersection
2213: 8584:(2000), "Triangulated categories of motives over a field", 8254:
Fulton, Intersection Theory, section 3.2 and Example 8.3.3.
3404:, with no assumption on the dimension of the intersection, 1579: 8179:
Fulton. Intersection Theory, section 1.2 and Appendix A.3.
612:{\displaystyle (f)=\sum _{Z}\operatorname {ord} _{Z}(f)Z,} 7755: 7473: 7360: 3881:, respectively, their product in the Chow ring is simply 3190:
constructs an explicit cycle that represents the product
8357:
3264 and All That: A Second Course in Algebraic Geometry
7947:
maps onto the integers by the degree homomorphism; let
7922:
conjecture predicts a filtration on the Chow groups of
74: 8303:
Categorical Framework for the Study of Singular Spaces
7103: 8619:
Hodge Theory and Complex Algebraic Geometry (2 vols.)
8057:
are an amalgamation of Chow groups of varieties over
7863:
Finiteness of these ranks would also follow from the
7699: 7466: 7353: 7256: 7233: 7195: 7101: 7067: 7038: 6934: 6911: 6865: 6788: 6755: 6639: 6601: 6474: 6434: 6405: 6333: 6256: 6236: 6204: 6159: 6133: 6026: 6000: 5980: 5960: 5940: 5850: 5825: 5805: 5773: 5747: 5727: 5703: 5683: 5651: 5631: 5611: 5591: 5544: 5524: 5504: 5481: 5404: 5381: 5349: 5310: 5290: 5257: 5233: 5213: 5189: 5160: 5140: 5063: 5037: 5017: 4993: 4788: 4749: 4720: 4653: 4462: 4439: 4393: 4320: 4300: 4280: 4249: 4226: 4206: 4180: 4141: 4117: 4094: 4068: 4048: 4028: 3999: 3979: 3952: 3890: 3867: 3847: 3818: 3798: 3778: 3748: 3728: 3708: 3685: 3665: 3567: 3544: 3515: 3464: 3444: 3418: 3390: 3370: 3350: 3330: 3291: 3271: 3251: 3231: 3196: 3163: 3137: 3092: 3057: 3033: 3013: 2993: 2973: 2953: 2933: 2913: 2812: 2766: 2696: 2676: 2656: 2636: 2616: 2573: 2553: 2533: 2509: 2489: 2423: 2375: 2325: 2293: 2273: 2224: 2196: 2161: 2123: 2079: 2035: 2015: 1969: 1923: 1875: 1722: 1687: 1611: 1591: 1557: 1529: 1509: 1489: 1440: 1420: 1400: 1373: 1353: 1315: 1295: 1275: 1255: 1229: 1193: 1169: 1149: 1110: 1087: 1067: 1047: 1027: 995: 969: 933: 909: 889: 869: 846: 826: 806: 767: 747: 727: 688: 668: 648: 628: 558: 535: 515: 491: 471: 442: 422: 399: 379: 355: 331: 311: 275: 255: 232: 208: 184: 160: 140: 120: 89: 7565:
from cycles homologically equivalent to zero to the
4779:. This implies that the Chow ring is isomorphic to 1574: 7797: 7531: 7426: 7313: 7239: 7219: 7178: 7084: 7050: 7013: 6917: 6897: 6851: 6774: 6738: 6622: 6584: 6449: 6420: 6383: 6319: 6242: 6222: 6177: 6145: 6116: 6006: 5986: 5966: 5946: 5919: 5831: 5811: 5791: 5753: 5733: 5709: 5689: 5669: 5637: 5617: 5597: 5577: 5530: 5510: 5487: 5467: 5387: 5367: 5316: 5296: 5272: 5239: 5219: 5195: 5175: 5146: 5123: 5043: 5023: 4999: 4971: 4771: 4735: 4706: 4627: 4445: 4425: 4379: 4306: 4286: 4266: 4232: 4212: 4192: 4150: 4123: 4103: 4080: 4054: 4034: 4014: 3985: 3965: 3935: 3873: 3853: 3833: 3804: 3784: 3764: 3734: 3714: 3691: 3671: 3648: 3550: 3530: 3485: 3450: 3430: 3396: 3376: 3356: 3336: 3312: 3277: 3257: 3237: 3217: 3175: 3149: 3123: 3078: 3039: 3019: 2999: 2979: 2959: 2939: 2919: 2896: 2791: 2752: 2682: 2662: 2642: 2622: 2598: 2559: 2539: 2515: 2495: 2467: 2409: 2361: 2311: 2279: 2259: 2202: 2182: 2147: 2109: 2065: 2021: 2001: 1955: 1909: 1858: 1705: 1673: 1597: 1563: 1535: 1515: 1495: 1471: 1426: 1406: 1379: 1359: 1339: 1301: 1281: 1261: 1241: 1215: 1175: 1155: 1135: 1093: 1073: 1053: 1033: 1013: 981: 955: 915: 895: 875: 852: 832: 812: 792: 753: 733: 713: 674: 654: 634: 611: 541: 521: 497: 477: 454: 428: 405: 385: 361: 337: 317: 297: 261: 238: 214: 190: 166: 146: 126: 95: 16:Analogs of homology groups for algebraic varieties 8332:Chow groups, Chow cohomology and linear varieties 8245:Deligne, Cohomologie Etale (SGA 4 1/2), Expose 4. 8648: 8586:Cycles, Transfers, and Motivic Homology Theories 8299: 7333:) from Chow groups to more computable theories. 6428:then the fiber over the origin is isomorphic to 5930:A key computational tool for Chow groups is the 3742:in projective space is rationally equivalent to 2527:, not just a graded abelian group. Namely, when 2369:for smooth varieties, so the divisor classes of 6460: 2260:{\displaystyle L,L'\in \operatorname {Pic} (C)} 2210:, which is the coefficient of its cycle class. 8342:Fulton, Intersection Theory, Chapters 5, 6, 8. 5920:{\displaystyle f^{*}:CH_{i}(Y)\to CH_{i+r}(X)} 3285:) whose intersection has dimension zero, then 1910:{\displaystyle \pi _{1}:X\to \mathbb {P} ^{1}} 8209:Fulton, Intersection Theory, Proposition 1.8. 6905:respectively. The flat pullback of the point 6394: 4158:points of intersection; this is a version of 8300:Fulton, William; MacPherson, Robert (1981). 6821: 6789: 6320:{\displaystyle f^{*}:CH^{i}(Y)\to CH^{i}(X)} 5468:{\displaystyle f_{*}:CH_{i}(X)\to CH_{i}(Y)} 4169: 1713:. Schematically, this can be constructed as 8432:"Les classes d'Ă©quivalence rationnelle, II" 8096:Rational equivalence of divisors (known as 7024: 3772:. It follows that for any two subvarieties 1269:in the Chow group, and if two subvarieties 793:{\displaystyle \operatorname {ord} _{Z}(f)} 714:{\displaystyle \operatorname {ord} _{Z}(f)} 8419:"Les classes d'Ă©quivalence rationnelle, I" 8354: 7978:: for a smooth complex projective surface 7329:There are several homomorphisms (known as 1963:is the projective hypersurface defined by 8667:Topological methods of algebraic geometry 8580: 8438:, SĂ©minaire Claude Chevalley, vol. 3 8425:, SĂ©minaire Claude Chevalley, vol. 3 8392: 8227:Fulton, Intersection Theory, section 19.1 8200:Fulton, Intersection Theory, section 8.1. 8190:https://stacks.math.columbia.edu/tag/0BE9 7014:{\displaystyle f^{*}=e_{1}+\cdots +e_{k}} 6567: 6495: 6465:Consider the branched covering of curves 6437: 6408: 5578:{\displaystyle CH_{0}(X)\to \mathbf {Z} } 5134:Thus the Chow group of an elliptic curve 4842: 4723: 4668: 4480: 4350: 4251: 4002: 3922: 3918: 3821: 3586: 3518: 2214:Rational Equivalence of Cycles on a Curve 2164: 2044: 1897: 1846: 1831: 1742: 1639: 36: 8290:Fulton, Intersection Theory, Chapter 17. 7870:For a smooth complex projective variety 7842:) is finitely generated for any variety 5670:{\displaystyle \operatorname {Spec} (E)} 5031:. Then the Chow group of zero-cycles on 4453:, then there is an isomorphism of rings 4062:intersect transversely, it follows that 1580:Rational Equivalence on Projective Space 8483: 7903:) of the cycle map from Chow groups to 7619: 6327:, which is in fact a ring homomorphism 4274:can be computed using the Chow ring of 67:) and have a multiplication called the 8649: 8613: 8549: 8516: 8429: 8416: 6384:{\displaystyle CH^{*}(Y)\to CH^{*}(X)} 4638: 8373:(1986), "Algebraic cycles and higher 8369: 7828:implies that the divisor class group 6595:Since the morphism ramifies whenever 2753:{\displaystyle CH^{i}(X)=CH_{n-i}(X)} 2218:If we take two distinct line bundles 47:are algebro-geometric analogs of the 8442: 8069:on the associated complex manifold. 7029:Consider a flat family of varieties 4135:, this means that there are exactly 75:Rational equivalence and Chow groups 8061:together with a component encoding 8003: 7437:The factor of 2 appears because an 7092:. Then, using the cartesian square 6898:{\displaystyle e_{1},\ldots ,e_{k}} 6250:, there is a pullback homomorphism 4426:{\displaystyle c_{1},\ldots ,c_{r}} 4240:over a field, the Chow ring of the 3501: 1061:and all nonzero rational functions 505:which is not identically zero, the 13: 8046:map to the operational Chow ring. 7894:predicts the image (tensored with 7752: 7470: 7357: 4687: 4677: 4343: 3936:{\displaystyle \cdot =a\,b\,H^{n}} 3438:whose image in the Chow groups of 3225:in the Chow ring. For example, if 3186:More generally, in various cases, 2183:{\displaystyle \mathbb {P} ^{n-1}} 1917:we can see the fiber over a point 1654: 721:denotes the order of vanishing of 246:, unless stated otherwise.) For a 14: 8683: 8555:Commentarii Mathematici Helvetici 8147:Grothendieck–Riemann–Roch theorem 8049: 7976:Bloch's conjecture on zero-cycles 7680:Grothendieck–Riemann–Roch theorem 2468:{\displaystyle s'\in H^{0}(C,L')} 8672:Chinese mathematical discoveries 7910:For a smooth projective variety 7788: 7781: 7732: 7725: 7519: 7414: 6450:{\displaystyle \mathbb {P} ^{1}} 6421:{\displaystyle \mathbb {A} ^{2}} 5585:, which takes a closed point in 5571: 5335: 5154:is closely related to the group 5111: 4904: 4736:{\displaystyle \mathbb {P} ^{1}} 4643:For example, the Chow ring of a 4015:{\displaystyle \mathbb {P} ^{n}} 3834:{\displaystyle \mathbb {P} ^{n}} 3603: 3531:{\displaystyle \mathbb {P} ^{n}} 2478: 1575:Examples of Rational Equivalence 8436:Anneaux de Chow et applications 8423:Anneaux de Chow et applications 8348: 8336: 8324: 8293: 8284: 8275: 8266: 8257: 8031:respectively. It generalizes a 6782:. This implies that the points 4267:{\displaystyle \mathbb {P} (E)} 2410:{\displaystyle s\in H^{0}(C,L)} 8355:Eisenbud, David; Harris, Joe, 8248: 8239: 8230: 8221: 8212: 8203: 8194: 8182: 8173: 8130:deformation to the normal cone 7815: 7772: 7766: 7716: 7710: 7523: 7509: 7493: 7490: 7484: 7418: 7404: 7380: 7377: 7371: 7308: 7284: 7278: 7267: 7220:{\displaystyle S'\times _{S}X} 7164: 7147: 7141: 7129: 7042: 7008: 6995: 6973: 6967: 6951: 6945: 6846: 6840: 6720: 6700: 6681: 6661: 6655: 6643: 6611: 6605: 6562: 6552: 6549: 6537: 6528: 6522: 6516: 6511: 6499: 6378: 6372: 6356: 6353: 6347: 6314: 6308: 6292: 6289: 6283: 6214: 6169: 6137: 6105: 6102: 6090: 6074: 6071: 6065: 6049: 6046: 6040: 5914: 5908: 5886: 5883: 5877: 5839:(possibly empty), there is a 5783: 5664: 5658: 5567: 5564: 5558: 5462: 5456: 5440: 5437: 5431: 5359: 5267: 5261: 5170: 5164: 5115: 5107: 5104: 5098: 5082: 5079: 5073: 5067: 4963: 4925: 4920: 4908: 4891: 4866: 4861: 4855: 4852: 4837: 4815: 4802: 4701: 4698: 4692: 4672: 4530: 4524: 4521: 4515: 4493: 4490: 4484: 4476: 4374: 4371: 4365: 4360: 4354: 4337: 4261: 4255: 4184: 3909: 3903: 3897: 3891: 3812:of complementary dimension in 3640: 3621: 3613: 3607: 3596: 3581: 3480: 3474: 3471: 3465: 3307: 3301: 3298: 3292: 3212: 3206: 3203: 3197: 3118: 3112: 3073: 3067: 3064: 3058: 2888: 2882: 2860: 2857: 2851: 2832: 2826: 2786: 2780: 2747: 2741: 2716: 2710: 2593: 2587: 2462: 2445: 2404: 2392: 2356: 2350: 2338: 2332: 2306: 2300: 2254: 2248: 2060: 2039: 1950: 1924: 1892: 1826: 1816: 1798: 1793: 1761: 1758: 1746: 1668: 1665: 1659: 1634: 1466: 1460: 1334: 1328: 1322: 1316: 1249:for the class of a subvariety 1236: 1230: 1210: 1204: 1130: 1124: 1008: 996: 976: 970: 950: 944: 787: 781: 708: 702: 600: 594: 565: 559: 292: 286: 1: 8489:Cohomologie Etale (SGA 4 1/2) 8308:American Mathematical Society 8162: 7810:adequate equivalence relation 7324: 5677:for a finite extension field 3157:, which all have codimension 2475:define inequivalent classes. 2267:of a smooth projective curve 2110:{\displaystyle sf+tx_{0}^{d}} 2002:{\displaystyle s_{0}f+t_{0}g} 925:rationally equivalent to zero 393:-dimensional subvarieties of 8394:10.1016/0001-8708(86)90081-2 8167: 6623:{\displaystyle f(\alpha )=0} 6461:Branched coverings of curves 5538:, this gives a homomorphism 4242:associated projective bundle 4220:over a smooth proper scheme 2029:is rationally equivalent to 622:where the sum runs over all 7: 8363: 8157:Motive (algebraic geometry) 8135: 7998: 7982:with geometric genus zero, 7441:-dimensional subvariety of 7085:{\displaystyle S'\subset S} 5934:, as follows. For a scheme 5717:, and its degree means the 3496: 3124:{\displaystyle CH^{i+j}(X)} 2947:are smooth subvarieties of 2148:{\displaystyle x_{0}^{d}=0} 1472:{\displaystyle CH_{n-1}(X)} 79:For what follows, define a 10: 8688: 8623:Cambridge University Press 8590:Princeton University Press 8430:Claude, Chevalley (1958), 8417:Claude, Chevalley (1958), 8091: 6775:{\displaystyle e_{i}>1} 6395:Examples of flat pullbacks 4982: 4088:is a zero-cycle of degree 2670:is a variety of dimension 1414:is a variety of dimension 1021:-dimensional subvarieties 642:-dimensional subvarieties 8120:. Starting in the 1970s, 8104:in number theory and the 8086:virtual fundamental class 7189:we see that the image of 5819:with fibers of dimension 4294:and the Chern classes of 4170:Projective bundle formula 2792:{\displaystyle CH^{*}(X)} 2599:{\displaystyle CH^{i}(X)} 2523:, the Chow groups form a 1136:{\displaystyle CH_{i}(X)} 7600:over an arbitrary field 7561:. This incorporates the 7025:Flat family of varieties 6223:{\displaystyle f:X\to Y} 6178:{\displaystyle X-Z\to X} 5792:{\displaystyle f:X\to Y} 5397:pushforward homomorphism 5368:{\displaystyle f:X\to Y} 4772:{\displaystyle c_{1}=aH} 2606:to be the Chow group of 2190:and it has multiplicity 1216:{\displaystyle Z_{i}(X)} 963:generated by the cycles 956:{\displaystyle Z_{i}(X)} 325:-dimensional cycles (or 298:{\displaystyle Z_{i}(X)} 8380:Advances in Mathematics 8112:in the 1930s. In 1956, 8078:equivariant Chow groups 8023:that assign to a map a 7930:and the Chow groups of 6918:{\displaystyle \alpha } 6630:we get a factorization 6230:of smooth schemes over 5974:and a closed subscheme 4081:{\displaystyle Y\cap Z} 3431:{\displaystyle Y\cap Z} 3324:. For any subvarieties 3150:{\displaystyle Y\cap Z} 2690:, this just means that 2503:is smooth over a field 1163:-dimensional cycles on 8065:information, that is, 8055:Arithmetic Chow groups 7951:be the kernel. If the 7890:or number field), the 7867:in algebraic K-theory. 7799: 7533: 7428: 7315: 7314:{\displaystyle f^{*}=} 7241: 7221: 7180: 7086: 7052: 7051:{\displaystyle X\to S} 7015: 6919: 6899: 6853: 6776: 6740: 6624: 6586: 6451: 6422: 6385: 6321: 6244: 6224: 6189:groups, also known as 6179: 6147: 6146:{\displaystyle Z\to X} 6118: 6008: 5988: 5968: 5948: 5921: 5833: 5813: 5793: 5755: 5735: 5711: 5691: 5671: 5639: 5619: 5599: 5579: 5532: 5512: 5489: 5469: 5389: 5369: 5318: 5298: 5274: 5241: 5221: 5197: 5177: 5148: 5125: 5045: 5025: 5001: 4973: 4773: 4737: 4708: 4629: 4447: 4427: 4381: 4308: 4288: 4268: 4234: 4214: 4194: 4193:{\displaystyle E\to X} 4174:Given a vector bundle 4162:, a classic result of 4152: 4125: 4105: 4082: 4056: 4036: 4016: 3987: 3967: 3937: 3875: 3855: 3835: 3806: 3786: 3766: 3765:{\displaystyle dH^{a}} 3736: 3716: 3693: 3673: 3650: 3552: 3532: 3487: 3452: 3432: 3398: 3378: 3358: 3338: 3314: 3279: 3259: 3239: 3219: 3177: 3151: 3125: 3080: 3041: 3021: 3001: 2981: 2961: 2941: 2921: 2898: 2793: 2754: 2684: 2664: 2644: 2624: 2600: 2561: 2541: 2517: 2497: 2469: 2411: 2363: 2313: 2281: 2261: 2204: 2184: 2149: 2111: 2067: 2023: 2003: 1957: 1911: 1860: 1707: 1675: 1599: 1565: 1537: 1517: 1497: 1473: 1428: 1408: 1381: 1361: 1341: 1303: 1283: 1263: 1243: 1217: 1177: 1157: 1137: 1095: 1075: 1055: 1035: 1015: 983: 957: 917: 897: 877: 854: 834: 814: 794: 755: 735: 715: 676: 656: 636: 613: 543: 523: 499: 479: 456: 430: 407: 387: 363: 339: 319: 299: 263: 240: 216: 192: 168: 148: 128: 97: 8449:Annals of Mathematics 8082:Chow group of a stack 8017:operational Chow ring 7860:values of L-functions 7812:on algebraic cycles. 7800: 7690:gives an isomorphism 7674:of vector bundles on 7567:intermediate Jacobian 7553:For a smooth complex 7534: 7429: 7316: 7247:. Therefore, we have 7242: 7222: 7181: 7087: 7053: 7016: 6920: 6900: 6854: 6777: 6741: 6625: 6587: 6452: 6423: 6386: 6322: 6245: 6225: 6180: 6148: 6119: 6009: 5989: 5969: 5949: 5932:localization sequence 5922: 5834: 5814: 5794: 5756: 5736: 5712: 5692: 5672: 5640: 5625:. (A closed point in 5620: 5600: 5580: 5533: 5513: 5495:. For example, for a 5490: 5470: 5390: 5370: 5319: 5299: 5275: 5242: 5222: 5198: 5178: 5149: 5126: 5046: 5026: 5002: 4974: 4774: 4738: 4709: 4630: 4448: 4433:the Chern classes of 4428: 4382: 4309: 4289: 4269: 4235: 4215: 4195: 4153: 4126: 4106: 4083: 4057: 4037: 4017: 3988: 3968: 3966:{\displaystyle H^{n}} 3938: 3876: 3856: 3836: 3807: 3787: 3767: 3737: 3717: 3694: 3674: 3651: 3553: 3533: 3488: 3453: 3433: 3399: 3379: 3359: 3339: 3315: 3280: 3260: 3240: 3220: 3178: 3152: 3126: 3081: 3042: 3022: 3007:respectively, and if 3002: 2982: 2962: 2942: 2922: 2899: 2794: 2755: 2685: 2665: 2645: 2625: 2601: 2562: 2542: 2518: 2498: 2470: 2412: 2364: 2314: 2312:{\displaystyle CH(C)} 2282: 2262: 2205: 2185: 2150: 2112: 2068: 2024: 2004: 1958: 1912: 1869:using the projection 1861: 1708: 1706:{\displaystyle sf+tg} 1676: 1600: 1566: 1538: 1518: 1498: 1474: 1429: 1409: 1389:rationally equivalent 1382: 1362: 1342: 1304: 1284: 1264: 1244: 1218: 1178: 1158: 1138: 1096: 1076: 1056: 1036: 1016: 1014:{\displaystyle (i+1)} 984: 958: 918: 898: 878: 855: 835: 815: 795: 756: 736: 716: 677: 657: 637: 614: 544: 524: 500: 480: 457: 431: 408: 388: 364: 340: 320: 300: 264: 241: 217: 193: 169: 149: 129: 98: 8592:, pp. 188–238, 8524:, Berlin, New York: 8063:Arakelov-theoretical 7914:over any field, the 7878:predicts the image ( 7826:Mordell–Weil theorem 7697: 7620:Relation to K-theory 7571:exponential sequence 7464: 7445:has real dimension 2 7351: 7342:Borel–Moore homology 7336:First, for a scheme 7254: 7231: 7193: 7099: 7065: 7036: 6932: 6909: 6863: 6859:have multiplicities 6786: 6753: 6637: 6599: 6472: 6432: 6403: 6331: 6254: 6234: 6202: 6157: 6131: 6024: 5998: 5978: 5958: 5938: 5848: 5823: 5803: 5771: 5745: 5725: 5701: 5681: 5649: 5629: 5609: 5589: 5542: 5522: 5502: 5479: 5402: 5379: 5347: 5308: 5288: 5273:{\displaystyle X(k)} 5255: 5231: 5211: 5187: 5176:{\displaystyle X(k)} 5158: 5138: 5061: 5035: 5015: 4991: 4786: 4747: 4718: 4651: 4460: 4437: 4391: 4318: 4298: 4278: 4247: 4224: 4204: 4178: 4164:enumerative geometry 4139: 4133:algebraically closed 4115: 4111:. If the base field 4092: 4066: 4046: 4026: 3997: 3977: 3950: 3888: 3865: 3845: 3816: 3796: 3776: 3746: 3726: 3706: 3683: 3663: 3565: 3542: 3513: 3462: 3442: 3416: 3388: 3368: 3348: 3328: 3322:intersection numbers 3289: 3269: 3249: 3229: 3194: 3161: 3135: 3090: 3055: 3031: 3011: 2991: 2971: 2951: 2931: 2911: 2810: 2764: 2694: 2674: 2654: 2634: 2614: 2571: 2551: 2531: 2507: 2487: 2421: 2373: 2323: 2291: 2271: 2222: 2194: 2159: 2121: 2077: 2033: 2013: 1967: 1921: 1873: 1720: 1685: 1609: 1589: 1555: 1527: 1507: 1487: 1438: 1418: 1398: 1371: 1351: 1313: 1293: 1273: 1253: 1227: 1191: 1167: 1147: 1108: 1085: 1065: 1045: 1025: 993: 967: 931: 907: 887: 883:of finite type over 867: 844: 824: 804: 765: 745: 725: 686: 666: 646: 626: 556: 533: 513: 489: 469: 440: 420: 397: 377: 353: 329: 309: 273: 253: 230: 206: 182: 158: 154:of finite type over 138: 118: 87: 69:intersection product 33:Claude Chevalley 8662:Intersection theory 8582:Voevodsky, Vladimir 8522:Intersection Theory 8142:Intersection theory 8118:Chow's moving lemma 7882:with the rationals 7631:on a smooth scheme 7403: 7227:is a subvariety of 6581: 5605:to its degree over 4639:Hirzebruch surfaces 3993:-rational point in 3364:of a smooth scheme 3188:intersection theory 3176:{\displaystyle i+j} 3051:, then the product 2799:form a commutative 2760:.) Then the groups 2138: 2106: 1481:divisor class group 982:{\displaystyle (f)} 927:is the subgroup of 455:{\displaystyle i+1} 202:of subvarieties of 8657:Algebraic geometry 8567:10.1007/bf01202721 8098:linear equivalence 8067:differential forms 8044:motivic cohomology 7962:, Ω) is not zero, 7795: 7748: 7672:Grothendieck group 7559:Deligne cohomology 7555:projective variety 7529: 7457:as a homomorphism 7424: 7383: 7311: 7237: 7217: 7176: 7174: 7082: 7048: 7011: 6915: 6895: 6849: 6772: 6736: 6620: 6582: 6565: 6447: 6418: 6381: 6317: 6240: 6220: 6192:higher Chow groups 6175: 6143: 6114: 6004: 5984: 5964: 5944: 5917: 5829: 5809: 5789: 5751: 5731: 5707: 5687: 5667: 5635: 5615: 5595: 5575: 5528: 5508: 5485: 5465: 5385: 5365: 5314: 5294: 5282:Mordell–Weil group 5270: 5237: 5217: 5193: 5173: 5144: 5121: 5041: 5021: 4997: 4969: 4769: 4733: 4704: 4645:Hirzebruch surface 4625: 4443: 4423: 4377: 4304: 4284: 4264: 4230: 4210: 4190: 4151:{\displaystyle ab} 4148: 4121: 4104:{\displaystyle ab} 4101: 4078: 4052: 4032: 4022:. For example, if 4012: 3983: 3973:is the class of a 3963: 3933: 3871: 3851: 3831: 3802: 3782: 3762: 3732: 3712: 3689: 3669: 3646: 3548: 3528: 3483: 3448: 3428: 3394: 3374: 3354: 3334: 3310: 3275: 3255: 3235: 3215: 3173: 3147: 3121: 3076: 3037: 3017: 2997: 2977: 2957: 2937: 2917: 2894: 2803:with the product: 2789: 2750: 2680: 2660: 2640: 2620: 2596: 2557: 2537: 2513: 2493: 2465: 2407: 2359: 2319:. This is because 2309: 2277: 2257: 2200: 2180: 2145: 2124: 2107: 2092: 2063: 2019: 1999: 1953: 1907: 1856: 1703: 1671: 1595: 1561: 1533: 1513: 1493: 1469: 1424: 1404: 1394:For example, when 1377: 1357: 1337: 1299: 1279: 1259: 1239: 1213: 1173: 1153: 1133: 1091: 1071: 1051: 1031: 1011: 979: 953: 913: 893: 873: 850: 830: 810: 790: 751: 731: 711: 672: 652: 632: 609: 580: 539: 519: 495: 475: 452: 426: 403: 383: 371:free abelian group 359: 335: 315: 295: 259: 236: 212: 200:linear combination 188: 164: 144: 124: 93: 21:algebraic geometry 8632:978-0-521-71801-1 8551:Severi, Francesco 8535:978-0-387-98549-7 8502:978-3-540-08066-4 8102:ideal class group 8033:cohomology theory 7939:For example, let 7905:l-adic cohomology 7739: 7678:. As part of the 7635:over a field has 7240:{\displaystyle X} 7061:and a subvariety 6749:where one of the 6556: 6243:{\displaystyle k} 6198:For any morphism 6007:{\displaystyle X} 5987:{\displaystyle Z} 5967:{\displaystyle k} 5947:{\displaystyle X} 5832:{\displaystyle r} 5812:{\displaystyle k} 5754:{\displaystyle k} 5734:{\displaystyle E} 5710:{\displaystyle k} 5690:{\displaystyle E} 5638:{\displaystyle X} 5618:{\displaystyle k} 5598:{\displaystyle X} 5531:{\displaystyle k} 5511:{\displaystyle X} 5488:{\displaystyle i} 5475:for each integer 5388:{\displaystyle k} 5317:{\displaystyle k} 5297:{\displaystyle X} 5240:{\displaystyle k} 5220:{\displaystyle X} 5196:{\displaystyle k} 5147:{\displaystyle X} 5044:{\displaystyle X} 5024:{\displaystyle k} 5000:{\displaystyle X} 4967: 4895: 4623: 4446:{\displaystyle E} 4307:{\displaystyle E} 4287:{\displaystyle X} 4233:{\displaystyle X} 4213:{\displaystyle r} 4124:{\displaystyle k} 4055:{\displaystyle Z} 4035:{\displaystyle Y} 3986:{\displaystyle k} 3874:{\displaystyle b} 3854:{\displaystyle a} 3805:{\displaystyle Z} 3785:{\displaystyle Y} 3735:{\displaystyle a} 3715:{\displaystyle d} 3692:{\displaystyle Y} 3672:{\displaystyle H} 3551:{\displaystyle k} 3506:The Chow ring of 3451:{\displaystyle X} 3410:Robert MacPherson 3397:{\displaystyle k} 3377:{\displaystyle X} 3357:{\displaystyle Z} 3337:{\displaystyle Y} 3278:{\displaystyle X} 3258:{\displaystyle Z} 3238:{\displaystyle Y} 3040:{\displaystyle Z} 3020:{\displaystyle Y} 3000:{\displaystyle j} 2980:{\displaystyle i} 2960:{\displaystyle X} 2940:{\displaystyle Z} 2920:{\displaystyle Y} 2683:{\displaystyle n} 2663:{\displaystyle X} 2643:{\displaystyle X} 2623:{\displaystyle i} 2560:{\displaystyle k} 2540:{\displaystyle X} 2516:{\displaystyle k} 2496:{\displaystyle X} 2280:{\displaystyle C} 2203:{\displaystyle d} 2066:{\displaystyle d} 2022:{\displaystyle d} 1820: 1732: 1598:{\displaystyle d} 1564:{\displaystyle X} 1536:{\displaystyle k} 1516:{\displaystyle X} 1496:{\displaystyle X} 1434:, the Chow group 1427:{\displaystyle n} 1407:{\displaystyle X} 1380:{\displaystyle W} 1360:{\displaystyle Z} 1340:{\displaystyle =} 1302:{\displaystyle W} 1282:{\displaystyle Z} 1262:{\displaystyle Z} 1176:{\displaystyle X} 1156:{\displaystyle i} 1094:{\displaystyle W} 1074:{\displaystyle f} 1054:{\displaystyle X} 1034:{\displaystyle W} 916:{\displaystyle i} 896:{\displaystyle k} 876:{\displaystyle X} 853:{\displaystyle W} 833:{\displaystyle Z} 820:has a pole along 813:{\displaystyle f} 754:{\displaystyle Z} 734:{\displaystyle f} 675:{\displaystyle W} 655:{\displaystyle Z} 635:{\displaystyle i} 571: 542:{\displaystyle i} 522:{\displaystyle f} 498:{\displaystyle W} 478:{\displaystyle f} 464:rational function 429:{\displaystyle W} 406:{\displaystyle X} 386:{\displaystyle i} 362:{\displaystyle X} 338:{\displaystyle i} 318:{\displaystyle i} 262:{\displaystyle i} 239:{\displaystyle X} 215:{\displaystyle X} 191:{\displaystyle X} 167:{\displaystyle k} 147:{\displaystyle X} 134:. For any scheme 127:{\displaystyle k} 96:{\displaystyle k} 53:topological space 41:algebraic variety 8679: 8643: 8610: 8577: 8546: 8513: 8480: 8439: 8426: 8413: 8396: 8359: 8343: 8340: 8334: 8328: 8322: 8321: 8297: 8291: 8288: 8282: 8279: 8273: 8270: 8264: 8261: 8255: 8252: 8246: 8243: 8237: 8234: 8228: 8225: 8219: 8216: 8210: 8207: 8201: 8198: 8192: 8188:Stacks Project, 8186: 8180: 8177: 8152:Hodge conjecture 8110:Francesco Severi 8106:Jacobian variety 8074:algebraic spaces 8004:Bivariant theory 7988:Albanese variety 7876:Hodge conjecture 7804: 7802: 7801: 7796: 7791: 7786: 7785: 7784: 7765: 7764: 7759: 7758: 7747: 7735: 7730: 7729: 7728: 7709: 7708: 7686:showed that the 7538: 7536: 7535: 7530: 7522: 7508: 7507: 7483: 7482: 7477: 7476: 7455:PoincarĂ© duality 7433: 7431: 7430: 7425: 7417: 7402: 7394: 7370: 7369: 7364: 7363: 7320: 7318: 7317: 7312: 7304: 7303: 7294: 7277: 7266: 7265: 7246: 7244: 7243: 7238: 7226: 7224: 7223: 7218: 7213: 7212: 7203: 7185: 7183: 7182: 7177: 7175: 7161: 7145: 7123: 7122: 7113: 7091: 7089: 7088: 7083: 7075: 7057: 7055: 7054: 7049: 7020: 7018: 7017: 7012: 7007: 7006: 6994: 6993: 6966: 6965: 6944: 6943: 6924: 6922: 6921: 6916: 6904: 6902: 6901: 6896: 6894: 6893: 6875: 6874: 6858: 6856: 6855: 6850: 6839: 6838: 6820: 6819: 6801: 6800: 6781: 6779: 6778: 6773: 6765: 6764: 6745: 6743: 6742: 6737: 6735: 6734: 6733: 6732: 6718: 6717: 6696: 6695: 6694: 6693: 6679: 6678: 6629: 6627: 6626: 6621: 6591: 6589: 6588: 6583: 6580: 6575: 6570: 6561: 6557: 6555: 6514: 6498: 6492: 6456: 6454: 6453: 6448: 6446: 6445: 6440: 6427: 6425: 6424: 6419: 6417: 6416: 6411: 6390: 6388: 6387: 6382: 6371: 6370: 6346: 6345: 6326: 6324: 6323: 6318: 6307: 6306: 6282: 6281: 6266: 6265: 6249: 6247: 6246: 6241: 6229: 6227: 6226: 6221: 6187:motivic homology 6184: 6182: 6181: 6176: 6152: 6150: 6149: 6144: 6123: 6121: 6120: 6115: 6089: 6088: 6064: 6063: 6039: 6038: 6013: 6011: 6010: 6005: 5993: 5991: 5990: 5985: 5973: 5971: 5970: 5965: 5953: 5951: 5950: 5945: 5926: 5924: 5923: 5918: 5907: 5906: 5876: 5875: 5860: 5859: 5838: 5836: 5835: 5830: 5818: 5816: 5815: 5810: 5799:of schemes over 5798: 5796: 5795: 5790: 5760: 5758: 5757: 5752: 5740: 5738: 5737: 5732: 5716: 5714: 5713: 5708: 5696: 5694: 5693: 5688: 5676: 5674: 5673: 5668: 5644: 5642: 5641: 5636: 5624: 5622: 5621: 5616: 5604: 5602: 5601: 5596: 5584: 5582: 5581: 5576: 5574: 5557: 5556: 5537: 5535: 5534: 5529: 5517: 5515: 5514: 5509: 5494: 5492: 5491: 5486: 5474: 5472: 5471: 5466: 5455: 5454: 5430: 5429: 5414: 5413: 5394: 5392: 5391: 5386: 5375:of schemes over 5374: 5372: 5371: 5366: 5332:abelian groups. 5323: 5321: 5320: 5315: 5303: 5301: 5300: 5295: 5279: 5277: 5276: 5271: 5246: 5244: 5243: 5238: 5226: 5224: 5223: 5218: 5202: 5200: 5199: 5194: 5182: 5180: 5179: 5174: 5153: 5151: 5150: 5145: 5130: 5128: 5127: 5122: 5114: 5097: 5096: 5050: 5048: 5047: 5042: 5030: 5028: 5027: 5022: 5006: 5004: 5003: 4998: 4978: 4976: 4975: 4970: 4968: 4966: 4950: 4949: 4937: 4936: 4923: 4907: 4901: 4896: 4894: 4878: 4877: 4864: 4851: 4850: 4845: 4836: 4835: 4822: 4814: 4813: 4801: 4800: 4778: 4776: 4775: 4770: 4759: 4758: 4742: 4740: 4739: 4734: 4732: 4731: 4726: 4713: 4711: 4710: 4705: 4691: 4690: 4681: 4680: 4671: 4663: 4662: 4634: 4632: 4631: 4626: 4624: 4622: 4621: 4620: 4602: 4601: 4586: 4585: 4573: 4572: 4557: 4556: 4544: 4543: 4533: 4514: 4513: 4500: 4483: 4475: 4474: 4452: 4450: 4449: 4444: 4432: 4430: 4429: 4424: 4422: 4421: 4403: 4402: 4386: 4384: 4383: 4378: 4364: 4363: 4353: 4347: 4346: 4336: 4335: 4313: 4311: 4310: 4305: 4293: 4291: 4290: 4285: 4273: 4271: 4270: 4265: 4254: 4239: 4237: 4236: 4231: 4219: 4217: 4216: 4211: 4199: 4197: 4196: 4191: 4160:BĂ©zout's theorem 4157: 4155: 4154: 4149: 4130: 4128: 4127: 4122: 4110: 4108: 4107: 4102: 4087: 4085: 4084: 4079: 4061: 4059: 4058: 4053: 4041: 4039: 4038: 4033: 4021: 4019: 4018: 4013: 4011: 4010: 4005: 3992: 3990: 3989: 3984: 3972: 3970: 3969: 3964: 3962: 3961: 3942: 3940: 3939: 3934: 3932: 3931: 3880: 3878: 3877: 3872: 3860: 3858: 3857: 3852: 3840: 3838: 3837: 3832: 3830: 3829: 3824: 3811: 3809: 3808: 3803: 3791: 3789: 3788: 3783: 3771: 3769: 3768: 3763: 3761: 3760: 3741: 3739: 3738: 3733: 3722:and codimension 3721: 3719: 3718: 3713: 3698: 3696: 3695: 3690: 3678: 3676: 3675: 3670: 3655: 3653: 3652: 3647: 3639: 3638: 3620: 3606: 3595: 3594: 3589: 3580: 3579: 3557: 3555: 3554: 3549: 3537: 3535: 3534: 3529: 3527: 3526: 3521: 3508:projective space 3502:Projective space 3492: 3490: 3489: 3486:{\displaystyle } 3484: 3457: 3455: 3454: 3449: 3437: 3435: 3434: 3429: 3403: 3401: 3400: 3395: 3383: 3381: 3380: 3375: 3363: 3361: 3360: 3355: 3343: 3341: 3340: 3335: 3319: 3317: 3316: 3313:{\displaystyle } 3311: 3284: 3282: 3281: 3276: 3264: 3262: 3261: 3256: 3244: 3242: 3241: 3236: 3224: 3222: 3221: 3218:{\displaystyle } 3216: 3182: 3180: 3179: 3174: 3156: 3154: 3153: 3148: 3130: 3128: 3127: 3122: 3111: 3110: 3085: 3083: 3082: 3079:{\displaystyle } 3077: 3046: 3044: 3043: 3038: 3026: 3024: 3023: 3018: 3006: 3004: 3003: 2998: 2986: 2984: 2983: 2978: 2966: 2964: 2963: 2958: 2946: 2944: 2943: 2938: 2926: 2924: 2923: 2918: 2903: 2901: 2900: 2895: 2881: 2880: 2850: 2849: 2825: 2824: 2798: 2796: 2795: 2790: 2779: 2778: 2759: 2757: 2756: 2751: 2740: 2739: 2709: 2708: 2689: 2687: 2686: 2681: 2669: 2667: 2666: 2661: 2649: 2647: 2646: 2641: 2629: 2627: 2626: 2621: 2605: 2603: 2602: 2597: 2586: 2585: 2566: 2564: 2563: 2558: 2546: 2544: 2543: 2538: 2522: 2520: 2519: 2514: 2502: 2500: 2499: 2494: 2483:When the scheme 2474: 2472: 2471: 2466: 2461: 2444: 2443: 2431: 2416: 2414: 2413: 2408: 2391: 2390: 2368: 2366: 2365: 2360: 2318: 2316: 2315: 2310: 2286: 2284: 2283: 2278: 2266: 2264: 2263: 2258: 2238: 2209: 2207: 2206: 2201: 2189: 2187: 2186: 2181: 2179: 2178: 2167: 2154: 2152: 2151: 2146: 2137: 2132: 2116: 2114: 2113: 2108: 2105: 2100: 2072: 2070: 2069: 2064: 2059: 2058: 2047: 2028: 2026: 2025: 2020: 2008: 2006: 2005: 2000: 1995: 1994: 1979: 1978: 1962: 1960: 1959: 1956:{\displaystyle } 1954: 1949: 1948: 1936: 1935: 1916: 1914: 1913: 1908: 1906: 1905: 1900: 1885: 1884: 1865: 1863: 1862: 1857: 1855: 1854: 1849: 1840: 1839: 1834: 1825: 1821: 1819: 1796: 1792: 1791: 1773: 1772: 1745: 1739: 1733: 1730: 1712: 1710: 1709: 1704: 1680: 1678: 1677: 1672: 1658: 1657: 1648: 1647: 1642: 1633: 1632: 1604: 1602: 1601: 1596: 1570: 1568: 1567: 1562: 1542: 1540: 1539: 1534: 1522: 1520: 1519: 1514: 1502: 1500: 1499: 1494: 1478: 1476: 1475: 1470: 1459: 1458: 1433: 1431: 1430: 1425: 1413: 1411: 1410: 1405: 1386: 1384: 1383: 1378: 1366: 1364: 1363: 1358: 1346: 1344: 1343: 1338: 1308: 1306: 1305: 1300: 1288: 1286: 1285: 1280: 1268: 1266: 1265: 1260: 1248: 1246: 1245: 1242:{\displaystyle } 1240: 1222: 1220: 1219: 1214: 1203: 1202: 1182: 1180: 1179: 1174: 1162: 1160: 1159: 1154: 1142: 1140: 1139: 1134: 1123: 1122: 1100: 1098: 1097: 1092: 1080: 1078: 1077: 1072: 1060: 1058: 1057: 1052: 1040: 1038: 1037: 1032: 1020: 1018: 1017: 1012: 988: 986: 985: 980: 962: 960: 959: 954: 943: 942: 922: 920: 919: 914: 902: 900: 899: 894: 882: 880: 879: 874: 859: 857: 856: 851: 839: 837: 836: 831: 819: 817: 816: 811: 799: 797: 796: 791: 777: 776: 760: 758: 757: 752: 740: 738: 737: 732: 720: 718: 717: 712: 698: 697: 682:and the integer 681: 679: 678: 673: 661: 659: 658: 653: 641: 639: 638: 633: 618: 616: 615: 610: 590: 589: 579: 548: 546: 545: 540: 528: 526: 525: 520: 504: 502: 501: 496: 484: 482: 481: 476: 461: 459: 458: 453: 435: 433: 432: 427: 412: 410: 409: 404: 392: 390: 389: 384: 368: 366: 365: 360: 349:, for short) on 344: 342: 341: 336: 324: 322: 321: 316: 304: 302: 301: 296: 285: 284: 268: 266: 265: 260: 245: 243: 242: 237: 221: 219: 218: 213: 197: 195: 194: 189: 173: 171: 170: 165: 153: 151: 150: 145: 133: 131: 130: 125: 102: 100: 99: 94: 65:PoincarĂ© duality 57:algebraic cycles 8687: 8686: 8682: 8681: 8680: 8678: 8677: 8676: 8647: 8646: 8633: 8600: 8536: 8526:Springer-Verlag 8518:Fulton, William 8503: 8493:Springer-Verlag 8485:Deligne, Pierre 8462:10.2307/1969596 8444:Chow, Wei-Liang 8366: 8351: 8346: 8341: 8337: 8329: 8325: 8318: 8298: 8294: 8289: 8285: 8280: 8276: 8271: 8267: 8262: 8258: 8253: 8249: 8244: 8240: 8235: 8231: 8226: 8222: 8217: 8213: 8208: 8204: 8199: 8195: 8187: 8183: 8178: 8174: 8170: 8165: 8138: 8094: 8052: 8037:cohomology ring 8006: 8001: 7953:geometric genus 7902: 7892:Tate conjecture 7865:Bass conjecture 7837: 7818: 7787: 7780: 7779: 7775: 7760: 7751: 7750: 7749: 7743: 7731: 7724: 7723: 7719: 7704: 7700: 7698: 7695: 7694: 7688:Chern character 7665: 7646: 7624:An (algebraic) 7622: 7612:is smooth over 7563:Abel–Jacobi map 7518: 7500: 7496: 7478: 7469: 7468: 7467: 7465: 7462: 7461: 7413: 7395: 7387: 7365: 7356: 7355: 7354: 7352: 7349: 7348: 7327: 7299: 7295: 7287: 7270: 7261: 7257: 7255: 7252: 7251: 7232: 7229: 7228: 7208: 7204: 7196: 7194: 7191: 7190: 7173: 7172: 7167: 7162: 7154: 7151: 7150: 7144: 7138: 7137: 7132: 7127: 7118: 7114: 7106: 7102: 7100: 7097: 7096: 7068: 7066: 7063: 7062: 7037: 7034: 7033: 7027: 7002: 6998: 6989: 6985: 6961: 6957: 6939: 6935: 6933: 6930: 6929: 6910: 6907: 6906: 6889: 6885: 6870: 6866: 6864: 6861: 6860: 6831: 6827: 6815: 6811: 6796: 6792: 6787: 6784: 6783: 6760: 6756: 6754: 6751: 6750: 6728: 6724: 6723: 6719: 6713: 6709: 6689: 6685: 6684: 6680: 6674: 6670: 6638: 6635: 6634: 6600: 6597: 6596: 6576: 6571: 6566: 6515: 6494: 6493: 6491: 6487: 6473: 6470: 6469: 6463: 6441: 6436: 6435: 6433: 6430: 6429: 6412: 6407: 6406: 6404: 6401: 6400: 6397: 6366: 6362: 6341: 6337: 6332: 6329: 6328: 6302: 6298: 6277: 6273: 6261: 6257: 6255: 6252: 6251: 6235: 6232: 6231: 6203: 6200: 6199: 6158: 6155: 6154: 6132: 6129: 6128: 6084: 6080: 6059: 6055: 6034: 6030: 6025: 6022: 6021: 5999: 5996: 5995: 5979: 5976: 5975: 5959: 5956: 5955: 5939: 5936: 5935: 5896: 5892: 5871: 5867: 5855: 5851: 5849: 5846: 5845: 5824: 5821: 5820: 5804: 5801: 5800: 5772: 5769: 5768: 5746: 5743: 5742: 5726: 5723: 5722: 5702: 5699: 5698: 5682: 5679: 5678: 5650: 5647: 5646: 5630: 5627: 5626: 5610: 5607: 5606: 5590: 5587: 5586: 5570: 5552: 5548: 5543: 5540: 5539: 5523: 5520: 5519: 5503: 5500: 5499: 5480: 5477: 5476: 5450: 5446: 5425: 5421: 5409: 5405: 5403: 5400: 5399: 5380: 5377: 5376: 5348: 5345: 5344: 5342:proper morphism 5338: 5326:complex numbers 5309: 5306: 5305: 5289: 5286: 5285: 5256: 5253: 5252: 5232: 5229: 5228: 5212: 5209: 5208: 5205:rational points 5188: 5185: 5184: 5159: 5156: 5155: 5139: 5136: 5135: 5110: 5092: 5088: 5062: 5059: 5058: 5036: 5033: 5032: 5016: 5013: 5012: 4992: 4989: 4988: 4985: 4945: 4941: 4932: 4928: 4924: 4903: 4902: 4900: 4873: 4869: 4865: 4846: 4841: 4840: 4831: 4827: 4823: 4821: 4809: 4805: 4796: 4792: 4787: 4784: 4783: 4754: 4750: 4748: 4745: 4744: 4727: 4722: 4721: 4719: 4716: 4715: 4686: 4685: 4676: 4675: 4667: 4658: 4654: 4652: 4649: 4648: 4641: 4616: 4612: 4591: 4587: 4581: 4577: 4562: 4558: 4552: 4548: 4539: 4535: 4534: 4509: 4505: 4501: 4499: 4479: 4470: 4466: 4461: 4458: 4457: 4438: 4435: 4434: 4417: 4413: 4398: 4394: 4392: 4389: 4388: 4349: 4348: 4342: 4341: 4340: 4331: 4327: 4319: 4316: 4315: 4299: 4296: 4295: 4279: 4276: 4275: 4250: 4248: 4245: 4244: 4225: 4222: 4221: 4205: 4202: 4201: 4179: 4176: 4175: 4172: 4140: 4137: 4136: 4116: 4113: 4112: 4093: 4090: 4089: 4067: 4064: 4063: 4047: 4044: 4043: 4027: 4024: 4023: 4006: 4001: 4000: 3998: 3995: 3994: 3978: 3975: 3974: 3957: 3953: 3951: 3948: 3947: 3927: 3923: 3889: 3886: 3885: 3866: 3863: 3862: 3846: 3843: 3842: 3825: 3820: 3819: 3817: 3814: 3813: 3797: 3794: 3793: 3777: 3774: 3773: 3756: 3752: 3747: 3744: 3743: 3727: 3724: 3723: 3707: 3704: 3703: 3684: 3681: 3680: 3664: 3661: 3660: 3628: 3624: 3616: 3602: 3590: 3585: 3584: 3575: 3571: 3566: 3563: 3562: 3543: 3540: 3539: 3538:over any field 3522: 3517: 3516: 3514: 3511: 3510: 3504: 3499: 3463: 3460: 3459: 3458:is the product 3443: 3440: 3439: 3417: 3414: 3413: 3389: 3386: 3385: 3369: 3366: 3365: 3349: 3346: 3345: 3329: 3326: 3325: 3290: 3287: 3286: 3270: 3267: 3266: 3250: 3247: 3246: 3230: 3227: 3226: 3195: 3192: 3191: 3162: 3159: 3158: 3136: 3133: 3132: 3100: 3096: 3091: 3088: 3087: 3056: 3053: 3052: 3032: 3029: 3028: 3012: 3009: 3008: 2992: 2989: 2988: 2972: 2969: 2968: 2967:of codimension 2952: 2949: 2948: 2932: 2929: 2928: 2912: 2909: 2908: 2870: 2866: 2845: 2841: 2820: 2816: 2811: 2808: 2807: 2774: 2770: 2765: 2762: 2761: 2729: 2725: 2704: 2700: 2695: 2692: 2691: 2675: 2672: 2671: 2655: 2652: 2651: 2635: 2632: 2631: 2615: 2612: 2611: 2581: 2577: 2572: 2569: 2568: 2552: 2549: 2548: 2547:is smooth over 2532: 2529: 2528: 2508: 2505: 2504: 2488: 2485: 2484: 2481: 2454: 2439: 2435: 2424: 2422: 2419: 2418: 2386: 2382: 2374: 2371: 2370: 2324: 2321: 2320: 2292: 2289: 2288: 2272: 2269: 2268: 2231: 2223: 2220: 2219: 2216: 2195: 2192: 2191: 2168: 2163: 2162: 2160: 2157: 2156: 2133: 2128: 2122: 2119: 2118: 2101: 2096: 2078: 2075: 2074: 2048: 2043: 2042: 2034: 2031: 2030: 2014: 2011: 2010: 1990: 1986: 1974: 1970: 1968: 1965: 1964: 1944: 1940: 1931: 1927: 1922: 1919: 1918: 1901: 1896: 1895: 1880: 1876: 1874: 1871: 1870: 1850: 1845: 1844: 1835: 1830: 1829: 1797: 1787: 1783: 1768: 1764: 1741: 1740: 1738: 1734: 1729: 1721: 1718: 1717: 1686: 1683: 1682: 1653: 1652: 1643: 1638: 1637: 1628: 1624: 1610: 1607: 1606: 1590: 1587: 1586: 1582: 1577: 1556: 1553: 1552: 1528: 1525: 1524: 1523:is smooth over 1508: 1505: 1504: 1488: 1485: 1484: 1448: 1444: 1439: 1436: 1435: 1419: 1416: 1415: 1399: 1396: 1395: 1387:are said to be 1372: 1369: 1368: 1352: 1349: 1348: 1314: 1311: 1310: 1294: 1291: 1290: 1274: 1271: 1270: 1254: 1251: 1250: 1228: 1225: 1224: 1198: 1194: 1192: 1189: 1188: 1168: 1165: 1164: 1148: 1145: 1144: 1118: 1114: 1109: 1106: 1105: 1086: 1083: 1082: 1066: 1063: 1062: 1046: 1043: 1042: 1026: 1023: 1022: 994: 991: 990: 968: 965: 964: 938: 934: 932: 929: 928: 908: 905: 904: 903:, the group of 888: 885: 884: 868: 865: 864: 845: 842: 841: 825: 822: 821: 805: 802: 801: 800:is negative if 772: 768: 766: 763: 762: 746: 743: 742: 726: 723: 722: 693: 689: 687: 684: 683: 667: 664: 663: 647: 644: 643: 627: 624: 623: 585: 581: 575: 557: 554: 553: 534: 531: 530: 514: 511: 510: 490: 487: 486: 470: 467: 466: 441: 438: 437: 421: 418: 417: 398: 395: 394: 378: 375: 374: 354: 351: 350: 330: 327: 326: 310: 307: 306: 280: 276: 274: 271: 270: 254: 251: 250: 231: 228: 227: 207: 204: 203: 198:means a finite 183: 180: 179: 176:algebraic cycle 159: 156: 155: 139: 136: 135: 119: 116: 115: 88: 85: 84: 77: 17: 12: 11: 5: 8685: 8675: 8674: 8669: 8664: 8659: 8645: 8644: 8631: 8615:Voisin, Claire 8611: 8598: 8578: 8547: 8534: 8514: 8501: 8481: 8440: 8427: 8414: 8387:(3): 267–304, 8371:Bloch, Spencer 8365: 8362: 8361: 8360: 8350: 8347: 8345: 8344: 8335: 8323: 8316: 8292: 8283: 8274: 8265: 8256: 8247: 8238: 8229: 8220: 8211: 8202: 8193: 8181: 8171: 8169: 8166: 8164: 8161: 8160: 8159: 8154: 8149: 8144: 8137: 8134: 8114:Wei-Liang Chow 8093: 8090: 8051: 8050:Other variants 8048: 8005: 8002: 8000: 7997: 7996: 7995: 7936: 7935: 7908: 7898: 7868: 7858:conjecture on 7832: 7817: 7814: 7806: 7805: 7794: 7790: 7783: 7778: 7774: 7771: 7768: 7763: 7757: 7754: 7746: 7742: 7738: 7734: 7727: 7722: 7718: 7715: 7712: 7707: 7703: 7663: 7642: 7621: 7618: 7606:etale homology 7542:In this case ( 7540: 7539: 7528: 7525: 7521: 7517: 7514: 7511: 7506: 7503: 7499: 7495: 7492: 7489: 7486: 7481: 7475: 7472: 7435: 7434: 7423: 7420: 7416: 7412: 7409: 7406: 7401: 7398: 7393: 7390: 7386: 7382: 7379: 7376: 7373: 7368: 7362: 7359: 7326: 7323: 7322: 7321: 7310: 7307: 7302: 7298: 7293: 7290: 7286: 7283: 7280: 7276: 7273: 7269: 7264: 7260: 7236: 7216: 7211: 7207: 7202: 7199: 7187: 7186: 7171: 7168: 7166: 7163: 7160: 7157: 7153: 7152: 7149: 7146: 7143: 7140: 7139: 7136: 7133: 7131: 7128: 7126: 7121: 7117: 7112: 7109: 7105: 7104: 7081: 7078: 7074: 7071: 7059: 7058: 7047: 7044: 7041: 7026: 7023: 7022: 7021: 7010: 7005: 7001: 6997: 6992: 6988: 6984: 6981: 6978: 6975: 6972: 6969: 6964: 6960: 6956: 6953: 6950: 6947: 6942: 6938: 6914: 6892: 6888: 6884: 6881: 6878: 6873: 6869: 6848: 6845: 6842: 6837: 6834: 6830: 6826: 6823: 6818: 6814: 6810: 6807: 6804: 6799: 6795: 6791: 6771: 6768: 6763: 6759: 6747: 6746: 6731: 6727: 6722: 6716: 6712: 6708: 6705: 6702: 6699: 6692: 6688: 6683: 6677: 6673: 6669: 6666: 6663: 6660: 6657: 6654: 6651: 6648: 6645: 6642: 6619: 6616: 6613: 6610: 6607: 6604: 6593: 6592: 6579: 6574: 6569: 6564: 6560: 6554: 6551: 6548: 6545: 6542: 6539: 6536: 6533: 6530: 6527: 6524: 6521: 6518: 6513: 6510: 6507: 6504: 6501: 6497: 6490: 6486: 6483: 6480: 6477: 6462: 6459: 6444: 6439: 6415: 6410: 6396: 6393: 6380: 6377: 6374: 6369: 6365: 6361: 6358: 6355: 6352: 6349: 6344: 6340: 6336: 6316: 6313: 6310: 6305: 6301: 6297: 6294: 6291: 6288: 6285: 6280: 6276: 6272: 6269: 6264: 6260: 6239: 6219: 6216: 6213: 6210: 6207: 6174: 6171: 6168: 6165: 6162: 6142: 6139: 6136: 6125: 6124: 6113: 6110: 6107: 6104: 6101: 6098: 6095: 6092: 6087: 6083: 6079: 6076: 6073: 6070: 6067: 6062: 6058: 6054: 6051: 6048: 6045: 6042: 6037: 6033: 6029: 6016:exact sequence 6014:, there is an 6003: 5983: 5963: 5943: 5916: 5913: 5910: 5905: 5902: 5899: 5895: 5891: 5888: 5885: 5882: 5879: 5874: 5870: 5866: 5863: 5858: 5854: 5828: 5808: 5788: 5785: 5782: 5779: 5776: 5750: 5730: 5706: 5686: 5666: 5663: 5660: 5657: 5654: 5634: 5614: 5594: 5573: 5569: 5566: 5563: 5560: 5555: 5551: 5547: 5527: 5507: 5484: 5464: 5461: 5458: 5453: 5449: 5445: 5442: 5439: 5436: 5433: 5428: 5424: 5420: 5417: 5412: 5408: 5384: 5364: 5361: 5358: 5355: 5352: 5337: 5334: 5313: 5293: 5280:is called the 5269: 5266: 5263: 5260: 5236: 5216: 5192: 5172: 5169: 5166: 5163: 5143: 5132: 5131: 5120: 5117: 5113: 5109: 5106: 5103: 5100: 5095: 5091: 5087: 5084: 5081: 5078: 5075: 5072: 5069: 5066: 5053:exact sequence 5040: 5020: 5009:elliptic curve 4996: 4984: 4981: 4980: 4979: 4965: 4962: 4959: 4956: 4953: 4948: 4944: 4940: 4935: 4931: 4927: 4922: 4919: 4916: 4913: 4910: 4906: 4899: 4893: 4890: 4887: 4884: 4881: 4876: 4872: 4868: 4863: 4860: 4857: 4854: 4849: 4844: 4839: 4834: 4830: 4826: 4820: 4817: 4812: 4808: 4804: 4799: 4795: 4791: 4768: 4765: 4762: 4757: 4753: 4730: 4725: 4703: 4700: 4697: 4694: 4689: 4684: 4679: 4674: 4670: 4666: 4661: 4657: 4640: 4637: 4636: 4635: 4619: 4615: 4611: 4608: 4605: 4600: 4597: 4594: 4590: 4584: 4580: 4576: 4571: 4568: 4565: 4561: 4555: 4551: 4547: 4542: 4538: 4532: 4529: 4526: 4523: 4520: 4517: 4512: 4508: 4504: 4498: 4495: 4492: 4489: 4486: 4482: 4478: 4473: 4469: 4465: 4442: 4420: 4416: 4412: 4409: 4406: 4401: 4397: 4376: 4373: 4370: 4367: 4362: 4359: 4356: 4352: 4345: 4339: 4334: 4330: 4326: 4323: 4303: 4283: 4263: 4260: 4257: 4253: 4229: 4209: 4189: 4186: 4183: 4171: 4168: 4147: 4144: 4120: 4100: 4097: 4077: 4074: 4071: 4051: 4031: 4009: 4004: 3982: 3960: 3956: 3944: 3943: 3930: 3926: 3921: 3917: 3914: 3911: 3908: 3905: 3902: 3899: 3896: 3893: 3870: 3850: 3828: 3823: 3801: 3781: 3759: 3755: 3751: 3731: 3711: 3688: 3668: 3657: 3656: 3645: 3642: 3637: 3634: 3631: 3627: 3623: 3619: 3615: 3612: 3609: 3605: 3601: 3598: 3593: 3588: 3583: 3578: 3574: 3570: 3547: 3525: 3520: 3503: 3500: 3498: 3495: 3482: 3479: 3476: 3473: 3470: 3467: 3447: 3427: 3424: 3421: 3406:William Fulton 3393: 3373: 3353: 3333: 3309: 3306: 3303: 3300: 3297: 3294: 3274: 3254: 3234: 3214: 3211: 3208: 3205: 3202: 3199: 3172: 3169: 3166: 3146: 3143: 3140: 3120: 3117: 3114: 3109: 3106: 3103: 3099: 3095: 3075: 3072: 3069: 3066: 3063: 3060: 3036: 3016: 2996: 2976: 2956: 2936: 2916: 2905: 2904: 2893: 2890: 2887: 2884: 2879: 2876: 2873: 2869: 2865: 2862: 2859: 2856: 2853: 2848: 2844: 2840: 2837: 2834: 2831: 2828: 2823: 2819: 2815: 2788: 2785: 2782: 2777: 2773: 2769: 2749: 2746: 2743: 2738: 2735: 2732: 2728: 2724: 2721: 2718: 2715: 2712: 2707: 2703: 2699: 2679: 2659: 2639: 2619: 2595: 2592: 2589: 2584: 2580: 2576: 2556: 2536: 2512: 2492: 2480: 2477: 2464: 2460: 2457: 2453: 2450: 2447: 2442: 2438: 2434: 2430: 2427: 2406: 2403: 2400: 2397: 2394: 2389: 2385: 2381: 2378: 2358: 2355: 2352: 2349: 2346: 2343: 2340: 2337: 2334: 2331: 2328: 2308: 2305: 2302: 2299: 2296: 2276: 2256: 2253: 2250: 2247: 2244: 2241: 2237: 2234: 2230: 2227: 2215: 2212: 2199: 2177: 2174: 2171: 2166: 2144: 2141: 2136: 2131: 2127: 2104: 2099: 2095: 2091: 2088: 2085: 2082: 2062: 2057: 2054: 2051: 2046: 2041: 2038: 2018: 1998: 1993: 1989: 1985: 1982: 1977: 1973: 1952: 1947: 1943: 1939: 1934: 1930: 1926: 1904: 1899: 1894: 1891: 1888: 1883: 1879: 1867: 1866: 1853: 1848: 1843: 1838: 1833: 1828: 1824: 1818: 1815: 1812: 1809: 1806: 1803: 1800: 1795: 1790: 1786: 1782: 1779: 1776: 1771: 1767: 1763: 1760: 1757: 1754: 1751: 1748: 1744: 1737: 1728: 1725: 1702: 1699: 1696: 1693: 1690: 1670: 1667: 1664: 1661: 1656: 1651: 1646: 1641: 1636: 1631: 1627: 1623: 1620: 1617: 1614: 1594: 1581: 1578: 1576: 1573: 1560: 1532: 1512: 1492: 1468: 1465: 1462: 1457: 1454: 1451: 1447: 1443: 1423: 1403: 1376: 1356: 1336: 1333: 1330: 1327: 1324: 1321: 1318: 1298: 1278: 1258: 1238: 1235: 1232: 1212: 1209: 1206: 1201: 1197: 1185:quotient group 1172: 1152: 1132: 1129: 1126: 1121: 1117: 1113: 1090: 1070: 1050: 1030: 1010: 1007: 1004: 1001: 998: 978: 975: 972: 952: 949: 946: 941: 937: 912: 892: 872: 849: 829: 809: 789: 786: 783: 780: 775: 771: 750: 730: 710: 707: 704: 701: 696: 692: 671: 651: 631: 620: 619: 608: 605: 602: 599: 596: 593: 588: 584: 578: 574: 570: 567: 564: 561: 538: 518: 494: 474: 451: 448: 445: 425: 416:For a variety 402: 382: 373:on the set of 358: 334: 314: 294: 291: 288: 283: 279: 258: 248:natural number 235: 211: 187: 163: 143: 123: 92: 76: 73: 29:Wei-Liang Chow 15: 9: 6: 4: 3: 2: 8684: 8673: 8670: 8668: 8665: 8663: 8660: 8658: 8655: 8654: 8652: 8642: 8638: 8634: 8628: 8624: 8620: 8616: 8612: 8609: 8605: 8601: 8599:9781400837120 8595: 8591: 8587: 8583: 8579: 8576: 8572: 8568: 8564: 8560: 8556: 8552: 8548: 8545: 8541: 8537: 8531: 8527: 8523: 8519: 8515: 8512: 8508: 8504: 8498: 8494: 8490: 8486: 8482: 8479: 8475: 8471: 8467: 8463: 8459: 8455: 8451: 8450: 8445: 8441: 8437: 8433: 8428: 8424: 8420: 8415: 8412: 8408: 8404: 8400: 8395: 8390: 8386: 8382: 8381: 8376: 8372: 8368: 8367: 8358: 8353: 8352: 8339: 8333: 8327: 8319: 8317:9780821822432 8313: 8309: 8305: 8304: 8296: 8287: 8278: 8269: 8260: 8251: 8242: 8233: 8224: 8215: 8206: 8197: 8191: 8185: 8176: 8172: 8158: 8155: 8153: 8150: 8148: 8145: 8143: 8140: 8139: 8133: 8131: 8127: 8123: 8119: 8115: 8111: 8107: 8103: 8099: 8089: 8087: 8083: 8079: 8075: 8070: 8068: 8064: 8060: 8056: 8047: 8045: 8040: 8038: 8034: 8030: 8026: 8022: 8018: 8014: 8010: 7993: 7989: 7985: 7981: 7977: 7973: 7969: 7965: 7961: 7957: 7954: 7950: 7946: 7942: 7938: 7937: 7933: 7929: 7925: 7921: 7917: 7913: 7909: 7906: 7901: 7897: 7893: 7889: 7885: 7881: 7877: 7873: 7869: 7866: 7861: 7857: 7853: 7849: 7846:of dimension 7845: 7841: 7835: 7831: 7827: 7823: 7822: 7821: 7813: 7811: 7792: 7776: 7769: 7761: 7744: 7740: 7736: 7720: 7713: 7705: 7701: 7693: 7692: 7691: 7689: 7685: 7681: 7677: 7673: 7669: 7662: 7658: 7654: 7650: 7645: 7641: 7638: 7637:Chern classes 7634: 7630: 7627: 7626:vector bundle 7617: 7615: 7611: 7607: 7603: 7599: 7596:For a scheme 7594: 7592: 7588: 7584: 7580: 7576: 7572: 7568: 7564: 7560: 7556: 7551: 7549: 7545: 7526: 7515: 7512: 7504: 7501: 7497: 7487: 7479: 7460: 7459: 7458: 7456: 7452: 7448: 7444: 7440: 7421: 7410: 7407: 7399: 7396: 7391: 7388: 7384: 7374: 7366: 7347: 7346: 7345: 7343: 7339: 7334: 7332: 7305: 7300: 7296: 7291: 7288: 7281: 7274: 7271: 7262: 7258: 7250: 7249: 7248: 7234: 7214: 7209: 7205: 7200: 7197: 7169: 7158: 7155: 7134: 7124: 7119: 7115: 7110: 7107: 7095: 7094: 7093: 7079: 7076: 7072: 7069: 7045: 7039: 7032: 7031: 7030: 7003: 6999: 6990: 6986: 6982: 6979: 6976: 6970: 6962: 6958: 6954: 6948: 6940: 6936: 6928: 6927: 6926: 6912: 6890: 6886: 6882: 6879: 6876: 6871: 6867: 6843: 6835: 6832: 6828: 6824: 6816: 6812: 6808: 6805: 6802: 6797: 6793: 6769: 6766: 6761: 6757: 6729: 6725: 6714: 6710: 6706: 6703: 6697: 6690: 6686: 6675: 6671: 6667: 6664: 6658: 6652: 6649: 6646: 6640: 6633: 6632: 6631: 6617: 6614: 6608: 6602: 6577: 6572: 6558: 6546: 6543: 6540: 6534: 6531: 6525: 6519: 6508: 6505: 6502: 6488: 6484: 6481: 6478: 6475: 6468: 6467: 6466: 6458: 6442: 6413: 6392: 6375: 6367: 6363: 6359: 6350: 6342: 6338: 6334: 6311: 6303: 6299: 6295: 6286: 6278: 6274: 6270: 6267: 6262: 6258: 6237: 6217: 6211: 6208: 6205: 6196: 6194: 6193: 6188: 6172: 6166: 6163: 6160: 6140: 6134: 6111: 6108: 6099: 6096: 6093: 6085: 6081: 6077: 6068: 6060: 6056: 6052: 6043: 6035: 6031: 6027: 6020: 6019: 6018: 6017: 6001: 5981: 5961: 5954:over a field 5941: 5933: 5928: 5911: 5903: 5900: 5897: 5893: 5889: 5880: 5872: 5868: 5864: 5861: 5856: 5852: 5844: 5843: 5826: 5806: 5786: 5780: 5777: 5774: 5767: 5766:flat morphism 5762: 5748: 5728: 5721:of the field 5720: 5704: 5684: 5661: 5655: 5652: 5645:has the form 5632: 5612: 5592: 5561: 5553: 5549: 5545: 5525: 5505: 5498: 5497:proper scheme 5482: 5459: 5451: 5447: 5443: 5434: 5426: 5422: 5418: 5415: 5410: 5406: 5398: 5395:, there is a 5382: 5362: 5356: 5353: 5350: 5343: 5336:Functoriality 5333: 5331: 5327: 5311: 5291: 5283: 5264: 5258: 5250: 5234: 5214: 5206: 5190: 5167: 5161: 5141: 5118: 5101: 5093: 5089: 5085: 5076: 5070: 5064: 5057: 5056: 5055: 5054: 5051:fits into an 5038: 5018: 5011:over a field 5010: 4994: 4960: 4957: 4954: 4951: 4946: 4942: 4938: 4933: 4929: 4917: 4914: 4911: 4897: 4888: 4885: 4882: 4879: 4874: 4870: 4858: 4847: 4832: 4828: 4824: 4818: 4810: 4806: 4797: 4793: 4789: 4782: 4781: 4780: 4766: 4763: 4760: 4755: 4751: 4728: 4695: 4682: 4664: 4659: 4655: 4646: 4617: 4613: 4609: 4606: 4603: 4598: 4595: 4592: 4588: 4582: 4578: 4574: 4569: 4566: 4563: 4559: 4553: 4549: 4545: 4540: 4536: 4527: 4518: 4510: 4506: 4502: 4496: 4487: 4471: 4467: 4463: 4456: 4455: 4454: 4440: 4418: 4414: 4410: 4407: 4404: 4399: 4395: 4368: 4357: 4332: 4328: 4324: 4321: 4301: 4281: 4258: 4243: 4227: 4207: 4187: 4181: 4167: 4165: 4161: 4145: 4142: 4134: 4118: 4098: 4095: 4075: 4072: 4069: 4049: 4029: 4007: 3980: 3958: 3954: 3928: 3924: 3919: 3915: 3912: 3906: 3900: 3894: 3884: 3883: 3882: 3868: 3848: 3826: 3799: 3779: 3757: 3753: 3749: 3729: 3709: 3702: 3686: 3666: 3643: 3635: 3632: 3629: 3625: 3617: 3610: 3599: 3591: 3576: 3572: 3568: 3561: 3560: 3559: 3545: 3523: 3509: 3494: 3477: 3468: 3445: 3425: 3422: 3419: 3411: 3407: 3391: 3371: 3351: 3331: 3323: 3304: 3295: 3272: 3252: 3232: 3209: 3200: 3189: 3184: 3170: 3167: 3164: 3144: 3141: 3138: 3115: 3107: 3104: 3101: 3097: 3093: 3070: 3061: 3050: 3034: 3014: 2994: 2974: 2954: 2934: 2914: 2891: 2885: 2877: 2874: 2871: 2867: 2863: 2854: 2846: 2842: 2838: 2835: 2829: 2821: 2817: 2813: 2806: 2805: 2804: 2802: 2783: 2775: 2771: 2767: 2744: 2736: 2733: 2730: 2726: 2722: 2719: 2713: 2705: 2701: 2697: 2677: 2657: 2637: 2617: 2609: 2590: 2582: 2578: 2574: 2554: 2534: 2526: 2510: 2490: 2479:The Chow ring 2476: 2458: 2455: 2451: 2448: 2440: 2436: 2432: 2428: 2425: 2401: 2398: 2395: 2387: 2383: 2379: 2376: 2353: 2347: 2344: 2341: 2335: 2329: 2326: 2303: 2297: 2294: 2274: 2251: 2245: 2242: 2239: 2235: 2232: 2228: 2225: 2211: 2197: 2175: 2172: 2169: 2142: 2139: 2134: 2129: 2125: 2102: 2097: 2093: 2089: 2086: 2083: 2080: 2055: 2052: 2049: 2036: 2016: 1996: 1991: 1987: 1983: 1980: 1975: 1971: 1945: 1941: 1937: 1932: 1928: 1902: 1889: 1886: 1881: 1877: 1851: 1841: 1836: 1822: 1813: 1810: 1807: 1804: 1801: 1788: 1784: 1780: 1777: 1774: 1769: 1765: 1755: 1752: 1749: 1735: 1726: 1723: 1716: 1715: 1714: 1700: 1697: 1694: 1691: 1688: 1662: 1649: 1644: 1629: 1625: 1621: 1618: 1615: 1612: 1592: 1572: 1558: 1550: 1546: 1530: 1510: 1490: 1482: 1463: 1455: 1452: 1449: 1445: 1441: 1421: 1401: 1392: 1390: 1374: 1354: 1331: 1325: 1319: 1296: 1276: 1256: 1233: 1207: 1199: 1195: 1186: 1170: 1150: 1127: 1119: 1115: 1111: 1104: 1088: 1068: 1048: 1028: 1005: 1002: 999: 973: 947: 939: 935: 926: 910: 890: 870: 863:For a scheme 861: 847: 827: 807: 784: 778: 773: 769: 748: 728: 705: 699: 694: 690: 669: 649: 629: 606: 603: 597: 591: 586: 582: 576: 572: 568: 562: 552: 551: 550: 536: 516: 508: 492: 472: 465: 449: 446: 443: 436:of dimension 423: 414: 400: 380: 372: 356: 348: 332: 312: 289: 281: 277: 256: 249: 233: 225: 209: 201: 185: 177: 161: 141: 121: 113: 109: 106: 90: 83:over a field 82: 72: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 27:(named after 26: 22: 8618: 8585: 8558: 8554: 8521: 8488: 8453: 8447: 8435: 8422: 8384: 8378: 8374: 8356: 8349:Introductory 8338: 8326: 8302: 8295: 8286: 8277: 8268: 8259: 8250: 8241: 8232: 8223: 8214: 8205: 8196: 8184: 8175: 8095: 8071: 8058: 8053: 8041: 8007: 7991: 7983: 7979: 7975: 7971: 7967: 7966:showed that 7959: 7955: 7948: 7944: 7940: 7931: 7927: 7923: 7911: 7899: 7895: 7888:finite field 7883: 7871: 7847: 7843: 7839: 7833: 7829: 7819: 7807: 7684:Grothendieck 7675: 7667: 7660: 7656: 7652: 7648: 7643: 7639: 7632: 7628: 7623: 7613: 7609: 7601: 7597: 7595: 7590: 7586: 7582: 7578: 7574: 7552: 7547: 7546:smooth over 7543: 7541: 7450: 7446: 7442: 7438: 7436: 7337: 7335: 7330: 7328: 7188: 7060: 7028: 6748: 6594: 6464: 6398: 6197: 6190: 6126: 5931: 5929: 5842:homomorphism 5840: 5763: 5396: 5339: 5249:number field 5133: 4986: 4642: 4314:. If we let 4173: 3945: 3841:and degrees 3658: 3558:is the ring 3505: 3185: 3049:transversely 2906: 2482: 2217: 1868: 1583: 1549:line bundles 1545:Picard group 1393: 1388: 1102: 924: 862: 621: 415: 346: 269:, the group 175: 80: 78: 24: 18: 8561:: 268–326, 8456:: 450–479, 8330:B. Totaro, 7816:Conjectures 7573:shows that 5330:uncountable 2801:graded ring 2608:codimension 112:finite type 25:Chow groups 8651:Categories 8575:58.1229.01 8377:-theory", 8163:References 8126:MacPherson 8013:MacPherson 7331:cycle maps 7325:Cycle maps 3047:intersect 2630:cycles on 1103:Chow group 860:singular. 8470:0003-486X 8403:0001-8708 8168:Citations 7920:Beilinson 7777:⊗ 7741:∏ 7737:≅ 7721:⊗ 7670:) be the 7494:→ 7381:→ 7297:× 7263:∗ 7206:× 7165:→ 7148:↓ 7142:↓ 7130:→ 7116:× 7077:⊂ 7043:→ 7000:α 6980:⋯ 6971:α 6949:α 6941:∗ 6913:α 6880:… 6844:α 6833:− 6813:α 6806:… 6794:α 6707:− 6698:⋯ 6668:− 6647:α 6609:α 6563:→ 6532:− 6485:⁡ 6368:∗ 6357:→ 6343:∗ 6293:→ 6263:∗ 6215:→ 6170:→ 6164:− 6138:→ 6106:→ 6097:− 6075:→ 6050:→ 5887:→ 5857:∗ 5784:→ 5656:⁡ 5568:→ 5441:→ 5411:∗ 5360:→ 5116:→ 5108:→ 5083:→ 5068:→ 4961:ζ 4943:ζ 4918:ζ 4898:≅ 4889:ζ 4871:ζ 4859:ζ 4833:∙ 4819:≅ 4798:∙ 4683:⊕ 4607:⋯ 4596:− 4589:ζ 4567:− 4560:ζ 4537:ζ 4528:ζ 4511:∙ 4497:≅ 4472:∙ 4408:… 4322:ζ 4185:→ 4073:∩ 3901:⋅ 3600:≅ 3577:∗ 3423:∩ 3142:∩ 2861:→ 2836:× 2776:∗ 2734:− 2567:, define 2433:∈ 2380:∈ 2348:⁡ 2342:≅ 2330:⁡ 2246:⁡ 2240:∈ 2173:− 2053:− 1893:→ 1878:π 1842:× 1827:↪ 1778:… 1622:∈ 1453:− 779:⁡ 700:⁡ 592:⁡ 573:∑ 103:to be an 43:over any 39:)) of an 8617:(2002), 8520:(1998), 8487:(1977), 8364:Advanced 8136:See also 8021:functors 7999:Variants 7880:tensored 7593:> 1. 7292:′ 7275:′ 7201:′ 7159:′ 7111:′ 7073:′ 6925:is then 4200:of rank 3497:Examples 2650:. (When 2459:′ 2429:′ 2236:′ 2073:, since 989:for all 923:-cycles 761:. (Thus 462:and any 105:integral 49:homology 8641:1997577 8608:1764202 8544:1644323 8511:0463174 8478:0082173 8411:0852815 8092:History 7964:Mumford 7608:. When 7589:) with 7449:. When 5324:is the 5227:. When 4983:Remarks 1503:. When 1479:is the 1347:, then 1183:is the 549:-cycle 529:is the 507:divisor 369:is the 224:integer 81:variety 35: ( 8639:  8629:  8606:  8596:  8573:  8542:  8532:  8509:  8499:  8476:  8468:  8409:  8401:  8314:  8122:Fulton 8027:and a 8009:Fulton 7874:, the 7569:. The 5764:For a 5719:degree 5340:For a 5007:be an 3946:where 3701:degree 3659:where 1101:. The 741:along 347:cycles 108:scheme 61:smooth 23:, the 8025:group 7916:Bloch 7852:Bloch 7651:) in 5741:over 5518:over 5247:is a 4714:over 3384:over 1605:, so 1309:have 222:with 174:, an 114:over 51:of a 45:field 8627:ISBN 8594:ISBN 8530:ISBN 8497:ISBN 8466:ISSN 8399:ISSN 8312:ISBN 8124:and 8029:ring 8011:and 7856:Kato 7824:The 6767:> 6482:Spec 5653:Spec 4387:and 4042:and 3792:and 3408:and 3344:and 3245:and 3027:and 2987:and 2927:and 2525:ring 2417:and 1731:Proj 1367:and 1289:and 37:1958 8571:JFM 8563:doi 8458:doi 8389:doi 7990:of 5994:of 5761:.) 5697:of 5284:of 5207:of 5183:of 4131:is 3699:of 3086:in 2345:Pic 2327:Div 2243:Pic 2155:is 1551:on 1547:of 1483:of 1187:of 1143:of 1081:on 1041:of 770:ord 691:ord 662:of 583:ord 509:of 485:on 305:of 178:on 110:of 31:by 19:In 8653:: 8637:MR 8635:, 8625:, 8621:, 8604:MR 8602:, 8588:, 8569:, 8557:, 8540:MR 8538:, 8528:, 8507:MR 8505:, 8495:, 8491:, 8474:MR 8472:, 8464:, 8454:64 8452:, 8434:, 8421:, 8407:MR 8405:, 8397:, 8385:61 8383:, 8310:. 8306:. 8132:. 8088:. 7836:-1 7830:CH 7682:, 7653:CH 7583:CH 7575:CH 7344:: 6457:. 6391:. 6195:. 5927:. 5251:, 5119:0. 4166:. 3861:, 3493:. 3183:. 1571:. 1391:. 413:. 8565:: 8559:4 8460:: 8391:: 8375:K 8320:. 8059:Q 7994:. 7992:X 7984:K 7980:X 7972:X 7968:K 7960:X 7958:( 7956:h 7949:K 7945:X 7941:X 7934:. 7932:X 7928:X 7924:X 7918:– 7912:X 7907:. 7900:l 7896:Q 7884:Q 7872:X 7854:– 7848:n 7844:X 7840:X 7838:( 7834:n 7793:. 7789:Q 7782:Z 7773:) 7770:X 7767:( 7762:i 7756:H 7753:C 7745:i 7733:Q 7726:Z 7717:) 7714:X 7711:( 7706:0 7702:K 7676:X 7668:X 7666:( 7664:0 7661:K 7657:X 7655:( 7649:E 7647:( 7644:i 7640:c 7633:X 7629:E 7614:k 7610:X 7602:k 7598:X 7591:j 7587:X 7585:( 7579:X 7577:( 7548:C 7544:X 7527:. 7524:) 7520:Z 7516:, 7513:X 7510:( 7505:j 7502:2 7498:H 7491:) 7488:X 7485:( 7480:j 7474:H 7471:C 7451:X 7447:i 7443:X 7439:i 7422:. 7419:) 7415:Z 7411:, 7408:X 7405:( 7400:M 7397:B 7392:i 7389:2 7385:H 7378:) 7375:X 7372:( 7367:i 7361:H 7358:C 7338:X 7309:] 7306:X 7301:S 7289:S 7285:[ 7282:= 7279:] 7272:S 7268:[ 7259:f 7235:X 7215:X 7210:S 7198:S 7170:S 7156:S 7135:X 7125:X 7120:S 7108:S 7080:S 7070:S 7046:S 7040:X 7009:] 7004:k 6996:[ 6991:k 6987:e 6983:+ 6977:+ 6974:] 6968:[ 6963:1 6959:e 6955:= 6952:] 6946:[ 6937:f 6891:k 6887:e 6883:, 6877:, 6872:1 6868:e 6847:) 6841:( 6836:1 6829:f 6825:= 6822:} 6817:k 6809:, 6803:, 6798:1 6790:{ 6770:1 6762:i 6758:e 6730:k 6726:e 6721:) 6715:k 6711:a 6704:y 6701:( 6691:1 6687:e 6682:) 6676:1 6672:a 6665:y 6662:( 6659:= 6656:) 6653:y 6650:, 6644:( 6641:g 6618:0 6615:= 6612:) 6606:( 6603:f 6578:1 6573:x 6568:A 6559:) 6553:) 6550:) 6547:y 6544:, 6541:x 6538:( 6535:g 6529:) 6526:x 6523:( 6520:f 6517:( 6512:] 6509:y 6506:, 6503:x 6500:[ 6496:C 6489:( 6479:: 6476:f 6443:1 6438:P 6414:2 6409:A 6379:) 6376:X 6373:( 6364:H 6360:C 6354:) 6351:Y 6348:( 6339:H 6335:C 6315:) 6312:X 6309:( 6304:i 6300:H 6296:C 6290:) 6287:Y 6284:( 6279:i 6275:H 6271:C 6268:: 6259:f 6238:k 6218:Y 6212:X 6209:: 6206:f 6173:X 6167:Z 6161:X 6141:X 6135:Z 6112:, 6109:0 6103:) 6100:Z 6094:X 6091:( 6086:i 6082:H 6078:C 6072:) 6069:X 6066:( 6061:i 6057:H 6053:C 6047:) 6044:Z 6041:( 6036:i 6032:H 6028:C 6002:X 5982:Z 5962:k 5942:X 5915:) 5912:X 5909:( 5904:r 5901:+ 5898:i 5894:H 5890:C 5884:) 5881:Y 5878:( 5873:i 5869:H 5865:C 5862:: 5853:f 5827:r 5807:k 5787:Y 5781:X 5778:: 5775:f 5749:k 5729:E 5705:k 5685:E 5665:) 5662:E 5659:( 5633:X 5613:k 5593:X 5572:Z 5565:) 5562:X 5559:( 5554:0 5550:H 5546:C 5526:k 5506:X 5483:i 5463:) 5460:Y 5457:( 5452:i 5448:H 5444:C 5438:) 5435:X 5432:( 5427:i 5423:H 5419:C 5416:: 5407:f 5383:k 5363:Y 5357:X 5354:: 5351:f 5312:k 5292:X 5268:) 5265:k 5262:( 5259:X 5235:k 5215:X 5203:- 5191:k 5171:) 5168:k 5165:( 5162:X 5142:X 5112:Z 5105:) 5102:X 5099:( 5094:0 5090:H 5086:C 5080:) 5077:k 5074:( 5071:X 5065:0 5039:X 5019:k 4995:X 4964:) 4958:H 4955:a 4952:+ 4947:2 4939:, 4934:2 4930:H 4926:( 4921:] 4915:, 4912:H 4909:[ 4905:Z 4892:) 4886:H 4883:a 4880:+ 4875:2 4867:( 4862:] 4856:[ 4853:) 4848:1 4843:P 4838:( 4829:H 4825:C 4816:) 4811:a 4807:F 4803:( 4794:H 4790:C 4767:H 4764:a 4761:= 4756:1 4752:c 4729:1 4724:P 4702:) 4699:) 4696:a 4693:( 4688:O 4678:O 4673:( 4669:P 4665:= 4660:a 4656:F 4618:r 4614:c 4610:+ 4604:+ 4599:2 4593:r 4583:2 4579:c 4575:+ 4570:1 4564:r 4554:1 4550:c 4546:+ 4541:r 4531:] 4525:[ 4522:) 4519:X 4516:( 4507:H 4503:C 4494:) 4491:) 4488:E 4485:( 4481:P 4477:( 4468:H 4464:C 4441:E 4419:r 4415:c 4411:, 4405:, 4400:1 4396:c 4375:) 4372:) 4369:1 4366:( 4361:) 4358:E 4355:( 4351:P 4344:O 4338:( 4333:1 4329:c 4325:= 4302:E 4282:X 4262:) 4259:E 4256:( 4252:P 4228:X 4208:r 4188:X 4182:E 4146:b 4143:a 4119:k 4099:b 4096:a 4076:Z 4070:Y 4050:Z 4030:Y 4008:n 4003:P 3981:k 3959:n 3955:H 3929:n 3925:H 3920:b 3916:a 3913:= 3910:] 3907:Z 3904:[ 3898:] 3895:Y 3892:[ 3869:b 3849:a 3827:n 3822:P 3800:Z 3780:Y 3758:a 3754:H 3750:d 3730:a 3710:d 3687:Y 3667:H 3644:, 3641:) 3636:1 3633:+ 3630:n 3626:H 3622:( 3618:/ 3614:] 3611:H 3608:[ 3604:Z 3597:) 3592:n 3587:P 3582:( 3573:H 3569:C 3546:k 3524:n 3519:P 3481:] 3478:Z 3475:[ 3472:] 3469:Y 3466:[ 3446:X 3426:Z 3420:Y 3392:k 3372:X 3352:Z 3332:Y 3308:] 3305:Z 3302:[ 3299:] 3296:Y 3293:[ 3273:X 3253:Z 3233:Y 3213:] 3210:Z 3207:[ 3204:] 3201:Y 3198:[ 3171:j 3168:+ 3165:i 3145:Z 3139:Y 3119:) 3116:X 3113:( 3108:j 3105:+ 3102:i 3098:H 3094:C 3074:] 3071:Z 3068:[ 3065:] 3062:Y 3059:[ 3035:Z 3015:Y 2995:j 2975:i 2955:X 2935:Z 2915:Y 2892:. 2889:) 2886:X 2883:( 2878:j 2875:+ 2872:i 2868:H 2864:C 2858:) 2855:X 2852:( 2847:j 2843:H 2839:C 2833:) 2830:X 2827:( 2822:i 2818:H 2814:C 2787:) 2784:X 2781:( 2772:H 2768:C 2748:) 2745:X 2742:( 2737:i 2731:n 2727:H 2723:C 2720:= 2717:) 2714:X 2711:( 2706:i 2702:H 2698:C 2678:n 2658:X 2638:X 2618:i 2610:- 2594:) 2591:X 2588:( 2583:i 2579:H 2575:C 2555:k 2535:X 2511:k 2491:X 2463:) 2456:L 2452:, 2449:C 2446:( 2441:0 2437:H 2426:s 2405:) 2402:L 2399:, 2396:C 2393:( 2388:0 2384:H 2377:s 2357:) 2354:C 2351:( 2339:) 2336:C 2333:( 2307:) 2304:C 2301:( 2298:H 2295:C 2275:C 2255:) 2252:C 2249:( 2233:L 2229:, 2226:L 2198:d 2176:1 2170:n 2165:P 2143:0 2140:= 2135:d 2130:0 2126:x 2103:d 2098:0 2094:x 2090:t 2087:+ 2084:f 2081:s 2061:] 2056:1 2050:n 2045:P 2040:[ 2037:d 2017:d 1997:g 1992:0 1988:t 1984:+ 1981:f 1976:0 1972:s 1951:] 1946:0 1942:t 1938:: 1933:0 1929:s 1925:[ 1903:1 1898:P 1890:X 1887:: 1882:1 1852:n 1847:P 1837:1 1832:P 1823:) 1817:) 1814:g 1811:t 1808:+ 1805:f 1802:s 1799:( 1794:] 1789:n 1785:x 1781:, 1775:, 1770:0 1766:x 1762:[ 1759:] 1756:t 1753:, 1750:s 1747:[ 1743:C 1736:( 1727:= 1724:X 1701:g 1698:t 1695:+ 1692:f 1689:s 1669:) 1666:) 1663:d 1660:( 1655:O 1650:, 1645:n 1640:P 1635:( 1630:0 1626:H 1619:g 1616:, 1613:f 1593:d 1559:X 1531:k 1511:X 1491:X 1467:) 1464:X 1461:( 1456:1 1450:n 1446:H 1442:C 1422:n 1402:X 1375:W 1355:Z 1335:] 1332:W 1329:[ 1326:= 1323:] 1320:Z 1317:[ 1297:W 1277:Z 1257:Z 1237:] 1234:Z 1231:[ 1211:) 1208:X 1205:( 1200:i 1196:Z 1171:X 1151:i 1131:) 1128:X 1125:( 1120:i 1116:H 1112:C 1089:W 1069:f 1049:X 1029:W 1009:) 1006:1 1003:+ 1000:i 997:( 977:) 974:f 971:( 951:) 948:X 945:( 940:i 936:Z 911:i 891:k 871:X 848:W 828:Z 808:f 788:) 785:f 782:( 774:Z 749:Z 729:f 709:) 706:f 703:( 695:Z 670:W 650:Z 630:i 607:, 604:Z 601:) 598:f 595:( 587:Z 577:Z 569:= 566:) 563:f 560:( 537:i 517:f 493:W 473:f 450:1 447:+ 444:i 424:W 401:X 381:i 357:X 345:- 333:i 313:i 293:) 290:X 287:( 282:i 278:Z 257:i 234:X 210:X 186:X 162:k 142:X 122:k 91:k

Index

algebraic geometry
Wei-Liang Chow
Claude Chevalley
1958
algebraic variety
field
homology
topological space
algebraic cycles
smooth
Poincaré duality
intersection product
integral
scheme
finite type
linear combination
integer
natural number
free abelian group
rational function
divisor
quotient group
divisor class group
Picard group
line bundles
ring
codimension
graded ring
transversely
intersection theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑