Knowledge

Chargaff's rules

Source 📝

236:
Because of the asymmetry in pyrimidine and purine use in coding sequences, the strand with the greater coding content will tend to have the greater number of purine bases (Szybalski's rule). Because the number of purine bases will, to a very good approximation, equal the number of their complementary pyrimidines within the same strand and, because the coding sequences occupy 80–90% of the strand, there appears to be (1) a selective pressure on the third base to minimize the number of purine bases in the strand with the greater coding content; and (2) that this pressure is proportional to the mismatch in the length of the coding sequences between the two strands.
177: 240: 279:; length ≤ 10) is present in equal numbers to its reverse complementary nucleotide. Because of the computational requirements this has not been verified in all genomes for all oligonucleotides. It has been verified for triplet oligonucleotides for a large data set. Albrecht-Buehler has suggested that this rule is the consequence of genomes evolving by a process of 287:. This process does not appear to have acted on the mitochondrial genomes. Chargaff's second parity rule appears to be extended from the nucleotide-level to populations of codon triplets, in the case of whole single-stranded Human genome DNA. A kind of "codon-level second Chargaff's parity rule" is proposed as follows: 686:
The following table is a representative sample of Erwin Chargaff's 1952 data, listing the base composition of DNA from various organisms and support both of Chargaff's rules. An organism such as φX174 with significant variation from A/T and G/C equal to one, is indicative of single stranded DNA.
235:
Multivariate statistical analysis of codon use within genomes with unequal quantities of coding sequences on the two strands has shown that codon use in the third position depends on the strand on which the gene is located. This seems likely to be the result of Szybalski's and Chargaff's rules.
677:
In 2020, it is suggested that the physical properties of the dsDNA (double stranded DNA) and the tendency to maximum entropy of all the physical systems are the cause of Chargaff's second parity rule. The symmetries and patterns present in the dsDNA sequences can emerge from the physical
130:
The first empirical generalization of Chargaff's second parity rule, called the Symmetry Principle, was proposed by Vinayakumar V. Prabhu in 1993. This principle states that for any given oligonucleotide, its frequency is approximately equal to the frequency of its complementary reverse
260:). The longer the strands are separated the greater the quantity of deamination. For reasons that are not yet clear the strands tend to exist longer in single form in mitochondria than in chromosomal DNA. This process tends to yield one strand that is enriched in 247:
The origin of the deviation from Chargaff's rule in the organelles has been suggested to be a consequence of the mechanism of replication. During replication the DNA strands separate. In single stranded DNA,
232:—TGA and TAG respectively.) The mismatch between the number of codons and amino acids allows several codons to code for a single amino acid—such codons normally differ only at the third codon base position. 184:
The rule itself has consequences. In most bacterial genomes (which are generally 80-90% coding) genes are arranged in such a fashion that approximately 50% of the coding sequence lies on either strand.
103:
The second rule holds that both Α% ≈ Τ% and G% ≈ C% are valid for each of the two DNA strands. This describes only a global feature of the base composition in a single DNA strand.
20: 643: 583: 523: 463: 403: 343: 1943:
Szybalski W, Kubinski H, Sheldrick P (1966). "Pyrimidine clusters on the transcribing strands of DNA and their possible role in the initiation of RNA synthesis".
1552:
Szybalski W, Kubinski H, Sheldrick O (1966). "Pyrimidine clusters on the transcribing strand of DNA and their possible role in the initiation of RNA synthesis".
208:
The combined effect of Chargaff's second rule and Szybalski's rule can be seen in bacterial genomes where the coding sequences are not equally distributed. The
1694:
Nikolaou C, Almirantis Y (2006). "Deviations from Chargaff's second parity rule in organellar DNA. Insights into the evolution of organellar genomes".
268:(T) with its complement enriched in cytosine (C) and adenosine (A), and this process may have given rise to the deviations found in the mitochondria. 1885: 1791:
Perez, J.-C. (September 2010). "Codon populations in single-stranded whole human genome DNA are fractal and fine-tuned by the Golden Ratio 1.618".
678:
peculiarities of the dsDNA molecule and the maximum entropy principle alone, rather than from biological or environmental evolutionary pressure.
1647:"Thermophilic Bacteria Strictly Obey Szybalski's Transcription Direction Rule and Politely Purine-Load RNAs with Both Adenine and Guanine" 2050:
McLean MJ, Wolfe KH, Devine KM (1998). "Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes".
271:
Chargaff's second rule appears to be the consequence of a more complex parity rule: within a single strand of DNA any oligonucleotide (
205:". While Szybalski's rule generally holds, exceptions are known to exist. The biological basis for Szybalski's rule is not yet known. 1734:"Asymptotically increasing compliance of genomes with Chargaff's second parity rules through inversions and inverted transpositions" 134:
In 2006, it was shown that this rule applies to four of the five types of double stranded genomes; specifically it applies to the
131:
oligonucleotide. A theoretical generalization was mathematically derived by Michel E. B. Yamagishi and Roberto H. Herai in 2011.
1493: 1442: 1900: 1602:
Bell SJ, Forsdyke DR (1999). "Deviations from Chargaff's second parity rule correlate with direction of transcription".
2167: 111:
The second parity rule was discovered in 1968. It states that, in single-stranded DNA, the number of adenine units is
674:
36530115 TTT and 36381293 AAA (ratio % = 1.00409). 2087242 TCG and 2085226 CGA (ratio % = 1.00096), etc...
91:
has percentage base pair equality: A% = T% and G% = C%. The rigorous validation of the rule constitutes the basis of
2009:"Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutational biases" 2310: 66:) should exist. This pattern is found in both strands of the DNA. They were discovered by Austrian-born chemist 2305: 2300: 2285: 2280: 2170:
2016-05-16 at the Portuguese Web Archive — contains hundreds of examples of base skews and had problems.
2315: 2173: 92: 2295: 201:(C and T). This rule has since been confirmed in other organisms and should probably be now termed " 173:
genome. The basis for this rule is still under investigation, although genome size may play a role.
2072: 1833: 2290: 2067: 1879: 628: 568: 508: 448: 388: 328: 280: 2118: 2059: 1745: 1611: 1283: 2190:"CBS Genome Atlas Database: A dynamic storage for bioinformatic results and sequence data" 1990: 1973: 1836:"DNA sequence symmetries from randomness: the origin of the Chargaff's second parity rule" 1168:
Elson D, Chargaff E (1952). "On the deoxyribonucleic acid content of sea urchin gametes".
8: 202: 2122: 2063: 1749: 1615: 1287: 186: 2093: 1862: 1835: 1816: 1768: 1733: 1499: 1471: 1448: 1420: 1245: 1193: 671:
Examples — computing whole human genome using the first codons reading frame provides:
2033: 2008: 1671: 1646: 1392: 1367: 1306: 1267: 1232: 1215: 2252: 2211: 2146: 2141: 2106: 2085: 2038: 1995: 1960: 1867: 1808: 1773: 1711: 1676: 1627: 1569: 1534: 1489: 1438: 1397: 1348: 1311: 1237: 1185: 2247: 2230: 2206: 2189: 2107:"Replicational and transcriptional selection on codon usage in Borrelia burgdorferi" 2097: 1820: 1503: 1452: 1343: 1330: 1249: 1197: 2242: 2201: 2136: 2126: 2077: 2028: 2020: 1985: 1952: 1857: 1847: 1800: 1763: 1753: 1703: 1666: 1658: 1619: 1561: 1526: 1481: 1430: 1387: 1379: 1338: 1301: 1291: 1227: 1177: 1064: 1956: 1834:
Piero Farisell, Cristian Taccioli, Luca Pagani & Amos Maritan (April 2020).
1565: 1707: 1530: 1276:
Proceedings of the National Academy of Sciences of the United States of America
807: 221: 180:
Histogram showing how 20309 chromosomes adhere to Chargaff's second parity rule
154: 67: 31: 2164: 1915: 1804: 1485: 1434: 2269: 2131: 1383: 1148: 1031: 190: 2024: 1758: 1216:"Composition of the deoxypentose nucleic acids of four genera of sea-urchin" 2275: 2256: 2215: 2042: 1871: 1812: 1777: 1715: 1680: 1631: 1623: 1538: 1352: 1241: 1189: 257: 209: 158: 23:
A diagram of DNA base pairing, demonstrating the basis for Chargaff's rules
2150: 2089: 1999: 1964: 1852: 1573: 1401: 1315: 1296: 169:, nor does it apply to single stranded DNA (viral) genomes or any type of 1071: 915: 731: 225: 198: 176: 138: 1662: 2081: 1181: 956: 951: 920: 284: 239: 229: 217: 59: 1974:"Asymmetric substitution patterns in the two DNA strands of bacteria" 253: 135: 2231:"The Z curve database: a graphic representation of genome sequences" 2007:
Lafay B, Lloyd AT, McLean MJ, Devine KM, Sharp PM, Wolfe KH (1999).
1331:"The Z curve database: a oraphic representation of genome sequences" 993: 249: 166: 142: 43: 1476: 1425: 1103: 220:
normally present in proteins. (There are two uncommon amino acids—
1517:
Mitchell D, Bridge R (2006). "A test of Chargaff's second rule".
1109: 801: 769: 763: 265: 261: 194: 162: 150: 51: 47: 39: 1589:
Characterization of G0/G1 switch genes in cultured T lymphocytes
845: 276: 213: 55: 16:
Two rules about the percentage of A, C, G, and T in DNA strands
19: 2176:— a 3-dimensional visualization and analysis tool of genomes. 1025: 987: 877: 725: 291:
Intra-strand relation among percentages of codon populations
272: 216:
of which 3 function as termination codons: there are only 20
883: 1551: 228:—found in a limited number of proteins and encoded by the 1901:"DNA structure: Revisiting the Watson-Crick double helix" 839: 170: 146: 84: 35: 2222: 1793:
Interdisciplinary Sciences: Computational Life Sciences
1727: 1725: 1468:
Chargaff's "Grammar of Biology": New Fractal-like Rules
1322: 1213: 631: 571: 511: 451: 391: 331: 1722: 1265: 1945:
Cold Spring Harbor Symposia on Quantitative Biology
1368:"Symmetry observation in long nucleotide sequences" 1272:
DNA into complementary strands. 3. Direct analysis"
2187: 1731: 1693: 637: 577: 517: 457: 397: 337: 243:Chargaff's 2nd parity rule for prokaryotic 6-mers 2267: 1591:. Kingston, Ontario, Canada: Queen's University. 38:of any species and any organism, the amount of 1516: 1465: 1209: 1207: 681: 1580: 1414: 1167: 2228: 1884:: CS1 maint: multiple names: authors list ( 1790: 1687: 1601: 1586: 1545: 1328: 1261: 1259: 83:The first rule holds that a double-stranded 1644: 1419:. SpringerBriefs in Mathematics. Springer. 1266:Rudner, R; Karkas, JD; Chargaff, E (1968). 1204: 2181: 1892: 2246: 2205: 2140: 2130: 2071: 2032: 1989: 1861: 1851: 1767: 1757: 1670: 1475: 1424: 1391: 1365: 1342: 1305: 1295: 1256: 1231: 119:%T), and the number of cytosine units is 54:. Further, a 1:1 stoichiometric ratio of 1898: 1595: 1214:Chargaff E, Lipshitz R, Green C (1952). 1161: 238: 175: 18: 1638: 2268: 1991:10.1093/oxfordjournals.molbev.a025626 98: 78: 252:spontaneously slowly deaminates to 13: 2188:Hallin PF, David Ussery D (2004). 1936: 153:chromosomes. It does not apply to 14: 2327: 2229:Zhang CT, Zhang R, Ou HY (2003). 2158: 1470:. SpringerBriefs in Mathematics. 1329:Zhang CT, Zhang R, Ou HY (2003). 145:chromosomes, the double stranded 50:should be equal to the amount of 42:should be equal to the amount of 1554:Cold Spring Harb Symp Quant Biol 2174:The Z curve database of genomes 1914:(11): 1556–1563. Archived from 1827: 1784: 1466:Yamagishi ME, Herai RH (2011). 1417:Mathematical Grammar of Biology 189:, in the 1960s, showed that in 95:in the DNA double helix model. 1510: 1459: 1408: 1359: 73: 1: 2248:10.1093/bioinformatics/btg041 2207:10.1093/bioinformatics/bth423 1344:10.1093/bioinformatics/btg041 1233:10.1016/S0021-9258(19)50884-5 1154: 123:equal to that of guanine (%C 115:equal to that of thymine (%A 1645:Lao PJ, Forsdyke DR (2000). 1337:. 19 [issue=5 (5): 590–599. 7: 1957:10.1101/SQB.1966.031.01.019 1840:Briefings in Bioinformatics 1732:Albrecht-Buehler G (2006). 1566:10.1101/SQB.1966.031.01.019 1142: 682:Percentages of bases in DNA 106: 10: 2332: 1708:10.1016/j.gene.2006.06.010 1531:10.1016/j.bbrc.2005.11.160 1519:Biochem Biophys Res Commun 2165:CBS Genome Atlas Database 1805:10.1007/s12539-010-0022-0 1486:10.1007/978-3-319-62689-5 1435:10.1007/978-3-319-62689-5 719: 716: 713: 710: 707: 704: 701: 698: 695: 692: 304: 301: 298: 295: 2132:10.1073/pnas.95.18.10698 658:are mirror codons, e.g. 619:(1st base position is G) 613:(3rd base position is C) 598:are mirror codons, e.g. 559:(1st base position is A) 553:(3rd base position is T) 538:are mirror codons, e.g. 499:(2nd base position is G) 493:(2nd base position is C) 478:are mirror codons, e.g. 439:(2nd base position is A) 433:(2nd base position is T) 418:are mirror codons, e.g. 379:(3rd base position is G) 373:(1st base position is C) 358:are mirror codons, e.g. 319:(3rd base position is A) 313:(1st base position is T) 1759:10.1073/pnas.0605553103 638:{\displaystyle \simeq } 578:{\displaystyle \simeq } 518:{\displaystyle \simeq } 458:{\displaystyle \simeq } 398:{\displaystyle \simeq } 338:{\displaystyle \simeq } 149:viral genomes, and the 93:Watson–Crick base pairs 2311:Biological engineering 2111:Proc Natl Acad Sci USA 1738:Proc Natl Acad Sci USA 1624:10.1006/jtbi.1998.0858 1415:Yamagishi MEB (2017). 1384:10.1093/nar/21.12.2797 1372:Nucleic Acids Research 639: 579: 519: 459: 399: 339: 244: 181: 165:) smaller than ~20-30 24: 2306:Laboratory techniques 2105:McInerney JO (1998). 2025:10.1093/nar/27.7.1642 1846:(bbaa04): 2172–2181. 1587:Cristillo AD (1998). 1297:10.1073/pnas.60.3.921 640: 580: 520: 460: 400: 340: 242: 179: 22: 629: 569: 509: 449: 389: 329: 34:) state that in the 2301:Biology experiments 2286:History of genetics 2281:Genetics techniques 2123:1998PNAS...9510698M 2117:(18): 10698–10703. 2064:1998JMolE..47..691M 1853:10.1093/bib/bbaa041 1750:2006PNAS..10317828A 1744:(47): 17828–17833. 1663:10.1101/gr.10.2.228 1616:1999JThBi.197...63B 1288:1968PNAS...60..921R 292: 70:in the late 1940s. 2082:10.1007/PL00006428 1366:Prabhu VV (1993). 1182:10.1007/BF02170221 635: 575: 515: 455: 395: 335: 290: 245: 182: 155:organellar genomes 99:Second parity rule 46:and the amount of 25: 2316:Molecular biology 2200:(18): 3682–3686. 2013:Nucleic Acids Res 1972:Lobry JR (1996). 1899:Bansal M (2003). 1495:978-3-319-62688-8 1444:978-3-319-62688-8 1378:(12): 2797–2800. 1140: 1139: 669: 668: 302:Relation proposed 197:(A and G) exceed 193:coding sequences 79:First parity rule 2323: 2296:Medical research 2261: 2260: 2250: 2226: 2220: 2219: 2209: 2185: 2154: 2144: 2134: 2101: 2075: 2046: 2036: 2019:(7): 1642–1649. 2003: 1993: 1968: 1930: 1929: 1927: 1926: 1920: 1905: 1896: 1890: 1889: 1883: 1875: 1865: 1855: 1831: 1825: 1824: 1788: 1782: 1781: 1771: 1761: 1729: 1720: 1719: 1691: 1685: 1684: 1674: 1642: 1636: 1635: 1599: 1593: 1592: 1584: 1578: 1577: 1549: 1543: 1542: 1514: 1508: 1507: 1479: 1463: 1457: 1456: 1428: 1412: 1406: 1405: 1395: 1363: 1357: 1356: 1346: 1326: 1320: 1319: 1309: 1299: 1263: 1254: 1253: 1235: 1211: 1202: 1201: 1165: 690: 689: 665: 661: 657: 653: 648: 644: 642: 641: 636: 625: 618: 612: 605: 601: 597: 593: 588: 584: 582: 581: 576: 565: 558: 552: 545: 541: 537: 533: 528: 524: 522: 521: 516: 505: 498: 492: 485: 481: 477: 473: 468: 464: 462: 461: 456: 445: 438: 432: 425: 421: 417: 413: 408: 404: 402: 401: 396: 385: 378: 372: 365: 361: 357: 353: 348: 344: 342: 341: 336: 325: 318: 312: 293: 289: 203:Szybalski's rule 187:Wacław Szybalski 126: 118: 65: 28:Chargaff's rules 2331: 2330: 2326: 2325: 2324: 2322: 2321: 2320: 2266: 2265: 2264: 2227: 2223: 2186: 2182: 2161: 2104: 2049: 2006: 1978:Mol. Biol. Evol 1971: 1942: 1939: 1937:Further reading 1934: 1933: 1924: 1922: 1918: 1908:Current Science 1903: 1897: 1893: 1877: 1876: 1832: 1828: 1789: 1785: 1730: 1723: 1692: 1688: 1651:Genome Research 1643: 1639: 1600: 1596: 1585: 1581: 1550: 1546: 1515: 1511: 1496: 1464: 1460: 1445: 1413: 1409: 1364: 1360: 1327: 1323: 1268:"Separation of 1264: 1257: 1212: 1205: 1166: 1162: 1157: 1145: 684: 675: 663: 659: 655: 651: 646: 630: 627: 626: 623: 616: 610: 603: 599: 595: 591: 586: 570: 567: 566: 563: 556: 550: 543: 539: 535: 531: 526: 510: 507: 506: 503: 496: 490: 483: 479: 475: 471: 466: 450: 447: 446: 443: 436: 430: 423: 419: 415: 411: 406: 390: 387: 386: 383: 376: 370: 363: 359: 355: 351: 346: 330: 327: 326: 323: 316: 310: 124: 116: 109: 101: 81: 76: 63: 17: 12: 11: 5: 2329: 2319: 2318: 2313: 2308: 2303: 2298: 2293: 2288: 2283: 2278: 2263: 2262: 2241:(5): 593–599. 2235:Bioinformatics 2221: 2194:Bioinformatics 2179: 2178: 2177: 2171: 2160: 2159:External links 2157: 2156: 2155: 2102: 2073:10.1.1.28.9035 2058:(6): 691–696. 2047: 2004: 1984:(5): 660–665. 1969: 1938: 1935: 1932: 1931: 1891: 1826: 1799:(3): 228–240. 1783: 1721: 1686: 1657:(2): 228–236. 1637: 1594: 1579: 1544: 1509: 1494: 1458: 1443: 1407: 1358: 1335:Bioinformatics 1321: 1255: 1226:(1): 155–160. 1203: 1176:(4): 143–145. 1159: 1158: 1156: 1153: 1152: 1151: 1144: 1141: 1138: 1137: 1134: 1131: 1128: 1125: 1122: 1119: 1116: 1113: 1106: 1100: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1078: 1075: 1068: 1060: 1059: 1056: 1053: 1050: 1047: 1044: 1041: 1038: 1035: 1028: 1022: 1021: 1018: 1015: 1012: 1009: 1006: 1003: 1000: 997: 990: 984: 983: 980: 977: 974: 971: 968: 965: 962: 959: 954: 948: 947: 944: 941: 938: 935: 932: 929: 926: 923: 918: 912: 911: 908: 905: 902: 899: 896: 893: 890: 887: 880: 874: 873: 870: 867: 864: 861: 858: 855: 852: 849: 842: 836: 835: 832: 829: 826: 823: 820: 817: 814: 811: 804: 798: 797: 794: 791: 788: 785: 782: 779: 776: 773: 766: 760: 759: 756: 753: 750: 747: 744: 741: 738: 735: 728: 722: 721: 718: 715: 712: 709: 706: 703: 700: 697: 694: 683: 680: 673: 667: 666: 649: 634: 620: 614: 607: 606: 589: 574: 560: 554: 547: 546: 529: 514: 500: 494: 487: 486: 469: 454: 440: 434: 427: 426: 409: 394: 380: 374: 367: 366: 349: 334: 320: 314: 307: 306: 303: 300: 297: 222:selenocysteine 108: 105: 100: 97: 80: 77: 75: 72: 68:Erwin Chargaff 32:Erwin Chargaff 15: 9: 6: 4: 3: 2: 2328: 2317: 2314: 2312: 2309: 2307: 2304: 2302: 2299: 2297: 2294: 2292: 2291:Biotechnology 2289: 2287: 2284: 2282: 2279: 2277: 2274: 2273: 2271: 2258: 2254: 2249: 2244: 2240: 2236: 2232: 2225: 2217: 2213: 2208: 2203: 2199: 2195: 2191: 2184: 2180: 2175: 2172: 2169: 2166: 2163: 2162: 2152: 2148: 2143: 2138: 2133: 2128: 2124: 2120: 2116: 2112: 2108: 2103: 2099: 2095: 2091: 2087: 2083: 2079: 2074: 2069: 2065: 2061: 2057: 2053: 2048: 2044: 2040: 2035: 2030: 2026: 2022: 2018: 2014: 2010: 2005: 2001: 1997: 1992: 1987: 1983: 1979: 1975: 1970: 1966: 1962: 1958: 1954: 1950: 1946: 1941: 1940: 1921:on 2014-07-26 1917: 1913: 1909: 1902: 1895: 1887: 1881: 1873: 1869: 1864: 1859: 1854: 1849: 1845: 1841: 1837: 1830: 1822: 1818: 1814: 1810: 1806: 1802: 1798: 1794: 1787: 1779: 1775: 1770: 1765: 1760: 1755: 1751: 1747: 1743: 1739: 1735: 1728: 1726: 1717: 1713: 1709: 1705: 1701: 1697: 1690: 1682: 1678: 1673: 1668: 1664: 1660: 1656: 1652: 1648: 1641: 1633: 1629: 1625: 1621: 1617: 1613: 1609: 1605: 1598: 1590: 1583: 1575: 1571: 1567: 1563: 1559: 1555: 1548: 1540: 1536: 1532: 1528: 1524: 1520: 1513: 1505: 1501: 1497: 1491: 1487: 1483: 1478: 1473: 1469: 1462: 1454: 1450: 1446: 1440: 1436: 1432: 1427: 1422: 1418: 1411: 1403: 1399: 1394: 1389: 1385: 1381: 1377: 1373: 1369: 1362: 1354: 1350: 1345: 1340: 1336: 1332: 1325: 1317: 1313: 1308: 1303: 1298: 1293: 1289: 1285: 1281: 1277: 1273: 1271: 1262: 1260: 1251: 1247: 1243: 1239: 1234: 1229: 1225: 1221: 1217: 1210: 1208: 1199: 1195: 1191: 1187: 1183: 1179: 1175: 1171: 1164: 1160: 1150: 1149:Genetic codes 1147: 1146: 1135: 1132: 1129: 1126: 1123: 1120: 1117: 1114: 1112: 1111: 1107: 1105: 1102: 1101: 1097: 1094: 1091: 1088: 1085: 1082: 1079: 1076: 1074: 1073: 1069: 1067: 1066: 1062: 1061: 1057: 1054: 1051: 1048: 1045: 1042: 1039: 1036: 1034: 1033: 1032:Saccharomyces 1029: 1027: 1024: 1023: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 998: 996: 995: 991: 989: 986: 985: 981: 978: 975: 972: 969: 966: 963: 960: 958: 955: 953: 950: 949: 945: 942: 939: 936: 933: 930: 927: 924: 922: 919: 917: 914: 913: 909: 906: 903: 900: 897: 894: 891: 888: 886: 885: 881: 879: 876: 875: 871: 868: 865: 862: 859: 856: 853: 850: 848: 847: 843: 841: 838: 837: 833: 830: 827: 824: 821: 818: 815: 812: 810: 809: 805: 803: 800: 799: 795: 792: 789: 786: 783: 780: 777: 774: 772: 771: 767: 765: 762: 761: 757: 754: 751: 748: 745: 742: 739: 736: 734: 733: 729: 727: 724: 723: 691: 688: 679: 672: 650: 632: 621: 615: 609: 608: 590: 572: 561: 555: 549: 548: 530: 512: 501: 495: 489: 488: 470: 452: 441: 435: 429: 428: 410: 392: 381: 375: 369: 368: 350: 332: 321: 315: 309: 308: 294: 288: 286: 285:transposition 282: 278: 274: 269: 267: 263: 259: 255: 251: 241: 237: 233: 231: 227: 223: 219: 215: 211: 206: 204: 200: 196: 192: 191:bacteriophage 188: 178: 174: 172: 168: 164: 160: 156: 152: 148: 144: 140: 137: 132: 128: 122: 121:approximately 114: 113:approximately 104: 96: 94: 90: 86: 71: 69: 62:bases (i.e., 61: 57: 53: 49: 45: 41: 37: 33: 29: 21: 2238: 2234: 2224: 2197: 2193: 2183: 2114: 2110: 2055: 2051: 2016: 2012: 1981: 1977: 1948: 1944: 1923:. Retrieved 1916:the original 1911: 1907: 1894: 1880:cite journal 1843: 1839: 1829: 1796: 1792: 1786: 1741: 1737: 1699: 1695: 1689: 1654: 1650: 1640: 1610:(1): 63–76. 1607: 1604:J Theor Biol 1603: 1597: 1588: 1582: 1557: 1553: 1547: 1525:(1): 90–94. 1522: 1518: 1512: 1467: 1461: 1416: 1410: 1375: 1371: 1361: 1334: 1324: 1282:(3): 921–2. 1279: 1275: 1269: 1223: 1219: 1173: 1169: 1163: 1108: 1070: 1063: 1030: 992: 882: 844: 806: 768: 730: 685: 676: 670: 299:Second codon 270: 258:transversion 246: 234: 210:genetic code 207: 183: 159:mitochondria 133: 129: 120: 112: 110: 102: 88: 82: 27: 26: 1951:: 123–127. 1560:: 123–127. 1270:B. Subtilis 1220:J Biol Chem 1170:Experientia 1072:Escherichia 916:Grasshopper 296:First codon 230:stop codons 226:pyrrolysine 218:amino acids 199:pyrimidines 139:chromosomes 74:Definitions 2270:Categories 2052:J Mol Evol 1925:2013-07-26 1155:References 957:Echinoidea 952:Sea urchin 921:Orthoptera 256:(a C to A 136:eukaryotic 87:molecule, 60:pyrimidine 30:(given by 2068:CiteSeerX 1702:: 34–41. 1477:1112.1528 1426:1112.1528 633:≃ 573:≃ 513:≃ 453:≃ 393:≃ 333:≃ 281:inversion 254:adenosine 143:bacterial 2257:12651717 2216:15256401 2168:Archived 2098:12917481 2043:10075995 1872:32266404 1821:54565279 1813:20658335 1778:17093051 1716:16893615 1681:10673280 1632:10036208 1539:16364245 1504:16742066 1453:16742066 1353:12651717 1250:11358561 1242:14938364 1198:36803326 1190:14945441 1143:See also 994:Triticum 693:Organism 645: % 585: % 525: % 465: % 405: % 345: % 305:Details 264:(G) and 250:cytosine 163:plastids 151:archaeal 107:Research 89:globally 44:cytosine 2151:9724767 2119:Bibcode 2090:9847411 2060:Bibcode 2000:8676740 1965:4966069 1863:7986665 1769:1635160 1746:Bibcode 1612:Bibcode 1574:4966069 1402:8332488 1316:4970114 1284:Bibcode 1110:PhiX174 1065:E. coli 802:Chicken 770:Octopus 764:Octopus 266:thymine 262:guanine 212:has 64 195:purines 64:A+G=T+C 52:thymine 48:adenine 40:guanine 2255:  2214:  2149:  2139:  2096:  2088:  2070:  2041:  2034:148367 2031:  1998:  1963:  1870:  1860:  1819:  1811:  1776:  1766:  1714:  1679:  1672:310832 1669:  1630:  1572:  1537:  1502:  1492:  1451:  1441:  1400:  1393:309655 1390:  1351:  1314:  1307:225140 1304:  1248:  1240:  1196:  1188:  846:Rattus 808:Gallus 277:n-gram 214:codons 141:, the 56:purine 2142:27958 2094:S2CID 1919:(PDF) 1904:(PDF) 1817:S2CID 1500:S2CID 1472:arXiv 1449:S2CID 1421:arXiv 1246:S2CID 1194:S2CID 1136:55.2 1104:φX174 1098:48.3 1058:64.4 1026:Yeast 1020:54.4 988:Wheat 982:64.9 946:58.6 910:59.3 878:Human 872:57.0 834:56.4 796:64.8 758:54.0 726:Maize 714:G / C 711:A / T 696:Taxon 273:k-mer 127:%G). 2253:PMID 2212:PMID 2147:PMID 2086:PMID 2039:PMID 1996:PMID 1961:PMID 1886:link 1868:PMID 1809:PMID 1774:PMID 1712:PMID 1696:Gene 1677:PMID 1628:PMID 1570:PMID 1535:PMID 1490:ISBN 1439:ISBN 1398:PMID 1349:PMID 1312:PMID 1238:PMID 1186:PMID 1133:44.8 1130:1.08 1127:0.77 1124:31.2 1121:21.5 1118:23.3 1115:24.0 1095:51.7 1092:1.01 1089:1.05 1086:23.6 1083:25.7 1080:26.0 1077:24.7 1055:35.8 1052:1.09 1049:0.95 1046:32.9 1043:17.1 1040:18.7 1037:31.3 1017:45.5 1014:1.00 1011:1.01 1008:27.1 1005:22.8 1002:22.7 999:27.3 979:35.0 976:1.02 973:1.02 970:32.1 967:17.3 964:17.7 961:32.8 943:41.2 940:0.99 937:1.00 934:29.3 931:20.7 928:20.5 925:29.3 907:40.7 904:1.04 901:0.98 898:30.0 895:20.0 892:20.7 889:29.3 884:Homo 869:42.9 866:1.00 863:1.01 860:28.4 857:20.5 854:21.4 851:28.6 831:43.7 828:1.02 825:0.99 822:28.4 819:21.6 816:22.0 813:28.0 793:35.2 790:1.00 787:1.05 784:31.6 781:17.6 778:17.6 775:33.2 755:46.1 752:0.98 749:0.99 746:27.2 743:23.2 740:22.8 737:26.8 720:%AT 662:and 654:and 602:and 594:and 542:and 534:and 482:and 474:and 422:and 414:and 362:and 354:and 283:and 224:and 161:and 58:and 2276:DNA 2243:doi 2202:doi 2137:PMC 2127:doi 2078:doi 2029:PMC 2021:doi 1986:doi 1953:doi 1858:PMC 1848:doi 1801:doi 1764:PMC 1754:doi 1742:103 1704:doi 1700:381 1667:PMC 1659:doi 1620:doi 1608:197 1562:doi 1527:doi 1523:340 1482:doi 1431:doi 1388:PMC 1380:doi 1339:doi 1302:PMC 1292:doi 1228:doi 1224:195 1178:doi 840:Rat 732:Zea 717:%GC 664:GCC 660:GGC 656:Gyz 652:wxC 647:Gyz 624:wxC 617:Gyz 611:wxC 604:AAG 600:CTT 596:Ayz 592:wxT 587:Ayz 564:wxT 557:Ayz 551:wxT 544:AGA 540:TCT 536:yGz 532:wCx 527:yGz 504:wCx 497:yGz 491:wCx 484:CAG 480:CTG 476:yAz 472:wTx 467:yAz 444:wTx 437:yAz 431:wTx 424:TAG 420:CTA 416:yzG 412:Cwx 407:yzG 384:Cwx 377:yzG 371:Cwx 364:CGA 360:TCG 356:yzA 352:Twx 347:yzA 324:Twx 317:yzA 311:Twx 275:or 171:RNA 167:kbp 147:DNA 85:DNA 36:DNA 2272:: 2251:. 2239:19 2237:. 2233:. 2210:. 2198:20 2196:. 2192:. 2145:. 2135:. 2125:. 2115:95 2113:. 2109:. 2092:. 2084:. 2076:. 2066:. 2056:47 2054:. 2037:. 2027:. 2017:27 2015:. 2011:. 1994:. 1982:13 1980:. 1976:. 1959:. 1949:31 1947:. 1912:85 1910:. 1906:. 1882:}} 1878:{{ 1866:. 1856:. 1844:22 1842:. 1838:. 1815:. 1807:. 1795:. 1772:. 1762:. 1752:. 1740:. 1736:. 1724:^ 1710:. 1698:. 1675:. 1665:. 1655:10 1653:. 1649:. 1626:. 1618:. 1606:. 1568:. 1558:31 1556:. 1533:. 1521:. 1498:. 1488:. 1480:. 1447:. 1437:. 1429:. 1396:. 1386:. 1376:21 1374:. 1370:. 1347:. 1333:. 1310:. 1300:. 1290:. 1280:60 1278:. 1274:. 1258:^ 1244:. 1236:. 1222:. 1218:. 1206:^ 1192:. 1184:. 1172:. 708:%T 705:%C 702:%G 699:%A 622:% 562:% 502:% 442:% 382:% 322:% 2259:. 2245:: 2218:. 2204:: 2153:. 2129:: 2121:: 2100:. 2080:: 2062:: 2045:. 2023:: 2002:. 1988:: 1967:. 1955:: 1928:. 1888:) 1874:. 1850:: 1823:. 1803:: 1797:2 1780:. 1756:: 1748:: 1718:. 1706:: 1683:. 1661:: 1634:. 1622:: 1614:: 1576:. 1564:: 1541:. 1529:: 1506:. 1484:: 1474:: 1455:. 1433:: 1423:: 1404:. 1382:: 1355:. 1341:: 1318:. 1294:: 1286:: 1252:. 1230:: 1200:. 1180:: 1174:8 157:( 125:≈ 117:≈

Index


Erwin Chargaff
DNA
guanine
cytosine
adenine
thymine
purine
pyrimidine
Erwin Chargaff
DNA
Watson–Crick base pairs
eukaryotic
chromosomes
bacterial
DNA
archaeal
organellar genomes
mitochondria
plastids
kbp
RNA

Wacław Szybalski
bacteriophage
purines
pyrimidines
Szybalski's rule
genetic code
codons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.