Knowledge

Cantor's isomorphism theorem

Source 📝

1321: 104: 1433:
each color partition the order into a family of unbounded dense countable linear orderings. Any partition of an unbounded dense countable linear orderings into subsets, with the property that each subset is unbounded (within the whole set, not just in itself) and dense (again, within the whole set) comes from a coloring in this way. Each two colorings with the same number of colors are order-isomorphic, under any permutation of their colors.
1456:, meaning that every subset of the reals that has a finite upper bound has a real least upper bound. They contain the rational numbers, which are dense in the real numbers. By applying the isomorphism theorem, Cantor proved that whenever a linear ordering has the same properties of being Dedekind-complete and containing a countable dense unbounded subset, it must be order-isomorphic to the real 1658:, various formalizations of the concept of an interval of time can be shown to be equivalent to defining an interval by a pair of distinct elements of a dense unbounded linear order. This connection implies that these theories are also countably categorical, and can be uniquely modeled by intervals of rational 1301:. This means that every logical sentence in the language of this theory is either a theorem, that is, provable as a logical consequence of the axioms, or the negation of a theorem. This is closely related to being categorical (a sentence is a theorem if it is true of the unique countable model; see the 1432:
The isomorphism theorem can be extended to colorings of an unbounded dense countable linear ordering, with a finite or countable set of colors, such that each color is dense, in the sense that a point of that color exists between any other two points of the whole ordering. The subsets of points with
1441:
and their complement; these two sets are dense in each other, and their union has an order isomorphism to any other pair of unbounded linear orders that are countable and dense in each other. Unlike Cantor's isomorphism theorem, the proof needs the full back-and-forth argument, and not just the
371:
by adding a new element from one order, the first missing element in its enumeration, and matching it with an order-equivalent element of the other order, proven to exist using the density and lack of endpoints of the order. The two orderings switch roles at each step: the proof finds the first
1305:) but there can exist multiple distinct models that have the same complete theory. In particular, both the ordering on the rational numbers and the ordering on the real numbers are models of the same theory, even though they are different models. Quantifier elimination can also be used in an 95:, a method for using logic to reason about time. In this application, the theorem implies that it is sufficient to use intervals of rational numbers to model intervals of time: using irrational numbers for this purpose will not lead to any increase in logical power. 1193: 908: 76:. The same back-and-forth method also proves that countable dense unbounded orders are highly symmetric, and can be applied to other kinds of structures. However, Cantor's original proof only used the "going forth" half of this method. In terms of 655:. These sentences include both axioms, formulating in logical terms the requirements of a dense linear order, and all other sentences that can be proven as logical consequences from those axioms. The axioms of this system can be expressed 601:
the order-equivalent element that is first in the second order's enumeration. This naturally finds an equivalence between the first ordering and a subset of the second ordering, and Cantor then argues that the entire second ordering is
1271:. For instance, the usual comparison relation on the rational numbers is a countable model of this theory. Cantor's isomorphism theorem can be expressed by saying that the first-order theory of unbounded dense linear orders is 1463:
asks whether orders having certain other properties of the order on the real numbers, including unboundedness, density, and completeness, must be order-isomorphic to the reals; the truth of this statement is independent of
1667:
stating that any two countable metric spaces without isolated points are homeomorphic can be seen as a topological analogue of Cantor's isomorphism theorem, and can be proved using a similar back-and-forth argument.
807: 2076:
but the strict comparison simplifies the expression of the axioms for the properties of being unbounded and dense. Note that it is not necessary to specify that these orders are antisymmetric, that is, that
1481:. Another consequence of Cantor's proof is that every finite or countable linear order can be embedded into the rationals, or into any unbounded dense ordering. Calling this a "well known" result of Cantor, 727: 247:
as the denominator. By Cantor's isomorphism theorem, the dyadic rational numbers are order-isomorphic to the whole set of rational numbers. In this example, an explicit order isomorphism is provided by
1332:, and consist of order-preserving bijections from the whole linear order to itself. By the back-and-forth method, every countable dense linear order has order automorphisms that map any set of 2122: 517:
by going "back and forth" between the enumeration for the first order and the enumeration for the second order, Cantor's original proof only uses the "going forth" half of the back-and-forth
1056: 964: 1419:
sets of points is summarized by saying that the group of symmetries of a countable dense linear order is "highly homogeneous". However, there is no order automorphism that maps an
239:
Within the rational numbers, certain subsets are also countable, unbounded, and dense. The rational numbers in the open unit interval are an example. Another example is the set of
624:
linear orders have a computable comparison predicate, and computable functions representing their density and unboundedness properties, then the isomorphism between them is also
1638:
is defined as the cardinality of the set of all countable ordinals). Baumgartner's axiom is consistent with ZFC and the negation of the continuum hypothesis, and implied by the
1107: 822: 462:
In an investigation of the history of this theorem by logician Charles L. Silver, the earliest instance of the back-and-forth proof found by Silver was in a 1914 textbook by
1328:
The same back-and-forth method used to prove Cantor's isomorphism theorem also proves that countable dense linear orders are highly symmetric. Their symmetries are called
2495: 2423: 1636: 1609: 1580: 1541: 1514: 2074: 2054: 1611:
other elements. It states that each two such sets are order-isomorphic, providing in this way another higher-cardinality analogue of Cantor's isomorphism theorem (
1415: 1394: 1370: 1350: 1255: 1235: 1215: 1098: 1078: 1006: 986: 599: 579: 559: 539: 515: 495: 450: 430: 410: 390: 369: 349: 329: 309: 3307: 193:
of any two numbers belongs to the same set and lies between them, but the integers are not dense because is no other integer between any two consecutive
1477:
Although uncountable unbounded dense orderings may not be order-isomorphic, it follows from the back-and-forth method that any two such orderings are
2199: 1818: 458:
Although the back-and-forth method has also been attributed to Cantor, Cantor's original publication of this theorem in 1895–1897 used a different
643:
of unbounded dense linear orders consists of sentences in mathematical logic concerning variables that represent the elements of an order, with a
2150:; Worrell uses a different but equivalent axiomatization for strict linear orders, and combines the two unboundedness axioms into a single axiom. 122:
or total order is defined by a set of elements and a comparison operation that gives an ordering to each pair of distinct elements and obeys the
291:, in an ordering given by a countable enumeration of the two orderings. In more detail, the proof maintains two order-isomorphic finite subsets 452:, etc. Every element of each ordering is eventually matched with an order-equivalent element of the other ordering, so the two orderings are 1992:
Kirst, Dominik (2022), "Computational back-and-forth arguments in constructive type theory", in Andronick, June; de Moura, Leonardo (eds.),
1854:
Bosi, G.; Mehta, G. B. (2002), "Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof",
1664: 3259: 742: 260:
It is also possible to apply the theorem to other linear orders whose elements are not defined as numbers. For instance, the binary
256:, the real roots of polynomials with integer coefficients. In this case, they are a superset of the rational numbers, but are again 3242: 2772: 676: 2608: 233:
With these definitions in hand, Cantor's isomorphism theorem states that every two unbounded countable dense linear orders are
204: 1778: 249: 147:
Unboundedness means that the ordering does not contain a minimum or maximum element. This is different from the concept of a
107: 46: 3089: 2080: 3225: 3084: 2263: 2030: 1856: 1725: 159:(0,1) is unbounded as an ordered set, even though it is bounded as a subset of the real numbers, because neither its 1324:
The graph of a piecewise linear order automorphism of rational numbers taking the four points {1,4,5,8} to {3,4,6,7}
1015: 923: 3079: 1465: 1263:
A model of this theory is any system of elements and a comparison relation that obeys all of the axioms; it is a
2797: 1797: 3116: 3036: 2501: 2250:, Springer Monographs in Mathematics (3rd millennium ed.), Berlin: Springer-Verlag, Theorem 4.3, p. 38, 49:
produces an isomorphism (a one-to-one order-preserving correspondence) between the numerical ordering of the
2901: 2830: 2710: 1188:{\displaystyle \forall a\,\forall b\,{\bigl (}a<b\Rightarrow \exists c\,(a<c\wedge c<b){\bigr )}} 903:{\displaystyle \forall a\,\forall b\,\forall c\,{\bigl (}(a<b\wedge b<c)\Rightarrow a<c{\bigr )}} 469: 2804: 2792: 2755: 2730: 2705: 2659: 2628: 1994:
13th International Conference on Interactive Theorem Proving, ITP 2022, August 7–10, 2022, Haifa, Israel
1584:
sets of real numbers, unbounded sets with the property that every two elements are separated by exactly
3101: 2735: 2725: 2601: 2163:; Danhof, Kenneth J. (1973), "Variations on a theme of Cantor in the theory of relational structures", 617: 3074: 2740: 1373: 621: 609: 261: 3006: 2633: 1759:
Dasgupta, Abhijit (2014), "Chapters 7 & 8: Orders and order types; Dense and complete orders",
1302: 1272: 85: 2577:
Proceedings of the 6th National Conference on Artificial Intelligence. Seattle, WA, USA, July 1987
3254: 3237: 2473: 2429: 2401: 2358: 2356:(1932), "GĂ©nĂ©ralisation d'un thĂ©orĂšme de Cantor concernant les ensembles ordonnĂ©s dĂ©nombrables", 1996:, LIPIcs, vol. 237, Schloss Dagstuhl – Leibniz-Zentrum fĂŒr Informatik, pp. 22:1–22:12, 1614: 1587: 1558: 1519: 1492: 1478: 2160: 3166: 2782: 2394: 2353: 1551: 1547: 1482: 1294: 2022: 1372:
points. This can also be proven directly for the ordering on the rationals, by constructing a
3302: 3297: 3292: 3144: 2979: 2970: 2839: 2720: 2674: 2638: 2594: 1297:
in the first-order theory of unbounded dense linear orders can be used to prove that it is a
284: 69: 64:, who first published it in 1895, using it to characterize the (uncountable) ordering on the 1712:, Texts and Readings in Mathematics, vol. 12, Berlin: Springer-Verlag, pp. 77–86, 3232: 3191: 3181: 3171: 2916: 2879: 2869: 2849: 2834: 2558: 2522: 2452: 2340: 2298: 2273: 2230: 2184: 2059: 1979: 1924: 1877: 1841: 1802: 1735: 1640: 1486: 2381: 2138: 2039: 252:. Another example of a countable unbounded dense linear order is given by the set of real 8: 3159: 3070: 3016: 2975: 2965: 2854: 2787: 2750: 1460: 913: 648: 265: 243:
numbers, the numbers that can be expressed as a fraction with an integer numerator and a
124: 2572: 3271: 3198: 3051: 2960: 2950: 2891: 2809: 2745: 2328: 2293:, Lecture Notes in Mathematics, vol. 405, Berlin & New York: Springer-Verlag, 2218: 1900: 1891:
Lohrey, Markus; Mathissen, Christian (2013), "Isomorphism of regular trees and words",
1425: 1400: 1379: 1355: 1335: 1329: 1280: 1240: 1220: 1200: 1083: 1063: 991: 971: 812: 732: 640: 584: 564: 544: 524: 500: 480: 435: 415: 395: 375: 354: 334: 314: 294: 81: 3111: 1869: 3208: 3186: 3046: 3031: 3011: 2814: 2259: 2026: 1774: 1721: 1647: 1453: 211: 42: 3021: 2874: 2544: 2510: 2438: 2377: 2367: 2320: 2251: 2208: 2172: 1997: 1910: 1865: 1827: 1764: 1713: 1705: 288: 253: 1963: 1816:
Girgensohn, Roland (1996), "Constructing singular functions via Farey fractions",
3203: 2986: 2864: 2859: 2844: 2760: 2669: 2654: 2554: 2518: 2448: 2336: 2294: 2269: 2226: 2180: 1975: 1920: 1873: 1837: 1731: 1469: 1438: 1298: 644: 464: 240: 190: 134: 73: 72:
that is also sometimes attributed to Cantor but was actually published later, by
54: 50: 1717: 279:
One proof of Cantor's isomorphism theorem, in some sources called "the standard
3121: 3106: 3096: 2955: 2933: 2911: 2549: 2466: 2002: 1655: 613: 331:
of the two given orders, initially empty. It repeatedly increases the sizes of
92: 1769: 1287:, there are multiple inequivalent dense unbounded linear orders with the same 3286: 3220: 3176: 3154: 3026: 2896: 2884: 2689: 2176: 1915: 1268: 652: 200: 156: 2443: 2372: 1320: 287:. This proof builds up an isomorphism between any two given orders, using a 3041: 2923: 2906: 2824: 2664: 2617: 2286: 1832: 1420: 647:
used as the comparison operation of the ordering. Here, a sentence means a
636: 244: 152: 119: 88:, meaning that it has only one countable model, up to logical equivalence. 77: 61: 26: 22: 2255: 2036:. The axioms can be formulated logically using either a strict comparison 581:
the first missing element of the first order's enumeration, and adding to
412:; then it finds the first missing element of the second order, adds it to 103: 3247: 2940: 2819: 2684: 2243: 1449: 1284: 223: 174: 148: 138: 65: 38: 34: 1944:(Doctoral dissertation), University of North Texas, p. 1, 305292986 1452:, an uncountable set. Unlike the rational numbers, the real numbers are 1448:
Cantor used the isomorphism theorem to characterize the ordering of the
635:
One way of describing Cantor's isomorphism theorem uses the language of
620:. This formalization process led to a strengthened result that when two 3215: 3149: 2990: 2514: 2332: 2222: 189:
The rational numbers and real numbers are dense in this sense, as the
167:
1 belong to the interval. The integers, rationals, and reals are also
3266: 3139: 2945: 1306: 226:
are order-isomorphic, under a bijection that multiplies each integer
215: 182: 114:
Cantor's isomorphism theorem is stated using the following concepts:
2324: 2213: 1703: 1434: 203:, but the real numbers do not, by a different result of Cantor, his 3061: 2928: 2679: 1704:
Bhattacharjee, Meenaxi; Macpherson, Dugald; Möller, Rögnvaldur G.;
164: 1905: 1437:
give as an example the partition of the rational numbers into the
110:
provides a concrete isomorphism from rationals to dyadic rationals
2165:
Zeitschrift fĂŒr Mathematische Logik und Grundlagen der Mathematik
802:{\displaystyle \forall a\,\forall b\,(a=b\vee a<b\vee b<a)} 392:, matches it with an element of the second order, and adds it to 160: 130: 1485:
proved an analogous result for higher cardinality: assuming the
432:, matches it with an element of the first order, and adds it to 2586: 1942:
A computation of partial isomorphism rank on ordinal structures
2311:
Langford, C. H. (1926–1927), "Some theorems on deducibility",
815:
or total, meaning every two distinct elements are comparable.
80:, the isomorphism theorem can be expressed by saying that the 1423:
of points to its reverse, so these symmetries do not form a
722:{\displaystyle \forall a\,{\bigl (}\lnot (a<a){\bigr )}} 2124:; this is a consequence of irreflexivity and transitivity. 2019:
Propositional and Predicate Calculus: A Model of Argument
91:
One application of Cantor's isomorphism theorem involves
177:
when every pair of elements has another element between
2469:(1981), "Martin's axiom does not imply that every two 2015:
For this axiomatization of strict linear orders, see:
2476: 2404: 2083: 2062: 2042: 1617: 1590: 1561: 1522: 1516:
into which all other linear orderings of cardinality
1495: 1403: 1382: 1358: 1338: 1243: 1223: 1203: 1110: 1086: 1066: 1018: 994: 974: 926: 825: 745: 679: 587: 567: 547: 527: 503: 483: 438: 418: 398: 378: 357: 337: 317: 297: 1554:
in 1973 to study the continuum hypothesis, concerns
2575:, in Forbus, Kenneth D.; Shrobe, Howard E. (eds.), 2535:van Benthem, Johan (1984), "Tense logic and time", 916:: each triple of elements is consistently ordered. 2489: 2417: 2116: 2068: 2048: 1630: 1603: 1574: 1535: 1508: 1409: 1388: 1364: 1344: 1249: 1229: 1209: 1187: 1092: 1072: 1050: 1000: 980: 958: 902: 801: 721: 608:The back-and-forth proof has been formalized as a 593: 573: 553: 533: 509: 489: 444: 424: 404: 384: 363: 343: 323: 303: 2285: 2200:Transactions of the American Mathematical Society 2197:Morley, Michael (1965), "Categoricity in power", 1819:Journal of Mathematical Analysis and Applications 1275:: it has only one countable model, up to logical 3284: 2117:{\displaystyle a<b\Rightarrow \lnot (b<a)} 1964:"Who invented Cantor's back-and-forth argument?" 1489:, there exists a linear ordering of cardinality 477:Instead of building up order-isomorphic subsets 1890: 372:missing element of the first order, adds it to 1051:{\displaystyle \forall a\,\exists b\,(a<b)} 959:{\displaystyle \forall a\,\exists b\,(b<a)} 2602: 2464: 2310: 1180: 1127: 895: 849: 714: 689: 181:This is different from being a topologically 199:The integers and rational numbers both form 2534: 2393: 2387: 2159: 1791: 1789: 1376:order automorphism with breakpoints at the 1309:for deciding whether a given sentence is a 521:It repeatedly augments the two finite sets 205:proof that the real numbers are uncountable 18:Uniqueness of countable dense linear orders 3308:Theorems in the foundations of mathematics 3260:Positive cone of a partially ordered group 2609: 2595: 2352: 2346: 2132: 2130: 1815: 1754: 1752: 1750: 1748: 1746: 1744: 2548: 2442: 2371: 2212: 2001: 1914: 1904: 1853: 1831: 1809: 1795: 1768: 1150: 1124: 1117: 1032: 1025: 940: 933: 846: 839: 832: 759: 752: 686: 98: 3243:Positive cone of an ordered vector space 2304: 1957: 1955: 1953: 1951: 1935: 1933: 1786: 1758: 1319: 102: 2136: 2127: 2016: 2009: 1763:, Springer New York, pp. 131–174, 1741: 1197:The order is dense: every two elements 1060:There is no upper bound; every element 968:There is no lower bound; every element 3285: 2570: 2564: 2528: 2196: 2190: 1961: 1939: 1798:"Curiosities of linearly ordered sets" 1796:Chekmasov, Andrei (October 23, 2019), 1699: 1697: 1695: 1693: 1691: 1689: 1687: 1685: 1683: 1681: 1396:given points. This equivalence of all 129:The familiar numeric orderings on the 2590: 2573:"Models of axioms for time intervals" 2148:(Lecture notes), University of Oxford 1991: 1948: 1930: 1884: 1847: 2242: 2236: 1985: 1710:Notes on infinite permutation groups 1281:categorical for higher cardinalities 1267:when the system of elements forms a 84:of unbounded dense linear orders is 2579:, Morgan Kaufmann, pp. 234–239 1678: 222:For instance, the integers and the 13: 2770:Properties & Types ( 2537:Notre Dame Journal of Formal Logic 2478: 2458: 2427:sets of reals can be isomorphic", 2406: 2279: 2153: 2096: 1619: 1592: 1563: 1524: 1497: 1315: 1144: 1118: 1111: 1026: 1019: 934: 927: 840: 833: 826: 753: 746: 735:: no element is less than itself. 694: 680: 250:Minkowski's question-mark function 218:between them that preserves their 108:Minkowski's question-mark function 53:and the numerical ordering of the 47:Minkowski's question-mark function 14: 3319: 3226:Positive cone of an ordered field 1857:Journal of Mathematical Economics 3080:Ordered topological vector space 2616: 33:states that every two countable 2499:sets of reals are isomorphic", 630: 2289:; JohnsbrĂ„ten, HĂ„vard (1974), 2111: 2099: 2093: 1175: 1151: 1141: 1045: 1033: 953: 941: 881: 878: 854: 796: 760: 709: 697: 1: 3037:Series-parallel partial order 2502:Israel Journal of Mathematics 1870:10.1016/S0304-4068(02)00058-7 1671: 2716:Cantor's isomorphism theorem 1708:(1997), "Rational numbers", 31:Cantor's isomorphism theorem 7: 2756:Szpilrajn extension theorem 2731:Hausdorff maximal principle 2706:Boolean prime ideal theorem 2490:{\displaystyle \aleph _{1}} 2418:{\displaystyle \aleph _{1}} 2056:or a non-strict comparison 1962:Silver, Charles L. (1994), 1893:Information and Computation 1718:10.1007/978-93-80250-91-5_9 1631:{\displaystyle \aleph _{1}} 1604:{\displaystyle \aleph _{1}} 1575:{\displaystyle \aleph _{1}} 1536:{\displaystyle \aleph _{1}} 1509:{\displaystyle \aleph _{1}} 1466:Zermelo–Fraenkel set theory 1435:Bhattacharjee et al. (1997) 1352:points to any other set of 141:are all examples of linear 60:The theorem is named after 29:, branches of mathematics, 10: 3324: 3102:Topological vector lattice 2003:10.4230/LIPIcs.ITP.2022.22 618:interactive theorem prover 268:, form another isomorphic 264:that end in a 1, in their 3132: 3060: 2999: 2769: 2698: 2647: 2624: 2571:Ladkin, Peter B. (1987), 1770:10.1007/978-1-4614-8854-5 470:GrundzĂŒge der Mengenlehre 274: 216:one-to-one correspondence 2711:Cantor–Bernstein theorem 2550:10.1305/ndjfl/1093870515 2177:10.1002/malq.19730192604 1916:10.1016/j.ic.2013.01.002 68:. It can be proved by a 3255:Partially ordered group 3075:Specialization preorder 2444:10.4064/fm-79-2-101-106 2430:Fundamenta Mathematicae 2373:10.4064/fm-18-1-280-284 2359:Fundamenta Mathematicae 2137:Worrell, James (2016), 2017:Goldrei, Derek (2005), 1479:elementarily equivalent 610:computer-verified proof 2741:Kruskal's tree theorem 2736:Knaster–Tarski theorem 2726:Dushnik–Miller theorem 2491: 2419: 2118: 2070: 2050: 1881:; see Remark 3, p. 323 1833:10.1006/jmaa.1996.0370 1632: 1605: 1576: 1552:James Earl Baumgartner 1537: 1510: 1411: 1390: 1366: 1346: 1325: 1295:quantifier elimination 1251: 1231: 1211: 1189: 1094: 1074: 1052: 1002: 988:has a smaller element 982: 960: 904: 803: 723: 595: 575: 555: 535: 511: 491: 446: 426: 406: 386: 365: 345: 325: 305: 210:Two linear orders are 111: 99:Statement and examples 2492: 2420: 2395:Baumgartner, James E. 2313:Annals of Mathematics 2256:10.1007/3-540-44761-X 2119: 2071: 2069:{\displaystyle \leq } 2051: 1940:Bryant, Ross (2006), 1633: 1606: 1577: 1538: 1511: 1412: 1391: 1367: 1347: 1323: 1273:countably categorical 1252: 1232: 1212: 1190: 1095: 1080:has a larger element 1075: 1053: 1003: 983: 961: 905: 804: 724: 622:computably enumerable 596: 576: 556: 536: 512: 492: 447: 427: 407: 387: 366: 346: 326: 306: 285:back-and-forth method 106: 86:countably categorical 70:back-and-forth method 3233:Ordered vector space 2474: 2402: 2139:"Decidable theories" 2081: 2060: 2049:{\displaystyle <} 2040: 2021:, Springer, p.  1665:SierpiƄski's theorem 1641:proper forcing axiom 1615: 1588: 1559: 1520: 1493: 1487:continuum hypothesis 1401: 1380: 1356: 1336: 1241: 1221: 1201: 1108: 1084: 1064: 1016: 992: 972: 924: 823: 743: 677: 585: 565: 545: 525: 501: 481: 436: 416: 396: 376: 355: 335: 315: 295: 214:when there exists a 155:. For instance, the 3071:Alexandrov topology 3017:Lexicographic order 2976:Well-quasi-ordering 2291:The Souslin problem 1645:but independent of 1548:Baumgartner's axiom 1330:order automorphisms 1279:However, it is not 662: 649:well-formed formula 266:lexicographic order 3052:Transitive closure 3012:Converse/Transpose 2721:Dilworth's theorem 2515:10.1007/BF02761858 2487: 2415: 2354:SierpiƄski, WacƂaw 2171:(26–29): 411–426, 2114: 2066: 2046: 1628: 1601: 1572: 1533: 1506: 1426:2-transitive group 1407: 1386: 1362: 1342: 1326: 1247: 1227: 1207: 1185: 1090: 1070: 1048: 998: 978: 956: 900: 799: 719: 661: 641:first-order theory 591: 571: 551: 531: 507: 487: 442: 422: 402: 382: 361: 341: 321: 301: 112: 82:first-order theory 3280: 3279: 3238:Partially ordered 3047:Symmetric closure 3032:Reflexive closure 2775: 2315:, Second Series, 2161:BĂŒchi, J. Richard 1780:978-1-4614-8853-8 1706:Neumann, Peter M. 1483:WacƂaw SierpiƄski 1454:Dedekind-complete 1410:{\displaystyle k} 1389:{\displaystyle k} 1365:{\displaystyle k} 1345:{\displaystyle k} 1283:: for any higher 1261: 1260: 1250:{\displaystyle c} 1230:{\displaystyle b} 1210:{\displaystyle a} 1093:{\displaystyle b} 1073:{\displaystyle a} 1001:{\displaystyle b} 981:{\displaystyle a} 594:{\displaystyle B} 574:{\displaystyle A} 554:{\displaystyle B} 534:{\displaystyle A} 510:{\displaystyle B} 490:{\displaystyle A} 445:{\displaystyle A} 425:{\displaystyle B} 405:{\displaystyle B} 385:{\displaystyle A} 364:{\displaystyle B} 344:{\displaystyle A} 324:{\displaystyle B} 304:{\displaystyle A} 258:order-isomorphic. 254:algebraic numbers 235:order-isomorphic. 3315: 3022:Linear extension 2771: 2751:Mirsky's theorem 2611: 2604: 2597: 2588: 2587: 2581: 2580: 2568: 2562: 2561: 2552: 2532: 2526: 2525: 2509:(1–2): 161–176, 2498: 2496: 2494: 2493: 2488: 2486: 2485: 2462: 2456: 2455: 2446: 2426: 2424: 2422: 2421: 2416: 2414: 2413: 2391: 2385: 2384: 2375: 2350: 2344: 2343: 2308: 2302: 2301: 2287:Devlin, Keith J. 2283: 2277: 2276: 2240: 2234: 2233: 2216: 2194: 2188: 2187: 2157: 2151: 2149: 2143: 2134: 2125: 2123: 2121: 2120: 2115: 2075: 2073: 2072: 2067: 2055: 2053: 2052: 2047: 2035: 2013: 2007: 2006: 2005: 1989: 1983: 1982: 1959: 1946: 1945: 1937: 1928: 1927: 1918: 1908: 1888: 1882: 1880: 1851: 1845: 1844: 1835: 1813: 1807: 1806: 1793: 1784: 1783: 1772: 1756: 1739: 1738: 1701: 1661: 1651: 1644: 1637: 1635: 1634: 1629: 1627: 1626: 1610: 1608: 1607: 1602: 1600: 1599: 1583: 1581: 1579: 1578: 1573: 1571: 1570: 1550:, formulated by 1546: 1542: 1540: 1539: 1534: 1532: 1531: 1515: 1513: 1512: 1507: 1505: 1504: 1474: 1461:Suslin's problem 1459: 1445: 1439:dyadic rationals 1429: 1418: 1416: 1414: 1413: 1408: 1395: 1393: 1392: 1387: 1374:piecewise linear 1371: 1369: 1368: 1363: 1351: 1349: 1348: 1343: 1312: 1290: 1278: 1256: 1254: 1253: 1248: 1237:have an element 1236: 1234: 1233: 1228: 1216: 1214: 1213: 1208: 1194: 1192: 1191: 1186: 1184: 1183: 1131: 1130: 1099: 1097: 1096: 1091: 1079: 1077: 1076: 1071: 1057: 1055: 1054: 1049: 1007: 1005: 1004: 999: 987: 985: 984: 979: 965: 963: 962: 957: 909: 907: 906: 901: 899: 898: 853: 852: 808: 806: 805: 800: 728: 726: 725: 720: 718: 717: 693: 692: 663: 660: 658: 627: 605: 600: 598: 597: 592: 580: 578: 577: 572: 560: 558: 557: 552: 540: 538: 537: 532: 520: 516: 514: 513: 508: 496: 494: 493: 488: 474: 461: 455: 451: 449: 448: 443: 431: 429: 428: 423: 411: 409: 408: 403: 391: 389: 388: 383: 370: 368: 367: 362: 350: 348: 347: 342: 330: 328: 327: 322: 310: 308: 307: 302: 289:greedy algorithm 282: 271: 259: 236: 229: 221: 212:order-isomorphic 196: 188: 185:within the real 180: 170: 144: 135:rational numbers 128: 55:dyadic rationals 51:rational numbers 45:. For instance, 43:order-isomorphic 3323: 3322: 3318: 3317: 3316: 3314: 3313: 3312: 3283: 3282: 3281: 3276: 3272:Young's lattice 3128: 3056: 2995: 2845:Heyting algebra 2793:Boolean algebra 2765: 2746:Laver's theorem 2694: 2660:Boolean algebra 2655:Binary relation 2643: 2620: 2615: 2585: 2584: 2569: 2565: 2533: 2529: 2481: 2477: 2475: 2472: 2471: 2470: 2467:Shelah, Saharon 2463: 2459: 2409: 2405: 2403: 2400: 2399: 2398: 2392: 2388: 2351: 2347: 2325:10.2307/1968352 2309: 2305: 2284: 2280: 2266: 2241: 2237: 2214:10.2307/1994188 2195: 2191: 2158: 2154: 2146:Logic and Proof 2141: 2135: 2128: 2082: 2079: 2078: 2061: 2058: 2057: 2041: 2038: 2037: 2033: 2014: 2010: 1990: 1986: 1960: 1949: 1938: 1931: 1889: 1885: 1852: 1848: 1814: 1810: 1794: 1787: 1781: 1757: 1742: 1728: 1702: 1679: 1674: 1659: 1646: 1639: 1622: 1618: 1616: 1613: 1612: 1595: 1591: 1589: 1586: 1585: 1566: 1562: 1560: 1557: 1556: 1555: 1544: 1527: 1523: 1521: 1518: 1517: 1500: 1496: 1494: 1491: 1490: 1472: 1470:axiom of choice 1457: 1443: 1424: 1402: 1399: 1398: 1397: 1381: 1378: 1377: 1357: 1354: 1353: 1337: 1334: 1333: 1318: 1316:Related results 1310: 1303:Ɓoƛ–Vaught test 1299:complete theory 1288: 1276: 1265:countable model 1242: 1239: 1238: 1222: 1219: 1218: 1202: 1199: 1198: 1179: 1178: 1126: 1125: 1109: 1106: 1105: 1085: 1082: 1081: 1065: 1062: 1061: 1017: 1014: 1013: 993: 990: 989: 973: 970: 969: 925: 922: 921: 894: 893: 848: 847: 824: 821: 820: 744: 741: 740: 713: 712: 688: 687: 678: 675: 674: 656: 645:binary relation 633: 625: 603: 586: 583: 582: 566: 563: 562: 546: 543: 542: 526: 523: 522: 518: 502: 499: 498: 482: 479: 478: 465:Felix Hausdorff 463: 459: 453: 437: 434: 433: 417: 414: 413: 397: 394: 393: 377: 374: 373: 356: 353: 352: 336: 333: 332: 316: 313: 312: 296: 293: 292: 280: 277: 269: 257: 241:dyadic rational 234: 227: 219: 194: 191:arithmetic mean 186: 178: 173:An ordering is 168: 142: 123: 101: 74:Felix Hausdorff 19: 12: 11: 5: 3321: 3311: 3310: 3305: 3300: 3295: 3278: 3277: 3275: 3274: 3269: 3264: 3263: 3262: 3252: 3251: 3250: 3245: 3240: 3230: 3229: 3228: 3218: 3213: 3212: 3211: 3206: 3199:Order morphism 3196: 3195: 3194: 3184: 3179: 3174: 3169: 3164: 3163: 3162: 3152: 3147: 3142: 3136: 3134: 3130: 3129: 3127: 3126: 3125: 3124: 3119: 3117:Locally convex 3114: 3109: 3099: 3097:Order topology 3094: 3093: 3092: 3090:Order topology 3087: 3077: 3067: 3065: 3058: 3057: 3055: 3054: 3049: 3044: 3039: 3034: 3029: 3024: 3019: 3014: 3009: 3003: 3001: 2997: 2996: 2994: 2993: 2983: 2973: 2968: 2963: 2958: 2953: 2948: 2943: 2938: 2937: 2936: 2926: 2921: 2920: 2919: 2914: 2909: 2904: 2902:Chain-complete 2894: 2889: 2888: 2887: 2882: 2877: 2872: 2867: 2857: 2852: 2847: 2842: 2837: 2827: 2822: 2817: 2812: 2807: 2802: 2801: 2800: 2790: 2785: 2779: 2777: 2767: 2766: 2764: 2763: 2758: 2753: 2748: 2743: 2738: 2733: 2728: 2723: 2718: 2713: 2708: 2702: 2700: 2696: 2695: 2693: 2692: 2687: 2682: 2677: 2672: 2667: 2662: 2657: 2651: 2649: 2645: 2644: 2642: 2641: 2636: 2631: 2625: 2622: 2621: 2614: 2613: 2606: 2599: 2591: 2583: 2582: 2563: 2527: 2484: 2480: 2465:Avraham, Uri; 2457: 2437:(2): 101–106, 2412: 2408: 2386: 2345: 2319:(1–4): 16–40, 2303: 2278: 2264: 2235: 2207:(2): 514–538, 2189: 2152: 2126: 2113: 2110: 2107: 2104: 2101: 2098: 2095: 2092: 2089: 2086: 2065: 2045: 2031: 2008: 1984: 1947: 1929: 1883: 1864:(3): 311–328, 1846: 1826:(1): 127–141, 1808: 1785: 1779: 1740: 1726: 1676: 1675: 1673: 1670: 1656:temporal logic 1648:Martin's axiom 1625: 1621: 1598: 1594: 1569: 1565: 1530: 1526: 1503: 1499: 1442:"going forth" 1406: 1385: 1361: 1341: 1317: 1314: 1259: 1258: 1257:between them. 1246: 1226: 1206: 1195: 1182: 1177: 1174: 1171: 1168: 1165: 1162: 1159: 1156: 1153: 1149: 1146: 1143: 1140: 1137: 1134: 1129: 1123: 1120: 1116: 1113: 1102: 1101: 1089: 1069: 1058: 1047: 1044: 1041: 1038: 1035: 1031: 1028: 1024: 1021: 1010: 1009: 997: 977: 966: 955: 952: 949: 946: 943: 939: 936: 932: 929: 918: 917: 912:Comparison is 910: 897: 892: 889: 886: 883: 880: 877: 874: 871: 868: 865: 862: 859: 856: 851: 845: 842: 838: 835: 831: 828: 817: 816: 811:Comparison is 809: 798: 795: 792: 789: 786: 783: 780: 777: 774: 771: 768: 765: 762: 758: 755: 751: 748: 737: 736: 731:Comparison is 729: 716: 711: 708: 705: 702: 699: 696: 691: 685: 682: 671: 670: 667: 653:free variables 632: 629: 590: 570: 550: 530: 506: 486: 441: 421: 401: 381: 360: 340: 320: 300: 276: 273: 231: 230: 208: 201:countable sets 197: 171: 145: 125:transitive law 100: 97: 93:temporal logic 17: 9: 6: 4: 3: 2: 3320: 3309: 3306: 3304: 3301: 3299: 3296: 3294: 3291: 3290: 3288: 3273: 3270: 3268: 3265: 3261: 3258: 3257: 3256: 3253: 3249: 3246: 3244: 3241: 3239: 3236: 3235: 3234: 3231: 3227: 3224: 3223: 3222: 3221:Ordered field 3219: 3217: 3214: 3210: 3207: 3205: 3202: 3201: 3200: 3197: 3193: 3190: 3189: 3188: 3185: 3183: 3180: 3178: 3177:Hasse diagram 3175: 3173: 3170: 3168: 3165: 3161: 3158: 3157: 3156: 3155:Comparability 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3137: 3135: 3131: 3123: 3120: 3118: 3115: 3113: 3110: 3108: 3105: 3104: 3103: 3100: 3098: 3095: 3091: 3088: 3086: 3083: 3082: 3081: 3078: 3076: 3072: 3069: 3068: 3066: 3063: 3059: 3053: 3050: 3048: 3045: 3043: 3040: 3038: 3035: 3033: 3030: 3028: 3027:Product order 3025: 3023: 3020: 3018: 3015: 3013: 3010: 3008: 3005: 3004: 3002: 3000:Constructions 2998: 2992: 2988: 2984: 2981: 2977: 2974: 2972: 2969: 2967: 2964: 2962: 2959: 2957: 2954: 2952: 2949: 2947: 2944: 2942: 2939: 2935: 2932: 2931: 2930: 2927: 2925: 2922: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2900: 2899: 2898: 2897:Partial order 2895: 2893: 2890: 2886: 2885:Join and meet 2883: 2881: 2878: 2876: 2873: 2871: 2868: 2866: 2863: 2862: 2861: 2858: 2856: 2853: 2851: 2848: 2846: 2843: 2841: 2838: 2836: 2832: 2828: 2826: 2823: 2821: 2818: 2816: 2813: 2811: 2808: 2806: 2803: 2799: 2796: 2795: 2794: 2791: 2789: 2786: 2784: 2783:Antisymmetric 2781: 2780: 2778: 2774: 2768: 2762: 2759: 2757: 2754: 2752: 2749: 2747: 2744: 2742: 2739: 2737: 2734: 2732: 2729: 2727: 2724: 2722: 2719: 2717: 2714: 2712: 2709: 2707: 2704: 2703: 2701: 2697: 2691: 2690:Weak ordering 2688: 2686: 2683: 2681: 2678: 2676: 2675:Partial order 2673: 2671: 2668: 2666: 2663: 2661: 2658: 2656: 2653: 2652: 2650: 2646: 2640: 2637: 2635: 2632: 2630: 2627: 2626: 2623: 2619: 2612: 2607: 2605: 2600: 2598: 2593: 2592: 2589: 2578: 2574: 2567: 2560: 2556: 2551: 2546: 2542: 2538: 2531: 2524: 2520: 2516: 2512: 2508: 2504: 2503: 2482: 2468: 2461: 2454: 2450: 2445: 2440: 2436: 2432: 2431: 2410: 2397:(1973), "All 2396: 2390: 2383: 2379: 2374: 2369: 2365: 2362:(in French), 2361: 2360: 2355: 2349: 2342: 2338: 2334: 2330: 2326: 2322: 2318: 2314: 2307: 2300: 2296: 2292: 2288: 2282: 2275: 2271: 2267: 2265:3-540-44085-2 2261: 2257: 2253: 2249: 2245: 2239: 2232: 2228: 2224: 2220: 2215: 2210: 2206: 2202: 2201: 2193: 2186: 2182: 2178: 2174: 2170: 2166: 2162: 2156: 2147: 2140: 2133: 2131: 2108: 2105: 2102: 2090: 2087: 2084: 2063: 2043: 2034: 2032:9781846282294 2028: 2024: 2020: 2012: 2004: 1999: 1995: 1988: 1981: 1977: 1973: 1969: 1965: 1958: 1956: 1954: 1952: 1943: 1936: 1934: 1926: 1922: 1917: 1912: 1907: 1902: 1898: 1894: 1887: 1879: 1875: 1871: 1867: 1863: 1859: 1858: 1850: 1843: 1839: 1834: 1829: 1825: 1821: 1820: 1812: 1805: 1804: 1799: 1792: 1790: 1782: 1776: 1771: 1766: 1762: 1755: 1753: 1751: 1749: 1747: 1745: 1737: 1733: 1729: 1727:81-85931-13-5 1723: 1719: 1715: 1711: 1707: 1700: 1698: 1696: 1694: 1692: 1690: 1688: 1686: 1684: 1682: 1677: 1669: 1666: 1662: 1657: 1652: 1649: 1642: 1623: 1596: 1567: 1553: 1549: 1528: 1501: 1488: 1484: 1480: 1475: 1471: 1467: 1462: 1455: 1451: 1446: 1440: 1436: 1430: 1427: 1422: 1404: 1383: 1375: 1359: 1339: 1331: 1322: 1313: 1308: 1304: 1300: 1296: 1291: 1286: 1282: 1274: 1270: 1269:countable set 1266: 1244: 1224: 1204: 1196: 1172: 1169: 1166: 1163: 1160: 1157: 1154: 1147: 1138: 1135: 1132: 1121: 1114: 1104: 1103: 1087: 1067: 1059: 1042: 1039: 1036: 1029: 1022: 1012: 1011: 995: 975: 967: 950: 947: 944: 937: 930: 920: 919: 915: 911: 890: 887: 884: 875: 872: 869: 866: 863: 860: 857: 843: 836: 829: 819: 818: 814: 810: 793: 790: 787: 784: 781: 778: 775: 772: 769: 766: 763: 756: 749: 739: 738: 734: 730: 706: 703: 700: 683: 673: 672: 668: 665: 664: 659: 654: 650: 646: 642: 638: 628: 623: 619: 615: 611: 606: 588: 568: 561:by adding to 548: 528: 504: 484: 475: 472: 471: 466: 456: 439: 419: 399: 379: 358: 338: 318: 298: 290: 286: 272: 267: 263: 255: 251: 246: 242: 237: 225: 217: 213: 209: 206: 202: 198: 192: 184: 176: 172: 166: 162: 158: 157:open interval 154: 150: 146: 140: 136: 132: 126: 121: 117: 116: 115: 109: 105: 96: 94: 89: 87: 83: 79: 75: 71: 67: 63: 58: 56: 52: 48: 44: 40: 39:linear orders 36: 32: 28: 24: 16: 3303:Georg Cantor 3298:Order theory 3293:Model theory 3064:& Orders 3042:Star product 2971:Well-founded 2924:Prefix order 2880:Distributive 2870:Complemented 2840:Foundational 2805:Completeness 2761:Zorn's lemma 2715: 2665:Cyclic order 2648:Key concepts 2618:Order theory 2576: 2566: 2540: 2536: 2530: 2506: 2500: 2460: 2434: 2428: 2389: 2363: 2357: 2348: 2316: 2312: 2306: 2290: 2281: 2247: 2244:Jech, Thomas 2238: 2204: 2198: 2192: 2168: 2164: 2155: 2145: 2018: 2011: 1993: 1987: 1974:(1): 74–78, 1971: 1968:Modern Logic 1967: 1941: 1896: 1892: 1886: 1861: 1855: 1849: 1823: 1817: 1811: 1801: 1760: 1709: 1663: 1653: 1476: 1450:real numbers 1447: 1431: 1421:ordered pair 1327: 1293:A method of 1292: 1289:cardinality. 1277:equivalence. 1264: 1262: 669:Explanation 651:that has no 637:model theory 634: 631:Model theory 607: 476: 468: 457: 278: 245:power of two 238: 232: 224:even numbers 153:metric space 139:real numbers 120:linear order 113: 90: 78:model theory 66:real numbers 62:Georg Cantor 59: 30: 27:model theory 23:order theory 20: 15: 3248:Riesz space 3209:Isomorphism 3085:Normal cone 3007:Composition 2941:Semilattice 2850:Homogeneous 2835:Equivalence 2685:Total order 2543:(1): 1–16, 2366:: 280–284, 1285:cardinality 733:irreflexive 626:computable. 454:isomorphic. 149:bounded set 3287:Categories 3216:Order type 3150:Cofinality 2991:Well-order 2966:Transitive 2855:Idempotent 2788:Asymmetric 2382:0004.20502 2248:Set theory 1899:: 71–105, 1761:Set Theory 1672:References 914:transitive 169:unbounded. 163:0 nor its 37:unbounded 3267:Upper set 3204:Embedding 3140:Antichain 2961:Tolerance 2951:Symmetric 2946:Semiorder 2892:Reflexive 2810:Connected 2479:ℵ 2407:ℵ 2097:¬ 2094:⇒ 2064:≤ 1906:1102.2782 1803:Chalkdust 1620:ℵ 1593:ℵ 1564:ℵ 1545:embedded. 1525:ℵ 1498:ℵ 1468:with the 1444:argument. 1307:algorithm 1164:∧ 1145:∃ 1142:⇒ 1119:∀ 1112:∀ 1027:∃ 1020:∀ 935:∃ 928:∀ 882:⇒ 867:∧ 841:∀ 834:∀ 827:∀ 813:connected 785:∨ 773:∨ 754:∀ 747:∀ 695:¬ 681:∀ 604:included. 283:uses the 270:ordering. 220:ordering. 195:integers. 183:dense set 3062:Topology 2929:Preorder 2912:Eulerian 2875:Complete 2825:Directed 2815:Covering 2680:Preorder 2639:Category 2634:Glossary 2246:(2003), 1660:numbers. 1458:numbers. 1417:-element 1311:theorem. 187:numbers. 165:supremum 131:integers 3167:Duality 3145:Cofinal 3133:Related 3112:FrĂ©chet 2989:)  2865:Bounded 2860:Lattice 2833:)  2831:Partial 2699:Results 2670:Lattice 2559:0723616 2523:0599485 2453:0317934 2341:1502760 2333:1968352 2299:0384542 2274:1940513 2231:0175782 2223:1994188 2185:0337567 1980:1253680 1925:3016459 1878:1940365 1842:1412484 1736:1632579 1543:can be 519:method. 281:proof", 262:strings 228:by two. 161:infimum 143:orders. 3192:Subnet 3172:Filter 3122:Normed 3107:Banach 3073:& 2980:Better 2917:Strict 2907:Graded 2798:topics 2629:Topics 2557:  2521:  2497:-dense 2451:  2425:-dense 2380:  2339:  2331:  2297:  2272:  2262:  2229:  2221:  2183:  2029:  1978:  1923:  1876:  1840:  1777:  1734:  1724:  1582:-dense 1473:(ZFC). 666:Axiom 639:. The 612:using 467:, his 460:proof. 275:Proofs 137:, and 3182:Ideal 3160:Graph 2956:Total 2934:Total 2820:Dense 2329:JSTOR 2219:JSTOR 2142:(PDF) 1901:arXiv 616:, an 179:them. 175:dense 151:in a 35:dense 2773:list 2260:ISBN 2106:< 2088:< 2044:< 2027:ISBN 1775:ISBN 1722:ISBN 1217:and 1170:< 1158:< 1136:< 1040:< 948:< 888:< 873:< 861:< 791:< 779:< 704:< 541:and 497:and 351:and 311:and 41:are 25:and 3187:Net 2987:Pre 2545:doi 2511:doi 2439:doi 2378:Zbl 2368:doi 2321:doi 2252:doi 2209:doi 2205:114 2173:doi 2023:193 1998:doi 1911:doi 1897:224 1866:doi 1828:doi 1824:203 1765:doi 1714:doi 1654:In 657:as: 614:Coq 21:In 3289:: 2555:MR 2553:, 2541:25 2539:, 2519:MR 2517:, 2507:38 2505:, 2449:MR 2447:, 2435:79 2433:, 2376:, 2364:18 2337:MR 2335:, 2327:, 2317:28 2295:MR 2270:MR 2268:, 2258:, 2227:MR 2225:, 2217:, 2203:, 2181:MR 2179:, 2169:19 2167:, 2144:, 2129:^ 2025:, 1976:MR 1970:, 1966:, 1950:^ 1932:^ 1921:MR 1919:, 1909:, 1895:, 1874:MR 1872:, 1862:38 1860:, 1838:MR 1836:, 1822:, 1800:, 1788:^ 1773:, 1743:^ 1732:MR 1730:, 1720:, 1680:^ 1100:. 1008:. 133:, 118:A 57:. 2985:( 2982:) 2978:( 2829:( 2776:) 2610:e 2603:t 2596:v 2547:: 2513:: 2483:1 2441:: 2411:1 2370:: 2323:: 2254:: 2211:: 2175:: 2112:) 2109:a 2103:b 2100:( 2091:b 2085:a 2000:: 1972:4 1913:: 1903:: 1868:: 1830:: 1767:: 1716:: 1650:. 1643:, 1624:1 1597:1 1568:1 1529:1 1502:1 1428:. 1405:k 1384:k 1360:k 1340:k 1245:c 1225:b 1205:a 1181:) 1176:) 1173:b 1167:c 1161:c 1155:a 1152:( 1148:c 1139:b 1133:a 1128:( 1122:b 1115:a 1088:b 1068:a 1046:) 1043:b 1037:a 1034:( 1030:b 1023:a 996:b 976:a 954:) 951:a 945:b 942:( 938:b 931:a 896:) 891:c 885:a 879:) 876:c 870:b 864:b 858:a 855:( 850:( 844:c 837:b 830:a 797:) 794:a 788:b 782:b 776:a 770:b 767:= 764:a 761:( 757:b 750:a 715:) 710:) 707:a 701:a 698:( 690:( 684:a 589:B 569:A 549:B 529:A 505:B 485:A 473:. 440:A 420:B 400:B 380:A 359:B 339:A 319:B 299:A 207:. 127:.

Index

order theory
model theory
dense
linear orders
order-isomorphic
Minkowski's question-mark function
rational numbers
dyadic rationals
Georg Cantor
real numbers
back-and-forth method
Felix Hausdorff
model theory
first-order theory
countably categorical
temporal logic

Minkowski's question-mark function
linear order
transitive law
integers
rational numbers
real numbers
bounded set
metric space
open interval
infimum
supremum
dense
dense set

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑