Knowledge

Brun–Titchmarsh theorem

Source 📝

597: 446: 203: 477: 314: 87: 261: 228:
by Montgomery and Vaughan; an earlier result of Brun and Titchmarsh obtained a weaker version of this inequality with an additional multiplicative factor of
631: 468: 455:, discovered by himself. Later this idea of exploiting structures in sieving errors developed into a major method in Analytic Number Theory, due to 322: 740: 115: 695: 745: 664: 643: 37: 691: 684: 674: 592:{\displaystyle \pi (x;q,a)={\frac {x}{\varphi (q)\log(x)}}\left({1+O\left({\frac {1}{\log x}}\right)}\right)} 679: 615: 29: 278: 51: 17: 231: 451:
This is due to Y. Motohashi (1973). He used a bilinear structure in the error term in the
8: 652: 660: 639: 717: 709: 456: 713: 734: 452: 441:{\displaystyle \pi (x;q,a)\leq {(2+o(1))x \over \varphi (q)\log(x/q^{3/8})}} 225: 722: 700: 33: 25: 602:
but this can only be proved to hold for the more restricted range
471:
gives an asymptotic result, which may be expressed in the form
198:{\displaystyle \pi (x;q,a)\leq {2x \over \varphi (q)\log(x/q)}} 657:
Applications of sieve methods to the theory of numbers
462: 480: 325: 281: 234: 118: 54: 591: 440: 308: 255: 197: 81: 690: 732: 469:Dirichlet's theorem on arithmetic progressions 659:, Cambridge University Press, p. 10, 721: 630: 38:prime numbers in arithmetic progression 733: 672: 651: 636:Sieve Methods and Prime Number Theory 459:'s extension to combinatorial sieve. 316:, then there exists a better bound: 463:Comparison with Dirichlet's theorem 13: 741:Theorems in analytic number theory 14: 757: 638:, Tata IFR and Springer-Verlag, 266: 538: 532: 523: 517: 502: 484: 432: 403: 394: 388: 377: 374: 368: 356: 347: 329: 309:{\displaystyle q\leq x^{9/20}} 250: 244: 189: 175: 166: 160: 140: 122: 76: 58: 1: 624: 746:Theorems about prime numbers 43: 7: 698:(1973), "The large sieve", 680:Encyclopedia of Mathematics 275:is relatively small, e.g., 89:count the number of primes 82:{\displaystyle \pi (x;q,a)} 10: 762: 606: < (log  219: 714:10.1112/s0025579300004708 675:"Brun-Titchmarsh theorem" 224:The result was proven by 30:Edward Charles Titchmarsh 36:on the distribution of 22:Brun–Titchmarsh theorem 616:Siegel–Walfisz theorem 593: 442: 310: 257: 256:{\displaystyle 1+o(1)} 199: 83: 18:analytic number theory 594: 443: 311: 258: 200: 84: 673:Mikawa, H. (2001) , 478: 323: 279: 232: 116: 52: 653:Hooley, Christopher 589: 438: 306: 253: 195: 79: 632:Motohashi, Yoichi 578: 542: 436: 193: 753: 726: 725: 692:Montgomery, H.L. 687: 669: 648: 598: 596: 595: 590: 588: 584: 583: 579: 577: 563: 543: 541: 509: 447: 445: 444: 439: 437: 435: 431: 430: 426: 413: 383: 354: 315: 313: 312: 307: 305: 304: 300: 262: 260: 259: 254: 212: <  204: 202: 201: 196: 194: 192: 185: 155: 147: 88: 86: 85: 80: 761: 760: 756: 755: 754: 752: 751: 750: 731: 730: 667: 646: 627: 621: 610:) for constant 567: 562: 558: 548: 544: 513: 508: 479: 476: 475: 465: 422: 418: 414: 409: 384: 355: 353: 324: 321: 320: 296: 292: 288: 280: 277: 276: 269: 233: 230: 229: 222: 181: 156: 148: 146: 117: 114: 113: 53: 50: 49: 46: 12: 11: 5: 759: 749: 748: 743: 729: 728: 723:2027.42/152543 708:(2): 119–134, 688: 670: 665: 649: 644: 626: 623: 614:: this is the 600: 599: 587: 582: 576: 573: 570: 566: 561: 557: 554: 551: 547: 540: 537: 534: 531: 528: 525: 522: 519: 516: 512: 507: 504: 501: 498: 495: 492: 489: 486: 483: 464: 461: 449: 448: 434: 429: 425: 421: 417: 412: 408: 405: 402: 399: 396: 393: 390: 387: 382: 379: 376: 373: 370: 367: 364: 361: 358: 352: 349: 346: 343: 340: 337: 334: 331: 328: 303: 299: 295: 291: 287: 284: 268: 265: 252: 249: 246: 243: 240: 237: 221: 218: 206: 205: 191: 188: 184: 180: 177: 174: 171: 168: 165: 162: 159: 154: 151: 145: 142: 139: 136: 133: 130: 127: 124: 121: 78: 75: 72: 69: 66: 63: 60: 57: 45: 42: 24:, named after 9: 6: 4: 3: 2: 758: 747: 744: 742: 739: 738: 736: 724: 719: 715: 711: 707: 703: 702: 697: 696:Vaughan, R.C. 693: 689: 686: 682: 681: 676: 671: 668: 666:0-521-20915-3 662: 658: 654: 650: 647: 645:3-540-12281-8 641: 637: 633: 629: 628: 622: 619: 617: 613: 609: 605: 585: 580: 574: 571: 568: 564: 559: 555: 552: 549: 545: 535: 529: 526: 520: 514: 510: 505: 499: 496: 493: 490: 487: 481: 474: 473: 472: 470: 467:By contrast, 460: 458: 454: 453:Selberg sieve 427: 423: 419: 415: 410: 406: 400: 397: 391: 385: 380: 371: 365: 362: 359: 350: 344: 341: 338: 335: 332: 326: 319: 318: 317: 301: 297: 293: 289: 285: 282: 274: 264: 247: 241: 238: 235: 227: 226:sieve methods 217: 215: 211: 186: 182: 178: 172: 169: 163: 157: 152: 149: 143: 137: 134: 131: 128: 125: 119: 112: 111: 110: 108: 105: ≤  104: 100: 96: 93:congruent to 92: 73: 70: 67: 64: 61: 55: 41: 39: 35: 31: 27: 23: 19: 705: 699: 678: 656: 635: 620: 611: 607: 603: 601: 466: 450: 272: 270: 267:Improvements 223: 213: 209: 207: 106: 102: 98: 97:modulo  94: 90: 47: 21: 15: 701:Mathematika 34:upper bound 735:Categories 625:References 457:H. Iwaniec 26:Viggo Brun 685:EMS Press 572:⁡ 530:⁡ 515:φ 482:π 401:⁡ 386:φ 351:≤ 327:π 286:≤ 173:⁡ 158:φ 144:≤ 120:π 56:π 44:Statement 655:(1976), 634:(1983), 208:for all 32:, is an 220:History 109:. Then 663:  642:  20:, the 101:with 661:ISBN 640:ISBN 48:Let 40:. 28:and 718:hdl 710:doi 569:log 527:log 398:log 271:If 170:log 16:In 737:: 716:, 706:20 704:, 694:; 683:, 677:, 618:. 302:20 263:. 216:. 727:. 720:: 712:: 612:c 608:x 604:q 586:) 581:) 575:x 565:1 560:( 556:O 553:+ 550:1 546:( 539:) 536:x 533:( 524:) 521:q 518:( 511:x 506:= 503:) 500:a 497:, 494:q 491:; 488:x 485:( 433:) 428:8 424:/ 420:3 416:q 411:/ 407:x 404:( 395:) 392:q 389:( 381:x 378:) 375:) 372:1 369:( 366:o 363:+ 360:2 357:( 348:) 345:a 342:, 339:q 336:; 333:x 330:( 298:/ 294:9 290:x 283:q 273:q 251:) 248:1 245:( 242:o 239:+ 236:1 214:x 210:q 190:) 187:q 183:/ 179:x 176:( 167:) 164:q 161:( 153:x 150:2 141:) 138:a 135:, 132:q 129:; 126:x 123:( 107:x 103:p 99:q 95:a 91:p 77:) 74:a 71:, 68:q 65:; 62:x 59:(

Index

analytic number theory
Viggo Brun
Edward Charles Titchmarsh
upper bound
prime numbers in arithmetic progression
sieve methods
Selberg sieve
H. Iwaniec
Dirichlet's theorem on arithmetic progressions
Siegel–Walfisz theorem
Motohashi, Yoichi
ISBN
3-540-12281-8
Hooley, Christopher
ISBN
0-521-20915-3
"Brun-Titchmarsh theorem"
Encyclopedia of Mathematics
EMS Press
Montgomery, H.L.
Vaughan, R.C.
Mathematika
doi
10.1112/s0025579300004708
hdl
2027.42/152543
Categories
Theorems in analytic number theory
Theorems about prime numbers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.