Knowledge

Brownian ratchet

Source đź“ť

570:, which is a conglomeration of solid particles vibrated with such vigour that the system assumes a gas-like state. The constructed engine consisted of four vanes which were allowed to rotate freely in a vibrofluidized granular gas. Because the ratchet's gear and pawl mechanism, as described above, permitted the axle to rotate only in one direction, random collisions with the moving beads caused the vane to rotate. This seems to contradict Feynman's hypothesis. However, this system is not in perfect thermal equilibrium: energy is constantly being supplied to maintain the fluid motion of the beads. Vigorous vibrations on top of a shaking device mimic the nature of a molecular gas. Unlike an 212:
any useful work. The reason is that since the pawl is at the same temperature as the paddle, it will also undergo Brownian motion, "bouncing" up and down. It therefore will intermittently fail by allowing a ratchet tooth to slip backward under the pawl while it is up. Another issue is that when the pawl rests on the sloping face of the tooth, the spring which returns the pawl exerts a sideways force on the tooth which tends to rotate the ratchet in a backwards direction. Feynman demonstrated that if the temperature
511: 574:, though, in which tiny particles move constantly, stopping the shaking would simply cause the beads to drop. In the experiment, this necessary out-of-equilibrium environment was thus maintained. Work was not immediately being done, though; the ratchet effect only commenced beyond a critical shaking strength. For very strong shaking, the vanes of the paddle wheel interacted with the gas, forming a convection roll, sustaining their rotation. 191:. The device is imagined as being small enough that the impulse from a single molecular collision can turn the paddle. Although such collisions would tend to turn the rod in either direction with equal probability, the pawl allows the ratchet to rotate in one direction only. The net effect of many such random collisions would seem to be that the ratchet rotates continuously in that direction. The ratchet's motion then can be used to do 541:
that cancels the voltage from rectified current fluctuations. Therefore, just as with the ratchet, the circuit will produce no useful energy if all the components are at thermal equilibrium (at the same temperature); a DC current will be produced only when the diode is at a lower temperature than
211:
Although at first sight the Brownian ratchet seems to extract useful work from Brownian motion, Feynman demonstrated that if the entire device is at the same temperature, the ratchet will not rotate continuously in one direction but will move randomly back and forth, and therefore will not produce
482:
and Pep Español used a variation of the above device in which no ratchet is present, only two paddles, to show that the axle connecting the paddles and ratchet conducts heat between reservoirs; they argued that although Feynman's conclusion was correct, his analysis was flawed because of his
266:
of the paddle, then the failure rate must equal the rate at which the ratchet ratchets forward, so that no net motion results over long enough periods or in an ensemble averaged sense. A simple but rigorous proof that no net motion occurs no matter what shape the teeth are was given by
199:) against gravity. The energy necessary to do this work apparently would come from the heat bath, without any heat gradient (i.e. the motion leeches energy from the temperature of the air). Were such a machine to work successfully, its operation would violate the 441:
gave the first correct qualitative explanation of why the device fails; thermal motion of the pawl allows the ratchet's teeth to slip backwards. Feynman did the first quantitative analysis of the device in 1962 using the
1087: 420:
Millonas as well as Mahato extended the same notion to correlation ratchets driven by mean-zero (unbiased) nonequilibrium noise with a nonvanishing correlation function of odd order greater than one.
1105: 328:, the ratchet will indeed move forward, and produce useful work. In this case, though, the energy is extracted from the temperature gradient between the two thermal reservoirs, and some 20: 558:
in Greece, and the Foundation for Fundamental Research on Matter have constructed a Feynman–Smoluchowski engine which, when not in thermal equilibrium, converts pseudo-
388: 361: 326: 299: 264: 237: 173: 978: 203:, one form of which states: "It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce a net amount of work." 1526: 491:
and Stolovitzky (1998) extended this analysis to consider the full ratchet device, and showed that the power output of the device is far smaller than the
870: 28: 749:
Dante R. Chialvo; Mark Millonas (1995). "Asymmetric unbiased fluctuations are sufficient for the operation of a correlation ratchet".
537:
which could be used to perform work. In the detailed analysis it was shown that the thermal fluctuations within the diode generate an
802:
M.C. Mahato; A.M. Jayannavar (1995). "ynchronized first-passages in a double-well system driven by an asymmetric periodic field".
1516: 583: 644: 1167: 443: 68: 989: 610:
M. von Smoluchowski (1912) Experimentell nachweisbare, der Ublichen Thermodynamik widersprechende Molekularphenomene,
332:
is exhausted into the lower temperature reservoir by the pawl. In other words, the device functions as a miniature
1268: 413:
are an electrical analog of the ratchet and pawl, and for the same reason cannot produce useful work by rectifying
899:
Parrondo, Juan M. R.; Pep Español (March 8, 1996). "Criticism of Feynman's analysis of the ratchet as an engine".
85: 503:
and Juan Parrondo, reanalyzed the problem and extended it to the case of multiple ratchets, showing a link with
76: 200: 114: 588: 1082: 1536: 406: 1468: 1422: 1206: 834: 567: 1521: 979:"The problem of detailed balance for the Feynman-Smoluchowski Engine and the multiple pawl paradox" 488: 268: 129:
that rotates freely in one direction but is prevented from rotating in the opposite direction by a
878: 44: 1531: 1492:
Qiu C, Punke M, Tian Y, Han Y, Wang S, Su Y, Salvalaglio M, Pan X, Srolovitz D J, Han J (2024).
1384: 1232: 1463: 1417: 1201: 829: 1325: 1189: 618: 504: 1103: 1409: 1345: 1293: 1247: 1117: 1057: 1022: 943: 908: 821: 768: 715: 672: 555: 551: 366: 339: 304: 277: 242: 215: 151: 106: 1449:"Brownian Ratchets: Molecular Separations in Lipid Bilayers Supported on Patterned Arrays" 619:
Freund, Jan (2000) Stochastic Processes in Physics, Chemistry, and Biology, Springer, p.59
8: 1159: 955: 538: 484: 438: 110: 52: 1413: 1349: 1297: 1251: 1121: 1061: 1026: 947: 912: 825: 772: 719: 676: 1448: 1435: 1399: 1366: 1333: 1309: 1283: 1048:
Gunn, J. B. (1969). "Spontaneous Reverse Current Due to the Brillouin EMF in a Diode".
959: 847: 811: 784: 758: 402: 102: 80: 72: 48: 1501: 1493: 1357: 877:. School of Electrical & Electronic Engineering, Univ. of Adelaide. Archived from 1481: 1371: 1219: 1133: 1104:
Peter Eshuis; Ko van der Weele; Detlef Lohse & Devaraj van der Meer (June 2010).
843: 780: 731: 688: 640: 492: 1439: 851: 788: 518: 1473: 1427: 1361: 1353: 1313: 1301: 1255: 1211: 1129: 1125: 1065: 1030: 963: 951: 916: 839: 776: 723: 680: 434: 430: 126: 98: 40: 1477: 117:. Detailed analysis by Feynman and others showed why it cannot actually do this. 1215: 1171: 559: 525:(such as a diode) instead of a ratchet. The idea was the diode would rectify the 180: 60: 1177:
Experiment finally proves 100-year-old thought experiment is possible (w/ Video)
1154: 934:
Magnasco, Marcelo O.; Gustavo Stolovitzky (1998). "Feynman's Ratchet and Pawl".
727: 684: 634: 1164: 563: 534: 500: 394: 192: 184: 90: 56: 1431: 47:(converting thermal energy into mechanical work), first analysed in 1912 as a 1510: 1034: 526: 479: 414: 1385:"Artificial Brownian motors: Controlling transport on the nanoscale: Review" 1176: 1485: 1305: 1137: 1013:
Brillouin, L. (1950). "Can the Rectifier Become a Thermodynamical Demon?".
866: 735: 692: 496: 134: 94: 1375: 1223: 1288: 816: 763: 461: 398: 333: 188: 146: 976: 329: 1259: 1165:
Coupled Brownian Motors - Can we get work out of unbiased fluctuation?
1069: 510: 336:, in compliance with the second law of thermodynamics. Conversely, if 571: 522: 176: 1106:"Experimental Realization of a Rotational Ratchet in a Granular Gas" 920: 530: 142: 1404: 514:
Brillouin paradox: an electrical analogue of the Brownian ratchet.
19: 1334:"Cellular motions and thermal fluctuations: the Brownian ratchet" 988:. American Institute of Physics. pp. 213–218. Archived from 64: 487:
approximation, resulting in incorrect equations for efficiency.
1155:
The Feynman Lectures on Physics Vol. I Ch. 46: Ratchet and pawl
1083:"Classical thought experiment brought to life in granular gas" 401:
which can extract useful work not from thermal noise but from
748: 521:
in 1950 discussed an electrical circuit analogue that uses a
410: 138: 706:
Magnasco, Marcelo O. (1994). "Molecular Combustion Motors".
1192:(1997). "Thermodynamics and kinetics of a Brownian motor". 977:
Abbott, Derek; Bruce R. Davis; Juan M. R. Parrondo (2000).
933: 130: 801: 663:
Magnasco, Marcelo O. (1993). "Forced Thermal Ratchets".
433:
was first discussed as a Second Law-violating device by
409:
sources, in compliance with the laws of thermodynamics.
393:
The Feynman ratchet model led to the similar concept of
239:
of the ratchet and pawl is the same as the temperature
478:
there would be no net motion of the paddle. In 1996,
1446: 369: 342: 307: 280: 245: 218: 154: 1266: 390:, the device will rotate in the opposite direction. 898: 864: 382: 355: 320: 293: 258: 231: 167: 1091:, Utrecht, 18 June 2010. Retrieved on 2010-06-24. 1508: 1382: 1331: 453:was greater than the temperature of the ratchet 446:, showing that if the temperature of the paddle 195:on other systems, for example lifting a weight ( 1230: 606: 604: 1527:Philosophy of thermal and statistical physics 1088:Foundation for Fundamental Research on Matter 589:Geometric phase § Stochastic pump effect 529:thermal current fluctuations produced by the 29:philosophy of thermal and statistical physics 133:. The ratchet is connected by an axle to a 93:. The simple machine, consisting of a tiny 1332:Peskin CS, Odell GM, Oster GF (July 1993). 1188: 986:Unsolved Problems of Noise and Fluctuations 601: 1467: 1421: 1403: 1365: 1287: 1205: 1099: 1097: 1012: 833: 815: 762: 628: 626: 125:The device consists of a gear known as a 705: 662: 658: 656: 509: 18: 1267:Hänggi P, Marchesoni F, Nori F (2005). 636:The Feynman Lectures on Physics, Vol. 1 632: 584:Quantum stirring, ratchets, and pumping 495:claimed by Feynman. A paper in 2000 by 105:, able to extract mechanical work from 1509: 1494:Grain boundaries are Brownian ratchets 1094: 623: 23:Schematic figure of a Brownian ratchet 1447:van Oudensaarden A, Boxer SG (1999). 858: 653: 417:in a circuit at uniform temperature. 1047: 437:in 1900. In 1912, Polish physicist 13: 956:10.1023/B:JOSS.0000033245.43421.14 871:"The Feynman-Smoluchowski ratchet" 89:as an illustration of the laws of 69:California Institute of Technology 14: 1548: 1148: 875:Parrondo's Paradox Research Group 55:. It was popularised by American 1324:. University of Augsburg, 2006 ( 101:, appears to be an example of a 1383:Hänggi P, Marchesoni F (2009). 1076: 1041: 1006: 970: 545: 206: 86:The Feynman Lectures on Physics 1517:Thought experiments in physics 1322:Performance of Brownian Motors 1231:Astumian RD, Hänggi P (2002). 1130:10.1103/PhysRevLett.104.248001 936:Journal of Statistical Physics 927: 892: 795: 742: 699: 444:Maxwell–Boltzmann distribution 175:. The molecules constitute a 120: 1: 1478:10.1126/science.285.5430.1046 1358:10.1016/S0006-3495(93)81035-X 77:The Character of Physical Law 1216:10.1126/science.276.5314.917 1160:Feynman's Messenger Lectures 844:10.1016/0375-9601(95)00772-9 781:10.1016/0375-9601(95)00773-0 201:second law of thermodynamics 179:in that they undergo random 115:second law of thermodynamics 71:on May 11, 1962, during his 37:Feynman–Smoluchowski ratchet 7: 1502:doi:10.1126/science.adp1516 901:American Journal of Physics 728:10.1103/PhysRevLett.72.2656 685:10.1103/PhysRevLett.71.1477 577: 10: 1553: 424: 187:that is determined by the 1432:10.1103/RevModPhys.81.387 1392:Reviews of Modern Physics 633:Feynman, Richard (1963). 460:, it would function as a 1035:10.1103/PhysRev.78.627.2 594: 83:in 1964 and in his text 1110:Physical Review Letters 1050:Applied Physics Letters 708:Physical Review Letters 665:Physical Review Letters 274:If, on the other hand, 16:Perpetual motion device 1306:10.1002/andp.200410121 515: 405:and other microscopic 384: 357: 322: 295: 260: 233: 169: 137:that is immersed in a 113:, in violation of the 109:(heat) in a system at 24: 550:Researchers from the 513: 483:erroneous use of the 385: 383:{\displaystyle T_{1}} 358: 356:{\displaystyle T_{2}} 323: 321:{\displaystyle T_{1}} 296: 294:{\displaystyle T_{2}} 261: 259:{\displaystyle T_{1}} 234: 232:{\displaystyle T_{2}} 170: 168:{\displaystyle T_{1}} 22: 556:University of Patras 552:University of Twente 367: 340: 305: 278: 243: 216: 152: 51:by Polish physicist 1462:(5430): 1046–1048. 1414:2009RvMP...81..387H 1350:1993BpJ....65..316P 1298:2005AnP...517...51H 1252:2002PhT....55k..33A 1122:2010PhRvL.104x8001E 1062:1969ApPhL..14...54G 1027:1950PhRv...78..627B 948:1998JSP....93..615M 913:1996AmJPh..64.1125P 826:1995PhLA..209...21M 773:1995PhLA..209...26C 720:1994PhRvL..72.2656M 677:1993PhRvL..71.1477M 617:, p.1069 cited in 539:electromotive force 439:Marian Smoluchowski 403:chemical potentials 111:thermal equilibrium 107:random fluctuations 53:Marian Smoluchowski 1276:Annalen der Physik 1170:2009-05-10 at the 516: 505:Parrondo's paradox 380: 353: 318: 291: 256: 229: 165: 81:Cornell University 73:Messenger Lectures 49:thought experiment 25: 1500:(6712): 980:985. 1269:"Brownian Motors" 1260:10.1063/1.1535005 1233:"Brownian Motors" 1070:10.1063/1.1652709 804:Physics Letters A 751:Physics Letters A 714:(16): 2656–2659. 671:(10): 1477–1481. 646:978-0-201-02116-5 493:Carnot efficiency 1544: 1537:Perpetual motion 1489: 1471: 1453: 1443: 1425: 1407: 1389: 1379: 1369: 1320:Lukasz Machura: 1317: 1291: 1289:cond-mat/0410033 1273: 1263: 1237: 1227: 1209: 1200:(5314): 917–22. 1142: 1141: 1101: 1092: 1080: 1074: 1073: 1045: 1039: 1038: 1010: 1004: 1003: 1001: 1000: 994: 983: 974: 968: 967: 931: 925: 924: 896: 890: 889: 887: 886: 862: 856: 855: 837: 819: 817:cond-mat/9509058 799: 793: 792: 766: 764:cond-mat/9410057 746: 740: 739: 703: 697: 696: 660: 651: 650: 630: 621: 608: 435:Gabriel Lippmann 431:ratchet and pawl 389: 387: 386: 381: 379: 378: 363:is greater than 362: 360: 359: 354: 352: 351: 327: 325: 324: 319: 317: 316: 300: 298: 297: 292: 290: 289: 265: 263: 262: 257: 255: 254: 238: 236: 235: 230: 228: 227: 174: 172: 171: 166: 164: 163: 41:perpetual motion 33:Brownian ratchet 1552: 1551: 1547: 1546: 1545: 1543: 1542: 1541: 1522:Richard Feynman 1507: 1506: 1469:10.1.1.497.3836 1451: 1423:10.1.1.149.3810 1387: 1271: 1235: 1207:10.1.1.329.4222 1172:Wayback Machine 1151: 1146: 1145: 1102: 1095: 1081: 1077: 1046: 1042: 1015:Physical Review 1011: 1007: 998: 996: 992: 981: 975: 971: 932: 928: 921:10.1119/1.18393 897: 893: 884: 882: 863: 859: 835:10.1.1.305.9144 800: 796: 747: 743: 704: 700: 661: 654: 647: 631: 624: 612:Phys. Zeitshur. 609: 602: 597: 580: 560:Brownian motion 548: 533:, generating a 476: 469: 458: 451: 427: 395:Brownian motors 374: 370: 368: 365: 364: 347: 343: 341: 338: 337: 312: 308: 306: 303: 302: 285: 281: 279: 276: 275: 250: 246: 244: 241: 240: 223: 219: 217: 214: 213: 209: 181:Brownian motion 159: 155: 153: 150: 149: 123: 103:Maxwell's demon 67:lecture at the 61:Richard Feynman 43:machine of the 39:is an apparent 17: 12: 11: 5: 1550: 1540: 1539: 1534: 1532:Nanotechnology 1529: 1524: 1519: 1505: 1504: 1490: 1444: 1398:(1): 387–442. 1380: 1329: 1318: 1282:(1–3): 51–70. 1264: 1228: 1185: 1184: 1180: 1179: 1174: 1162: 1157: 1150: 1149:External links 1147: 1144: 1143: 1093: 1075: 1040: 1021:(5): 627–628. 1005: 969: 926: 891: 865:Harmer, Greg; 857: 810:(1–2): 21–26. 794: 757:(1–2): 26–30. 741: 698: 652: 645: 639:. Chapter 46. 622: 599: 598: 596: 593: 592: 591: 586: 579: 576: 566:by means of a 547: 544: 542:the resistor. 535:direct current 519:LĂ©on Brillouin 501:Bruce R. Davis 474: 467: 456: 449: 426: 423: 407:nonequilibrium 377: 373: 350: 346: 315: 311: 288: 284: 253: 249: 226: 222: 208: 205: 185:kinetic energy 162: 158: 122: 119: 91:thermodynamics 57:Nobel laureate 15: 9: 6: 4: 3: 2: 1549: 1538: 1535: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1514: 1512: 1503: 1499: 1495: 1491: 1487: 1483: 1479: 1475: 1470: 1465: 1461: 1457: 1450: 1445: 1441: 1437: 1433: 1429: 1424: 1419: 1415: 1411: 1406: 1401: 1397: 1393: 1386: 1381: 1377: 1373: 1368: 1363: 1359: 1355: 1351: 1347: 1344:(1): 316–24. 1343: 1339: 1335: 1330: 1327: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1290: 1285: 1281: 1277: 1270: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1240:Physics Today 1234: 1229: 1225: 1221: 1217: 1213: 1208: 1203: 1199: 1195: 1191: 1187: 1186: 1182: 1181: 1178: 1175: 1173: 1169: 1166: 1163: 1161: 1158: 1156: 1153: 1152: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1100: 1098: 1090: 1089: 1084: 1079: 1071: 1067: 1063: 1059: 1055: 1051: 1044: 1036: 1032: 1028: 1024: 1020: 1016: 1009: 995:on 2011-07-16 991: 987: 980: 973: 965: 961: 957: 953: 949: 945: 941: 937: 930: 922: 918: 914: 910: 906: 902: 895: 881:on 2009-10-11 880: 876: 872: 868: 861: 853: 849: 845: 841: 836: 831: 827: 823: 818: 813: 809: 805: 798: 790: 786: 782: 778: 774: 770: 765: 760: 756: 752: 745: 737: 733: 729: 725: 721: 717: 713: 709: 702: 694: 690: 686: 682: 678: 674: 670: 666: 659: 657: 648: 642: 638: 637: 629: 627: 620: 616: 613: 607: 605: 600: 590: 587: 585: 582: 581: 575: 573: 569: 565: 561: 557: 553: 543: 540: 536: 532: 528: 527:Johnson noise 524: 520: 512: 508: 506: 502: 498: 494: 490: 486: 481: 480:Juan Parrondo 477: 470: 463: 459: 452: 445: 440: 436: 432: 422: 418: 416: 415:Johnson noise 412: 408: 404: 400: 396: 391: 375: 371: 348: 344: 335: 331: 313: 309: 301:is less than 286: 282: 272: 270: 251: 247: 224: 220: 204: 202: 198: 194: 190: 186: 182: 178: 160: 156: 148: 144: 140: 136: 132: 128: 118: 116: 112: 108: 104: 100: 96: 92: 88: 87: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 21: 1497: 1459: 1455: 1395: 1391: 1341: 1337: 1321: 1279: 1275: 1246:(11): 33–9. 1243: 1239: 1197: 1193: 1113: 1109: 1086: 1078: 1056:(2): 54–56. 1053: 1049: 1043: 1018: 1014: 1008: 997:. Retrieved 990:the original 985: 972: 939: 935: 929: 904: 900: 894: 883:. Retrieved 879:the original 874: 867:Derek Abbott 860: 807: 803: 797: 754: 750: 744: 711: 707: 701: 668: 664: 635: 614: 611: 568:granular gas 549: 546:Granular gas 517: 497:Derek Abbott 472: 465: 454: 447: 428: 419: 399:nanomachines 392: 273: 210: 207:Why it fails 196: 183:with a mean 135:paddle wheel 124: 95:paddle wheel 84: 36: 32: 26: 1190:Astumian RD 907:(9): 1125. 485:quasistatic 462:heat engine 334:heat engine 189:temperature 147:temperature 121:The machine 45:second kind 1511:Categories 1496:. Science 1338:Biophys. J 999:2010-01-15 942:(3): 615. 885:2010-01-15 330:waste heat 59:physicist 1464:CiteSeerX 1418:CiteSeerX 1405:0807.1283 1202:CiteSeerX 1116:(24): 4. 830:CiteSeerX 572:ideal gas 523:rectifier 464:, but if 177:heat bath 143:molecules 1486:10446046 1440:16690300 1183:Articles 1168:Archived 1138:20867337 869:(2005). 852:16118371 789:17581968 736:10055939 693:10054418 578:See also 531:resistor 489:Magnasco 269:Magnasco 1456:Science 1410:Bibcode 1376:8369439 1367:1225726 1346:Bibcode 1314:1724528 1294:Bibcode 1248:Bibcode 1224:9139648 1194:Science 1118:Bibcode 1058:Bibcode 1023:Bibcode 964:7510373 944:Bibcode 909:Bibcode 822:Bibcode 769:Bibcode 716:Bibcode 673:Bibcode 425:History 127:ratchet 99:ratchet 75:series 65:physics 27:In the 1484:  1466:  1438:  1420:  1374:  1364:  1312:  1222:  1204:  1136:  962:  850:  832:  787:  734:  691:  643:  554:, the 411:Diodes 97:and a 31:, the 1452:(PDF) 1436:S2CID 1400:arXiv 1388:(PDF) 1310:S2CID 1284:arXiv 1272:(PDF) 1236:(PDF) 993:(PDF) 982:(PDF) 960:S2CID 848:S2CID 812:arXiv 785:S2CID 759:arXiv 595:Notes 562:into 139:fluid 63:in a 1482:PMID 1372:PMID 1220:PMID 1134:PMID 732:PMID 689:PMID 641:ISBN 564:work 429:The 193:work 131:pawl 1498:385 1474:doi 1460:285 1428:doi 1362:PMC 1354:doi 1326:PDF 1302:doi 1256:doi 1212:doi 1198:276 1126:doi 1114:104 1066:doi 1031:doi 952:doi 917:doi 840:doi 808:209 777:doi 755:209 724:doi 681:doi 271:. 145:at 141:of 79:in 35:or 1513:: 1480:. 1472:. 1458:. 1454:. 1434:. 1426:. 1416:. 1408:. 1396:81 1394:. 1390:. 1370:. 1360:. 1352:. 1342:65 1340:. 1336:. 1308:. 1300:. 1292:. 1280:14 1278:. 1274:. 1254:. 1244:55 1242:. 1238:. 1218:. 1210:. 1196:. 1132:. 1124:. 1112:. 1108:. 1096:^ 1085:, 1064:. 1054:14 1052:. 1029:. 1019:78 1017:. 984:. 958:. 950:. 940:93 938:. 915:. 905:64 903:. 873:. 846:. 838:. 828:. 820:. 806:. 783:. 775:. 767:. 753:. 730:. 722:. 712:72 710:. 687:. 679:. 669:71 667:. 655:^ 625:^ 615:13 603:^ 507:. 499:, 471:= 397:, 1488:. 1476:: 1442:. 1430:: 1412:: 1402:: 1378:. 1356:: 1348:: 1328:) 1316:. 1304:: 1296:: 1286:: 1262:. 1258:: 1250:: 1226:. 1214:: 1140:. 1128:: 1120:: 1072:. 1068:: 1060:: 1037:. 1033:: 1025:: 1002:. 966:. 954:: 946:: 923:. 919:: 911:: 888:. 854:. 842:: 824:: 814:: 791:. 779:: 771:: 761:: 738:. 726:: 718:: 695:. 683:: 675:: 649:. 475:2 473:T 468:1 466:T 457:2 455:T 450:1 448:T 376:1 372:T 349:2 345:T 314:1 310:T 287:2 283:T 252:1 248:T 225:2 221:T 197:m 161:1 157:T

Index


philosophy of thermal and statistical physics
perpetual motion
second kind
thought experiment
Marian Smoluchowski
Nobel laureate
Richard Feynman
physics
California Institute of Technology
Messenger Lectures
The Character of Physical Law
Cornell University
The Feynman Lectures on Physics
thermodynamics
paddle wheel
ratchet
Maxwell's demon
random fluctuations
thermal equilibrium
second law of thermodynamics
ratchet
pawl
paddle wheel
fluid
molecules
temperature
heat bath
Brownian motion
kinetic energy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑