Knowledge

Bridge number

Source 📝

994: 24: 1006: 75:. In bridge representation, a knot lies entirely in the plane apart for a finite number of bridges whose projections onto the plane are straight lines. Equivalently, the bridge number is the minimal number of local maxima of the projection of the knot onto a vector, where we minimize over all projections and over all conformations of the knot. In this context, the bridge number is often called the 63:
Given a knot or link, draw a diagram of the link using the convention that a gap in the line denotes an undercrossing. Call an unbroken arc in this diagram a bridge if it includes at least one overcrossing. Then the bridge number of a knot can be found as the minimum number of bridges required for
371: 224: 939: 858: 343: 189: 89:
Every non-trivial knot has bridge number at least two, so the knots that minimize the bridge number (other than the
55:
of a knot defined as the minimal number of bridges required in all the possible bridge representations of a knot.
405: 212: 853: 848: 724: 137: 1010: 425: 487: 206: 175: 557: 552: 493: 364: 1032: 685: 899: 868: 216: 729: 179: 998: 769: 357: 317: 297: 234: 98: 8: 806: 789: 301: 827: 774: 388: 384: 287: 275: 924: 873: 823: 779: 739: 734: 652: 339: 220: 185: 152: 959: 784: 680: 415: 305: 257: 16:
This article is about a mathematical concept. For the telecommunications term, see
919: 883: 818: 764: 719: 712: 602: 514: 397: 313: 230: 120:, then the bridge number of K is one less than the sum of the bridge numbers of K 17: 349: 97:. It can be shown that every n-bridge knot can be decomposed into two trivial n- 979: 878: 840: 759: 672: 547: 539: 499: 142: 65: 52: 309: 1026: 914: 702: 695: 109: 102: 94: 929: 909: 813: 796: 592: 529: 147: 64:
any diagram of the knot. Bridge numbers were first studied in the 1950s by
36: 28: 248:
Schubert, Horst (December 1954). "Über eine numerische Knoteninvariante".
944: 707: 612: 481: 461: 451: 443: 435: 380: 72: 40: 964: 949: 904: 801: 754: 749: 744: 574: 471: 261: 71:
The bridge number can equivalently be defined geometrically instead of
969: 637: 292: 954: 564: 23: 215:, vol. 151, American Mathematical Society, Providence, RI, 974: 622: 582: 280:
Mathematical Proceedings of the Cambridge Philosophical Society
90: 863: 934: 379: 278:(2003), "Additivity of bridge numbers of knots", 1024: 365: 184:, American Mathematical Society, p. 65, 131: 372: 358: 291: 274: 204: 247: 22: 170: 168: 1025: 353: 174: 1005: 165: 13: 328: 14: 1044: 1004: 993: 992: 213:Graduate Studies in Mathematics 859:Dowker–Thistlethwaite notation 268: 241: 198: 1: 158: 101:and hence 2-bridge knots are 84: 58: 205:Schultens, Jennifer (2014), 31:, drawn with bridge number 2 7: 208:Introduction to 3-manifolds 10: 1049: 132:Other numerical invariants 15: 988: 892: 849:Alexander–Briggs notation 836: 671: 573: 538: 396: 310:10.1017/S0305004103006832 250:Mathematische Zeitschrift 334:Cromwell, Peter (1994). 940:List of knots and links 488:Kinoshita–Terasaka knot 32: 730:Finite type invariant 26: 900:Alexander's theorem 302:2003MPCPS.135..539S 276:Schultens, Jennifer 262:10.1007/BF01181346 47:, also called the 33: 1020: 1019: 874:Reidemeister move 740:Khovanov homology 735:Hyperbolic volume 226:978-1-4704-1020-9 153:Unknotting number 1040: 1008: 1007: 996: 995: 960:Tait conjectures 663: 662: 648: 647: 633: 632: 525: 524: 510: 509: 494:(−2,3,7) pretzel 374: 367: 360: 351: 350: 322: 320: 295: 272: 266: 265: 245: 239: 237: 202: 196: 194: 172: 1048: 1047: 1043: 1042: 1041: 1039: 1038: 1037: 1033:Knot invariants 1023: 1022: 1021: 1016: 984: 888: 854:Conway notation 838: 832: 819:Tricolorability 667: 661: 658: 657: 656: 646: 643: 642: 641: 631: 628: 627: 626: 618: 608: 598: 588: 569: 548:Composite knots 534: 523: 520: 519: 518: 515:Borromean rings 508: 505: 504: 503: 477: 467: 457: 447: 439: 431: 421: 411: 392: 378: 336:Knots and Links 331: 329:Further reading 326: 325: 273: 269: 246: 242: 227: 203: 199: 192: 176:Adams, Colin C. 173: 166: 161: 138:Crossing number 134: 127: 123: 119: 115: 87: 61: 21: 18:Conference Call 12: 11: 5: 1046: 1036: 1035: 1018: 1017: 1015: 1014: 1002: 989: 986: 985: 983: 982: 980:Surgery theory 977: 972: 967: 962: 957: 952: 947: 942: 937: 932: 927: 922: 917: 912: 907: 902: 896: 894: 890: 889: 887: 886: 881: 879:Skein relation 876: 871: 866: 861: 856: 851: 845: 843: 834: 833: 831: 830: 824:Unknotting no. 821: 816: 811: 810: 809: 799: 794: 793: 792: 787: 782: 777: 772: 762: 757: 752: 747: 742: 737: 732: 727: 722: 717: 716: 715: 705: 700: 699: 698: 688: 683: 677: 675: 669: 668: 666: 665: 659: 650: 644: 635: 629: 620: 616: 610: 606: 600: 596: 590: 586: 579: 577: 571: 570: 568: 567: 562: 561: 560: 555: 544: 542: 536: 535: 533: 532: 527: 521: 512: 506: 497: 491: 485: 479: 475: 469: 465: 459: 455: 449: 445: 441: 437: 433: 429: 423: 419: 413: 409: 402: 400: 394: 393: 377: 376: 369: 362: 354: 348: 347: 330: 327: 324: 323: 286:(3): 539–544, 267: 256:(1): 245–288. 240: 225: 197: 190: 163: 162: 160: 157: 156: 155: 150: 145: 143:Linking number 140: 133: 130: 125: 121: 117: 113: 103:rational knots 95:2-bridge knots 86: 83: 66:Horst Schubert 60: 57: 9: 6: 4: 3: 2: 1045: 1034: 1031: 1030: 1028: 1013: 1012: 1003: 1001: 1000: 991: 990: 987: 981: 978: 976: 973: 971: 968: 966: 963: 961: 958: 956: 953: 951: 948: 946: 943: 941: 938: 936: 933: 931: 928: 926: 923: 921: 918: 916: 915:Conway sphere 913: 911: 908: 906: 903: 901: 898: 897: 895: 891: 885: 882: 880: 877: 875: 872: 870: 867: 865: 862: 860: 857: 855: 852: 850: 847: 846: 844: 842: 835: 829: 825: 822: 820: 817: 815: 812: 808: 805: 804: 803: 800: 798: 795: 791: 788: 786: 783: 781: 778: 776: 773: 771: 768: 767: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 736: 733: 731: 728: 726: 723: 721: 718: 714: 711: 710: 709: 706: 704: 701: 697: 694: 693: 692: 689: 687: 686:Arf invariant 684: 682: 679: 678: 676: 674: 670: 654: 651: 639: 636: 624: 621: 614: 611: 604: 601: 594: 591: 584: 581: 580: 578: 576: 572: 566: 563: 559: 556: 554: 551: 550: 549: 546: 545: 543: 541: 537: 531: 528: 516: 513: 501: 498: 495: 492: 489: 486: 483: 480: 473: 470: 463: 460: 453: 450: 448: 442: 440: 434: 427: 424: 417: 414: 407: 404: 403: 401: 399: 395: 390: 386: 382: 375: 370: 368: 363: 361: 356: 355: 352: 345: 344:9780521548311 341: 338:. Cambridge. 337: 333: 332: 319: 315: 311: 307: 303: 299: 294: 289: 285: 281: 277: 271: 263: 259: 255: 251: 244: 236: 232: 228: 222: 218: 214: 210: 209: 201: 193: 191:9780821886137 187: 183: 182: 181:The Knot Book 177: 171: 169: 164: 154: 151: 149: 146: 144: 141: 139: 136: 135: 129: 111: 110:connected sum 106: 104: 100: 96: 92: 82: 81: 78: 74: 73:topologically 69: 67: 56: 54: 50: 46: 45:bridge number 42: 38: 30: 25: 19: 1009: 997: 925:Double torus 910:Braid theory 725:Crossing no. 720:Crosscap no. 690: 406:Figure-eight 335: 293:math/0111032 283: 279: 270: 253: 249: 243: 207: 200: 180: 148:Stick number 108:If K is the 107: 88: 79: 76: 70: 62: 49:bridge index 48: 44: 37:mathematical 34: 29:trefoil knot 760:Linking no. 681:Alternating 482:Conway knot 462:Carrick mat 416:Three-twist 381:Knot theory 77:crookedness 41:knot theory 920:Complement 884:Tabulation 841:operations 765:Polynomial 755:Link group 750:Knot group 713:Invertible 691:Bridge no. 673:Invariants 603:Cinquefoil 472:Perko pair 398:Hyperbolic 159:References 93:) are the 85:Properties 59:Definition 814:Stick no. 770:Alexander 708:Chirality 653:Solomon's 613:Septafoil 540:Satellite 500:Whitehead 426:Stevedore 53:invariant 39:field of 1027:Category 999:Category 869:Mutation 837:Notation 790:Kauffman 703:Brunnian 696:2-bridge 565:Knot sum 496:(12n242) 178:(1994), 51:, is an 1011:Commons 930:Fibered 828:problem 797:Pretzel 775:Bracket 593:Trefoil 530:L10a140 490:(11n42) 484:(11n34) 452:Endless 318:2018265 298:Bibcode 235:3203728 99:tangles 35:In the 975:Writhe 945:Ribbon 780:HOMFLY 623:Unlink 583:Unknot 558:Square 553:Granny 342:  316:  233:  223:  217:p. 129 188:  91:unknot 43:, the 965:Twist 950:Slice 905:Berge 893:Other 864:Flype 802:Prime 785:Jones 745:Genus 575:Torus 389:links 385:knots 288:arXiv 124:and K 116:and K 970:Wild 935:Knot 839:and 826:and 807:list 638:Hopf 387:and 340:ISBN 221:ISBN 186:ISBN 112:of K 955:Sum 476:161 474:(10 306:doi 284:135 258:doi 1029:: 655:(4 640:(2 625:(0 615:(7 605:(5 595:(3 585:(0 517:(6 502:(5 466:18 464:(8 454:(7 428:(6 418:(5 408:(4 314:MR 312:, 304:, 296:, 282:, 254:61 252:. 231:MR 229:, 219:, 211:, 167:^ 128:. 105:. 68:. 27:A 664:) 660:1 649:) 645:1 634:) 630:1 619:) 617:1 609:) 607:1 599:) 597:1 589:) 587:1 526:) 522:2 511:) 507:1 478:) 468:) 458:) 456:4 446:3 444:6 438:2 436:6 432:) 430:1 422:) 420:2 412:) 410:1 391:) 383:( 373:e 366:t 359:v 346:. 321:. 308:: 300:: 290:: 264:. 260:: 238:. 195:. 126:2 122:1 118:2 114:1 80:. 20:.

Index

Conference Call

trefoil knot
mathematical
knot theory
invariant
Horst Schubert
topologically
unknot
2-bridge knots
tangles
rational knots
connected sum
Crossing number
Linking number
Stick number
Unknotting number


Adams, Colin C.
The Knot Book
ISBN
9780821886137
Introduction to 3-manifolds
Graduate Studies in Mathematics
p. 129
ISBN
978-1-4704-1020-9
MR
3203728

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.