Knowledge

Boltzmann's entropy formula

Source đź“ť

328: 1216: 1403: 20: 1208:
Sharp, K.; Matschinsky, F. Translation of Ludwig Boltzmann’s Paper “On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium” Sitzungberichte der Kaiserlichen Akademie der Wissenschaften.
646:
equally probable—for example, high energy microstates are less probable than low energy microstates for a thermodynamic system kept at a fixed temperature by allowing contact with a heat bath. For thermodynamic systems where microstates of the system may not have equal probabilities, the appropriate
594:
Boltzmann writes: “The first task is to determine the permutation number, previously designated by 𝒫 , for any state distribution. Denoting by J the sum of the permutations 𝒫 for all possible state distributions, the quotient 𝒫 /J is the state distribution’s probability, henceforth denoted by W.
852:
is also sometimes used to indicate entropies calculated based on the approximation that the overall probability can be factored into an identical separate term for each particle—i.e., assuming each particle has an identical independent probability distribution, and ignoring interactions and
366:
A 'microstate' is a state specified in terms of the constituent particles of a body of matter or radiation that has been specified as a macrostate in terms of such variables as internal energy and pressure. A macrostate is experimentally observable, with at least a finite extent in
409:
There are many instantaneous microstates that apply to a given macrostate. Boltzmann considered collections of such microstates. For a given macrostate, he called the collection of all possible instantaneous microstates of a certain kind by the name
625:
Therefore, by making the denominator small, he maximizes the number of states. So to simplify the product of the factorials, he uses their natural logarithm to add them. This is the reason for the natural logarithm in Boltzmann’s entropy formula.
459:-th microscopic condition (range) of position and momentum. For this case, the probability of each microstate of the system is equal, so it was equivalent for Boltzmann to calculate the number of microstates associated with a macrostate. 371:. A microstate can be instantaneous, or can be a trajectory composed of a temporal progression of instantaneous microstates. In experimental practice, such are scarcely observable. The present account concerns instantaneous microstates. 641:
of interest, plus its surroundings; then the entropy of Boltzmann's microscopically specified system can be identified with the system entropy in classical thermodynamics. The microstates of such a thermodynamic system are
965: 853:
correlations between the particles. This is exact for an ideal gas of identical particles that move independently apart from instantaneous collisions, and is an approximation, possibly a poor one, for other systems.
1209:
Mathematisch-Naturwissen Classe. Abt. II, LXXVI 1877, pp 373-435 (Wien. Ber. 1877, 76:373-435). Reprinted in Wiss. Abhandlungen, Vol. II, reprint 42, p. 164-223, Barth, Leipzig, 1909. Entropy 2015, 17, 1971-2009.
730: 797:
as a density in phase space—without mentioning probability—but since this satisfies the axiomatic definition of a probability measure we can retrospectively interpret it as a probability anyway.
533: 1059:
leads to increasingly wrong predictions of entropies and physical behaviours, by ignoring the interactions and correlations between different molecules. Instead one must consider the
197: 1057: 1010: 242: 92: 791: 120: 468: 622:
must simultaneously satisfy the two constraints (1) and (2). Since the denominator of 𝒫 is a product, it is easiest to determine the minimum of its logarithm, …”
286: 1327: 591:
In Boltzmann’s 1877 paper, he clarifies molecular state counting to determine the state distribution number introducing the logarithm to simplify the equation.
266: 140: 63: 1364: 884: 659: 1419: 1120: 1424: 1357: 864:
separate identical terms, one term for each particle; and when the summation is taken over each possible state in the 6-dimensional
426:, and this name is widely used today, perhaps partly because Bohr was more interested in the writings of Gibbs than of Boltzmann. 1714: 634:
Boltzmann's formula applies to microstates of a system, each possible microstate of which is presumed to be equally probable.
1350: 614:… values for which 𝒫 is a maximum or since the numerator is a constant, for which the denominator is a minimum. The values w 430: 99: 860:
as statistically independent. The probability distribution of the system as a whole then factorises into the product of
463:
was historically misinterpreted as literally meaning the number of microstates, and that is what it usually means today.
391: 143: 478: 1311: 1196: 1158: 1724: 1067:, rather than single particle states. Gibbs considered several such kinds of ensembles; relevant here is the  1719: 158: 563:. The "correction" in the denominator is due to the fact that identical particles in the same condition are 1387: 1175: 394:—the collection of (unobservable microscopic single particle) "ways" in which the (observable macroscopic) 1495: 1411: 1033: 986: 218: 68: 1729: 297: 1234:
Ludwig Boltzmann (1866). "Über die Mechanische Bedeutung des Zweiten Hauptsatzes der Wärmetheorie".
767: 418:
is used nowadays. For single particle instantaneous microstates, Boltzmann called the collection an
1671: 1654: 387: 595:
We would first like to calculate the permutations đť’« for the state distribution characterized by w
1518: 1508: 1434: 1136: 360: 856:
The Boltzmann entropy is obtained if one assumes one can treat all the component particles of a
1565: 1450: 1373: 1282: 429:
Interpreted in this way, Boltzmann's formula is the most basic formula for the thermodynamic
105: 31: 1593: 1060: 857: 638: 316: 1220: 1215: 271: 8: 1659: 1638: 1100: 564: 1337: 1332: 1219: This article incorporates text from this source, which is available under the 1686: 1598: 1575: 1556: 1536: 1500: 1080: 576: 251: 245: 125: 48: 1691: 1588: 1561: 1472: 1462: 1455: 1429: 1307: 1192: 1154: 399: 327: 289: 1583: 1016: 798: 340: 1633: 1338:
Vorlesungen ĂĽber Gastheorie, Ludwig Boltzmann (1898) vol. II. J.A. Barth, Leipzig.
1628: 1623: 1551: 1546: 1513: 1440: 1124: 1095: 332: 1333:
Vorlesungen ĂĽber Gastheorie, Ludwig Boltzmann (1896) vol. I, J.A. Barth, Leipzig
1676: 1392: 395: 1708: 1664: 1085: 648: 1681: 960:{\displaystyle S_{\mathrm {G} }=-Nk_{\mathrm {B} }\sum _{i}p_{i}\ln p_{i}} 307:
formula shows the relationship between entropy and the number of ways the
1490: 1485: 1278: 865: 383: 356: 1342: 1480: 1090: 344: 147: 1015:
This reflects the original statistical entropy function introduced by
876:-dimensional phase space of the system as a whole), the Gibbs entropy 843: 1541: 1020: 810:) in his later work and recognized it as more general than equation ( 725:{\displaystyle S_{\mathrm {G} }=-k_{\mathrm {B} }\sum p_{i}\ln p_{i}} 560: 438: 368: 348: 304: 293: 95: 19: 1210: 1445: 571:
is sometimes called the "thermodynamic probability" since it is an
434: 403: 312: 1610: 1024: 572: 352: 43: 1139:. Eric Weisstein's World of Physics (states the year was 1872). 580: 343:
between 1872 and 1875, but later put into its current form by
308: 1063:
of states of the system as a whole, called by Boltzmann a
828:)—and not vice versa. In every situation where equation ( 801:
gave an explicitly probabilistic interpretation in 1878.
398:
state of a system can be realized by assigning different
586: 606:“The most likely state distribution will be for those w 1274: 1272: 637:
But in thermodynamics, the universe is divided into a
1036: 989: 887: 770: 662: 481: 274: 254: 221: 161: 128: 108: 71: 51: 804:
Boltzmann himself used an expression equivalent to (
1269: 844:
Boltzmann entropy excludes statistical dependencies
555:
ranges over all possible molecular conditions and "
1051: 1004: 959: 785: 724: 527: 378:was originally intended to be proportional to the 280: 260: 236: 191: 134: 114: 86: 57: 1706: 1260: 1252: 1233: 1030:For anything but the most dilute of real gases, 528:{\displaystyle W={\frac {N!}{\prod _{i}N_{i}!}}} 1168: 1148: 1358: 1304:Ludwig Boltzmann: the Man who Trusted Atoms 1189:Ludwig Boltzmann: the Man who Trusted Atoms 1365: 1351: 1246: 793:formula as early as 1866. He interpreted 339:The equation was originally formulated by 1372: 42:) is a probability equation relating the 1127:, Vienna, with bust and entropy formula. 603:molecules with kinetic energy ϵ, etc. … 359:was first stated by L. Boltzmann in his 335:, Vienna, with bust and entropy formula. 326: 18: 382:(the German word for probability) of a 192:{\displaystyle S=k_{\mathrm {B} }\ln W} 1707: 1306:, Oxford University Press, Oxford UK, 1191:, Oxford University Press, Oxford UK, 347:in about 1900. To quote Planck, "the 268:) and equal to 1.380649 Ă— 10 J/K, and 1346: 1023:it exactly corresponds to the proper 1019:in 1872. For the special case of an 587:Introduction of the natural logarithm 467:can be counted using the formula for 1328:Introduction to Boltzmann's Equation 1263:Vorlesungen ĂĽber Gastheorie, vol. II 983:simplifies to the Boltzmann entropy 878: 840:) is valid also—and not vice versa. 653: 472: 152: 1255:Vorlesungen ĂĽber Gastheorie, vol. I 1176:(1914) The theory of heat radiation 13: 1043: 996: 915: 894: 687: 669: 599:molecules with kinetic energy 0, w 422:. Subsequently, Gibbs called it a 228: 174: 109: 78: 14: 1741: 1321: 1227: 1211:https://doi.org/10.3390/e17041971 629: 16:Equation in statistical mechanics 1401: 1214: 1052:{\displaystyle S_{\mathrm {B} }} 1005:{\displaystyle S_{\mathrm {B} }} 237:{\displaystyle k_{\mathrm {B} }} 87:{\displaystyle S_{\mathrm {B} }} 1296: 1715:Eponymous equations of physics 1202: 1181: 1142: 1130: 1113: 822:) is a corollary of equation ( 786:{\displaystyle \rho \ln \rho } 1: 1106: 406:to the respective molecules. 1388:Principle of maximum entropy 1283:Gibbs vs Boltzmann entropies 7: 1287:American Journal of Physics 1153:. Oxford University Press. 1074: 973: 872:particle (rather than the 6 836: 830: 824: 818: 812: 806: 750: 738: 647:generalization, called the 541: 205: 146:corresponding to the gas's 10: 1746: 1412:Statistical thermodynamics 1165:(states the year was 1875) 748:This reduces to equation ( 577:mathematical probabilities 322: 300:, as in the image above). 26:—carved on his gravestone. 1647: 1609: 1574: 1529: 1471: 1410: 1399: 1380: 1261:Ludwig Boltzmann (1898). 1253:Ludwig Boltzmann (1896). 331:Boltzmann's grave in the 40:Boltzmann–Planck equation 1672:Condensed matter physics 1655:Statistical field theory 1151:A to Z of Thermodynamics 575:greater than one, while 414:, for which Gibbs' term 388:probability distribution 248:(also written as simply 1725:Thermodynamic equations 1530:Mathematical approaches 1519:Lennard-Jones potential 1435:thermodynamic potential 1302:Cercignani, C. (1998). 1187:Cercignani, C. (1998). 1149:Perrot, Pierre (1998). 816:). That is, equation ( 754:) if the probabilities 424:microcanonical ensemble 115:{\displaystyle \Omega } 1566:conformal field theory 1265:. J.A. Barth, Leipzig. 1257:. J.A. Barth, Leipzig. 1199:, p. 134, pp. 141–142. 1053: 1006: 961: 834:) is valid, equation ( 787: 726: 583:between zero and one. 529: 336: 282: 262: 238: 193: 142:), the number of real 136: 116: 88: 59: 27: 1720:Thermodynamic entropy 1481:Ferromagnetism models 1374:Statistical mechanics 1054: 1025:thermodynamic entropy 1007: 962: 788: 727: 530: 330: 315:of a certain kind of 283: 263: 239: 194: 137: 117: 102:(commonly denoted as 89: 60: 32:statistical mechanics 22: 1034: 987: 885: 858:thermodynamic system 768: 660: 479: 448:particles, of which 317:thermodynamic system 281:{\displaystyle \ln } 272: 252: 219: 159: 126: 106: 69: 49: 36:Boltzmann's equation 24:Boltzmann's equation 1660:elementary particle 1425:partition functions 1178:equation 164, p.119 1101:von Neumann entropy 351:connection between 38:(also known as the 1687:information theory 1594:correlation length 1589:Critical exponents 1576:Critical phenomena 1557:stochastic process 1537:Boltzmann equation 1430:equations of state 1137:Boltzmann equation 1081:History of entropy 1049: 1002: 957: 930: 783: 722: 525: 508: 380:Wahrscheinlichkeit 337: 278: 258: 246:Boltzmann constant 234: 189: 132: 112: 84: 65:, also written as 55: 28: 1702: 1701: 1692:Boltzmann machine 1562:mean-field theory 1463:Maxwell relations 1121:Boltzmann's grave 981: 980: 921: 850:Boltzmann entropy 764:Boltzmann used a 746: 745: 565:indistinguishable 549: 548: 523: 499: 319:can be arranged. 290:natural logarithm 261:{\displaystyle k} 213: 212: 135:{\displaystyle W} 58:{\displaystyle S} 1737: 1730:Ludwig Boltzmann 1584:Phase transition 1405: 1404: 1367: 1360: 1353: 1344: 1343: 1315: 1300: 1294: 1276: 1267: 1266: 1258: 1250: 1244: 1243: 1231: 1225: 1218: 1206: 1200: 1185: 1179: 1172: 1166: 1164: 1146: 1140: 1134: 1128: 1117: 1058: 1056: 1055: 1050: 1048: 1047: 1046: 1017:Ludwig Boltzmann 1011: 1009: 1008: 1003: 1001: 1000: 999: 975: 966: 964: 963: 958: 956: 955: 940: 939: 929: 920: 919: 918: 899: 898: 897: 879: 796: 792: 790: 789: 784: 740: 731: 729: 728: 723: 721: 720: 705: 704: 692: 691: 690: 674: 673: 672: 654: 570: 558: 554: 543: 534: 532: 531: 526: 524: 522: 518: 517: 507: 497: 489: 473: 466: 462: 458: 454: 444: 377: 341:Ludwig Boltzmann 287: 285: 284: 279: 267: 265: 264: 259: 243: 241: 240: 235: 233: 232: 231: 207: 198: 196: 195: 190: 179: 178: 177: 153: 141: 139: 138: 133: 121: 119: 118: 113: 93: 91: 90: 85: 83: 82: 81: 64: 62: 61: 56: 1745: 1744: 1740: 1739: 1738: 1736: 1735: 1734: 1705: 1704: 1703: 1698: 1643: 1605: 1570: 1552:BBGKY hierarchy 1547:Vlasov equation 1525: 1514:depletion force 1507:Particles with 1467: 1406: 1402: 1397: 1376: 1371: 1324: 1319: 1318: 1301: 1297: 1277: 1270: 1251: 1247: 1236:Wiener Berichte 1232: 1228: 1207: 1203: 1186: 1182: 1173: 1169: 1161: 1147: 1143: 1135: 1131: 1125:Zentralfriedhof 1118: 1114: 1109: 1096:Shannon entropy 1077: 1042: 1041: 1037: 1035: 1032: 1031: 995: 994: 990: 988: 985: 984: 951: 947: 935: 931: 925: 914: 913: 909: 893: 892: 888: 886: 883: 882: 846: 794: 769: 766: 765: 761:are all equal. 760: 716: 712: 700: 696: 686: 685: 681: 668: 667: 663: 661: 658: 657: 632: 621: 617: 613: 609: 602: 598: 589: 568: 556: 552: 513: 509: 503: 498: 490: 488: 480: 477: 476: 464: 460: 456: 453: 449: 442: 386:state for some 375: 333:Zentralfriedhof 325: 273: 270: 269: 253: 250: 249: 227: 226: 222: 220: 217: 216: 173: 172: 168: 160: 157: 156: 127: 124: 123: 107: 104: 103: 77: 76: 72: 70: 67: 66: 50: 47: 46: 17: 12: 11: 5: 1743: 1733: 1732: 1727: 1722: 1717: 1700: 1699: 1697: 1696: 1695: 1694: 1689: 1684: 1677:Complex system 1674: 1669: 1668: 1667: 1662: 1651: 1649: 1645: 1644: 1642: 1641: 1636: 1631: 1626: 1621: 1615: 1613: 1607: 1606: 1604: 1603: 1602: 1601: 1596: 1586: 1580: 1578: 1572: 1571: 1569: 1568: 1559: 1554: 1549: 1544: 1539: 1533: 1531: 1527: 1526: 1524: 1523: 1522: 1521: 1516: 1505: 1504: 1503: 1498: 1493: 1488: 1477: 1475: 1469: 1468: 1466: 1465: 1460: 1459: 1458: 1453: 1448: 1443: 1432: 1427: 1422: 1416: 1414: 1408: 1407: 1400: 1398: 1396: 1395: 1393:ergodic theory 1390: 1384: 1382: 1378: 1377: 1370: 1369: 1362: 1355: 1347: 1341: 1340: 1335: 1330: 1323: 1322:External links 1320: 1317: 1316: 1295: 1268: 1245: 1226: 1201: 1180: 1167: 1159: 1141: 1129: 1119:See: photo of 1111: 1110: 1108: 1105: 1104: 1103: 1098: 1093: 1088: 1083: 1076: 1073: 1045: 1040: 998: 993: 979: 978: 969: 967: 954: 950: 946: 943: 938: 934: 928: 924: 917: 912: 908: 905: 902: 896: 891: 845: 842: 782: 779: 776: 773: 758: 744: 743: 734: 732: 719: 715: 711: 708: 703: 699: 695: 689: 684: 680: 677: 671: 666: 631: 630:Generalization 628: 619: 615: 611: 607: 600: 596: 588: 585: 547: 546: 537: 535: 521: 516: 512: 506: 502: 496: 493: 487: 484: 451: 433:. Boltzmann's 361:kinetic theory 324: 321: 303:In short, the 277: 257: 230: 225: 211: 210: 201: 199: 188: 185: 182: 176: 171: 167: 164: 131: 111: 80: 75: 54: 15: 9: 6: 4: 3: 2: 1742: 1731: 1728: 1726: 1723: 1721: 1718: 1716: 1713: 1712: 1710: 1693: 1690: 1688: 1685: 1683: 1680: 1679: 1678: 1675: 1673: 1670: 1666: 1665:superfluidity 1663: 1661: 1658: 1657: 1656: 1653: 1652: 1650: 1646: 1640: 1637: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1616: 1614: 1612: 1608: 1600: 1597: 1595: 1592: 1591: 1590: 1587: 1585: 1582: 1581: 1579: 1577: 1573: 1567: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1535: 1534: 1532: 1528: 1520: 1517: 1515: 1512: 1511: 1510: 1506: 1502: 1499: 1497: 1494: 1492: 1489: 1487: 1484: 1483: 1482: 1479: 1478: 1476: 1474: 1470: 1464: 1461: 1457: 1454: 1452: 1449: 1447: 1444: 1442: 1439: 1438: 1436: 1433: 1431: 1428: 1426: 1423: 1421: 1418: 1417: 1415: 1413: 1409: 1394: 1391: 1389: 1386: 1385: 1383: 1379: 1375: 1368: 1363: 1361: 1356: 1354: 1349: 1348: 1345: 1339: 1336: 1334: 1331: 1329: 1326: 1325: 1313: 1312:9780198501541 1309: 1305: 1299: 1292: 1288: 1284: 1280: 1279:Jaynes, E. T. 1275: 1273: 1264: 1256: 1249: 1241: 1237: 1230: 1224: 1222: 1217: 1212: 1205: 1198: 1197:9780198501541 1194: 1190: 1184: 1177: 1171: 1162: 1160:0-19-856552-6 1156: 1152: 1145: 1138: 1133: 1126: 1122: 1116: 1112: 1102: 1099: 1097: 1094: 1092: 1089: 1087: 1086:Gibbs entropy 1084: 1082: 1079: 1078: 1072: 1070: 1066: 1062: 1038: 1028: 1026: 1022: 1018: 1013: 991: 977: 970: 968: 952: 948: 944: 941: 936: 932: 926: 922: 910: 906: 903: 900: 889: 881: 880: 877: 875: 871: 867: 863: 859: 854: 851: 841: 839: 838: 833: 832: 827: 826: 821: 820: 815: 814: 809: 808: 802: 800: 780: 777: 774: 771: 762: 757: 753: 752: 742: 735: 733: 717: 713: 709: 706: 701: 697: 693: 682: 678: 675: 664: 656: 655: 652: 650: 649:Gibbs entropy 645: 640: 635: 627: 623: 604: 592: 584: 582: 578: 574: 566: 562: 545: 538: 536: 519: 514: 510: 504: 500: 494: 491: 485: 482: 475: 474: 471: 470: 447: 440: 436: 432: 427: 425: 421: 417: 413: 407: 405: 401: 397: 396:thermodynamic 393: 389: 385: 381: 374:The value of 372: 370: 364: 362: 358: 354: 350: 346: 342: 334: 329: 320: 318: 314: 310: 306: 301: 299: 295: 292:function (or 291: 275: 255: 247: 223: 209: 202: 200: 186: 183: 180: 169: 165: 162: 155: 154: 151: 149: 145: 129: 101: 97: 73: 52: 45: 41: 37: 33: 25: 21: 1648:Applications 1618: 1599:size scaling 1303: 1298: 1290: 1286: 1262: 1254: 1248: 1239: 1235: 1229: 1213: 1204: 1188: 1183: 1170: 1150: 1144: 1132: 1115: 1068: 1064: 1029: 1014: 982: 971: 873: 869: 861: 855: 849: 847: 835: 829: 823: 817: 811: 805: 803: 763: 755: 749: 747: 736: 643: 636: 633: 624: 605: 593: 590: 550: 539: 469:permutations 445: 428: 423: 419: 415: 411: 408: 390:of possible 379: 373: 365: 338: 302: 214: 203: 100:multiplicity 39: 35: 29: 23: 1639:von Neumann 1509:force field 1501:percolation 1174:Max Planck 866:phase space 579:are always 455:are in the 392:microstates 384:macroscopic 363:of gases". 357:probability 349:logarithmic 144:microstates 1709:Categories 1496:Heisenberg 1242:: 195–220. 1107:References 1091:nat (unit) 559:" denotes 345:Max Planck 148:macrostate 1619:Boltzmann 1542:H-theorem 1420:Ensembles 1314:, p. 134. 1221:CC BY 3.0 1069:canonical 1021:ideal gas 945:⁡ 923:∑ 904:− 848:The term 781:ρ 778:⁡ 772:ρ 710:⁡ 694:∑ 679:− 561:factorial 501:∏ 446:identical 439:ideal gas 400:positions 369:spacetime 313:molecules 305:Boltzmann 184:⁡ 110:Ω 96:ideal gas 1629:Tsallis 1293:, 391-8. 1281:(1965). 1223:license. 1075:See also 1061:ensemble 435:paradigm 416:ensemble 94:, of an 1624:Shannon 1611:Entropy 1123:in the 581:numbers 573:integer 437:was an 431:entropy 404:momenta 353:entropy 323:History 288:is the 244:is the 98:to the 44:entropy 1473:Models 1381:Theory 1310:  1195:  1157:  1065:holode 870:single 795:ρ 651:, is: 639:system 551:where 420:ergode 412:monode 215:where 1682:chaos 1634:RĂ©nyi 1491:Potts 1486:Ising 1071:one. 868:of a 799:Gibbs 309:atoms 296:base 1564:and 1308:ISBN 1193:ISBN 1155:ISBN 402:and 355:and 1259:; 644:not 618:, w 610:, w 441:of 311:or 294:log 122:or 30:In 1711:: 1437:: 1291:33 1289:, 1285:. 1271:^ 1240:53 1238:. 1027:. 1012:. 942:ln 775:ln 707:ln 567:. 276:ln 181:ln 150:: 34:, 1456:G 1451:F 1446:H 1441:U 1366:e 1359:t 1352:v 1163:. 1044:B 1039:S 997:B 992:S 976:) 974:4 972:( 953:i 949:p 937:i 933:p 927:i 916:B 911:k 907:N 901:= 895:G 890:S 874:N 862:N 837:3 831:1 825:3 819:1 813:1 807:3 759:i 756:p 751:1 741:) 739:3 737:( 718:i 714:p 702:i 698:p 688:B 683:k 676:= 670:G 665:S 620:1 616:0 612:1 608:0 601:1 597:0 569:W 557:! 553:i 544:) 542:2 540:( 520:! 515:i 511:N 505:i 495:! 492:N 486:= 483:W 465:W 461:W 457:i 452:i 450:N 443:N 376:W 298:e 256:k 229:B 224:k 208:) 206:1 204:( 187:W 175:B 170:k 166:= 163:S 130:W 79:B 74:S 53:S

Index


statistical mechanics
entropy
ideal gas
multiplicity
microstates
macrostate
Boltzmann constant
natural logarithm
log
e
Boltzmann
atoms
molecules
thermodynamic system

Zentralfriedhof
Ludwig Boltzmann
Max Planck
logarithmic
entropy
probability
kinetic theory
spacetime
macroscopic
probability distribution
microstates
thermodynamic
positions
momenta

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑