Knowledge

Black hole

Source 📝

2642: 2432: 3081: 3192:, the signal produced as the newly formed compact object settles down to a stationary state. Arguably, the ringdown is the most direct way of observing a black hole. From the LIGO signal, it is possible to extract the frequency and damping time of the dominant mode of the ringdown. From these, it is possible to infer the mass and angular momentum of the final object, which match independent predictions from numerical simulations of the merger. The frequency and decay time of the dominant mode are determined by the geometry of the photon sphere. Hence, observation of this mode confirms the presence of a photon sphere; however, it cannot exclude possible exotic alternatives to black holes that are compact enough to have a photon sphere. 17812: 984: 3962:" requires that, like any quantum system, the outgoing particle cannot be fully entangled with two other systems at the same time; yet here the outgoing particle appears to be entangled both with the infalling particle and, independently, with past Hawking radiation. In order to resolve this contradiction, physicists may eventually be forced to give up one of three time-tested principles: Einstein's equivalence principle, unitarity, or local quantum field theory. One possible solution, which violates the equivalence principle, is that a "firewall" destroys incoming particles at the event horizon. In general, which—if any—of these assumptions should be abandoned remains a topic of debate. 45: 3295: 3185:. The signal was consistent with theoretical predictions for the gravitational waves produced by the merger of two black holes: one with about 36 solar masses, and the other around 29 solar masses. This observation provides the most concrete evidence for the existence of black holes to date. For instance, the gravitational wave signal suggests that the separation of the two objects before the merger was just 350 km, or roughly four times the Schwarzschild radius corresponding to the inferred masses. The objects must therefore have been extremely compact, leaving black holes as the most plausible interpretation. 3170: 3454: 17800: 3093: 14859: 3916:
conserved. As long as black holes were thought to persist forever this information loss is not that problematic, as the information can be thought of as existing inside the black hole, inaccessible from the outside, but represented on the event horizon in accordance with the holographic principle. However, black holes slowly evaporate by emitting Hawking radiation. This radiation does not appear to carry any additional information about the matter that formed the black hole, meaning that this information appears to be gone forever.
314: 17788: 3325:. The resulting friction is so significant that it heats the inner disk to temperatures at which it emits vast amounts of electromagnetic radiation (mainly X-rays). These bright X-ray sources may be detected by telescopes. This process of accretion is one of the most efficient energy-producing processes known. Up to 40% of the rest mass of the accreted material can be emitted as radiation. In nuclear fusion only about 0.7% of the rest mass will be emitted as energy. In many cases, accretion disks are accompanied by 3146:, whereby material approaching the viewer at relativistic speeds is perceived as brighter than material moving away. In the case of a black hole, this phenomenon implies that the visible material is rotating at relativistic speeds (>1,000 km/s ), the only speeds at which it is possible to centrifugally balance the immense gravitational attraction of the singularity, and thereby remain in orbit above the event horizon. This configuration of bright material implies that the EHT observed 10701: 3369: 1527: 246:, some of the brightest objects in the universe. Stars passing too close to a supermassive black hole can be shredded into streamers that shine very brightly before being "swallowed." If other stars are orbiting a black hole, their orbits can be used to determine the black hole's mass and location. Such observations can be used to exclude possible alternatives such as neutron stars. In this way, astronomers have identified numerous stellar black hole candidates in 16557: 15689: 997: 1587: 2275: 2261: 2247: 14603: 17836: 2603:
collapsing particles would stabilise their motion at some radius. This led the general relativity community to dismiss all results to the contrary for many years. However, a minority of relativists continued to contend that black holes were physical objects, and by the end of the 1960s, they had persuaded the majority of researchers in the field that there is no obstacle to the formation of an event horizon.
15699: 17776: 2443:; general relativity predicts that any rotating mass will tend to slightly "drag" along the spacetime immediately surrounding it. Any object near the rotating mass will tend to start moving in the direction of rotation. For a rotating black hole, this effect is so strong near the event horizon that an object would have to move faster than the speed of light in the opposite direction to just stand still. 1611:. This means there is no observable difference at a distance between the gravitational field of such a black hole and that of any other spherical object of the same mass. The popular notion of a black hole "sucking in everything" in its surroundings is therefore correct only near a black hole's horizon; far away, the external gravitational field is identical to that of any other body of the same mass. 17824: 3218: 3416:
of relatively low mass allowing for more accurate estimates of the black hole mass. These systems actively emit X-rays for only several months once every 10–50 years. During the period of low X-ray emission, called quiescence, the accretion disk is extremely faint, allowing detailed observation of the companion star during this period. One of the best such candidates is
3872:, entropy is understood as counting the number of microscopic configurations of a system that have the same macroscopic qualities, such as mass, charge, pressure, etc. Without a satisfactory theory of quantum gravity, one cannot perform such a computation for black holes. Some progress has been made in various approaches to quantum gravity. In 1995, 2960:. Black holes can also merge with other objects such as stars or even other black holes. This is thought to have been important, especially in the early growth of supermassive black holes, which could have formed from the aggregation of many smaller objects. The process has also been proposed as the origin of some intermediate-mass black holes. 1219:, "a perfect unidirectional membrane: causal influences can cross it in only one direction". This did not strictly contradict Oppenheimer's results, but extended them to include the point of view of infalling observers. Finkelstein's solution extended the Schwarzschild solution for the future of observers falling into a black hole. A 2303:, an object falling into a black hole appears to slow as it approaches the event horizon, taking an infinite amount of time to reach it. At the same time, all processes on this object slow down, from the viewpoint of a fixed outside observer, causing any light emitted by the object to appear redder and dimmer, an effect known as 4752:"On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars, in Consequence of the Diminution of the Velocity of Their Light, in Case Such a Diminution Should be Found to Take Place in any of Them, and Such Other Data Should be Procured from Observations, as Would be Farther Necessary for That Purpose" 2994:. Since Hawking's publication, many others have verified the result through various approaches. If Hawking's theory of black hole radiation is correct, then black holes are expected to shrink and evaporate over time as they lose mass by the emission of photons and other particles. The temperature of this thermal spectrum ( 5231:... when a star is as small as the critical circumference, the curvature is strong but not infinite, and space is definitely not wrapped around the star. Eddington may have known this, but his description made a good story, and it captured in a whimsical way the spirit of Schwarzschild's spacetime curvature." 3829:
temperature, it was assumed that black holes had zero entropy. If this were the case, the second law of thermodynamics would be violated by entropy-laden matter entering a black hole, resulting in a decrease in the total entropy of the universe. Therefore, Bekenstein proposed that a black hole should
3637:
black hole is comparable to that of water. Consequently, the physics of matter forming a supermassive black hole is much better understood and the possible alternative explanations for supermassive black hole observations are much more mundane. For example, a supermassive black hole could be modelled
3415:
in 1972. Some doubt remained, due to the uncertainties that result from the companion star being much heavier than the candidate black hole. Currently, better candidates for black holes are found in a class of X-ray binaries called soft X-ray transients. In this class of system, the companion star is
3157:
In 2015, the EHT detected magnetic fields just outside the event horizon of Sagittarius A* and even discerned some of their properties. The field lines that pass through the accretion disc were a complex mixture of ordered and tangled. Theoretical studies of black holes had predicted the existence of
3114:
After two years of data processing, EHT released the first direct image of a black hole. Specifically, the supermassive black hole that lies in the centre of the aforementioned galaxy. What is visible is not the black hole—which shows as black because of the loss of all light within this dark region.
2769:
of infalling matter, a distant observer would see the infalling material slow and halt just above the event horizon, due to gravitational time dilation. Light from the collapsing material takes longer and longer to reach the observer, with the light emitted just before the event horizon forms delayed
279:
exceeds the usual speed of light. Michell correctly noted that such supermassive but non-radiating bodies might be detectable through their gravitational effects on nearby visible bodies. Scholars of the time were initially excited by the proposal that giant but invisible 'dark stars' might be hiding
3915:
Because a black hole has only a few internal parameters, most of the information about the matter that went into forming the black hole is lost. Regardless of the type of matter which goes into a black hole, it appears that only information concerning the total mass, charge, and angular momentum are
3396:
orbital parameters of the system and to obtain an estimate for the mass of the compact object. If this is much larger than the Tolman–Oppenheimer–Volkoff limit (the maximum mass a star can have without collapsing) then the object cannot be a neutron star and is generally expected to be a black hole.
3033:
The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes
2783:
to have formed in such a dense medium, there must have been initial density perturbations that could then grow under their own gravity. Different models for the early universe vary widely in their predictions of the scale of these fluctuations. Various models predict the creation of primordial black
2602:
Given the bizarre character of black holes, it was long questioned whether such objects could actually exist in nature or whether they were merely pathological solutions to Einstein's equations. Einstein himself wrongly thought black holes would not form, because he held that the angular momentum of
2416:
While light can still escape from the photon sphere, any light that crosses the photon sphere on an inbound trajectory will be captured by the black hole. Hence any light that reaches an outside observer from the photon sphere must have been emitted by objects between the photon sphere and the event
1498:
postulates that, once it achieves a stable condition after formation, a black hole has only three independent physical properties: mass, electric charge, and angular momentum; the black hole is otherwise featureless. If the conjecture is true, any two black holes that share the same values for these
1189:
Oppenheimer and his co-authors interpreted the singularity at the boundary of the Schwarzschild radius as indicating that this was the boundary of a bubble in which time stopped. This is a valid point of view for external observers, but not for infalling observers. The hypothetical collapsed stars
3493:
Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black
3391:
part of the spectrum. These X-ray emissions are generally thought to result when one of the stars (compact object) accretes matter from another (regular) star. The presence of an ordinary star in such a system provides an opportunity for studying the central object and to determine if it might be a
3314:
created by a massive object will typically form a disk-like structure around the object. Artists' impressions such as the accompanying representation of a black hole with corona commonly depict the black hole as if it were a flat-space body hiding the part of the disk just behind it, but in reality
3016:
radiation. Stellar-mass or larger black holes receive more mass from the cosmic microwave background than they emit through Hawking radiation and thus will grow instead of shrinking. To have a Hawking temperature larger than 2.7 K (and be able to evaporate), a black hole would need a mass less
1242:
in 1967, which, by 1969, were shown to be rapidly rotating neutron stars. Until that time, neutron stars, like black holes, were regarded as just theoretical curiosities; but the discovery of pulsars showed their physical relevance and spurred a further interest in all types of compact objects that
1104:
because "a star of 250 million km radius could not possibly have so high a density as the Sun. Firstly, the force of gravitation would be so great that light would be unable to escape from it, the rays falling back to the star like a stone to the earth. Secondly, the red shift of the spectral lines
181:, in 1958, first published the interpretation of "black hole" as a region of space from which nothing can escape. Black holes were long considered a mathematical curiosity; it was not until the 1960s that theoretical work showed they were a generic prediction of general relativity. The discovery of 6923:
El-Badry, Kareem; Rix, Hans-Walter; Quataert, Eliot; Howard, Andrew W.; Isaacson, Howard; Fuller, Jim; Hawkins, Keith; Breivik, Katelyn; Wong, Kaze W. K.; Rodriguez, Antonio C.; Conroy, Charlie; Shahaf, Sahar; Mazeh, Tsevi; Arenou, Frédéric; Burdge, Kevin B.; Bashi, Dolev; Faigler, Simchon; Weisz,
2778:
Gravitational collapse requires great density. In the current epoch of the universe these high densities are found only in stars, but in the early universe shortly after the Big Bang densities were much greater, possibly allowing for the creation of black holes. High density alone is not enough to
2310:
On the other hand, indestructible observers falling into a black hole do not notice any of these effects as they cross the event horizon. According to their own clocks, which appear to them to tick normally, they cross the event horizon after a finite time without noting any singular behaviour; in
1558:
Because a black hole eventually achieves a stable state with only three parameters, there is no way to avoid losing information about the initial conditions: the gravitational and electric fields of a black hole give very little information about what went in. The information that is lost includes
283:
The modern theory of gravity, general relativity, discredits Michell's notion of a light ray shooting directly from the surface of a supermassive star, being slowed down by the star's gravity, stopping, and then free-falling back to the star's surface. Instead, spacetime itself is curved such that
3279:
and a radius of less than 0.002 light-years for the object causing the orbital motion of those stars. The upper limit on the object's size is still too large to test whether it is smaller than its Schwarzschild radius. Nevertheless, these observations strongly suggest that the central object is a
3153:
The extreme gravitational lensing associated with black holes produces the illusion of a perspective that sees the accretion disc from above. In reality, most of the ring in the EHT image was created when the light emitted by the far side of the accretion disc bent around the black hole's gravity
7055:
It seems that the "black hole" label was also bandied about in January 1964 in Cleveland at a meeting of the American Association for the Advancement of Science. Science News Letter reporter Ann Ewing reported from that meeting, describing how an intense gravitational field could cause a star to
3950:
particles. The outgoing particle escapes and is emitted as a quantum of Hawking radiation; the infalling particle is swallowed by the black hole. Assume a black hole formed a finite time in the past and will fully evaporate away in some finite time in the future. Then, it will emit only a finite
3837:
at a constant temperature. This seemingly causes a violation of the second law of black hole mechanics, since the radiation will carry away energy from the black hole causing it to shrink. The radiation also carries away entropy, and it can be proven under general assumptions that the sum of the
3558:
Another way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light
2593:
The final observable region of spacetime around a black hole is called the plunging region. In this area it is no longer possible for matter to follow circular orbits or to stop a final descent into the black hole. Instead it will rapidly plunge toward the black hole close to the speed of light.
2491:
can stably orbit at arbitrary distances from a central object. In general relativity, however, there exists an innermost stable circular orbit (often called the ISCO), for which any infinitesimal inward perturbations to a circular orbit will lead to spiraling into the black hole, and any outward
2291:
through which matter and light can pass only inward towards the mass of the black hole. Nothing, not even light, can escape from inside the event horizon. The event horizon is referred to as such because if an event occurs within the boundary, information from that event cannot reach an outside
1202:
in their paper "On Continued Gravitational Contraction", which predicted the existence of black holes. In the paper, which made no reference to Einstein's recent publication, Oppenheimer and Snyder used Einstein's own theory of general relativity to show the conditions on how a black hole could
3477:
emission and very strong radio emission. Theoretical and observational studies have shown that the activity in these active galactic nuclei (AGN) may be explained by the presence of supermassive black holes, which can be millions of times more massive than stellar ones. The models of these AGN
3395:
If such a system emits signals that can be directly traced back to the compact object, it cannot be a black hole. The absence of such a signal does, however, not exclude the possibility that the compact object is a neutron star. By studying the companion star it is often possible to obtain the
3134:
black hole, and the image was created using the same techniques as for the M87 black hole. The imaging process for Sagittarius A*, which is more than a thousand times smaller and less massive than M87*, was significantly more complex because of the instability of its surroundings. The image of
3024:
If a black hole is very small, the radiation effects are expected to become very strong. A black hole with the mass of a car would have a diameter of about 10 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun.
1502:
These properties are special because they are visible from outside a black hole. For example, a charged black hole repels other like charges just like any other charged object. Similarly, the total mass inside a sphere containing a black hole can be found by using the gravitational analogue of
9475:
Bañados, Eduardo; Venemans, Bram P.; Mazzucchelli, Chiara; Farina, Emanuele P.; Walter, Fabian; Wang, Feige; Decarli, Roberto; Stern, Daniel; Fan, Xiaohui; Davies, Frederick B.; Hennawi, Joseph F. (1 January 2018). "An 800-million-solar-mass black hole in a significantly neutral Universe at a
3029:
would take less than 10 seconds to evaporate completely. For such a small black hole, quantum gravity effects are expected to play an important role and could hypothetically make such a small black hole stable, although current developments in quantum gravity do not indicate this is the case.
3927:, and it has been argued that loss of unitarity would also imply violation of conservation of energy, though this has also been disputed. Over recent years evidence has been building that indeed information and unitarity are preserved in a full quantum gravitational treatment of the problem. 3438:
and are thought to be caused by material moving along the inner edge of the accretion disk (the innermost stable circular orbit). As such their frequency is linked to the mass of the compact object. They can thus be used as an alternative way to determine the mass of candidate black holes.
2353:
Observers falling into a Schwarzschild black hole (i.e., non-rotating and not charged) cannot avoid being carried into the singularity once they cross the event horizon. They can prolong the experience by accelerating away to slow their descent, but only up to a limit. When they reach the
2413:, hence any small perturbation, such as a particle of infalling matter, would cause an instability that would grow over time, either setting the photon on an outward trajectory causing it to escape the black hole, or on an inward spiral where it would eventually cross the event horizon. 2457:, objects can emerge from the ergosphere with more energy than they entered with. The extra energy is taken from the rotational energy of the black hole. Thereby the rotation of the black hole slows down. A variation of the Penrose process in the presence of strong magnetic fields, the 2408:
The photon sphere is a spherical boundary where photons that move on tangents to that sphere would be trapped in a non-stable but circular orbit around the black hole. For non-rotating black holes, the photon sphere has a radius 1.5 times the Schwarzschild radius. Their orbits would be
1193:
Also in 1939, Einstein attempted to prove that black holes were impossible in his publication "On a Stationary System with Spherical Symmetry Consisting of Many Gravitating Masses", using his theory of general relativity to defend his argument. Months later, Oppenheimer and his student
2365:
In the case of a charged (Reissner–Nordström) or rotating (Kerr) black hole, it is possible to avoid the singularity. Extending these solutions as far as possible reveals the hypothetical possibility of exiting the black hole into a different spacetime with the black hole acting as a
2295:
As predicted by general relativity, the presence of a mass deforms spacetime in such a way that the paths taken by particles bend towards the mass. At the event horizon of a black hole, this deformation becomes so strong that there are no paths that lead away from the black hole.
3880:
showed that counting the microstates of a specific supersymmetric black hole in string theory reproduced the Bekenstein–Hawking entropy. Since then, similar results have been reported for different black holes both in string theory and in other approaches to quantum gravity like
2492:
perturbations will, depending on the energy, result in spiraling in, stably orbiting between apastron and periastron, or escaping to infinity. The location of the ISCO depends on the spin of the black hole, in the case of a Schwarzschild black hole (spin zero) is:
2389:
should describe these actions, due to the extremely high density and therefore particle interactions. To date, it has not been possible to combine quantum and gravitational effects into a single theory, although there exist attempts to formulate such a theory of
1534:
When an object falls into a black hole, any information about the shape of the object or distribution of charge on it is evenly distributed along the horizon of the black hole, and is lost to outside observers. The behaviour of the horizon in this situation is a
3280:
supermassive black hole as there are no other plausible scenarios for confining so much invisible mass into such a small volume. Additionally, there is some observational evidence that this object might possess an event horizon, a feature unique to black holes.
3233:
provide strong observational evidence that these stars are orbiting a supermassive black hole. Since 1995, astronomers have tracked the motions of 90 stars orbiting an invisible object coincident with the radio source Sagittarius A*. By fitting their motions to
3654:, the individual states of a black hole solution do not generally have an event horizon or singularity, but for a classical/semiclassical observer the statistical average of such states appears just as an ordinary black hole as deduced from general relativity. 3041:
If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 10 years. A supermassive black hole with a mass of
280:
in plain view, but enthusiasm dampened when the wavelike nature of light became apparent in the early nineteenth century, as if light were a wave rather than a particle, it was unclear what, if any, influence gravity would have on escaping light waves.
2896:
experiments. This suggests that there must be a lower limit for the mass of black holes. Theoretically, this boundary is expected to lie around the Planck mass, where quantum effects are expected to invalidate the predictions of general relativity.
1297:
At first, it was suspected that the strange features of the black hole solutions were pathological artefacts from the symmetry conditions imposed, and that the singularities would not appear in generic situations. This view was held in particular by
2144: 10845:
Johnson, M. D.; Fish, V. L.; Doeleman, S. S.; Marrone, D. P.; Plambeck, R. L.; Wardle, J. F. C.; Akiyama, K.; Asada, K.; Beaudoin, C. (4 December 2015). "Resolved magnetic-field structure and variability near the event horizon of Sagittarius A*".
1783:, black holes forming from the collapse of stars are expected to retain the nearly neutral charge of the star. Rotation, however, is expected to be a universal feature of compact astrophysical objects. The black-hole candidate binary X-ray source 2345:
that lies in the plane of rotation. In both cases, the singular region has zero volume. It can also be shown that the singular region contains all the mass of the black hole solution. The singular region can thus be thought of as having infinite
274:
in a letter published in November 1784. Michell's simplistic calculations assumed such a body might have the same density as the Sun, and concluded that one would form when a star's diameter exceeds the Sun's by a factor of 500, and its surface
3541:
It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole. The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's
2900:
This would put the creation of black holes firmly out of reach of any high-energy process occurring on or near the Earth. However, certain developments in quantum gravity suggest that the minimum black hole mass could be much lower: some
2661:, or because a star that would have been stable receives extra matter in a way that does not raise its core temperature. In either case the star's temperature is no longer high enough to prevent it from collapsing under its own weight. 2623:, the no-hair theorem, and the laws of black hole thermodynamics showed that the physical properties of black holes were simple and comprehensible, making them respectable subjects for research. Conventional black holes are formed by 1747: 6890:"When a Black Hole Finally Reveals Itself, It Helps to Have Our Very Own Cosmic Reporter – Astronomers announced Wednesday that they had captured the first image of a black hole. The Times's Dennis Overbye answers readers' questions" 1150:, would collapse further for the reasons presented by Chandrasekhar, and concluded that no law of physics was likely to intervene and stop at least some stars from collapsing to black holes. Their original calculations, based on the 3593:
The evidence for stellar black holes strongly relies on the existence of an upper limit for the mass of a neutron star. The size of this limit heavily depends on the assumptions made about the properties of dense matter. New exotic
3195:
The observation also provides the first observational evidence for the existence of stellar-mass black hole binaries. Furthermore, it is the first observational evidence of stellar-mass black holes weighing 25 solar masses or more.
2606:
Penrose demonstrated that once an event horizon forms, general relativity without quantum mechanics requires that a singularity will form within. Shortly afterwards, Hawking showed that many cosmological solutions that describe the
2417:
horizon. For a Kerr black hole the radius of the photon sphere depends on the spin parameter and on the details of the photon orbit, which can be prograde (the photon rotates in the same sense of the black hole spin) or retrograde.
3107:(EHT) is an active program that directly observes the immediate environment of black holes' event horizons, such as the black hole at the centre of the Milky Way. In April 2017, EHT began observing the black hole at the centre of 2322:
of the event horizon of a black hole at equilibrium is always spherical. For non-rotating (static) black holes the geometry of the event horizon is precisely spherical, while for rotating black holes the event horizon is oblate.
1105:
would be so great that the spectrum would be shifted out of existence. Thirdly, the mass would produce so much curvature of the spacetime metric that space would close up around the star, leaving us outside (i.e., nowhere)."
3629:
Since the average density of a black hole inside its Schwarzschild radius is inversely proportional to the square of its mass, supermassive black holes are much less dense than stellar black holes. The average density of a
3626:. These hypothetical models could potentially explain a number of observations of stellar black hole candidates. However, it can be shown from arguments in general relativity that any such object will have a maximum mass. 1100:. Arthur Eddington commented on the possibility of a star with mass compressed to the Schwarzschild radius in a 1926 book, noting that Einstein's theory allows us to rule out overly large densities for visible stars like 2764:
While most of the energy released during gravitational collapse is emitted very quickly, an outside observer does not actually see the end of this process. Even though the collapse takes a finite amount of time from the
3072:, so astrophysicists searching for black holes must generally rely on indirect observations. For example, a black hole's existence can sometimes be inferred by observing its gravitational influence on its surroundings. 3816:
In 1971, Hawking showed under general conditions that the total area of the event horizons of any collection of classical black holes can never decrease, even if they collide and merge. This result, now known as the
385: 13925: 2770:
an infinite amount of time. Thus the external observer never sees the formation of the event horizon; instead, the collapsing material seems to become dimmer and increasingly red-shifted, eventually fading away.
130:. A black hole has a great effect on the fate and circumstances of an object crossing it, but it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal 2998:) is proportional to the surface gravity of the black hole, which, for a Schwarzschild black hole, is inversely proportional to the mass. Hence, large black holes emit less radiation than small black holes. 2734:
could have formed from the direct collapse of gas clouds in the young universe. These massive objects have been proposed as the seeds that eventually formed the earliest quasars observed already at redshift
2580: 1594:
The simplest static black holes have mass but neither electric charge nor angular momentum. These black holes are often referred to as Schwarzschild black holes after Karl Schwarzschild who discovered this
3657:
A few theoretical objects have been conjectured to match observations of astronomical black hole candidates identically or near-identically, but which function via a different mechanism. These include the
2928:. These theories are very speculative, and the creation of black holes in these processes is deemed unlikely by many specialists. Even if micro black holes could be formed, it is expected that they would 2708:
is insufficient to stop the collapse. No known mechanism (except possibly quark degeneracy pressure) is powerful enough to stop the implosion and the object will inevitably collapse to form a black hole.
3641:
The evidence for the existence of stellar and supermassive black holes implies that in order for black holes not to form, general relativity must fail as a theory of gravity, perhaps due to the onset of
3571:
occurs when the sources are unresolved and the observer sees a small brightening. In January 2022, astronomers reported the first possible detection of a microlensing event from an isolated black hole.
3646:
corrections. A much anticipated feature of a theory of quantum gravity is that it will not feature singularities or event horizons and thus black holes would not be real artefacts. For example, in the
3318:
Within such a disk, friction would cause angular momentum to be transported outward, allowing matter to fall farther inward, thus releasing potential energy and increasing the temperature of the gas.
2990:); this effect has become known as Hawking radiation. By applying quantum field theory to a static black hole background, he determined that a black hole should emit particles that display a perfect 9541: 2704:(the Tolman–Oppenheimer–Volkoff limit), either because the original star was very heavy or because the remnant collected additional mass through accretion of matter, even the degeneracy pressure of 1499:
properties, or parameters, are indistinguishable from one another. The degree to which the conjecture is true for real black holes under the laws of modern physics is currently an unsolved problem.
7077: 2727:. These black holes could be the seeds of the supermassive black holes found in the centres of most galaxies. It has further been suggested that massive black holes with typical masses of ~10  3111:. "In all, eight radio observatories on six mountains and four continents observed the galaxy in Virgo on and off for 10 days in April 2017" to provide the data yielding the image in April 2019. 2225: 12002:
Muñoz, José A.; Mediavilla, Evencio; Kochanek, Christopher S.; Falco, Emilio; Mosquera, Ana María (1 December 2011). "A Study of Gravitational Lens Chromaticity with the Hubble Space Telescope".
4183: 70: 12240: 3575:
Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around
1902: 10544:"That Famous Black Hole Gets a Second Look - Repeated studies of the supermassive black hole in the galaxy Messier 87 confirm that it continues to act as Einstein's theory predicted it would" 10133: 2341:, a region where the spacetime curvature becomes infinite. For a non-rotating black hole, this region takes the shape of a single point; for a rotating black hole it is smeared out to form a 11522:
Ghez, A. M.; Klein, B. L.; Morris, M.; et al. (1998). "High Proper-Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy".
5524:
Shibata, M.; Fujibayashi, S.; Hotokezaka, K.; Kiuchi, K.; Kyutoku, K.; Sekiguchi, Y.; Tanaka, M. (22 December 2017). "Modeling GW170817 based on numerical relativity and its implications".
2385:
The appearance of singularities in general relativity is commonly perceived as signalling the breakdown of the theory. This breakdown, however, is expected; it occurs in a situation where
2307:. Eventually, the falling object fades away until it can no longer be seen. Typically this process happens very rapidly with an object disappearing from view within less than a second. 1836: 1404:, representing the first observation of a black hole merger. On 10 April 2019, the first direct image of a black hole and its vicinity was published, following observations made by the 3329:
that are emitted along the poles, which carry away much of the energy. The mechanism for the creation of these jets is currently not well understood, in part due to insufficient data.
2834: 8070: 3838:
entropy of the matter surrounding a black hole and one quarter of the area of the horizon as measured in Planck units is in fact always increasing. This allows the formulation of the
12980: 8821:
Bardeen, James M.; Press, William H.; Teukolsky, Saul A. (1 December 1972). "Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation".
2370:. The possibility of travelling to another universe is, however, only theoretical since any perturbation would destroy this possibility. It also appears to be possible to follow 7042: 1190:
were called "frozen stars", because an outside observer would see the surface of the star frozen in time at the instant where its collapse takes it to the Schwarzschild radius.
200:
Black holes of stellar mass form when massive stars collapse at the end of their life cycle. After a black hole has formed, it can grow by absorbing mass from its surroundings.
5227:
The first conclusion was the Newtonian version of light not escaping; the second was a semi-accurate, relativistic description; and the third was typical Eddingtonian hyperbole
2054: 12321: 3955:
and Leonard Susskind, there will eventually be a time by which an outgoing particle must be entangled with all the Hawking radiation the black hole has previously emitted.
2354:
singularity, they are crushed to infinite density and their mass is added to the total of the black hole. Before that happens, they will have been torn apart by the growing
1077:, independently gave the same solution for the point mass and wrote more extensively about its properties. This solution had a peculiar behaviour at what is now called the 11056: 15584: 4205:(the diagram is a "cartoon" version of an Eddington–Finkelstein coordinate diagram), but in other coordinates the light cones are not tilted in this way, for example in 1448:, and in the early 20th century, physicists used the term "gravitationally collapsed object". Science writer Marcia Bartusiak traces the term "black hole" to physicist 2657:
is insufficient to resist the object's own gravity. For stars this usually occurs either because a star has too little "fuel" left to maintain its temperature through
2439:
Rotating black holes are surrounded by a region of spacetime in which it is impossible to stand still, called the ergosphere. This is the result of a process known as
13013: 2759: 10615: 16260: 755: 4094:
1 for objects other than black holes. The largest value known for a neutron star is ≀ 0.4, and commonly used equations of state would limit that value to < 0.7.
3332:
As such, many of the universe's more energetic phenomena have been attributed to the accretion of matter on black holes. In particular, active galactic nuclei and
10823: 10677: 2680:). The mass of the remnant, the collapsed object that survives the explosion, can be substantially less than that of the original star. Remnants exceeding 5  6829:; Johnson, Michael D.; Zoran, Daniel; Fish, Vincent L.; Doeleman, Sheperd S.; Freeman, William T. (2016). "Computational Imaging for VLBI Image Reconstruction". 1643: 10198: 7109: 4497: 2892:
collisions that achieve sufficient density. As of 2002, no such events have been detected, either directly or indirectly as a deficiency of the mass balance in
6073: 4402: 3833:
The link with the laws of thermodynamics was further strengthened by Hawking's discovery in 1974 that quantum field theory predicts that a black hole radiates
1432:, there are thought to be hundreds of millions, most of which are solitary and do not cause emission of radiation. Therefore, they would only be detectable by 10366: 6889: 3321:
When the accreting object is a neutron star or a black hole, the gas in the inner accretion disk orbits at very high speeds because of its proximity to the
10942:"A Fresh View of an Increasingly Familiar Black Hole - Radio astronomers have captured a wide-angle image of one of the most violent locales in the cosmos" 9580: 9043: 7539:
McClintock, J. E.; Shafee, R.; Narayan, R.; Remillard, R. A.; Davis, S. W.; Li, L.-X. (2006). "The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105".
6349: 2299:
To a distant observer, clocks near a black hole would appear to tick more slowly than those farther away from the black hole. Due to this effect, known as
1028: 8453: 7069: 12279: 11802: 10553: 9942:
Zwart, S. F. P.; Baumgardt, H.; Hut, P.; et al. (2004). "Formation of massive black holes through runaway collisions in dense young star clusters".
3347:
Stars have been observed to get torn apart by tidal forces in the immediate vicinity of supermassive black holes in galaxy nuclei, in what is known as a
1476: 7289: 1629:
While the mass of a black hole can take any positive value, the charge and angular momentum are constrained by the mass. The total electric charge 
9606: 7948: 7008: 5711: 3868:
Although general relativity can be used to perform a semiclassical calculation of black hole entropy, this situation is theoretically unsatisfying. In
3638:
by a large cluster of very dark objects. However, such alternatives are typically not stable enough to explain the supermassive black hole candidates.
3161:
In April 2023, an image of the shadow of the Messier 87 black hole and the related high-energy jet, viewed together for the first time, was presented.
12230: 11664: 8036: 4201:(in this diagram the light cone is represented by the V-shaped region bounded by arrows representing light ray world lines), is tilted in this way in 2280:
Inside of the event horizon, all paths bring the particle closer to the centre of the black hole. It is no longer possible for the particle to escape.
2167:. For a black hole with nonzero spin and/or electric charge, the radius is smaller, until an extremal black hole could have an event horizon close to 1486:; Wheeler adopted the term for its brevity and "advertising value", and it quickly caught on, leading some to credit Wheeler with coining the phrase. 12606: 2252:
Far away from the black hole, a particle can move in any direction, as illustrated by the set of arrows. It is restricted only by the speed of light.
10125: 8211: 5182: 5106: 407: 3173:
LIGO measurement of the gravitational waves at the Livingston (right) and Hanford (left) detectors, compared with the theoretical predicted values
16989: 11466:
Gillessen, S.; Eisenhauer, F.; Trippe, S.; et al. (2009). "Monitoring Stellar Orbits around the Massive Black Hole in the Galactic Center".
4756: 3351:. Some of the material from the disrupted star forms an accretion disk around the black hole, which emits observable electromagnetic radiation. 1760:. Solutions of Einstein's equations that violate this inequality exist, but they do not possess an event horizon. These solutions have so-called 10951: 10584: 16591: 14546:
Mann, Robert B.; Murk, Sebastian; Terno, Daniel R. (2022). "Black holes and their horizons in semiclassical and modified theories of gravity".
13340: 12199: 11916:
Winter, L. M.; Mushotzky, R. F.; Reynolds, C. S. (2006). "XMM-Newton Archival Study of the Ultraluminous X-Ray Population in Nearby Galaxies".
8236: 4223: 1234:, which was marked by general relativity and black holes becoming mainstream subjects of research. This process was helped by the discovery of 8686: 2948:
from its surroundings. This growth process is one possible way through which some supermassive black holes may have been formed, although the
2641: 14940: 3923:) has divided the theoretical physics community. In quantum mechanics, loss of information corresponds to the violation of a property called 1085:, meaning that some of the terms in the Einstein equations became infinite. The nature of this surface was not quite understood at the time. 320: 14666: 8074: 2676:. Which type forms depends on the mass of the remnant of the original star left if the outer layers have been blown away (for example, in a 14945: 10517: 10487: 8864: 6409: 612: 12972: 10326:; et al. (1994). "Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts". 9301:
Carr, B. J. (2005). "Primordial Black Holes: Do They Exist and Are They Useful?". In Suzuki, H.; Yokoyama, J.; Suto, Y.; Sato, K. (eds.).
7361: 7323: 3154:
well and escaped, meaning that most of the possible perspectives on M87* can see the entire disc, even that directly behind the "shadow".
2720:
in the early universe may have resulted in very massive stars, which upon their collapse would have produced black holes of up to 10 
16307: 7424: 6037: 5332: 2311:
classical general relativity, it is impossible to determine the location of the event horizon from local observations, due to Einstein's
14656:– Interactive multimedia Web site about the physics and astronomy of black holes from the Space Telescope Science Institute (HubbleSite) 14206: 9855: 7896: 7847: 6493: 5260: 5080: 3849:
One puzzling feature is that the entropy of a black hole scales with its area rather than with its volume, since entropy is normally an
16542: 15664: 15321: 14105: 965: 10646: 7142: 7034: 6520:
Shipman, H. L.; Yu, Z; Du, Y.W (1975), "The implausible history of triple star models for Cygnus X-1 Evidence for a black hole",
3049:
will evaporate in around 2×10 years. Some monster black holes in the universe are predicted to continue to grow up to perhaps 10 
2382:. It is expected that none of these peculiar effects would survive in a proper quantum treatment of rotating and charged black holes. 16331: 16077: 10003:
O'Leary, R. M.; Rasio, F. A.; Fregeau, J. M.; et al. (2006). "Binary Mergers and Growth of Black Holes in Dense Star Clusters".
6470: 3938:" was introduced with the goal of demonstrating that black hole complementarity fails to solve the information paradox. According to 2498: 1596: 775: 617: 12142: 11628: 10711: 8655: 3340:
systems in which one of the two stars is a compact object accreting matter from its companion. It has also been suggested that some
2865:, it did not re-collapse into a black hole during the Big Bang, since the expansion rate was greater than the attraction. Following 2044:. The size of a black hole, as determined by the radius of the event horizon, or Schwarzschild radius, is proportional to the mass, 15259: 15085: 14985: 5021: 4011: 3939: 3182: 2484: 1397: 1161:. Subsequent consideration of neutron-neutron repulsion mediated by the strong force raised the estimate to approximately 1.5  1147: 1021: 730: 135: 4883: 13003: 12305: 11891: 9889:
Vesperini, E.; McMillan, S. L. W.; d'Ercole, A.; et al. (2010). "Intermediate-Mass Black Holes in Early Globular Clusters".
4561: 3200: 3034:
have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes. NASA's
11046: 8946:
Bardeen, J. M. (1972). "Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation".
4433: 2974:
In 1974, Hawking predicted that black holes are not entirely black but emit small amounts of thermal radiation at a temperature
16113: 16067: 13355: 7231: 6571: 2266:
Closer to the black hole, spacetime starts to deform. There are more paths going towards the black hole than paths moving away.
643: 477: 8297:
Visser, M. (22 January 2009). "The Kerr spacetime: A brief introduction". In Wiltshire, D.L.; Visser, M.; Scott, S.M. (eds.).
3865:, which suggests that anything that happens in a volume of spacetime can be described by data on the boundary of that volume. 270:
The idea of a body so big that even light could not escape was briefly proposed by English astronomical pioneer and clergyman
16251: 14762: 14378: 14347: 14323: 14300: 14270: 14236: 14192: 14171: 14144: 14094: 14066: 14023: 13999: 13980: 13957: 13886: 13858: 13834: 13316: 13204: 12315: 12273: 11777: 9431: 9328: 9134: 8205: 7874: 7825: 7451: 7418: 7269: 6864: 6620: 5326: 5254: 5213: 5168: 5074: 4831: 4473: 4202: 682: 14353: 14242: 13892: 13809: 11969: 8324: 7880: 7831: 4837: 4479: 15735: 12172:
Shipman, H. L. (1 January 1975). "The implausible history of triple star models for Cygnus X-1 Evidence for a black hole".
3909: 3336:
are believed to be the accretion disks of supermassive black holes. Similarly, X-ray binaries are generally accepted to be
2888:
Gravitational collapse is not the only process that could create black holes. In principle, black holes could be formed in
2173: 1604: 10607: 10447:
Page, Don N. (1976). "Particle emission rates from a black hole: Massless particles from an uncharged, nonrotating hole".
9837: 5773: 4106: 1928: 14642: 8318: 7944: 1626:
black hole solution known is the Kerr–Newman metric, which describes a black hole with both charge and angular momentum.
1575: 1014: 234:
and with electromagnetic radiation such as visible light. Any matter that falls toward a black hole can form an external
9628:
Giddings, S. B.; Thomas, S. (2002). "High energy colliders as black hole factories: The end of short distance physics".
7994: 3354:
In November 2011 the first direct observation of a quasar accretion disk around a supermassive black hole was reported.
1318:
used global techniques to prove that singularities appear generically. For this work, Penrose received half of the 2020
16584: 15988: 15301: 14680: 14047: 13729:
Amheiri, Ahmed; Marolf, Donald; Polchinski, Joseph; Sully, James (2013). "Black holes: Complementarity or Firewalls?".
10815: 10669: 9189: 9151: 4860: 4372: 3818: 3663: 2431: 1851: 1600: 1179:, which is thought to have generated a black hole shortly afterward, have refined the TOV limit estimate to ~2.17  394: 11980: 10915: 8346:
Delgado, J.F. M.; Herdeiro, C.A. R.; Radu, E. (2018). "Horizon geometry for Kerr black holes with synchronized hair".
6975: 16359: 15993: 15390: 13919: 13803: 10206: 9344: 7099: 4538: 4392: 3839: 420: 11686:
Marck, Jean-Alain (1 March 1996). "Short-cut method of solution of geodesic equations for Schwarzchild black hole".
10543: 5646:"Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars" 4995:
Antoci, S. (1999). "On the gravitational field of a sphere of incompressible fluid according to Einstein's theory".
3264:—has completed a full orbit. From the orbital data, astronomers were able to refine the calculations of the mass to 3150:
from a perspective catching the black hole's accretion disc nearly edge-on, as the whole system rotated clockwise.
16956: 15385: 14702: 11301:
Murk, Sebastian (2023). "Nomen non est omen: Why it is too soon to identify ultra-compact objects as black holes".
10362: 10228:
Giddings, S. B.; Mangano, M. L. (2008). "Astrophysical implications of hypothetical stable TeV-scale black holes".
6900: 4222:
This is true only for four-dimensional spacetimes. In higher dimensions more complicated horizon topologies like a
4210: 3307: 3115:
Instead, it is the gases at the edge of the event horizon, displayed as orange or red, that define the black hole.
1551:
such as electromagnetism, which do not have any friction or resistivity at the microscopic level, because they are
1231: 1220: 17811: 16313: 15270: 11419: 11222: 1619: 983: 700: 313: 17186: 16921: 16026: 15306: 15102: 14685: 13389:. Johns Hopkins Workshop on Current Problems in Particle Theory 19 and the PASCOS Interdisciplinary Symposium 5. 12343:
Kormendy, J.; Richstone, D. (1995). "Inward Bound – The Search For Supermassive Black Holes In Galactic Nuclei".
11441: 10738: 6103: 5022:"On the field of a single centre in Einstein's theory of gravitation, and the motion of a particle in that field" 3035: 2478: 1608: 607: 9734:
Arkani–Hamed, N.; Dimopoulos, S.; Dvali, G. (1998). "The hierarchy problem and new dimensions at a millimeter".
9090: 6390: 1793: 17871: 17548: 16129: 15528: 15209: 14848: 13430: 11150:
Cardoso, V.; Franzin, E.; Pani, P. (2016). "Is the gravitational-wave ringdown a probe of the event horizon?".
8443: 4505: 4051: 3920: 3894: 3080: 2791: 2779:
allow black hole formation since a uniform mass distribution will not allow the mass to bunch up. In order for
12263: 11794: 9107:
Kerr, R. P. (2009). "The Kerr and Kerr-Schild metrics". In Wiltshire, D. L.; Visser, M.; Scott, S. M. (eds.).
8475:
Lewis, G. F.; Kwan, J. (2007). "No Way Back: Maximizing Survival Time Below the Schwarzschild Event Horizon".
1511:), far away from the black hole. Likewise, the angular momentum (or spin) can be measured from far away using 1282:
emerged, stating that a stationary black hole solution is completely described by the three parameters of the
17866: 17128: 16634: 16577: 16560: 16302: 16207: 16137: 15296: 15171: 11355: 11214: 11079: 7669: 7598: 7297: 6971: 4952:
Antoci, S.; Loinger, A. (1999). "On the gravitational field of a mass point according to Einstein's theory".
3825:, which states that the total entropy of an isolated system can never decrease. As with classical objects at 3563:. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few 1520: 1390: 1377:
with a temperature proportional to the surface gravity of the black hole, predicting the effect now known as
694: 402: 297: 16270: 9598: 8981: 7936: 7000: 5744: 3473:
Astronomers use the term "active galaxy" to describe galaxies with unusual characteristics, such as unusual
3434:
The X-ray emissions from accretion disks sometimes flicker at certain frequencies. These signals are called
3142:
The brightening of this material in the 'bottom' half of the processed EHT image is thought to be caused by
2450:, which coincides with the event horizon at the poles but is at a much greater distance around the equator. 740: 17573: 16898: 16629: 16124: 15702: 15214: 15117: 14905: 11660: 10941: 8024: 7605:) (1 June 2017). "GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2". 4970: 4925: 4610:
Webster, B. Louise; Murdin, Paul (1972), "Cygnus X-1—a Spectroscopic Binary with a Heavy Companion?",
3822: 3139:
on the way to the galactic centre, an effect which prevents resolution of the image at longer wavelengths.
3025:
Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/
2953: 2949: 2458: 1972: 1772:
rules out the formation of such singularities, when they are created through the gravitational collapse of
1769: 1199: 760: 15224: 11750:
McClintock, J. E.; Remillard, R. A. (2006). "Black Hole Binaries". In Lewin, W.; van der Klis, M. (eds.).
16165: 15899: 15884: 15518: 15483: 15473: 13170: 12203: 8166: 7676:) (16 October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". 5276: 4026: 3843: 3013: 2300: 2139:{\displaystyle r_{\mathrm {s} }={\frac {2GM}{c^{2}}}\approx 2.95\,{\frac {M}{M_{\odot }}}~\mathrm {km,} } 1323: 1303: 1001: 492: 412: 31: 17153: 12098:
Webster, B. L.; Murdin, P. (1972). "Cygnus X-1 – a Spectroscopic Binary with a Heavy Companion ?".
9241:"First Identification of Direct Collapse Black Hole Candidates in the Early Universe in CANDELS/GOODS-S" 6700:
Abbott, B.P.; et al. (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger".
5113: 3550:, strongly suggests a connection between the formation of the black hole and that of the galaxy itself. 3068:
By nature, black holes do not themselves emit any electromagnetic radiation other than the hypothetical
2585:
and decreases with increasing black hole spin for particles orbiting in the same direction as the spin.
17766: 17074: 16779: 16726: 16452: 15894: 15847: 15204: 15156: 15139: 14838: 14630: 14132: 14013: 11575:
Broderick, Avery; Loeb, Abraham; Narayan, Ramesh (August 2009). "The Event Horizon of Sagittarius A*".
8768:
Nitta, Daisuke; Chiba, Takeshi; Sugiyama, Naoshi (September 2011). "Shadows of colliding black holes".
7749:
Saa, Alberto; Santarelli, Raphael (18 July 2011). "Destroying a near-extremal Kerr–Newman black hole".
5395: 4823: 4465: 3931: 3435: 3429: 3341: 3057: 1127:) has no stable solutions. His arguments were opposed by many of his contemporaries like Eddington and 1113: 1109: 905: 453: 216: 4971:"Über das Gravitationsfeld einer Kugel aus inkompressibler FlĂŒssigkeit nach der Einsteinschen Theorie" 1338:
source discovered in 1964, became the first astronomical object commonly accepted to be a black hole.
17792: 17368: 16482: 16108: 15789: 15659: 15161: 15075: 14823: 14755: 10576: 6771: 4206: 4016: 3951:
amount of information encoded within its Hawking radiation. According to research by physicists like
3688: 3373: 3294: 2338: 2332: 1350: 1151: 1082: 705: 517: 190: 17: 17413: 13641: 12207: 9461: 17593: 17513: 17328: 17262: 16624: 16507: 16057: 15817: 15728: 15336: 14499:
Cardoso, Vitor; Pani, Paolo (2019). "Testing the nature of dark compact objects: a status report".
13569: 8690: 5579:"GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass" 3959: 3647: 1327: 1310:, who tried to prove that no singularities appear in generic solutions. However, in the late 1960s 1058: 940: 930: 780: 597: 76: 17473: 2869:
there was a net repulsive gravitation in the beginning until the end of inflation. Since then the
1131:, who argued that some yet unknown mechanism would stop the collapse. They were partly correct: a 17733: 17543: 17257: 17095: 17069: 16941: 16810: 16699: 16641: 16236: 16158: 15778: 15769: 15513: 15049: 15012: 14915: 14910: 14828: 14663: 13848: 11152: 7607: 6762: 6357: 6235: 6180: 4066: 4046: 3780: 3448: 3104: 2713: 2658: 1950: 1405: 925: 659: 201: 55: 17100: 10509: 10483: 8856: 5205: 3478:
consist of a central black hole that may be millions or billions of times more massive than the
17498: 17239: 17045: 16936: 16908: 16731: 16462: 16325: 16231: 16189: 15863: 15827: 15543: 15431: 15416: 15275: 14968: 14782: 14311: 14288: 14039:
The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics
13636: 13564: 7370: 7332: 5987:
Pilkington, J. D. H.; et al. (1968). "Observations of some further Pulsed Radio Sources".
5707: 4031: 3991: 3348: 3212: 2929: 2780: 2636: 2624: 2466: 2304: 1548: 1483: 1453: 1354: 1319: 1283: 1097: 895: 880: 725: 487: 14647: 12231:"RELEASE 15-001 – NASA's Chandra Detects Record-Breaking Outburst from Milky Way's Black Hole" 9867: 7893: 7408: 5467:"Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817" 5312: 3846:, with the mass acting as energy, the surface gravity as temperature and the area as entropy. 3189: 2952:
is still an open field of research. A similar process has been suggested for the formation of
2435:
The ergosphere is a region outside of the event horizon, where objects cannot remain in place.
2040:
Black holes are commonly classified according to their mass, independent of angular momentum,
17353: 17293: 17234: 17201: 17196: 16994: 16984: 16951: 16815: 16692: 16687: 16682: 16667: 16657: 16467: 16072: 16011: 15421: 15234: 14978: 14833: 14182: 14102: 7844: 5349: 5244: 5062: 4236: 3981: 3869: 3862: 3404: 2921: 2738: 2446:
The ergosphere of a black hole is a volume bounded by the black hole's event horizon and the
2371: 2312: 1540: 870: 438: 107: 17648: 14653: 12356: 7132: 6899: 6050: 5408: 5142: 2880:, do not necessarily apply in the same way to rapidly expanding space such as the Big Bang. 2712:
The gravitational collapse of heavy stars is assumed to be responsible for the formation of
1787:
appears to have an angular momentum near the maximum allowed value. That uncharged limit is
1049:, having earlier shown that gravity does influence light's motion. Only a few months later, 177:
found the first modern solution of general relativity that would characterise a black hole.
17856: 17738: 17523: 16736: 16721: 16677: 16372: 16298: 16142: 15744: 15692: 15400: 15372: 15255: 15183: 15151: 14995: 14803: 14748: 14565: 14518: 14471: 14401: 14101:, the lecture notes on which the book was based are available for free from Sean Carroll's 13748: 13693: 13628: 13556: 13510: 13449: 13400: 13296: 13247: 13184: 13119: 13067: 12917: 12860: 12807: 12754: 12701: 12625: 12566: 12511: 12454: 12435:(2000). "A Fundamental Relation Between Supermassive Black Holes and their Host Galaxies". 12397: 12352: 12181: 12107: 12064: 12021: 11935: 11867: 11765: 11705: 11594: 11541: 11485: 11385: 11359: 11320: 11244: 11218: 11171: 11105: 11083: 10998: 10865: 10779: 10638: 10456: 10400: 10335: 10294: 10247: 10164: 10075: 10022: 9961: 9908: 9813: 9753: 9700: 9647: 9556: 9495: 9411: 9316: 9262: 9198: 9122: 9058: 8985: 8955: 8830: 8787: 8731: 8608: 8561: 8494: 8365: 8271: 8185: 8119: 7768: 7695: 7673: 7626: 7602: 7558: 7493: 7199: 7056:
collapse in on itself. "Such a star then forms a 'black hole' in the universe," Ewing wrote
6790: 6720: 6659: 6600: 6580: 6529: 6428: 6366: 6296: 6244: 6189: 6149: 6112: 6046: 5998: 5953: 5913: 5873: 5831: 5728: 5667: 5600: 5543: 5488: 5431: 5404: 5367: 5285: 5148: 4982: 4937: 4765: 4705: 4661: 4619: 4576: 4514: 4345:(1997). "Gravitational Collapse and Cosmic Censorship". In Iyer, B. R.; Bhawal, B. (eds.). 4283: 3952: 3947: 3943: 3882: 3772: 3547: 3143: 2893: 1742:{\displaystyle {\frac {Q^{2}}{4\pi \epsilon _{0}}}+{\frac {c^{2}J^{2}}{GM^{2}}}\leq GM^{2}} 1623: 1394: 1370: 1299: 1267: 1239: 1078: 1054: 690: 186: 170: 14202: 10705: 10700: 8712:
Cramer, Claes R. (1997). "Using the Uncharged Kerr Black Hole as a Gravitational Mirror".
6616: 6462: 3169: 2761:. Some candidates for such objects have been found in observations of the young universe. 2627:
of heavy objects such as stars, but they can also in theory be formed by other processes.
8: 17840: 17653: 17538: 17191: 17090: 16716: 16447: 16442: 16432: 16264: 16213: 16031: 16016: 15842: 15773: 15721: 15523: 15498: 15468: 15426: 15380: 15017: 14883: 14878: 14808: 14675: 13228:
Strominger, A.; Vafa, C. (1996). "Microscopic origin of the Bekenstein-Hawking entropy".
12150: 11638: 9825: 8663: 7104: 6767:"First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole" 6499: 5778: 4021: 3986: 3924: 3834: 3453: 3188:
More importantly, the signal observed by LIGO also included the start of the post-merger
2995: 2991: 2889: 2379: 2375: 2287:
The defining feature of a black hole is the appearance of an event horizon—a boundary in
1757: 1482:
In December 1967, a student reportedly suggested the phrase "black hole" at a lecture by
1255: 1117: 1062: 885: 855: 850: 602: 162: 123: 16437: 14730: 14612: 14608: 14569: 14522: 14475: 14405: 13752: 13697: 13632: 13560: 13514: 13453: 13404: 13300: 13251: 13188: 13123: 13071: 12921: 12864: 12811: 12788:
Mathur, Samir D. (2005). "The fuzzball proposal for black holes: an elementary review".
12758: 12705: 12629: 12570: 12515: 12458: 12401: 12364: 12185: 12111: 12068: 12025: 11939: 11871: 11769: 11709: 11598: 11545: 11489: 11389: 11324: 11248: 11175: 11109: 11019: 11002: 10974: 10869: 10783: 10460: 10404: 10339: 10298: 10251: 10168: 10079: 10026: 9965: 9912: 9817: 9757: 9704: 9651: 9560: 9499: 9415: 9320: 9266: 9202: 9126: 9062: 8959: 8834: 8791: 8735: 8612: 8565: 8498: 8369: 8275: 8189: 8123: 7772: 7699: 7630: 7562: 7497: 7203: 6794: 6724: 6663: 6584: 6533: 6432: 6370: 6300: 6248: 6218:(1977). "The vacuum black hole uniqueness theorem and its conceivable generalisations". 6193: 6153: 6116: 6058: 6002: 5957: 5917: 5877: 5835: 5732: 5671: 5604: 5547: 5492: 5435: 5371: 5289: 5152: 5036: 4986: 4941: 4769: 4709: 4665: 4623: 4580: 4518: 4287: 2374:(returning to one's own past) around the Kerr singularity, which leads to problems with 1096:
realised that this meant the singularity at the Schwarzschild radius was a non-physical
1093: 865: 835: 150:
inversely proportional to its mass. This temperature is of the order of billionths of a
17804: 17698: 17618: 17518: 17478: 17408: 17358: 17323: 17158: 17035: 16931: 16672: 16512: 16412: 16336: 16194: 16175: 16169: 16120: 16062: 15971: 15889: 15807: 15784: 15752: 15357: 15229: 15134: 14925: 14893: 14858: 14818: 14813: 14581: 14555: 14534: 14508: 14487: 14461: 14433: 14037: 13946: 13764: 13738: 13662: 13618: 13590: 13546: 13500: 13473: 13439: 13390: 13334: 13322: 13286: 13263: 13237: 13210: 13174: 13142: 13109: 13097: 12953: 12907: 12876: 12850: 12823: 12797: 12770: 12744: 12717: 12691: 12662: 12643: 12615: 12582: 12556: 12529: 12501: 12470: 12444: 12413: 12387: 12123: 12080: 12037: 12011: 11951: 11925: 11883: 11879: 11857: 11755: 11729: 11695: 11610: 11606: 11584: 11557: 11531: 11501: 11497: 11475: 11411: 11375: 11336: 11310: 11268: 11234: 11195: 11161: 11129: 11095: 11051: 10988: 10946: 10889: 10855: 10797: 10769: 10548: 10424: 10263: 10237: 10180: 10091: 10065: 10038: 10012: 9985: 9951: 9924: 9898: 9829: 9803: 9769: 9743: 9716: 9690: 9663: 9637: 9572: 9519: 9485: 9449: 9437: 9401: 9306: 9280: 9252: 9216: 9112: 9082: 9074: 9012: 8890: 8803: 8777: 8747: 8721: 8510: 8484: 8448: 8389: 8355: 8304: 8230: 8175: 8142: 8109: 8097: 7784: 7758: 7719: 7685: 7650: 7616: 7574: 7548: 7516: 7483: 7471: 7223: 7189: 7137: 6937: 6894: 6870: 6834: 6808: 6780: 6744: 6710: 6675: 6604: 6444: 6418: 6382: 6319: 6286: 6274: 6014: 5969: 5791: 5685: 5657: 5621: 5590: 5578: 5559: 5533: 5506: 5478: 5198: 5112:. Institute for Theoretical Physics / Spinoza Institute. pp. 47–48. Archived from 5102: 4996: 4966: 4953: 4921: 4783: 4729: 4677: 4635: 4592: 4530: 4350: 4309: 4273: 4041: 3935: 3854: 3850: 3764: 3311: 2982: 2766: 2649:(observations from 2006, 2010 and 2013 are shown in blue, green and red, respectively). 1999: 1615: 1559:
every quantity that cannot be measured far away from the black hole horizon, including
1536: 1475:'Black Holes' in Space", dated 18 January 1964, which was a report on a meeting of the 1433: 1401: 1143: 1050: 1046: 935: 820: 745: 592: 497: 482: 443: 305: 174: 155: 115: 80: 44: 17085: 12940: 12895: 12682:
Hansson, J.; Sandin, F. (2005). "Preon stars: a new class of cosmic compact objects".
11842: 11398: 9920: 9765: 9400:. Proceedings of the International Astronomical Union. Vol. 238. pp. 51–58. 9044:"On A Stationary System With Spherical Symmetry Consisting of Many Gravitating Masses" 6541: 6407:
Ford, L. H. (2003). "The Classical Singularity Theorems and Their Quantum Loopholes".
4588: 2876:
Models for the gravitational collapse of objects of relatively constant size, such as
2461:
is considered a likely mechanism for the enormous luminosity and relativistic jets of
1622:, while the Kerr metric describes a non-charged rotating black hole. The most general 1539:
that is closely analogous to that of a conductive stretchy membrane with friction and
17861: 17799: 17663: 17568: 17403: 17313: 17283: 17079: 16974: 16926: 16820: 16522: 16354: 16346: 15947: 15904: 15503: 15493: 15488: 15188: 15176: 15129: 15070: 15039: 15029: 14963: 14585: 14538: 14491: 14432:
Hughes, Scott A. (2005). "Trust but verify: The case for astrophysical black holes".
14374: 14343: 14319: 14296: 14280: 14266: 14232: 14188: 14167: 14140: 14090: 14062: 14043: 14019: 13995: 13976: 13969: 13953: 13915: 13882: 13854: 13830: 13799: 13711: 13654: 13582: 13465: 13312: 13259: 13214: 13200: 13147: 12945: 12880: 12721: 12638: 12601: 12586: 12533: 12311: 12269: 12041: 12033: 11955: 11773: 11733: 11721: 11717: 11415: 11340: 11272: 11260: 11199: 11187: 11133: 11121: 11024: 10881: 10801: 10416: 10184: 10095: 9977: 9928: 9720: 9576: 9523: 9511: 9427: 9324: 9284: 9130: 8807: 8624: 8314: 8201: 8147: 7870: 7821: 7788: 7723: 7711: 7654: 7642: 7521: 7447: 7414: 7265: 7215: 6860: 6812: 6748: 6736: 6386: 6324: 5859: 5689: 5626: 5563: 5510: 5447: 5322: 5250: 5209: 5174: 5164: 5070: 4827: 4733: 4721: 4696: 4534: 4526: 4469: 4455: 4368: 4313: 4301: 3873: 3643: 3326: 3069: 2969: 2945: 2677: 2669: 2665: 2359: 1965: 1943: 1773: 1761: 1544: 1378: 1212: 765: 540: 178: 143: 139: 16392: 13768: 13666: 13477: 13363: 13326: 12827: 12774: 12735:
Kiefer, C. (2006). "Quantum gravity: general introduction and recent developments".
12647: 11887: 11614: 11561: 10893: 10428: 10267: 10087: 9833: 9773: 9441: 9086: 8514: 8393: 7227: 7177: 6608: 6448: 4596: 4425: 3056:
during the collapse of superclusters of galaxies. Even these would evaporate over a
815: 193:
compact objects as a possible astrophysical reality. The first black hole known was
17780: 17673: 17608: 17578: 17458: 17398: 17363: 17308: 17298: 17211: 17163: 17121: 17026: 17019: 17012: 17005: 16998: 16916: 16706: 16614: 16427: 16417: 16364: 16341: 15919: 15654: 15614: 15362: 15311: 15166: 15080: 14873: 14843: 14717: 14573: 14526: 14479: 14409: 14198: 14159: 14033: 13756: 13701: 13646: 13610: 13594: 13574: 13538: 13518: 13457: 13304: 13267: 13255: 13192: 13137: 13127: 13075: 13040: 12957: 12935: 12925: 12868: 12815: 12762: 12713: 12709: 12633: 12574: 12519: 12474: 12462: 12417: 12405: 12360: 12127: 12115: 12084: 12072: 12029: 11943: 11875: 11713: 11602: 11549: 11505: 11493: 11403: 11393: 11328: 11256: 11252: 11183: 11179: 11117: 11113: 11014: 11006: 10979: 10908:"Event Horizon Telescope Reveals Magnetic Fields at Milky Way's Central Black Hole" 10873: 10787: 10464: 10408: 10343: 10302: 10255: 10172: 10083: 10042: 10030: 9989: 9969: 9916: 9821: 9761: 9708: 9667: 9655: 9564: 9503: 9419: 9270: 9206: 9066: 9022: 8963: 8838: 8795: 8751: 8739: 8616: 8573: 8569: 8502: 8381: 8373: 8279: 8193: 8137: 8127: 7776: 7707: 7703: 7638: 7634: 7578: 7566: 7511: 7501: 7257: 7207: 6947: 6874: 6852: 6844: 6798: 6732: 6728: 6702: 6679: 6667: 6612: 6588: 6554: 6537: 6436: 6374: 6314: 6304: 6252: 6197: 6157: 6120: 6054: 6018: 6006: 5989: 5973: 5961: 5944: 5921: 5881: 5839: 5787: 5736: 5675: 5616: 5608: 5551: 5496: 5439: 5375: 5318: 5293: 5156: 5138: 4891: 4773: 4713: 4681: 4669: 4639: 4627: 4584: 4522: 4360: 4291: 4262:"Galaxy structure from multiple tracers – II. M87 from parsec to megaparsec scales" 4036: 3858: 3692: 3671: 3495: 3487: 3483: 3136: 2957: 2913: 2866: 2342: 2018: 1780: 1756:. Black holes with the minimum possible mass satisfying this inequality are called 1560: 1516: 1346: 1291: 1089: 890: 845: 825: 770: 17278: 16487: 12872: 8889:
Visser, Matt (2007). "The Kerr spacetime: A brief introduction". page 35, Fig. 3.
2394:. It is generally expected that such a theory will not feature any singularities. 910: 17753: 17708: 17658: 17643: 17633: 17528: 17493: 17318: 16888: 16662: 16502: 16477: 16402: 16397: 16280: 16241: 16203: 16147: 16021: 15957: 15674: 15624: 15599: 15395: 15239: 15146: 15112: 15024: 14670: 14337: 14226: 14222: 14109: 13909: 13876: 13868: 13844: 13793: 10577:"Darkness Visible, Finally: Astronomers Capture First Ever Image of a Black Hole" 10412: 9176: 8298: 8174:. Lecture Notes in Physics. Vol. 769. Berlin, Heidelberg. pp. 211–258. 7900: 7864: 7851: 7815: 6647: 6596: 6566: 6562: 6140: 5904: 5864: 5822: 5813: 5443: 5358: 4817: 4717: 4459: 3535: 3531: 3235: 2454: 2391: 2386: 1495: 1461: 1449: 1445: 1413: 1362: 1315: 1307: 1279: 1195: 1074: 1070: 1042: 945: 920: 805: 800: 664: 545: 507: 276: 51: 17598: 16285: 13760: 13650: 13578: 13308: 13285:. Lecture Notes in Physics. Vol. 769. Berlin, Heidelberg. pp. 89–123. 13079: 11972: 6074:"Fifty Years Ago, a Grad Student's Discovery Changed the Course of Astrophysics" 5862:(1958). "Past-Future Asymmetry of the Gravitational Field of a Point Particle". 5160: 4652:
Bolton, C. T. (1972), "Identification of Cygnus X-1 with HDE 226868",
3021:. Such a black hole would have a diameter of less than a tenth of a millimetre. 2843: 1092:
showed that the singularity disappeared after a change of coordinates. In 1933,
715: 230:
The presence of a black hole can be inferred through its interaction with other
223:. There is consensus that supermassive black holes exist in the centres of most 165:
are too strong for light to escape were first considered in the 18th century by
17816: 17728: 17723: 17683: 17623: 17453: 17443: 17438: 17433: 17348: 17343: 17338: 17303: 17288: 17216: 16893: 16756: 16527: 16199: 16183: 16179: 16082: 16052: 15909: 15812: 15589: 15574: 15341: 15280: 15124: 14798: 14116: 13461: 13196: 12900:
Proceedings of the National Academy of Sciences of the United States of America
12524: 12490:"An Isolated Stellar-Mass Black Hole Detected Through Astrometric Microlensing" 12489: 11042: 11010: 10937: 10792: 10757: 10539: 10259: 9788: 9712: 9659: 8799: 8377: 7780: 7467: 7439: 6803: 6766: 6558: 6256: 6215: 6201: 6175: 6098: 5899: 5680: 5645: 5612: 5555: 5501: 5466: 5353: 4388: 4001: 3756: 3611: 3595: 3576: 3543: 3408: 3384: 3322: 3289: 3119: 3096: 3092: 2717: 2668:
of the star's constituents, allowing the condensation of matter into an exotic
2440: 1563: 1512: 1504: 1275: 1259: 1224: 988: 955: 950: 638: 502: 251: 235: 215:) may form by absorbing other stars and merging with other black holes, or via 17613: 17533: 14735: 14722: 14709: 14697: 14577: 14530: 14414: 14389: 14163: 13522: 13495:. XXV International Symposium on Lepton Photon Interactions at High Energies. 12578: 11332: 10176: 9568: 9423: 8743: 8552:
Droz, S.; Israel, W.; Morsink, S. M. (1996). "Black holes: the inside story".
8197: 7211: 6440: 6378: 4926:"Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie" 4896: 4364: 3368: 2940:
Once a black hole has formed, it can continue to grow by absorbing additional
17850: 17718: 17703: 17678: 17668: 17638: 17583: 17558: 17488: 17483: 17448: 17423: 17383: 17173: 16825: 16741: 16619: 16600: 16517: 16497: 16492: 16407: 16275: 16103: 16047: 15879: 15832: 15649: 15569: 15097: 15092: 14120: 13872: 13058:
Hawking, S. W. (1971). "Gravitational Radiation from Colliding Black Holes".
12432: 11725: 11086:) (11 February 2016). "Properties of the binary black hole merger GW150914". 10712:"Astronomers Reveal First Image of the Black Hole at the Heart of Our Galaxy" 10323: 9537: 9180: 9027: 9000: 8620: 8002: 7357: 7319: 7219: 6952: 6925: 6345: 6161: 6032: 5939: 5925: 5719: 4305: 4006: 3826: 3651: 3603: 3474: 3315:
gravitational lensing would greatly distort the image of the accretion disk.
3226: 3127: 2620: 2616: 2488: 2403: 2337:
At the centre of a black hole, as described by general relativity, may lie a
2236: 1842: 1784: 1571: 1567: 1428:) away. Though only a couple dozen black holes have been found so far in the 1342: 1311: 1271: 1216: 915: 830: 810: 735: 633: 512: 127: 17503: 14626: 12930: 10877: 10468: 7444:
Black holes, white dwarfs, and neutron stars: the physics of compact objects
7133:"John A. Wheeler, Physicist Who Coined the Term 'Black Hole,' Is Dead at 96" 5885: 4852: 4296: 4261: 3164: 2292:
observer, making it impossible to determine whether such an event occurred.
1353:. These laws describe the behaviour of a black hole in close analogy to the 875: 17828: 17748: 17588: 17468: 17418: 17388: 17373: 17181: 17148: 17040: 16966: 16946: 16883: 16746: 16537: 16457: 16422: 15952: 15914: 15604: 15478: 15446: 15054: 14973: 14258: 13941: 13715: 13658: 13586: 13469: 13151: 13008: 12949: 12841:
Skenderis, K.; Taylor, M. (2008). "The fuzzball proposal for black holes".
12819: 12766: 12661:
Kusenko, A. (2006). "Properties and signatures of supersymmetric Q-balls".
12301: 11264: 11191: 11125: 11028: 10907: 10885: 10420: 10155:
Sivaram, C. (2001). "Black hole Hawking radiation may never be observed!".
10121: 9981: 9515: 9275: 9240: 9211: 9184: 8628: 8283: 8151: 7715: 7646: 7525: 6967: 6924:
Daniel R.; Seeburger, Rhys; Monter, Silvia Almada; Wojno, Jennifer (2023).
6826: 6740: 6328: 5844: 5817: 5703: 5630: 5451: 5379: 5178: 4778: 4751: 4747: 4725: 3976: 3568: 3363: 2673: 2612: 2453:
Objects and radiation can escape normally from the ergosphere. Through the
2347: 1987: 1467: 1263: 1136: 860: 840: 288:
that light travels on never leaves the surface of the "star" (black hole).
271: 259: 182: 166: 14452:
Gallo, Elena; Marolf, Donald (2009). "Resource Letter BH-2: Black Holes".
13281:
Carlip, S. (2009). "Black Hole Thermodynamics and Statistical Mechanics".
12378:
King, A. (2003). "Black Holes, Galaxy Formation, and the MBH-σ Relation".
10975:"A ring-like accretion structure in M87 connecting its black hole and jet" 10758:"First M87 Event Horizon Telescope Results. VII. Polarization of the Ring" 9352: 6848: 3853:
that scales linearly with the volume of the system. This odd property led
1526: 17743: 17713: 17693: 17553: 17508: 17463: 17428: 17378: 17143: 17112: 16873: 16830: 16321: 16290: 15837: 15644: 15594: 15548: 15451: 15326: 15265: 14990: 14898: 14333: 13425: 13421: 13165:'t Hooft, G. (2001). "The Holographic Principle". In Zichichi, A. (ed.). 13044: 12696: 12449: 12392: 11930: 11862: 11760: 11536: 10307: 10282: 10017: 9956: 9888: 9406: 9311: 8999:
Mummery, Andrew; Ingram, Adam; Davis, Shane; Fabian, Andrew (June 2024).
7553: 6856: 5942:; et al. (1968). "Observation of a Rapidly Pulsating Radio Source". 4493: 4342: 4061: 3972: 3877: 3830:
have an entropy, and that it should be proportional to its horizon area.
3602:
at high density might allow the existence of dense quark stars, and some
3588: 3412: 3337: 2870: 2785: 2410: 2355: 1366: 1251: 1132: 750: 720: 247: 147: 69: 13132: 9973: 9507: 9239:
Pacucci, F.; Ferrara, A.; Grazian, A.; Fiore, F.; Giallongo, E. (2016).
9001:"Continuum emission from within the plunging region of black hole discs" 8132: 7506: 6309: 5422:
Cho, A. (16 February 2018). "A weight limit emerges for neutron stars".
5001: 4958: 4209:
they narrow without tilting as one approaches the event horizon, and in
1135:
slightly more massive than the Chandrasekhar limit will collapse into a
17688: 17628: 17563: 17226: 17206: 17105: 17064: 16532: 15942: 15937: 15634: 15564: 15533: 15508: 15461: 15456: 15441: 15107: 15044: 15034: 14935: 14438: 14284: 14009: 13551: 13395: 13242: 13179: 12802: 12667: 11363: 11276: 10070: 10056:
Page, D. N. (2005). "Hawking radiation and black hole thermodynamics".
9748: 9642: 9220: 9078: 8385: 7253: 6592: 4975:
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften
4930:
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften
4198: 4194: 4056: 3623: 3503: 3499: 3417: 3400: 3387:
are binary star systems that emit a majority of their radiation in the
3377: 3254: 3131: 3126:
galaxy. The published image displayed the same ring-like structure and
3108: 3009: 2917: 2902: 2426: 2164: 1614:
Solutions describing more general black holes also exist. Non-rotating
1552: 1421: 1409: 1374: 1331: 1128: 1101: 1066: 960: 448: 380:{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }} 205: 194: 131: 59: 14710:"3D simulations of colliding black holes hailed as most realistic yet" 14483: 13623: 13114: 12912: 12749: 12055:
Bolton, C. T. (1972). "Identification of Cygnus X-1 with HDE 226868".
11700: 11433: 11407: 10639:"The Event Horizon Telescope: Imaging and Time-Resolving a Black Hole" 10205:. Max Planck Institute for Gravitational Physics. 2010. Archived from 9695: 8726: 8262:
Smarr, L. (1973). "Surface Geometry of Charged Rotating Black Holes".
7488: 6831:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
6423: 6124: 5740: 5147:. Science. Vol. 52. Cambridge University Press. pp. 233–40. 4787: 4355: 3930:
One attempt to resolve the black hole information paradox is known as
1471:
magazines in 1963, and by science journalist Ann Ewing in her article
1246:
In this period more general black hole solutions were found. In 1963,
17603: 17393: 17333: 16979: 16853: 16774: 16769: 16764: 15929: 15669: 15316: 15219: 15007: 15002: 13004:"Bubble-Like 'Stars Within Stars' Could Explain Black Hole Weirdness" 12119: 12076: 11364:"Astrophysical Implications of the Binary Black Hole Merger GW150914" 10755: 9602: 8599:
Poisson, E.; Israel, W. (1990). "Internal structure of black holes".
8032: 6671: 6220:
Proceedings of the 1st Marcel Grossmann meeting on general relativity
6010: 5965: 4694:
Clery D (2020). "Black holes caught in the act of swallowing stars".
4673: 4631: 3659: 3564: 3462: 3261: 3230: 3123: 2646: 2288: 1429: 531: 258:
galaxy, contains a supermassive black hole of about 4.3 million
255: 220: 95: 14371:
Space, Time, and Gravity: The Theory of the Big Bang and Black Holes
13706: 13681: 10437:
1 and section "black hole decay" and previous sentence on that page.
9070: 8506: 7937:"Singularities and Black Holes > Lightcones and Causal Structure" 5297: 1586: 1444:
John Michell used the term "dark star" in a November 1783 letter to
79:
with a galaxy passing behind. Around the time of alignment, extreme
17249: 17138: 17133: 16863: 16858: 16795: 16711: 16472: 15822: 15579: 15538: 15436: 14560: 14513: 13444: 12506: 12466: 12409: 11947: 11553: 11380: 11315: 11239: 11166: 11100: 10993: 10860: 10816:"The first picture of a black hole opens a new era of astrophysics" 10774: 10670:"The first picture of a black hole opens a new era of astrophysics" 10347: 10034: 9490: 9257: 9017: 8967: 8842: 8360: 7690: 7621: 7570: 7194: 7001:"MIT's Marcia Bartusiak On Understanding Our Place In The Universe" 6942: 6839: 6785: 6715: 6178:(1971). "Axisymmetric Black Hole Has Only Two Degrees of Freedom". 5662: 5595: 5538: 5483: 4278: 3919:
The question whether information is truly lost in black holes (the
3898: 3523: 3519: 3515: 3511: 3507: 2654: 2608: 2367: 2319: 1508: 1456:, notorious as a prison where people entered but never left alive. 1452:, who in the early 1960s reportedly compared the phenomenon to the 1417: 1349:, Carter, and Hawking in the early 1970s led to the formulation of 1247: 1176: 900: 710: 550: 285: 239: 224: 111: 14466: 13743: 13505: 13291: 12855: 12620: 12561: 12016: 11589: 11480: 11465: 10242: 9903: 9808: 9117: 8895: 8782: 8489: 8309: 8180: 8114: 7763: 6291: 6138:
Israel, W. (1967). "Event Horizons in Static Vacuum Space-Times".
5523: 1112:
calculated, using special relativity, that a non-rotating body of
16868: 16848: 16805: 16800: 15619: 9474: 7869:(illustrated ed.). Cambridge University Press. p. 168. 2862: 2705: 2462: 2274: 2260: 2246: 1416:. As of 2023, the nearest known body thought to be a black hole, 1358: 1146:
and others predicted that neutron stars above another limit, the
99: 16569: 12229:
Chou, Felicia; Anderson, Janet; Watzke, Megan (5 January 2015).
10739:"Focus on First Sgr A* Results from the Event Horizon Telescope" 7820:(illustrated ed.). Cambridge University Press. p. 26. 7538: 4851:
Crass, Institute of Astronomy – Design by D.R. Wilkins and S.J.
3751:) of a black hole, which depends on the area of the black hole ( 2645:
Gas cloud being ripped apart by black hole at the centre of the
16152: 15639: 15629: 15609: 15331: 14930: 14920: 14736:
Two Black Holes Merge into One (based upon the signal GW150914)
11047:"Physicists Detect Gravitational Waves, Proving Einstein Right" 9396:
Rees, M. J.; Volonteri, M. (2007). Karas, V.; Matt, G. (eds.).
3996: 3667: 3619: 3607: 3527: 3333: 3299: 2941: 2575:{\displaystyle r_{\rm {ISCO}}=3\,r_{s}={\frac {6\,GM}{c^{2}}},} 1425: 1369:. The analogy was completed when Hawking, in 1974, showed that 1235: 243: 231: 151: 14740: 13971:
The Edge of Infinity. Supermassive Black Holes in the Universe
13385:
Giddings, S. B. (1995). "The black hole information paradox".
11661:"Researchers clarify dynamics of black hole rotational energy" 11149: 10002: 8300:
The Kerr Spacetime: Rotating Black Holes in General Relativity
4560:
Montgomery, Colin; Orchiston, Wayne; Whittingham, Ian (2009).
4559: 3181:
gravitational wave observatory made the first-ever successful
16840: 15713: 12973:"Black Hole Pretenders Could Really Be Bizarre Quantum Stars" 8071:"Watch: Three Ways an Astronaut Could Fall Into a Black Hole" 3615: 3599: 3461:
flare from Sagittarius A*, a black hole in the centre of the
3458: 3388: 3344:
may be the accretion disks of intermediate-mass black holes.
3038:
launched in 2008 will continue the search for these flashes.
1335: 103: 13728: 13536:
Page, Don N. (1993). "Information in black hole radiation".
13035:
Ball, Philip (31 March 2005). "Black holes 'do not exist'".
12001: 10321: 10126:"Ask Ethan: Do Black Holes Grow Faster Than They Evaporate?" 6101:; et al. (1965). "Metric of a Rotating, Charged Mass". 3380:, which was the first strong black hole candidate discovered 2916:
to be created in the high-energy collisions that occur when
1764:
that can be observed from the outside, and hence are deemed
1574:. This behaviour is so puzzling that it has been called the 16133: 14445: 12235: 11745: 11743: 11633: 11437: 9786: 9733: 9185:"The Singularities of Gravitational Collapse and Cosmology" 6097: 5274:
Detweiler, S. (1981). "Resource letter BH-1: Black holes".
4562:"Michell, Laplace and the origin of the black hole concept" 4397: 3560: 3253:
object must be contained in a volume with a radius of 0.02
3217: 3178: 3147: 3085: 3018: 2925: 2877: 2028: 1287: 197:, identified by several researchers independently in 1971. 119: 17823: 12547:
Bozza, V. (2010). "Gravitational Lensing by Black Holes".
10844: 10391:
Frautschi, S. (1982). "Entropy in an Expanding Universe".
9681:
Harada, T. (2006). "Is there a black hole minimum mass?".
9238: 6233:
Robinson, D. (1975). "Uniqueness of the Kerr Black Hole".
5577:
Ruiz, M.; Shapiro, S. L.; Tsokaros, A. (11 January 2018).
5393:
Bombaci, I. (1996). "The Maximum Mass of a Neutron Star".
4213:
the light cones do not change shape or orientation at all.
3012:. This is far less than the 2.7 K temperature of the 2773: 1590:
An animation of how light rays can be gravitationally bent
14659: 14636: 11843:"Astrophysical evidence for the existence of black holes" 10704: This article incorporates text available under the 8165:
Obers, N. A. (2009). Papantonopoulos, Eleftherios (ed.).
6922: 5938: 5644:
Rezzolla, L.; Most, E. R.; Weih, L. R. (9 January 2018).
4259: 4193:
The set of possible paths, or more accurately the future
3479: 3165:
Detection of gravitational waves from merging black holes
2472: 13798:(Third ed.). New York: Cambridge University Press. 11740: 9542:"Gravitational Collapse: The Role of General Relativity" 9303:
Inflating Horizon of Particle Astrophysics and Cosmology
9152:"The Discovery of Black Holes: From Theory to Actuality" 8998: 8687:"Ask an Astrophysicist: Quantum Gravity and Black Holes" 7363:
Black holes and information: A crisis in quantum physics
7325:
Black holes and information: A crisis in quantum physics
7035:"50 years later, it's hard to say who named black holes" 5986: 5200:
Black Holes and Time Warps: Einstein's Outrageous Legacy
4235:
In particular, he assumed that all matter satisfies the
2653:
Gravitational collapse occurs when an object's internal
1322:, Hawking having died in 2018. Based on observations in 1069:
and a spherical mass. A few months after Schwarzschild,
158:, making it essentially impossible to observe directly. 14703:
Movie of Black Hole Candidate from Max Planck Institute
14698:
16-year-long study tracks stars orbiting Sagittarius A*
13795:
Gravity's Fatal Attraction: Black Holes in the Universe
13608:
Page, Don N. (1993). "Average entropy of a subsystem".
11973:"Hubble directly observes the disk around a black hole" 11915: 9941: 6761: 110:, is capable of possessing enough energy to escape it. 14077: 12336: 11629:"NASA's NuSTAR Sees Rare Blurring of Black Hole Light" 11521: 10608:"Astronomers Reveal the First Picture of a Black Hole" 9305:. Universal Academy Press. pp. astro–ph/0511743. 6825: 3958:
This seemingly creates a paradox: a principle called "
3238:, the astronomers were able to infer, in 1998, that a 1530:
An artistic depiction of a black hole and its features
17764: 14731:
Computer visualisation of the signal detected by LIGO
8820: 8477:
Publications of the Astronomical Society of Australia
7431: 7070:"Ann E. Ewing, journalist first reported black holes" 6350:"Gravitational Collapse and Space-Time Singularities" 5902:(1960). "Maximal Extension of Schwarzschild Metric". 4347:
Black Holes, Gravitational Radiation and the Universe
4109: 2794: 2741: 2501: 2220:{\displaystyle r_{\mathrm {+} }={\frac {GM}{c^{2}}}.} 2176: 2057: 1854: 1796: 1646: 1203:
develop, for the first time in contemporary physics.
323: 12294: 12200:"NASA scientists identify smallest known black hole" 11574: 10283:"The end of the world at the Large Hadron Collider?" 6553: 4916: 4914: 4178:{\displaystyle M+{\sqrt {M^{2}-{(J/M)}^{2}-Q^{2}}}.} 3118:
On 12 May 2022, the EHT released the first image of
2932:
in about 10 seconds, posing no threat to the Earth.
1266:
solution for a black hole that is both rotating and
14279: 11840: 11749: 9296: 9294: 9169: 8933: 8345: 8025:"What happens to you if you fall into a black hole" 7801: 5576: 3122:, the supermassive black hole at the centre of the 1477:
American Association for the Advancement of Science
13968: 13945: 13493:The information paradox: conflicts and resolutions 12228: 11841:Celotti, A.; Miller, J. C.; Sciama, D. W. (1999). 10661: 8767: 6968:"ESO Instrument Finds Closest Black Hole to Earth" 5348: 5197: 5063:"General Relativity in the Netherlands: 1915–1920" 4177: 3221:Stars moving around Sagittarius A* as seen in 2021 3135:Sagittarius A* was partially blurred by turbulent 2873:was slowed by the energy density of the universe. 2828: 2753: 2697:If the mass of the remnant exceeds about 3–4  2574: 2219: 2138: 1896: 1830: 1741: 379: 14158:. Fundamental Theories of Physics. Vol. 96. 12607:Monthly Notices of the Royal Astronomical Society 12342: 10568: 10386: 10384: 9391: 9389: 9387: 9005:Monthly Notices of the Royal Astronomical Society 8551: 7866:A Student's Guide to the Mathematics of Astronomy 7472:"Numerical Approaches to Spacetime Singularities" 6930:Monthly Notices of the Royal Astronomical Society 6819: 5811: 4911: 4816:Slayter, Elizabeth M.; Slayter, Henry S. (1992). 4799: 4797: 4266:Monthly Notices of the Royal Astronomical Society 2944:. Any black hole will continually absorb gas and 2905:scenarios for example put the boundary as low as 1897:{\displaystyle 0\leq {\frac {cJ}{GM^{2}}}\leq 1.} 17848: 14676:Frequently Asked Questions (FAQs) on Black Holes 13499:. Vol. 79, no. 5. pp. 1059–1073. 12599: 12430: 11035: 10668:Grossman, Lisa; Conover, Emily (10 April 2019). 9856:"Particle accelerators as black hole factories?" 9291: 8444:"Sizes of Black Holes? How Big is a Black Hole?" 7437: 6268: 6266: 5643: 5465:Margalit, B.; Metzger, B. D. (1 December 2017). 4884:"How black holes morphed from theory to reality" 3747:The formula for the Bekenstein–Hawking entropy ( 3206: 1408:(EHT) in 2017 of the supermassive black hole in 12840: 12300: 11968: 11145: 11143: 10667: 10227: 9234: 9232: 9230: 7862: 7283: 7281: 7028: 7026: 6695: 6693: 6691: 6689: 6275:"Stationary Black Holes: Uniqueness and Beyond" 5464: 4757:Philosophical Transactions of the Royal Society 2920:hit the Earth's atmosphere, or possibly in the 1373:implies that black holes should radiate like a 250:and established that the radio source known as 122:can deform spacetime to form a black hole. The 13227: 12602:"Can stellar mass black holes be quark stars?" 12222: 11621: 10756:Event Horizon Telescope Collaboration (2021). 10381: 9627: 9384: 9374: 9372: 9370: 9175: 8982:"First proof of black hole 'plunging regions'" 8290: 7100:"Pioneering Physicist John Wheeler Dies at 96" 6642: 6640: 6638: 6340: 6338: 5702: 5236: 4815: 4794: 3423: 1776:. This is supported by numerical simulations. 1116:above a certain limiting mass (now called the 16585: 15729: 14756: 14545: 13416: 13414: 13378: 12681: 12097: 11461: 11459: 11347: 10966: 10930: 10532: 9395: 8598: 7748: 6755: 6263: 5195: 5131: 4965: 4951: 4920: 4609: 3682: 3618:as fundamental building blocks of quarks and 3399:The first strong candidate for a black hole, 2687:are produced by stars that were over 20  1022: 14221: 14181:Frolov, Valeri P.; Zelnikov, Andrei (2011). 14154:Frolov, Valeri P.; Novikov, Igor D. (1998). 14119:(1973). "Black hole equilibrium states". In 14061:(2nd ed.). Cambridge University Press. 13791: 13347: 13167:Basics and Highlights in Fundamental Physics 13164: 12995: 12893: 12600:Kovacs, Z.; Cheng, K. S.; Harko, T. (2009). 11517: 11515: 11296: 11294: 11140: 9398:Massive black holes: Formation and evolution 9227: 8705: 8339: 8249: 8095: 7407:Seeds, Michael A.; Backman, Dana E. (2007). 7406: 7394: 7278: 7023: 6995: 6993: 6881: 6699: 6686: 6410:International Journal of Theoretical Physics 6071: 5637: 5458: 5242: 5101: 5067:Studies in the history of general relativity 4687: 4569:Journal of Astronomical History and Heritage 4103:The (outer) event horizon radius scales as: 3906:Is physical information lost in black holes? 2858:) to hundreds of thousands of solar masses. 2672:. The result is one of the various types of 1779:Due to the relatively large strength of the 14498: 14451: 12424: 12345:Annual Review of Astronomy and Astrophysics 12255: 11836: 11834: 11832: 11830: 11828: 11826: 11824: 11822: 11820: 11223:"Tests of general relativity with GW150914" 11071: 10484:"Black Holes | Science Mission Directorate" 9367: 8763: 8761: 7252: 6635: 6519: 6335: 6072:Boissoneault, Lorraine (28 February 2018). 6038:Annual Review of Astronomy and Astrophysics 5858: 5517: 5107:"Introduction to the Theory of Black Holes" 5065:. In Eisenstaedt, Jean; Kox, A. J. (eds.). 4381: 4337: 4335: 3946:of Hawking radiation involves two mutually 3900: 3888: 3486:and dust called an accretion disk; and two 3099:, black hole in the center of the Milky Way 2861:Despite the early universe being extremely 1489: 1459:The term "black hole" was used in print by 1243:might be formed by gravitational collapse. 1230:These results came at the beginning of the 1215:identified the Schwarzschild surface as an 16592: 16578: 15736: 15722: 15322:Magnetospheric eternally collapsing object 14763: 14749: 14388:Price, Richard; Creighton, Teviet (2008). 13948:The Black Hole at the Center of Our Galaxy 13411: 13339:: CS1 maint: location missing publisher ( 13091: 13089: 11456: 11426: 10972: 9780: 8296: 8255: 8235:: CS1 maint: location missing publisher ( 7661: 4260:Oldham, L. J.; Auger, M. W. (March 2016). 3598:could push up this bound. A phase of free 2597: 1831:{\displaystyle J\leq {\frac {GM^{2}}{c}},} 1175:. Observations of the neutron star merger 1029: 1015: 14721: 14559: 14548:International Journal of Modern Physics D 14512: 14465: 14437: 14413: 13792:Begelman, Mitchell; Rees, Martin (2021). 13742: 13705: 13640: 13622: 13568: 13550: 13504: 13443: 13420: 13394: 13290: 13241: 13178: 13141: 13131: 13113: 12939: 12929: 12911: 12854: 12801: 12748: 12695: 12666: 12637: 12619: 12560: 12523: 12505: 12448: 12391: 12307:Galaxies in the Universe: An Introduction 12015: 11929: 11861: 11795:"What powers a black hole's mighty jets?" 11759: 11699: 11588: 11535: 11512: 11479: 11397: 11379: 11314: 11303:International Journal of Modern Physics D 11291: 11238: 11165: 11099: 11018: 10992: 10973:Lu, Ru-Sen; et al. (26 April 2023). 10859: 10791: 10773: 10390: 10306: 10241: 10069: 10016: 9955: 9902: 9807: 9747: 9694: 9641: 9489: 9405: 9310: 9274: 9256: 9210: 9116: 9026: 9016: 8894: 8781: 8725: 8662:. University of Cambridge. Archived from 8488: 8474: 8359: 8308: 8179: 8141: 8131: 8113: 7863:Fleisch, Daniel; Kregenow, Julia (2013). 7762: 7689: 7620: 7592: 7590: 7588: 7552: 7515: 7505: 7487: 7290:"The Black Hole Information Loss Problem" 7193: 7176:Reynolds, Christopher S. (January 2019). 7032: 6990: 6951: 6941: 6838: 6802: 6784: 6714: 6422: 6318: 6308: 6290: 6025: 5843: 5771: 5679: 5661: 5620: 5594: 5537: 5500: 5482: 5344: 5342: 5273: 5196:Thorne, Kip S.; Hawking, Stephen (1994). 5137: 5095: 5000: 4957: 4895: 4777: 4426:"Journey into a Schwarzschild black hole" 4354: 4295: 4277: 3183:direct observation of gravitational waves 3063: 2883: 2829:{\displaystyle m_{P}={\sqrt {\hbar c/G}}} 2630: 2549: 2529: 2104: 13384: 11817: 10736: 10636: 9853: 9789:"Review of the Safety of LHC Collisions" 9596: 9041: 8884: 8882: 8758: 7369:. Caltech Theory Seminar. Archived from 7356: 7331:. Caltech Theory Seminar. Archived from 7318: 7287: 7175: 6916: 6887: 6232: 5818:"On Continued Gravitational Contraction" 5570: 4555: 4553: 4551: 4423: 4417: 4332: 4012:Hypothetical black hole (disambiguation) 3940:quantum field theory in curved spacetime 3452: 3367: 3293: 3216: 3168: 3091: 3079: 3075: 2640: 2430: 1585: 1525: 136:Quantum field theory in curved spacetime 14084: 14056: 13086: 13057: 12896:"Gravitational vacuum condensate stars" 12894:Mazur, Pawel O.; Mottola, Emil (2004). 12660: 12310:. Cambridge University Press. Ch. 9.1. 12268:. Princeton University Press. Ch. 1.2. 12171: 12149:. University of Toronto. Archived from 12140: 11041: 10936: 10574: 10538: 10154: 10108: 9536: 9378: 9149: 8945: 8921: 8909: 8586: 8539: 8527: 8430: 8418: 8406: 8057: 7981: 7969: 7923: 7911: 7163: 7130: 6926:"A Sun-like star orbiting a black hole" 6646: 6567:"The four laws of black hole mechanics" 6498:, University of Toronto, archived from 6491: 6344: 6272: 5898: 5415: 5392: 5386: 5204:. W. W. Norton & Company. pp.  4746: 4693: 4387: 4349:. Dordrecht: Springer. pp. 69–86. 2774:Primordial black holes and the Big Bang 1637:are expected to satisfy the inequality 14: 17849: 14654:Black Holes: Gravity's Relentless Pull 14008: 13679: 13490: 13280: 12787: 12734: 12540: 12261: 12054: 11667:from the original on 17 September 2018 11353: 11212: 11206: 11077: 10280: 10120: 9680: 8888: 8711: 8653: 7813: 7667: 7596: 7585: 7466: 7080:from the original on 24 September 2017 6572:Communications in Mathematical Physics 6214: 6174: 6137: 6031: 5339: 5310: 5144:The Internal Constitution of the Stars 5019: 4994: 4840:from the original on 30 November 2017. 4803: 4651: 4492: 4454: 3283: 3257:to cause the motions of those stars. 2473:Innermost stable circular orbit (ISCO) 2358:in a process sometimes referred to as 1581: 16573: 15717: 14744: 14686:Black holes - basic (NYT; April 2021) 13907: 13016:from the original on 20 February 2024 13001: 12546: 12481: 12371: 11685: 11059:from the original on 11 February 2016 10918:from the original on 31 December 2015 10490:from the original on 17 November 2017 10440: 10136:from the original on 22 November 2018 9796:Journal of Physics G: Nuclear Physics 9609:from the original on 31 December 2018 8879: 8261: 8164: 8039:from the original on 13 February 2019 7234:from the original on 18 November 2020 7145:from the original on 22 November 2016 7112:from the original on 28 November 2016 7067: 5774:"The Reluctant Father of Black Holes" 5767: 5765: 4548: 4482:from the original on 2 December 2016. 4436:from the original on 3 September 2019 3490:perpendicular to the accretion disk. 3008:has a Hawking temperature of 62  2950:formation of supermassive black holes 2912:. This would make it conceivable for 291: 118:predicts that a sufficiently compact 16990:Bogomol'nyi–Prasad–Sommerfield bound 15698: 14650:" by Erik Curiel and Peter Bokulich. 14332: 14263:The Galactic Supermassive Black Hole 14018:. Norton, W. W. & Company, Inc. 13895:from the original on 18 October 2021 13607: 13535: 13095: 13034: 12970: 12487: 12377: 11300: 10649:from the original on 1 December 2016 10556:from the original on 24 January 2024 10502: 10446: 10055: 9787:LHC Safety Assessment Group (2008). 9300: 9106: 8867:from the original on 21 October 2020 8641: 7999:Knowing the universe and its secrets 7736: 7446:. John Wiley and Sons. p. 357. 7427:from the original on 10 August 2016. 6406: 5356:(1939). "On Massive Neutron Cores". 5335:from the original on 11 August 2016. 5263:from the original on 11 August 2016. 5185:from the original on 11 August 2016. 4881: 4875: 4341: 4326: 3787:). In Planck units, this reduces to 3298:Blurring of X-rays near black hole ( 3260:Since then, one of the stars—called 3229:of stars near the centre of our own 1633:and the total angular momentum  1398:announced the first direct detection 1357:by relating mass to energy, area to 102:is so strong that nothing, not even 27:Object that has a no-return boundary 16308:Tolman–Oppenheimer–Volkoff equation 16261:Friedmann–LemaĂźtre–Robertson–Walker 14643:Stanford Encyclopedia of Philosophy 14356:from the original on 11 August 2016 14228:Large Scale Structure of space time 14187:. Oxford: Oxford University Press. 14078:University textbooks and monographs 13812:from the original on 2 January 2022 13353: 13169:. Subnuclear series. Vol. 37. 13098:"The Thermodynamics of Black Holes" 12365:10.1146/annurev.aa.33.090195.003053 12282:from the original on 14 August 2021 12243:from the original on 6 January 2015 11422:from the original on 16 March 2016. 10369:from the original on 31 August 2008 9843:from the original on 14 April 2010. 7945:Stanford Encyclopedia of Philosophy 7883:from the original on 17 August 2021 7834:from the original on 17 August 2021 7033:Siegfried, Tom (23 December 2013). 6492:Rolston, Bruce (10 November 1997), 6059:10.1146/annurev.aa.08.090170.001405 5421: 5083:from the original on 10 August 2016 5060: 5029:Proceedings Royal Academy Amsterdam 3910:(more unsolved problems in physics) 2664:The collapse may be stopped by the 1576:black hole information loss paradox 24: 14209:from the original on 22 March 2022 14184:Introduction to Black Hole Physics 14137:Mathematical Theory of Black Holes 13928:from the original on 22 March 2022 13784: 13779: 12549:General Relativity and Gravitation 12324:from the original on 22 March 2022 11434:"Detection of gravitational waves" 11213:Abbott, Benjamin P.; et al. ( 11078:Abbott, Benjamin P.; et al. ( 10954:from the original on 26 April 2023 10826:from the original on 27 April 2019 10680:from the original on 27 April 2019 10605: 10520:from the original on 10 April 2019 10473:. See in particular equation (27). 10157:General Relativity and Gravitation 10130:Forbes ("Starts With A Bang" blog) 9549:General Relativity and Gravitation 9190:Proceedings of the Royal Society A 9150:Findley, Kate (27 December 2019). 8714:General Relativity and Gravitation 8684: 8660:Cambridge Relativity and Cosmology 8098:"Black Holes in Higher Dimensions" 8096:Emparan, R.; Reall, H. S. (2008). 7262:Black holes: the membrane paradigm 7011:from the original on 12 April 2019 6650:(1974). "Black hole explosions?". 6473:from the original on 24 April 2021 5792:10.1038/scientificamerican0407-4sp 5762: 5249:. Universities Press. p. 89. 3819:second law of black hole mechanics 3622:, which could hypothetically form 3442: 2588: 2517: 2514: 2511: 2508: 2129: 2126: 2064: 340: 138:predicts that event horizons emit 25: 17883: 16599: 16078:Hamilton–Jacobi–Einstein equation 14594: 14245:from the original on 21 July 2020 13682:"Astrophysics: Fire in the hole!" 12983:from the original on 17 June 2019 12437:The Astrophysical Journal Letters 12380:The Astrophysical Journal Letters 11983:from the original on 8 March 2016 11897:from the original on 27 July 2018 10743:The Astrophysical Journal Letters 10575:Overbye, Dennis (10 April 2019). 10360: 9891:The Astrophysical Journal Letters 8934:Misner, Thorne & Wheeler 1973 8656:"Black Holes and Quantum Gravity" 8456:from the original on 3 April 2019 8217:from the original on 26 July 2018 8073:. 1 February 2014. Archived from 7802:Misner, Thorne & Wheeler 1973 7413:. Cengage Learning. p. 167. 7131:Overbye, Dennis (14 April 2008). 7045:from the original on 9 March 2017 6888:Gardiner, Aidan (12 April 2018). 6463:"The Nobel Prize in Physics 2020" 4853:"Light escaping from black holes" 4850: 4589:10.3724/SP.J.1440-2807.2009.02.01 4203:Eddington–Finkelstein coordinates 3840:first law of black hole mechanics 3677: 3357: 17834: 17822: 17810: 17798: 17786: 17774: 16556: 16555: 15697: 15688: 15687: 14986:Tolman–Oppenheimer–Volkoff limit 14857: 14601: 14424: 13722: 13673: 13601: 13529: 13484: 13387:Particles, Strings and Cosmology 13274: 13221: 13158: 13051: 13028: 13002:McRae, Mike (20 February 2024). 12964: 12887: 12834: 12781: 12728: 12675: 12654: 12639:10.1111/j.1365-2966.2009.15571.x 12593: 12192: 12165: 12141:Rolston, B. (10 November 1997). 12134: 12091: 12048: 11995: 11962: 11909: 11787: 11679: 11653: 11637:. 12 August 2014. Archived from 11568: 11444:from the original on 20 May 2020 10900: 10838: 10808: 10749: 10730: 10699: 10692: 10630: 10618:from the original on 22 May 2019 10599: 10587:from the original on 21 May 2019 10476: 10354: 10322:Fichtel, C. E.; Bertsch, D. L.; 10315: 10274: 10221: 10191: 10148: 10114: 10102: 10049: 9996: 9935: 9882: 9847: 9727: 9674: 9621: 9590: 9530: 9468: 9337: 9143: 9100: 9035: 8992: 8974: 8939: 8927: 8915: 8903: 8849: 8814: 8678: 8647: 8635: 8592: 8580: 8545: 8533: 8521: 8468: 8436: 8424: 8412: 8400: 8327:from the original on 20 May 2020 7951:from the original on 17 May 2019 6623:from the original on 16 May 2020 4863:from the original on 6 July 2019 4405:from the original on 9 June 2015 4229: 3606:models predict the existence of 3403:, was discovered in this way by 3308:conservation of angular momentum 2397: 2273: 2259: 2245: 2230: 2156:is the Schwarzschild radius and 1232:golden age of general relativity 1148:Tolman–Oppenheimer–Volkoff limit 996: 995: 982: 312: 68: 43: 17187:Eleven-dimensional supergravity 15103:Innermost stable circular orbit 14770: 14373:. University of Chicago Press. 14342:. University of Chicago Press. 13994:. Wiley, John & Sons, Inc. 13992:Black Holes: A Traveler's Guide 11805:from the original on 5 May 2019 10737:C. Bower, Geoffrey (May 2022). 10637:Doeleman, Shep (4 April 2016). 9599:"Is the Big Bang a black hole?" 8243: 8158: 8089: 8063: 8051: 8017: 7987: 7975: 7963: 7929: 7917: 7905: 7856: 7807: 7795: 7742: 7730: 7532: 7460: 7400: 7388: 7350: 7312: 7246: 7169: 7157: 7124: 7092: 7061: 6978:from the original on 6 May 2020 6960: 6547: 6513: 6485: 6455: 6400: 6226: 6208: 6168: 6131: 6104:Journal of Mathematical Physics 6091: 6065: 5980: 5932: 5892: 5852: 5805: 5696: 5304: 5267: 5189: 5054: 5013: 4844: 4809: 4740: 4645: 4498:"Thermodynamics of Black Holes" 4216: 4187: 4097: 4080: 3821:, is remarkably similar to the 3582: 3553: 3036:Fermi Gamma-ray Space Telescope 3001:A stellar black hole of 1  2479:Innermost stable circular orbit 1547:. This is different from other 1227:, who was urged to publish it. 15885:Mass–energy equivalence (E=mc) 15743: 15529:Timeline of black hole physics 14231:. Cambridge University Press. 13881:. Princeton University Press. 13731:Journal of High Energy Physics 13680:Merali, Zeeya (3 April 2013). 13431:Reports on Progress in Physics 12714:10.1016/j.physletb.2005.04.034 12206:. 1 April 2008. Archived from 11257:10.1103/PhysRevLett.116.221101 11184:10.1103/PhysRevLett.116.171101 11118:10.1103/PhysRevLett.116.241102 9826:10.1088/0954-3899/35/11/115004 9345:"Ripped Apart by a Black Hole" 9111:. Cambridge University Press. 8542:, pp. 257–259 and 265–266 8303:. Cambridge University Press. 7708:10.1103/PhysRevLett.119.161101 7639:10.1103/PhysRevLett.118.221101 6733:10.1103/PhysRevLett.116.061102 4882:Levy, Adam (11 January 2021). 4603: 4506:Reports on Progress in Physics 4486: 4448: 4320: 4253: 4147: 4133: 4052:Timeline of black hole physics 3921:black hole information paradox 3895:Black hole information paradox 3457:Detection of unusually bright 2963: 2326: 1384: 13: 1: 16635:Second superstring revolution 15297:Nonsingular black hole models 14648:Singularities and Black Holes 14295:. W. H. Freeman and Company. 14042:. Little, Brown and Company. 13914:. New York: Alfred A. Knopf. 12873:10.1016/j.physrep.2008.08.001 11850:Classical and Quantum Gravity 11752:Compact Stellar X-ray Sources 11688:Classical and Quantum Gravity 11356:LIGO Scientific Collaboration 11215:LIGO Scientific Collaboration 11080:LIGO Scientific Collaboration 10363:"Testing Fundamental Physics" 9766:10.1016/S0370-2693(98)00466-3 7670:LIGO Scientific Collaboration 7599:LIGO Scientific Collaboration 7068:Brown, Emma (3 August 2010). 6972:European Southern Observatory 6542:10.1016/S0304-8853(99)00384-4 4819:Light and Electron Microscopy 4246: 3207:Stars orbiting Sagittarius A* 3088:black hole in polarised light 2954:intermediate-mass black holes 2784:holes ranging in size from a 2420: 1391:LIGO Scientific Collaboration 1206: 298:History of general relativity 17129:Generalized complex manifold 16630:First superstring revolution 14708:Cowen, Ron (20 April 2015). 14501:Living Reviews in Relativity 13878:The Nature of Space and Time 13428:(2017). "Information loss". 13260:10.1016/0370-2693(96)00345-0 13102:Living Reviews in Relativity 11880:10.1088/0264-9381/16/12A/301 11607:10.1088/0004-637X/701/2/1357 11498:10.1088/0004-637X/692/2/1075 11354:Abbott, B. P.; et al. ( 10413:10.1126/science.217.4560.593 8102:Living Reviews in Relativity 7668:Abbott, B. P.; et al. ( 7597:Abbott, B. P.; et al. ( 7476:Living Reviews in Relativity 7288:Anderson, Warren G. (1996). 7178:"Observing black holes spin" 6763:Event Horizon Telescope, The 6279:Living Reviews in Relativity 5712:"Introducing the black hole" 5444:10.1126/science.359.6377.724 5035:(1): 197–215. Archived from 4718:10.1126/science.367.6477.495 4211:Kruskal–Szekeres coordinates 3823:second law of thermodynamics 3494:hole candidates include the 3349:tidal disruption event (TDE) 1973:Intermediate-mass black hole 1770:cosmic censorship hypothesis 1439: 189:in 1967 sparked interest in 7: 15900:Relativistic Doppler effect 15519:Rossi X-ray Timing Explorer 15484:Hypercompact stellar system 15474:Gamma-ray burst progenitors 14454:American Journal of Physics 14139:. Oxford University Press. 14133:Chandrasekhar, Subrahmanyan 13990:Pickover, Clifford (1998). 13651:10.1103/PhysRevLett.71.1291 13579:10.1103/PhysRevLett.71.3743 13309:10.1007/978-3-540-88460-6_3 13171:World Scientific Publishing 13080:10.1103/PhysRevLett.26.1344 12304:; Gallagher, J. S. (2000). 12204:Goddard Space Flight Center 11399:10.3847/2041-8205/818/2/L22 9921:10.1088/2041-8205/713/1/L41 5277:American Journal of Physics 5246:Chandrasekhar and his limit 5161:10.1126/science.52.1341.233 4027:List of nearest black holes 3965: 3901:Unsolved problem in physics 3844:first law of thermodynamics 3436:quasi-periodic oscillations 3424:Quasi-periodic oscillations 3342:ultraluminous X-ray sources 3014:cosmic microwave background 2611:have singularities without 2301:gravitational time dilation 1908:Black hole classifications 1139:, which is itself stable. 493:Gravitational time dilation 134:, as it reflects no light. 126:of no escape is called the 32:Black hole (disambiguation) 10: 17888: 16727:Non-critical string theory 16371:In computational physics: 15895:Relativity of simultaneity 15205:Black hole complementarity 15172:Bousso's holographic bound 15157:Quasi-periodic oscillation 14855: 14849:Malament–Hogarth spacetime 14318:. Addison Wesley Longman. 14225:; Ellis, G. F. R. (1973). 14057:Wheeler, J. Craig (2007). 14015:Black Holes and Time Warps 13197:10.1142/9789812811585_0005 12034:10.1088/0004-637X/742/2/67 11718:10.1088/0264-9381/13/3/007 11011:10.1038/s41586-023-05843-w 10645:. Event occurs at 46:50. 10260:10.1103/PhysRevD.78.035009 10199:"Evaporating black holes?" 9713:10.1103/PhysRevD.74.084004 9660:10.1103/PhysRevD.65.056010 8800:10.1103/PhysRevD.84.063008 8378:10.1103/PhysRevD.97.124012 7781:10.1103/PhysRevD.84.027501 6257:10.1103/PhysRevLett.34.905 6202:10.1103/PhysRevLett.26.331 5772:Bernstein, Jeremy (2007). 5613:10.1103/PhysRevD.97.021501 5556:10.1103/PhysRevD.96.123012 5396:Astronomy and Astrophysics 5069:. BirkhĂ€user. p. 41. 4824:Cambridge University Press 4527:10.1088/0034-4885/41/8/004 4466:Cambridge University Press 4461:Gravity from the ground up 3932:black hole complementarity 3892: 3686: 3683:Entropy and thermodynamics 3586: 3446: 3430:Quasi-periodic oscillation 3427: 3361: 3287: 3210: 3177:On 14 September 2015, the 2967: 2634: 2476: 2424: 2401: 2330: 2234: 1519:, through for example the 1223:had already been found by 1114:electron-degenerate matter 1110:Subrahmanyan Chandrasekhar 613:Mathisson–Papapetrou–Dixon 454:Pseudo-Riemannian manifold 295: 265: 83:of the galaxy is observed. 29: 17271: 17248: 17225: 17172: 17057: 16965: 16907: 16839: 16788: 16755: 16650: 16607: 16553: 16385: 16250: 16222: 16208:Lense–Thirring precession 16091: 16040: 16002: 15981: 15970: 15928: 15872: 15856: 15798: 15790:Doubly special relativity 15762: 15751: 15683: 15557: 15409: 15371: 15350: 15289: 15248: 15197: 15076:Gravitational singularity 15063: 14956: 14866: 14791: 14778: 14723:10.1038/nature.2015.17360 14691: 14578:10.1142/S0218271822300154 14531:10.1007/s41114-019-0020-4 14415:10.4249/scholarpedia.4277 14164:10.1007/978-94-011-5139-9 14085:Carroll, Sean M. (2004). 13911:Black hole survival guide 13827:Black Holes in Space-Time 13523:10.1007/s12043-012-0417-z 12971:Choi, Charles Q. (2018). 12579:10.1007/s10714-010-0988-2 12004:The Astrophysical Journal 11918:The Astrophysical Journal 11577:The Astrophysical Journal 11524:The Astrophysical Journal 11468:The Astrophysical Journal 11333:10.1142/S0218271823420129 10762:The Astrophysical Journal 10716:eventhorizontelescope.org 10510:"April 2017 Observations" 10088:10.1088/1367-2630/7/1/203 10005:The Astrophysical Journal 9424:10.1017/S1743921307004681 8984:. Department of Physics. 8948:The Astrophysical Journal 8823:The Astrophysical Journal 8198:10.1007/978-3-540-88460-6 7410:Perspectives on Astronomy 7264:. Yale University Press. 7212:10.1038/s41550-018-0665-z 6772:The Astrophysical Journal 6379:10.1103/PhysRevLett.14.57 5471:The Astrophysical Journal 5243:Venkataraman, G. (1992). 4897:10.1146/knowable-010921-1 4365:10.1007/978-94-017-0934-7 4207:Schwarzschild coordinates 4017:Kugelblitz (astrophysics) 3755:). The constants are the 3689:Black hole thermodynamics 3610:. Some extensions of the 3559:passing through an optic 3374:Chandra X-Ray Observatory 3201:gravitational wave events 2935: 2362:or the "noodle effect". 2339:gravitational singularity 2333:Gravitational singularity 1845:spin parameter such that 1841:allowing definition of a 1752:for a black hole of mass 1620:Reissner–Nordström metric 1479:held in Cleveland, Ohio. 1389:On 11 February 2016, the 1351:black hole thermodynamics 1278:, and David Robinson the 1152:Pauli exclusion principle 191:gravitationally collapsed 75:Animated simulation of a 17263:Introduction to M-theory 16957:Wess–Zumino–Witten model 16899:Hanany–Witten transition 16625:History of string theory 16068:Post-Newtonian formalism 16058:Einstein field equations 15994:Mathematical formulation 15818:Hyperbolic orthogonality 15660:PSO J030947.49+271757.31 15585:SDSS J150243.09+111557.3 15118:Blandford–Znajek process 14664:Black Hole Visualization 14444:Lecture notes from 2005 14369:Wald, Robert M. (1992). 13825:Ferguson, Kitty (1991). 13462:10.1088/1361-6633/aa778e 12525:10.3847/1538-4357/ac739e 10793:10.3847/2041-8213/abe71d 9245:Mon. Not. R. Astron. Soc 8621:10.1103/PhysRevD.41.1796 8574:10.1088/2058-7058/9/1/26 8250:Hawking & Ellis 1973 7395:Hawking & Ellis 1973 6804:10.3847/2041-8213/ab0ec7 6162:10.1103/PhysRev.164.1776 5926:10.1103/PhysRev.119.1743 5681:10.3847/2041-8213/aaa401 5502:10.3847/2041-8213/aa991c 4197:containing all possible 4073: 3960:monogamy of entanglement 3889:Information loss paradox 2714:stellar mass black holes 2459:Blandford–Znajek process 1490:Properties and structure 1200:Oppenheimer–Snyder model 1059:Einstein field equations 1045:developed his theory of 618:Hamilton–Jacobi–Einstein 598:Einstein field equations 421:Mathematical formulation 202:Supermassive black holes 77:Schwarzschild black hole 16942:Vertex operator algebra 16642:String theory landscape 15779:Galilean transformation 15770:Principle of relativity 14916:Active galactic nucleus 14312:Wheeler, John Archibald 13850:A Brief History of Time 13761:10.1007/JHEP02(2013)062 13060:Physical Review Letters 12931:10.1073/pnas.0402717101 12790:Fortschritte der Physik 12357:1995ARA&A..33..581K 11309:(14): 2342012–2342235. 11227:Physical Review Letters 11153:Physical Review Letters 11088:Physical Review Letters 10878:10.1126/science.aac7087 10514:Event Horizon Telescope 10469:10.1103/PhysRevD.13.198 10177:10.1023/A:1002753400430 9569:10.1023/A:1016578408204 8857:"Black Hole Calculator" 8744:10.1023/A:1018878515046 7678:Physical Review Letters 7608:Physical Review Letters 6441:10.1023/A:1025754515197 6358:Physical Review Letters 6236:Physical Review Letters 6181:Physical Review Letters 6051:1970ARA&A...8..265H 5886:10.1103/PhysRev.110.965 5409:1996A&A...305..871B 4067:Dark star (dark matter) 4047:Susskind-Hawking battle 3781:reduced Planck constant 3614:posit the existence of 3449:Active galactic nucleus 3310:, gas falling into the 3105:Event Horizon Telescope 2754:{\displaystyle z\sim 7} 2659:stellar nucleosynthesis 2598:Formation and evolution 1951:Supermassive black hole 1929:Ultramassive black hole 1561:approximately conserved 1406:Event Horizon Telescope 1294:, and electric charge. 56:supermassive black hole 17240:AdS/CFT correspondence 16995:Exceptional Lie groups 16937:Superconformal algebra 16909:Conformal field theory 16780:Montonen–Olive duality 16732:Non-linear sigma model 15864:Lorentz transformation 15544:Tidal disruption event 15514:Supermassive dark star 15432:Black holes in fiction 15417:Outline of black holes 15050:Supermassive dark star 14969:Gravitational collapse 14681:Schwarzschild Geometry 14554:(9): 2230015–2230276. 14087:Spacetime and Geometry 13967:Melia, Fulvio (2003). 13491:Mathur, S. D. (2011). 13283:Physics of Black Holes 12820:10.1002/prop.200410203 12767:10.1002/andp.200510175 12265:Active Galactic Nuclei 12262:Krolik, J. H. (1999). 12143:"The First Black Hole" 11977:www.spacetelescope.org 11221:) (11 February 2016). 10281:Peskin, M. E. (2008). 10058:New Journal of Physics 9866:: 1010. Archived from 9212:10.1098/rspa.1970.0021 9028:10.1093/mnras/stae1160 8689:. NASA. Archived from 8284:10.1103/PhysRevD.7.289 8168:Physics of Black Holes 7899:17 August 2021 at the 7850:15 August 2021 at the 6953:10.1093/mnras/stac3140 5845:10.1103/PhysRev.56.455 5380:10.1103/PhysRev.55.374 4779:10.1098/rstl.1784.0008 4179: 4032:Outline of black holes 3992:Black holes in fiction 3842:as an analogue of the 3470: 3381: 3303: 3222: 3213:Sagittarius A* cluster 3199:Since then, many more 3174: 3100: 3089: 3064:Observational evidence 2884:High-energy collisions 2830: 2781:primordial black holes 2755: 2650: 2637:Gravitational collapse 2631:Gravitational collapse 2625:gravitational collapse 2576: 2467:active galactic nuclei 2436: 2372:closed timelike curves 2305:gravitational redshift 2221: 2140: 1898: 1832: 1743: 1599:in 1916. According to 1591: 1531: 1454:Black Hole of Calcutta 1355:laws of thermodynamics 1320:Nobel Prize in Physics 1270:. Through the work of 1154:, gave it as 0.7  1098:coordinate singularity 488:Gravitational redshift 381: 17872:Concepts in astronomy 17235:Holographic principle 17202:Type IIB supergravity 17197:Type IIA supergravity 17049:-form electrodynamics 16668:Bosonic string theory 16332:Weyl−Lewis−Papapetrou 16073:Raychaudhuri equation 16012:Equivalence principle 15422:Black Hole Initiative 15235:Holographic principle 14316:Exploring Black Holes 14265:. Princeton U Press. 14123:; DeWitt, C. (eds.). 14108:23 March 2017 at the 13975:. Cambridge U Press. 13952:. Princeton U Press. 13908:Levin, Janna (2020). 13853:. Bantam Books, Inc. 13356:"Does God Play Dice?" 12494:Astrophysical Journal 12174:Astrophysical Letters 10328:Astrophysical Journal 9854:CavagliĂ , M. (2010). 9051:Annals of Mathematics 9042:Einstein, A. (1939). 7995:"Inside a black hole" 7814:Davies, Paul (1992). 7541:Astrophysical Journal 6849:10.1109/CVPR.2016.105 6522:Astrophysical Letters 5650:Astrophysical Journal 4297:10.1093/mnras/stv2982 4237:weak energy condition 4180: 3982:Black Hole Initiative 3870:statistical mechanics 3863:holographic principle 3687:Further information: 3456: 3405:Charles Thomas Bolton 3371: 3297: 3220: 3172: 3095: 3083: 3076:Direct interferometry 2922:Large Hadron Collider 2831: 2756: 2694:before the collapse. 2644: 2577: 2434: 2313:equivalence principle 2222: 2141: 1899: 1833: 1781:electromagnetic force 1744: 1618:are described by the 1609:spherically symmetric 1589: 1541:electrical resistance 1529: 1521:Lense–Thirring effect 1517:gravitomagnetic field 1434:gravitational lensing 776:Weyl−Lewis−Papapetrou 731:Kerr–Newman–de Sitter 551:Einstein–Rosen bridge 483:Gravitational lensing 439:Equivalence principle 382: 254:, at the core of the 146:as a black body of a 108:electromagnetic waves 81:gravitational lensing 17867:Theory of relativity 17154:Hoƙava–Witten theory 17101:HyperkĂ€hler manifold 16789:Particles and fields 16737:Tachyon condensation 16722:Matrix string theory 16373:Numerical relativity 16214:pulsar timing arrays 15225:Final parsec problem 15184:Schwarzschild radius 13096:Wald, R. M. (2001). 13045:10.1038/news050328-8 12488:Sahu, K. C. (2022). 11801:. 19 November 2014. 11045:(11 February 2016). 10606:AP (10 April 2019). 10308:10.1103/Physics.1.14 9276:10.1093/mnras/stw725 9096:on 28 February 2019. 8986:University of Oxford 6833:. pp. 913–922. 6827:Bouman, Katherine L. 6495:The First Black Hole 6273:Heusler, M. (2012). 6078:Smithsonian Magazine 4393:"Black Hole Hunters" 4107: 3883:loop quantum gravity 3203:have been observed. 2894:particle accelerator 2792: 2739: 2499: 2411:dynamically unstable 2174: 2055: 1852: 1794: 1644: 1371:quantum field theory 1330:in the early 1970s, 1268:electrically charged 1240:Jocelyn Bell Burnell 1079:Schwarzschild radius 706:Einstein–Rosen waves 432:Fundamental concepts 321: 187:Jocelyn Bell Burnell 171:Pierre-Simon Laplace 163:gravitational fields 30:For other uses, see 17192:Type I supergravity 17096:Calabi–Yau manifold 17091:Ricci-flat manifold 17070:Kaluza–Klein theory 16811:Ramond–Ramond field 16717:String field theory 16265:Friedmann equations 16159:Hulse–Taylor binary 16121:Gravitational waves 16017:Riemannian geometry 15843:Proper acceleration 15828:Maxwell's equations 15774:Galilean relativity 15524:Superluminal motion 15499:Population III star 15469:Gravitational waves 15427:Black hole starship 15210:Information paradox 14570:2022IJMPD..3130015M 14523:2019LRR....22....4C 14476:2009AmJPh..77..294G 14406:2008SchpJ...3.4277C 14059:Cosmic Catastrophes 13753:2013JHEP...02..062A 13698:2013Natur.496...20M 13633:1993PhRvL..71.1291P 13561:1993PhRvL..71.3743P 13515:2012Prama..79.1059M 13454:2017RPPh...80i2002U 13405:1995hep.th....8151G 13301:2009LNP...769...89C 13252:1996PhLB..379...99S 13189:2001bhfp.conf...72T 13173:. pp. 72–100. 13133:10.12942/lrr-2001-6 13124:2001LRR.....4....6W 13072:1971PhRvL..26.1344H 12977:Scientific American 12922:2004PNAS..101.9545M 12865:2008PhR...467..117S 12812:2005ForPh..53..793M 12759:2006AnP...518..129K 12706:2005PhLB..616....1H 12630:2009MNRAS.400.1632K 12571:2010GReGr..42.2269B 12516:2022ApJ...933...83S 12459:2000ApJ...539L...9F 12402:2003ApJ...596L..27K 12210:on 27 December 2008 12186:1975ApL....16....9S 12112:1972Natur.235...37W 12069:1972Natur.235..271B 12026:2011ApJ...742...67M 11940:2006ApJ...649..730W 11872:1999CQGra..16A...3C 11770:2006csxs.book..157M 11710:1996CQGra..13..393M 11599:2009ApJ...701.1357B 11546:1998ApJ...509..678G 11490:2009ApJ...692.1075G 11390:2016ApJ...818L..22A 11360:Virgo Collaboration 11325:2023IJMPD..3242012M 11279:on 15 February 2016 11249:2016PhRvL.116v1101A 11219:Virgo Collaboration 11176:2016PhRvL.116q1101C 11110:2016PhRvL.116x1102A 11084:Virgo Collaboration 11003:2023Natur.616..686L 10914:. 3 December 2015. 10870:2015Sci...350.1242J 10854:(6265): 1242–1245. 10784:2021ApJ...910L..12E 10542:(24 January 2024). 10461:1976PhRvD..13..198P 10433:See page 596: table 10405:1982Sci...217..593F 10340:1994ApJ...434..557F 10299:2008PhyOJ...1...14P 10252:2008PhRvD..78c5009G 10169:2001GReGr..33..175S 10080:2005NJPh....7..203P 10027:2006ApJ...637..937O 9974:10.1038/nature02448 9966:2004Natur.428..724P 9913:2010ApJ...713L..41V 9818:2008JPhG...35k5004E 9758:1998PhLB..429..263A 9705:2006PhRvD..74h4004H 9652:2002PhRvD..65e6010G 9561:2002GReGr..34.1141P 9508:10.1038/nature25180 9500:2018Natur.553..473B 9416:2007IAUS..238...51R 9321:2005astro.ph.11743C 9267:2016MNRAS.459.1432P 9203:1970RSPSA.314..529H 9127:2007arXiv0706.1109K 9063:1939AnMat..40..922E 8960:1972ApJ...178..347B 8835:1972ApJ...178..347B 8792:2011PhRvD..84f3008N 8736:1997GReGr..29..445C 8654:Hamade, R. (1996). 8613:1990PhRvD..41.1796P 8566:1996PhyW....9...34D 8499:2007PASA...24...46L 8449:Sky & Telescope 8370:2018PhRvD..97l4012D 8276:1973PhRvD...7..289S 8190:2009LNP...769.....P 8133:10.12942/lrr-2008-6 8124:2008LRR....11....6E 7894:Extract of page 168 7773:2011PhRvD..84b7501S 7700:2017PhRvL.119p1101A 7674:Virgo Collaboration 7631:2017PhRvL.118v1101A 7603:Virgo Collaboration 7563:2006ApJ...652..518M 7507:10.12942/lrr-2002-1 7498:2002LRR.....5....1B 7360:(21 October 1994). 7322:(21 October 1994). 7204:2019NatAs...3...41R 7105:Scientific American 6795:2019ApJ...875L...1E 6725:2016PhRvL.116f1102A 6664:1974Natur.248...30H 6585:1973CMaPh..31..161B 6534:1975ApL....16....9S 6433:2003gr.qc.....1045F 6396:on 11 October 2020. 6371:1965PhRvL..14...57P 6310:10.12942/lrr-2012-7 6301:2012LRR....15....7C 6249:1975PhRvL..34..905R 6222:. pp. 243–254. 6194:1971PhRvL..26..331C 6154:1967PhRv..164.1776I 6117:1965JMP.....6..918N 6035:(1970). "Pulsars". 6003:1968Natur.218..126P 5958:1968Natur.217..709H 5918:1960PhRv..119.1743K 5878:1958PhRv..110..965F 5836:1939PhRv...56..455O 5812:Oppenheimer, J.R.; 5779:Scientific American 5733:1971PhT....24a..30R 5672:2018ApJ...852L..25R 5605:2018PhRvD..97b1501R 5548:2017PhRvD..96l3012S 5493:2017ApJ...850L..19M 5436:2018Sci...359..724C 5372:1939PhRv...55..374O 5311:Harpaz, A. (1994). 5290:1981AmJPh..49..394D 5153:1920Sci....52..233E 5061:Kox, A. J. (1992). 5020:Droste, J. (1917). 4987:1916skpa.conf..424S 4942:1916SPAW.......189S 4770:1784RSPT...74...35M 4710:2020Sci...367..495C 4666:1972Natur.235..271B 4624:1972Natur.235...37W 4581:2009JAHH...12...90M 4519:1978RPPh...41.1313D 4288:2016MNRAS.457..421O 4022:List of black holes 3987:Black hole starship 3835:blackbody radiation 3284:Accretion of matter 3060:of up to 10 years. 2996:Hawking temperature 2992:black body spectrum 2666:degeneracy pressure 2380:grandfather paradox 1909: 1762:naked singularities 1616:charged black holes 1582:Physical properties 1402:gravitational waves 1395:Virgo collaboration 1258:. Two years later, 1256:rotating black hole 1118:Chandrasekhar limit 1063:gravitational field 1061:that describes the 660:Kaluza–Klein theory 546:Minkowski spacetime 498:Gravitational waves 156:stellar black holes 17793:History of science 17159:K-theory (physics) 17036:ADE classification 16673:Superstring theory 16314:Reissner–Nordström 16232:Brans–Dicke theory 16063:Linearized gravity 15890:Length contraction 15808:Frame of reference 15785:Special relativity 15358:Optical black hole 15271:Reissner–Nordström 15230:Firewall (physics) 15135:Gravitational lens 14669:3 May 2019 at the 14611:has a profile for 14339:General Relativity 14310:Taylor, Edwin F.; 14156:Black Hole Physics 14089:. Addison Wesley. 13829:. Watts Franklin. 13366:on 11 January 2012 13360:www.hawking.org.uk 12737:Annalen der Physik 11368:Astrophys. J. Lett 11052:The New York Times 10947:The New York Times 10643:Physics @ Berkeley 10612:The New York Times 10581:The New York Times 10549:The New York Times 9476:redshift of 7.5". 9109:The Kerr Spacetime 8421:, pp. 264–265 7941:plato.stanford.edu 7845:Extract of page 26 7739:, pp. 124–125 7300:on 22 January 2009 7294:Usenet Physics FAQ 7138:The New York Times 7007:. 9 October 2018. 6895:The New York Times 6593:10.1007/BF01645742 5350:Oppenheimer, J. R. 4806:, pp. 123–124 4456:Schutz, Bernard F. 4329:, pp. 299–300 4175: 4042:Virtual black hole 3851:extensive quantity 3765:Boltzmann constant 3644:quantum mechanical 3471: 3382: 3312:gravitational well 3304: 3223: 3175: 3101: 3090: 2826: 2751: 2651: 2572: 2437: 2217: 2136: 2034:up to 0.1 mm 2000:Stellar black hole 1907: 1894: 1828: 1739: 1601:Birkhoff's theorem 1592: 1566:such as the total 1537:dissipative system 1532: 1420:, is around 1,560 1284:Kerr–Newman metric 1252:the exact solution 1221:complete extension 1144:Robert Oppenheimer 1081:, where it became 1051:Karl Schwarzschild 1047:general relativity 989:Physics portal 761:Oppenheimer–Snyder 701:Reissner–Nordström 593:Linearized gravity 541:Spacetime diagrams 444:Special relativity 377: 306:General relativity 292:General relativity 175:Karl Schwarzschild 116:general relativity 17762: 17761: 17544:van Nieuwenhuizen 17080:Why 10 dimensions 16985:Chern–Simons form 16952:Kac–Moody algebra 16932:Conformal algebra 16927:Conformal anomaly 16821:Magnetic monopole 16816:Kalb–Ramond field 16658:Nambu–Goto action 16567: 16566: 16381: 16380: 16360:OzsvĂĄth–SchĂŒcking 15966: 15965: 15948:Minkowski diagram 15905:Thomas precession 15848:Relativistic mass 15711: 15710: 15504:Supermassive star 15494:Naked singularity 15489:Membrane paradigm 15215:Cosmic censorship 15189:Spaghettification 15177:Immirzi parameter 15130:Hawking radiation 15071:Astrophysical jet 15040:Supermassive star 15030:Binary black hole 14964:Stellar evolution 14906:Intermediate-mass 14617: 14484:10.1119/1.3056569 14448:Summer Institute. 14380:978-0-226-87029-8 14349:978-0-226-87033-5 14325:978-0-201-38423-9 14302:978-0-7167-0344-0 14272:978-0-691-13129-0 14238:978-0-521-09906-6 14194:978-0-19-969229-3 14173:978-0-7923-5146-7 14146:978-0-19-850370-5 14096:978-0-8053-8732-2 14068:978-0-521-85714-7 14034:Susskind, Leonard 14025:978-0-393-31276-8 14001:978-0-471-19704-1 13982:978-0-521-81405-8 13959:978-0-691-09505-9 13888:978-0-691-03791-2 13860:978-0-553-38016-3 13836:978-0-531-12524-3 13545:(23): 3743–3746. 13422:Unruh, William G. 13318:978-3-540-88459-0 13230:Physics Letters B 13206:978-981-02-4536-8 13066:(21): 1344–1346. 12906:(26): 9545–9550. 12684:Physics Letters B 12317:978-0-521-59740-1 12275:978-0-691-01151-6 12202:(Press release). 12063:(5336): 271–273. 11779:978-0-521-82659-4 11641:on 13 August 2014 10987:(7958): 686–690. 10940:(26 April 2023). 10822:. 10 April 2019. 10449:Physical Review D 10399:(4560): 593–599. 10230:Physical Review D 9950:(6984): 724–726. 9736:Physics Letters B 9683:Physical Review D 9630:Physical Review D 9484:(7689): 473–476. 9433:978-0-521-86347-6 9349:ESO Press Release 9330:978-4-946443-94-7 9197:(1519): 529–548. 9136:978-0-521-88512-6 8770:Physical Review D 8601:Physical Review D 8348:Physical Review D 8264:Physical Review D 8207:978-3-540-88459-0 7926:, Ch. 5.4 and 7.3 7876:978-1-107-03494-5 7827:978-0-521-43831-5 7751:Physical Review D 7453:978-0-471-87316-7 7420:978-0-495-11352-2 7271:978-0-300-03770-8 6904:on 1 January 2022 6866:978-1-4673-8851-1 6125:10.1063/1.1704351 5997:(5137): 126–129. 5952:(5130): 709–713. 5741:10.1063/1.3022513 5583:Physical Review D 5526:Physical Review D 5430:(6377): 724–725. 5328:978-1-56881-012-6 5314:Stellar evolution 5256:978-81-7371-035-3 5215:978-0-393-31276-8 5170:978-0-521-33708-3 5139:Eddington, Arthur 5076:978-0-8176-3479-7 4967:Schwarzschild, K. 4922:Schwarzschild, K. 4888:Knowable Magazine 4857:www.ast.cam.ac.uk 4833:978-0-521-33948-3 4660:(5336): 271–273, 4475:978-0-521-45506-0 4430:jila.colorado.edu 4170: 3874:Andrew Strominger 3773:Newton's constant 3327:relativistic jets 3302:; 12 August 2014) 3158:magnetic fields. 3070:Hawking radiation 2970:Hawking radiation 2958:globular clusters 2946:interstellar dust 2914:micro black holes 2824: 2678:Type II supernova 2567: 2485:Newtonian gravity 2360:spaghettification 2212: 2124: 2120: 2096: 2038: 2037: 1886: 1823: 1721: 1677: 1603:, it is the only 1545:membrane paradigm 1379:Hawking radiation 1304:Isaak Khalatnikov 1300:Vladimir Belinsky 1213:David Finkelstein 1039: 1038: 672: 671: 558: 557: 179:David Finkelstein 144:the same spectrum 140:Hawking radiation 16:(Redirected from 17879: 17839: 17838: 17837: 17827: 17826: 17815: 17814: 17803: 17802: 17791: 17790: 17789: 17779: 17778: 17777: 17770: 17272:String theorists 17212:Lie superalgebra 17164:Twisted K-theory 17122:Spin(7)-manifold 17075:Compactification 16917:Virasoro algebra 16700:Heterotic string 16594: 16587: 16580: 16571: 16570: 16559: 16558: 16342:van Stockum dust 16114:Two-body problem 16032:Mach's principle 15979: 15978: 15920:Terrell rotation 15760: 15759: 15738: 15731: 15724: 15715: 15714: 15701: 15700: 15691: 15690: 15363:Sonic black hole 15312:Dark-energy star 15167:Bekenstein bound 15152:M–sigma relation 15081:Ring singularity 14861: 14765: 14758: 14751: 14742: 14741: 14727: 14725: 14615: 14605: 14604: 14589: 14563: 14542: 14516: 14495: 14469: 14443: 14441: 14419: 14417: 14384: 14365: 14363: 14361: 14329: 14306: 14276: 14254: 14252: 14250: 14218: 14216: 14214: 14177: 14150: 14128: 14100: 14072: 14053: 14029: 14005: 13986: 13974: 13963: 13951: 13937: 13935: 13933: 13904: 13902: 13900: 13869:Hawking, Stephen 13864: 13845:Hawking, Stephen 13840: 13821: 13819: 13817: 13773: 13772: 13746: 13726: 13720: 13719: 13709: 13677: 13671: 13670: 13644: 13626: 13617:(9): 1291–1294. 13611:Phys. Rev. Lett. 13605: 13599: 13598: 13572: 13554: 13539:Phys. Rev. Lett. 13533: 13527: 13526: 13508: 13488: 13482: 13481: 13447: 13418: 13409: 13408: 13398: 13382: 13376: 13375: 13373: 13371: 13362:. Archived from 13351: 13345: 13344: 13338: 13330: 13294: 13278: 13272: 13271: 13245: 13225: 13219: 13218: 13182: 13162: 13156: 13155: 13145: 13135: 13117: 13093: 13084: 13083: 13055: 13049: 13048: 13032: 13026: 13025: 13023: 13021: 12999: 12993: 12992: 12990: 12988: 12968: 12962: 12961: 12943: 12933: 12915: 12891: 12885: 12884: 12858: 12838: 12832: 12831: 12805: 12785: 12779: 12778: 12752: 12743:(1–2): 129–148. 12732: 12726: 12725: 12699: 12697:astro-ph/0410417 12679: 12673: 12672: 12670: 12658: 12652: 12651: 12641: 12623: 12614:(3): 1632–1642. 12597: 12591: 12590: 12564: 12555:(9): 2269–2300. 12544: 12538: 12537: 12527: 12509: 12485: 12479: 12478: 12452: 12450:astro-ph/0006053 12428: 12422: 12421: 12395: 12393:astro-ph/0308342 12375: 12369: 12368: 12340: 12334: 12333: 12331: 12329: 12298: 12292: 12291: 12289: 12287: 12259: 12253: 12252: 12250: 12248: 12226: 12220: 12219: 12217: 12215: 12196: 12190: 12189: 12169: 12163: 12162: 12160: 12158: 12138: 12132: 12131: 12120:10.1038/235037a0 12095: 12089: 12088: 12077:10.1038/235271b0 12052: 12046: 12045: 12019: 11999: 11993: 11992: 11990: 11988: 11966: 11960: 11959: 11933: 11931:astro-ph/0512480 11913: 11907: 11906: 11904: 11902: 11896: 11865: 11863:astro-ph/9912186 11847: 11838: 11815: 11814: 11812: 11810: 11791: 11785: 11783: 11763: 11761:astro-ph/0306213 11747: 11738: 11737: 11703: 11683: 11677: 11676: 11674: 11672: 11657: 11651: 11650: 11648: 11646: 11625: 11619: 11618: 11592: 11583:(2): 1357–1366. 11572: 11566: 11565: 11539: 11537:astro-ph/9807210 11519: 11510: 11509: 11483: 11474:(2): 1075–1109. 11463: 11454: 11453: 11451: 11449: 11430: 11424: 11423: 11401: 11383: 11351: 11345: 11344: 11318: 11298: 11289: 11288: 11286: 11284: 11275:. Archived from 11242: 11210: 11204: 11203: 11169: 11147: 11138: 11137: 11103: 11075: 11069: 11068: 11066: 11064: 11039: 11033: 11032: 11022: 10996: 10970: 10964: 10963: 10961: 10959: 10934: 10928: 10927: 10925: 10923: 10904: 10898: 10897: 10863: 10842: 10836: 10835: 10833: 10831: 10812: 10806: 10805: 10795: 10777: 10753: 10747: 10746: 10734: 10728: 10727: 10725: 10723: 10703: 10696: 10690: 10689: 10687: 10685: 10665: 10659: 10658: 10656: 10654: 10634: 10628: 10627: 10625: 10623: 10603: 10597: 10596: 10594: 10592: 10572: 10566: 10565: 10563: 10561: 10536: 10530: 10529: 10527: 10525: 10506: 10500: 10499: 10497: 10495: 10480: 10474: 10472: 10444: 10438: 10436: 10432: 10388: 10379: 10378: 10376: 10374: 10358: 10352: 10351: 10319: 10313: 10312: 10310: 10278: 10272: 10271: 10245: 10225: 10219: 10218: 10216: 10214: 10195: 10189: 10188: 10152: 10146: 10145: 10143: 10141: 10118: 10112: 10106: 10100: 10099: 10073: 10053: 10047: 10046: 10020: 10018:astro-ph/0508224 10000: 9994: 9993: 9959: 9957:astro-ph/0402622 9939: 9933: 9932: 9906: 9886: 9880: 9879: 9877: 9875: 9851: 9845: 9844: 9842: 9811: 9793: 9784: 9778: 9777: 9751: 9742:(3–4): 263–272. 9731: 9725: 9724: 9698: 9678: 9672: 9671: 9645: 9625: 9619: 9618: 9616: 9614: 9594: 9588: 9587: 9585: 9579:. Archived from 9546: 9534: 9528: 9527: 9493: 9472: 9466: 9465: 9459: 9455: 9453: 9445: 9409: 9407:astro-ph/0701512 9393: 9382: 9376: 9365: 9364: 9362: 9360: 9351:. Archived from 9341: 9335: 9334: 9314: 9312:astro-ph/0511743 9298: 9289: 9288: 9278: 9260: 9236: 9225: 9224: 9214: 9183:(January 1970). 9173: 9167: 9166: 9164: 9162: 9147: 9141: 9140: 9120: 9104: 9098: 9097: 9095: 9089:. Archived from 9048: 9039: 9033: 9032: 9030: 9020: 8996: 8990: 8989: 8978: 8972: 8971: 8943: 8937: 8931: 8925: 8919: 8913: 8907: 8901: 8900: 8898: 8886: 8877: 8876: 8874: 8872: 8853: 8847: 8846: 8818: 8812: 8811: 8785: 8765: 8756: 8755: 8729: 8709: 8703: 8702: 8700: 8698: 8693:on 28 March 2009 8682: 8676: 8675: 8673: 8671: 8651: 8645: 8639: 8633: 8632: 8607:(6): 1796–1809. 8596: 8590: 8584: 8578: 8577: 8549: 8543: 8537: 8531: 8525: 8519: 8518: 8492: 8472: 8466: 8465: 8463: 8461: 8452:. 22 July 2014. 8440: 8434: 8428: 8422: 8416: 8410: 8404: 8398: 8397: 8363: 8343: 8337: 8336: 8334: 8332: 8312: 8294: 8288: 8287: 8259: 8253: 8247: 8241: 8240: 8234: 8226: 8224: 8222: 8216: 8183: 8173: 8162: 8156: 8155: 8145: 8135: 8117: 8093: 8087: 8086: 8084: 8082: 8077:on 15 April 2019 8067: 8061: 8055: 8049: 8048: 8046: 8044: 8021: 8015: 8014: 8012: 8010: 8005:on 23 April 2009 8001:. Archived from 7991: 7985: 7979: 7973: 7967: 7961: 7960: 7958: 7956: 7933: 7927: 7921: 7915: 7909: 7903: 7892: 7890: 7888: 7860: 7854: 7843: 7841: 7839: 7811: 7805: 7799: 7793: 7792: 7766: 7746: 7740: 7734: 7728: 7727: 7693: 7665: 7659: 7658: 7624: 7594: 7583: 7582: 7556: 7554:astro-ph/0606076 7536: 7530: 7529: 7519: 7509: 7491: 7464: 7458: 7457: 7440:Teukolsky, S. A. 7438:Shapiro, S. L.; 7435: 7429: 7428: 7404: 7398: 7392: 7386: 7385: 7383: 7381: 7375: 7368: 7354: 7348: 7347: 7345: 7343: 7337: 7330: 7316: 7310: 7309: 7307: 7305: 7296:. Archived from 7285: 7276: 7275: 7250: 7244: 7243: 7241: 7239: 7197: 7182:Nature Astronomy 7173: 7167: 7161: 7155: 7154: 7152: 7150: 7128: 7122: 7121: 7119: 7117: 7096: 7090: 7089: 7087: 7085: 7065: 7059: 7058: 7052: 7050: 7030: 7021: 7020: 7018: 7016: 6997: 6988: 6987: 6985: 6983: 6964: 6958: 6957: 6955: 6945: 6920: 6914: 6913: 6911: 6909: 6903: 6898:. Archived from 6885: 6879: 6878: 6842: 6823: 6817: 6816: 6806: 6788: 6759: 6753: 6752: 6718: 6703:Phys. Rev. Lett. 6697: 6684: 6683: 6672:10.1038/248030a0 6644: 6633: 6632: 6630: 6628: 6551: 6545: 6544: 6517: 6511: 6510: 6509: 6507: 6489: 6483: 6482: 6480: 6478: 6459: 6453: 6452: 6426: 6417:(6): 1219–1227. 6404: 6398: 6397: 6395: 6389:. Archived from 6354: 6342: 6333: 6332: 6322: 6312: 6294: 6270: 6261: 6260: 6230: 6224: 6223: 6212: 6206: 6205: 6172: 6166: 6165: 6135: 6129: 6128: 6095: 6089: 6088: 6086: 6084: 6069: 6063: 6062: 6029: 6023: 6022: 6011:10.1038/218126a0 5984: 5978: 5977: 5966:10.1038/217709a0 5936: 5930: 5929: 5896: 5890: 5889: 5856: 5850: 5849: 5847: 5809: 5803: 5802: 5800: 5798: 5769: 5760: 5759: 5757: 5755: 5749: 5743:. Archived from 5716: 5700: 5694: 5693: 5683: 5665: 5641: 5635: 5634: 5624: 5598: 5574: 5568: 5567: 5541: 5521: 5515: 5514: 5504: 5486: 5462: 5456: 5455: 5419: 5413: 5412: 5390: 5384: 5383: 5346: 5337: 5336: 5308: 5302: 5301: 5271: 5265: 5264: 5240: 5234: 5233: 5230: 5224: 5222: 5203: 5193: 5187: 5186: 5135: 5129: 5128: 5126: 5124: 5118: 5111: 5099: 5093: 5092: 5090: 5088: 5058: 5052: 5051: 5049: 5047: 5041: 5026: 5017: 5011: 5006: 5004: 4990: 4963: 4961: 4945: 4918: 4909: 4908: 4906: 4904: 4899: 4879: 4873: 4872: 4870: 4868: 4848: 4842: 4841: 4813: 4807: 4801: 4792: 4791: 4781: 4744: 4738: 4737: 4691: 4685: 4684: 4674:10.1038/235271b0 4649: 4643: 4642: 4632:10.1038/235037a0 4607: 4601: 4600: 4566: 4557: 4546: 4545: 4543: 4537:. Archived from 4513:(8): 1313–1355. 4502: 4494:Davies, P. C. W. 4490: 4484: 4483: 4452: 4446: 4445: 4443: 4441: 4421: 4415: 4414: 4412: 4410: 4385: 4379: 4378: 4358: 4339: 4330: 4324: 4318: 4317: 4299: 4281: 4257: 4240: 4233: 4227: 4220: 4214: 4191: 4185: 4184: 4182: 4181: 4176: 4171: 4169: 4168: 4156: 4155: 4150: 4143: 4127: 4126: 4117: 4101: 4095: 4093: 4084: 4037:Sonic black hole 3936:firewall paradox 3934:. In 2012, the " 3902: 3859:Leonard Susskind 3810: 3809: 3807: 3806: 3803: 3800: 3786: 3778: 3770: 3762: 3754: 3750: 3744: 3740: 3738: 3737: 3732: 3729: 3718: 3716: 3715: 3712: 3709: 3693:Bekenstein bound 3672:dark-energy star 3596:phases of matter 3548:M–sigma relation 3496:Andromeda Galaxy 3484:interstellar gas 3468: 3271: 3269: 3245: 3243: 3236:Keplerian orbits 2911: 2867:inflation theory 2857: 2855: 2849: 2841: 2835: 2833: 2832: 2827: 2825: 2820: 2809: 2804: 2803: 2760: 2758: 2757: 2752: 2581: 2579: 2578: 2573: 2568: 2566: 2565: 2556: 2544: 2539: 2538: 2522: 2521: 2520: 2343:ring singularity 2277: 2263: 2249: 2226: 2224: 2223: 2218: 2213: 2211: 2210: 2201: 2193: 2188: 2187: 2186: 2145: 2143: 2142: 2137: 2135: 2122: 2121: 2119: 2118: 2106: 2097: 2095: 2094: 2085: 2074: 2069: 2068: 2067: 2019:Micro black hole 1910: 1906: 1903: 1901: 1900: 1895: 1887: 1885: 1884: 1883: 1870: 1862: 1837: 1835: 1834: 1829: 1824: 1819: 1818: 1817: 1804: 1774:realistic matter 1748: 1746: 1745: 1740: 1738: 1737: 1722: 1720: 1719: 1718: 1705: 1704: 1703: 1694: 1693: 1683: 1678: 1676: 1675: 1674: 1658: 1657: 1648: 1474: 1347:Jacob Bekenstein 1292:angular momentum 1094:Georges LemaĂźtre 1090:Arthur Eddington 1031: 1024: 1017: 1004: 999: 998: 991: 987: 986: 771:van Stockum dust 756:Robertson–Walker 582: 581: 472: 471: 386: 384: 383: 378: 376: 375: 363: 355: 354: 336: 335: 316: 302: 301: 72: 47: 21: 17887: 17886: 17882: 17881: 17880: 17878: 17877: 17876: 17847: 17846: 17845: 17835: 17833: 17821: 17809: 17797: 17787: 17785: 17775: 17773: 17765: 17763: 17758: 17267: 17244: 17221: 17168: 17116: 17086:KĂ€hler manifold 17053: 17030: 17023: 17016: 17009: 17002: 16961: 16922:Mirror symmetry 16903: 16889:Brane cosmology 16835: 16784: 16751: 16707:N=2 superstring 16693:Type IIB string 16688:Type IIA string 16663:Polyakov action 16646: 16603: 16598: 16568: 16563: 16549: 16377: 16281:BKL singularity 16271:LemaĂźtre–Tolman 16246: 16242:Quantum gravity 16224: 16218: 16204:geodetic effect 16178:(together with 16148:LISA Pathfinder 16087: 16036: 16022:Penrose diagram 16004: 15998: 15973: 15962: 15958:Minkowski space 15924: 15868: 15852: 15800: 15794: 15754: 15747: 15742: 15712: 15707: 15679: 15655:ULAS J1342+0928 15615:SDSS J0849+1114 15600:Phoenix Cluster 15553: 15405: 15367: 15346: 15285: 15244: 15240:No-hair theorem 15193: 15147:Bondi accretion 15113:Penrose process 15059: 15025:Gamma-ray burst 14952: 14862: 14853: 14839:Direct collapse 14787: 14774: 14769: 14707: 14694: 14671:Wayback Machine 14623: 14622: 14621: 14606: 14602: 14597: 14592: 14431: 14427: 14422: 14387: 14381: 14368: 14359: 14357: 14350: 14334:Wald, Robert M. 14326: 14309: 14303: 14281:Misner, Charles 14273: 14257: 14248: 14246: 14239: 14212: 14210: 14195: 14180: 14174: 14153: 14147: 14131: 14115: 14110:Wayback Machine 14097: 14080: 14075: 14069: 14050: 14032: 14026: 14002: 13989: 13983: 13966: 13960: 13940: 13931: 13929: 13922: 13898: 13896: 13889: 13867: 13861: 13843: 13837: 13824: 13815: 13813: 13806: 13787: 13785:Popular reading 13782: 13780:Further reading 13777: 13776: 13727: 13723: 13707:10.1038/496020a 13692:(7443): 20–23. 13678: 13674: 13642:10.1.1.339.7694 13606: 13602: 13534: 13530: 13489: 13485: 13426:Wald, Robert M. 13419: 13412: 13383: 13379: 13369: 13367: 13354:Hawking, S. W. 13352: 13348: 13332: 13331: 13319: 13279: 13275: 13236:(1–4): 99–104. 13226: 13222: 13207: 13163: 13159: 13094: 13087: 13056: 13052: 13033: 13029: 13019: 13017: 13000: 12996: 12986: 12984: 12969: 12965: 12892: 12888: 12843:Physics Reports 12839: 12835: 12786: 12782: 12733: 12729: 12680: 12676: 12659: 12655: 12598: 12594: 12545: 12541: 12486: 12482: 12431:Ferrarese, L.; 12429: 12425: 12376: 12372: 12341: 12337: 12327: 12325: 12318: 12299: 12295: 12285: 12283: 12276: 12260: 12256: 12246: 12244: 12227: 12223: 12213: 12211: 12198: 12197: 12193: 12170: 12166: 12156: 12154: 12139: 12135: 12106:(5332): 37–38. 12096: 12092: 12053: 12049: 12000: 11996: 11986: 11984: 11967: 11963: 11914: 11910: 11900: 11898: 11894: 11856:(12A): A3–A21. 11845: 11839: 11818: 11808: 11806: 11793: 11792: 11788: 11780: 11754:. p. 157. 11748: 11741: 11684: 11680: 11670: 11668: 11659: 11658: 11654: 11644: 11642: 11627: 11626: 11622: 11573: 11569: 11520: 11513: 11464: 11457: 11447: 11445: 11432: 11431: 11427: 11352: 11348: 11299: 11292: 11282: 11280: 11211: 11207: 11148: 11141: 11076: 11072: 11062: 11060: 11043:Overbye, Dennis 11040: 11036: 10971: 10967: 10957: 10955: 10938:Overbye, Dennis 10935: 10931: 10921: 10919: 10912:cfa.harvard.edu 10906: 10905: 10901: 10843: 10839: 10829: 10827: 10814: 10813: 10809: 10754: 10750: 10735: 10731: 10721: 10719: 10710: 10697: 10693: 10683: 10681: 10666: 10662: 10652: 10650: 10635: 10631: 10621: 10619: 10604: 10600: 10590: 10588: 10573: 10569: 10559: 10557: 10540:Overbye, Dennis 10537: 10533: 10523: 10521: 10508: 10507: 10503: 10493: 10491: 10482: 10481: 10477: 10445: 10441: 10434: 10389: 10382: 10372: 10370: 10359: 10355: 10320: 10316: 10279: 10275: 10226: 10222: 10212: 10210: 10209:on 22 July 2011 10203:Einstein online 10197: 10196: 10192: 10153: 10149: 10139: 10137: 10119: 10115: 10107: 10103: 10054: 10050: 10001: 9997: 9940: 9936: 9887: 9883: 9873: 9871: 9860:Einstein-Online 9852: 9848: 9840: 9791: 9785: 9781: 9732: 9728: 9679: 9675: 9626: 9622: 9612: 9610: 9595: 9591: 9586:on 26 May 2013. 9583: 9544: 9535: 9531: 9473: 9469: 9457: 9456: 9447: 9446: 9434: 9394: 9385: 9377: 9368: 9358: 9356: 9355:on 21 July 2013 9343: 9342: 9338: 9331: 9299: 9292: 9237: 9228: 9174: 9170: 9160: 9158: 9148: 9144: 9137: 9105: 9101: 9093: 9071:10.2307/1968902 9046: 9040: 9036: 8997: 8993: 8980: 8979: 8975: 8944: 8940: 8932: 8928: 8920: 8916: 8908: 8904: 8887: 8880: 8870: 8868: 8855: 8854: 8850: 8819: 8815: 8766: 8759: 8710: 8706: 8696: 8694: 8683: 8679: 8669: 8667: 8666:on 7 April 2009 8652: 8648: 8640: 8636: 8597: 8593: 8585: 8581: 8550: 8546: 8538: 8534: 8526: 8522: 8507:10.1071/AS07012 8473: 8469: 8459: 8457: 8442: 8441: 8437: 8429: 8425: 8417: 8413: 8405: 8401: 8344: 8340: 8330: 8328: 8321: 8320:978-052188512-6 8295: 8291: 8260: 8256: 8248: 8244: 8228: 8227: 8220: 8218: 8214: 8208: 8171: 8163: 8159: 8094: 8090: 8080: 8078: 8069: 8068: 8064: 8056: 8052: 8042: 8040: 8023: 8022: 8018: 8008: 8006: 7993: 7992: 7988: 7980: 7976: 7968: 7964: 7954: 7952: 7935: 7934: 7930: 7922: 7918: 7910: 7906: 7901:Wayback Machine 7886: 7884: 7877: 7861: 7857: 7852:Wayback Machine 7837: 7835: 7828: 7817:The New Physics 7812: 7808: 7800: 7796: 7747: 7743: 7735: 7731: 7666: 7662: 7595: 7586: 7537: 7533: 7465: 7461: 7454: 7436: 7432: 7421: 7405: 7401: 7393: 7389: 7379: 7377: 7373: 7366: 7355: 7351: 7341: 7339: 7335: 7328: 7317: 7313: 7303: 7301: 7286: 7279: 7272: 7251: 7247: 7237: 7235: 7174: 7170: 7162: 7158: 7148: 7146: 7129: 7125: 7115: 7113: 7098: 7097: 7093: 7083: 7081: 7066: 7062: 7048: 7046: 7031: 7024: 7014: 7012: 6999: 6998: 6991: 6981: 6979: 6966: 6965: 6961: 6921: 6917: 6907: 6905: 6886: 6882: 6867: 6824: 6820: 6760: 6756: 6698: 6687: 6658:(5443): 30–31. 6645: 6636: 6626: 6624: 6552: 6548: 6518: 6514: 6505: 6503: 6502:on 7 March 2008 6490: 6486: 6476: 6474: 6461: 6460: 6456: 6405: 6401: 6393: 6352: 6343: 6336: 6271: 6264: 6231: 6227: 6213: 6209: 6173: 6169: 6141:Physical Review 6136: 6132: 6096: 6092: 6082: 6080: 6070: 6066: 6030: 6026: 5985: 5981: 5937: 5933: 5905:Physical Review 5897: 5893: 5865:Physical Review 5860:Finkelstein, D. 5857: 5853: 5823:Physical Review 5810: 5806: 5796: 5794: 5770: 5763: 5753: 5751: 5750:on 25 July 2011 5747: 5714: 5701: 5697: 5642: 5638: 5575: 5571: 5522: 5518: 5463: 5459: 5420: 5416: 5391: 5387: 5359:Physical Review 5347: 5340: 5329: 5321:. p. 105. 5309: 5305: 5298:10.1119/1.12686 5272: 5268: 5257: 5241: 5237: 5228: 5220: 5218: 5216: 5194: 5190: 5171: 5136: 5132: 5122: 5120: 5116: 5109: 5100: 5096: 5086: 5084: 5077: 5059: 5055: 5045: 5043: 5039: 5024: 5018: 5014: 5002:physics/9912033 4959:physics/9905030 4919: 4912: 4902: 4900: 4880: 4876: 4866: 4864: 4849: 4845: 4834: 4814: 4810: 4802: 4795: 4745: 4741: 4692: 4688: 4650: 4646: 4618:(5332): 37–38, 4608: 4604: 4564: 4558: 4549: 4544:on 10 May 2013. 4541: 4500: 4491: 4487: 4476: 4468:. p. 110. 4453: 4449: 4439: 4437: 4422: 4418: 4408: 4406: 4391:(8 June 2015). 4389:Overbye, Dennis 4386: 4382: 4375: 4340: 4333: 4325: 4321: 4258: 4254: 4249: 4244: 4243: 4234: 4230: 4221: 4217: 4192: 4188: 4164: 4160: 4151: 4139: 4132: 4131: 4122: 4118: 4116: 4108: 4105: 4104: 4102: 4098: 4091: 4085: 4081: 4076: 4071: 3968: 3944:single emission 3913: 3912: 3907: 3904: 3897: 3891: 3861:to propose the 3855:Gerard 't Hooft 3814: 3813: 3812: 3804: 3801: 3796: 3795: 3793: 3788: 3784: 3776: 3768: 3760: 3752: 3748: 3745: 3733: 3730: 3722: 3721: 3719: 3713: 3710: 3707: 3706: 3704: 3699: 3695: 3685: 3680: 3650:model based on 3636: 3633: 3591: 3585: 3556: 3546:, known as the 3536:Sombrero Galaxy 3466: 3451: 3445: 3443:Galactic nuclei 3432: 3426: 3366: 3360: 3292: 3286: 3278: 3275: 3267: 3265: 3252: 3249: 3241: 3239: 3215: 3209: 3167: 3144:Doppler beaming 3130:as seen in the 3128:circular shadow 3078: 3066: 3055: 3052: 3048: 3045: 3007: 3004: 2988: 2972: 2966: 2938: 2906: 2886: 2853: 2851: 2839: 2837: 2816: 2808: 2799: 2795: 2793: 2790: 2789: 2776: 2767:reference frame 2740: 2737: 2736: 2733: 2730: 2726: 2723: 2703: 2700: 2693: 2690: 2686: 2683: 2639: 2633: 2600: 2591: 2589:Plunging region 2561: 2557: 2545: 2543: 2534: 2530: 2507: 2506: 2502: 2500: 2497: 2496: 2481: 2475: 2455:Penrose process 2429: 2423: 2406: 2400: 2392:quantum gravity 2387:quantum effects 2335: 2329: 2285: 2284: 2283: 2282: 2281: 2278: 2269: 2268: 2267: 2264: 2255: 2254: 2253: 2250: 2239: 2233: 2206: 2202: 2194: 2192: 2182: 2181: 2177: 2175: 2172: 2171: 2165:mass of the Sun 2162: 2159: 2155: 2125: 2114: 2110: 2105: 2090: 2086: 2075: 2073: 2063: 2062: 2058: 2056: 2053: 2052: 2031: 2010: 2007: 1993: 1983: 1980: 1961: 1958: 1939: 1936: 1922: 1917: 1879: 1875: 1871: 1863: 1861: 1853: 1850: 1849: 1813: 1809: 1805: 1803: 1795: 1792: 1791: 1733: 1729: 1714: 1710: 1706: 1699: 1695: 1689: 1685: 1684: 1682: 1670: 1666: 1659: 1653: 1649: 1647: 1645: 1642: 1641: 1605:vacuum solution 1584: 1564:quantum numbers 1553:time-reversible 1496:no-hair theorem 1492: 1472: 1450:Robert H. Dicke 1446:Henry Cavendish 1442: 1414:galactic centre 1387: 1363:surface gravity 1316:Stephen Hawking 1308:Evgeny Lifshitz 1280:no-hair theorem 1209: 1196:Hartland Snyder 1185: 1182: 1174: 1171: 1167: 1164: 1160: 1157: 1126: 1123: 1075:Hendrik Lorentz 1073:, a student of 1071:Johannes Droste 1043:Albert Einstein 1035: 994: 981: 980: 973: 972: 796: 795: 786: 785: 741:LemaĂźtre–Tolman 686: 685: 674: 673: 665:Quantum gravity 652:Advanced theory 579: 578: 577: 560: 559: 508:Geodetic effect 469: 468: 459: 458: 434: 433: 417: 387: 368: 364: 359: 347: 343: 328: 324: 322: 319: 318: 300: 294: 277:escape velocity 268: 217:direct collapse 214: 211: 204:of millions of 94:is a region of 88: 87: 86: 85: 84: 73: 64: 63: 62: 58:at the core of 48: 35: 28: 23: 22: 15: 12: 11: 5: 17885: 17875: 17874: 17869: 17864: 17859: 17844: 17843: 17831: 17819: 17807: 17795: 17783: 17760: 17759: 17757: 17756: 17751: 17746: 17741: 17736: 17731: 17726: 17721: 17716: 17711: 17706: 17701: 17696: 17691: 17686: 17681: 17676: 17671: 17666: 17661: 17656: 17651: 17646: 17641: 17636: 17631: 17626: 17621: 17616: 17611: 17606: 17601: 17596: 17594:Randjbar-Daemi 17591: 17586: 17581: 17576: 17571: 17566: 17561: 17556: 17551: 17546: 17541: 17536: 17531: 17526: 17521: 17516: 17511: 17506: 17501: 17496: 17491: 17486: 17481: 17476: 17471: 17466: 17461: 17456: 17451: 17446: 17441: 17436: 17431: 17426: 17421: 17416: 17411: 17406: 17401: 17396: 17391: 17386: 17381: 17376: 17371: 17366: 17361: 17356: 17351: 17346: 17341: 17336: 17331: 17326: 17321: 17316: 17311: 17306: 17301: 17296: 17291: 17286: 17281: 17275: 17273: 17269: 17268: 17266: 17265: 17260: 17254: 17252: 17246: 17245: 17243: 17242: 17237: 17231: 17229: 17223: 17222: 17220: 17219: 17217:Lie supergroup 17214: 17209: 17204: 17199: 17194: 17189: 17184: 17178: 17176: 17170: 17169: 17167: 17166: 17161: 17156: 17151: 17146: 17141: 17136: 17131: 17126: 17125: 17124: 17119: 17114: 17110: 17109: 17108: 17098: 17088: 17083: 17077: 17072: 17067: 17061: 17059: 17055: 17054: 17052: 17051: 17043: 17038: 17033: 17028: 17021: 17014: 17007: 17000: 16992: 16987: 16982: 16977: 16971: 16969: 16963: 16962: 16960: 16959: 16954: 16949: 16944: 16939: 16934: 16929: 16924: 16919: 16913: 16911: 16905: 16904: 16902: 16901: 16896: 16894:Quiver diagram 16891: 16886: 16881: 16876: 16871: 16866: 16861: 16856: 16851: 16845: 16843: 16837: 16836: 16834: 16833: 16828: 16823: 16818: 16813: 16808: 16803: 16798: 16792: 16790: 16786: 16785: 16783: 16782: 16777: 16772: 16767: 16761: 16759: 16757:String duality 16753: 16752: 16750: 16749: 16744: 16739: 16734: 16729: 16724: 16719: 16714: 16709: 16704: 16703: 16702: 16697: 16696: 16695: 16690: 16683:Type II string 16680: 16670: 16665: 16660: 16654: 16652: 16648: 16647: 16645: 16644: 16639: 16638: 16637: 16632: 16622: 16620:Cosmic strings 16617: 16611: 16609: 16605: 16604: 16597: 16596: 16589: 16582: 16574: 16565: 16564: 16554: 16551: 16550: 16548: 16547: 16540: 16535: 16530: 16525: 16520: 16515: 16510: 16505: 16500: 16495: 16490: 16485: 16480: 16475: 16470: 16468:Choquet-Bruhat 16465: 16460: 16455: 16450: 16445: 16440: 16435: 16430: 16425: 16420: 16415: 16410: 16405: 16400: 16395: 16389: 16387: 16383: 16382: 16379: 16378: 16376: 16375: 16368: 16367: 16362: 16357: 16350: 16349: 16344: 16339: 16334: 16329: 16320:Axisymmetric: 16317: 16316: 16311: 16305: 16294: 16293: 16288: 16283: 16278: 16273: 16268: 16259:Cosmological: 16256: 16254: 16248: 16247: 16245: 16244: 16239: 16234: 16228: 16226: 16220: 16219: 16217: 16216: 16211: 16200:frame-dragging 16197: 16192: 16187: 16184:Einstein rings 16180:Einstein cross 16173: 16162: 16161: 16156: 16150: 16145: 16140: 16127: 16117: 16116: 16111: 16106: 16101: 16095: 16093: 16089: 16088: 16086: 16085: 16083:Ernst equation 16080: 16075: 16070: 16065: 16060: 16055: 16053:BSSN formalism 16050: 16044: 16042: 16038: 16037: 16035: 16034: 16029: 16024: 16019: 16014: 16008: 16006: 16000: 15999: 15997: 15996: 15991: 15985: 15983: 15976: 15968: 15967: 15964: 15963: 15961: 15960: 15955: 15950: 15945: 15940: 15934: 15932: 15926: 15925: 15923: 15922: 15917: 15912: 15910:Ladder paradox 15907: 15902: 15897: 15892: 15887: 15882: 15876: 15874: 15870: 15869: 15867: 15866: 15860: 15858: 15854: 15853: 15851: 15850: 15845: 15840: 15835: 15830: 15825: 15820: 15815: 15813:Speed of light 15810: 15804: 15802: 15796: 15795: 15793: 15792: 15787: 15782: 15776: 15766: 15764: 15757: 15749: 15748: 15741: 15740: 15733: 15726: 15718: 15709: 15708: 15706: 15705: 15695: 15684: 15681: 15680: 15678: 15677: 15675:Swift J1644+57 15672: 15667: 15662: 15657: 15652: 15647: 15642: 15637: 15632: 15627: 15625:MS 0735.6+7421 15622: 15617: 15612: 15607: 15602: 15597: 15592: 15590:Sagittarius A* 15587: 15582: 15577: 15572: 15567: 15561: 15559: 15555: 15554: 15552: 15551: 15546: 15541: 15536: 15531: 15526: 15521: 15516: 15511: 15506: 15501: 15496: 15491: 15486: 15481: 15476: 15471: 15466: 15465: 15464: 15459: 15449: 15444: 15439: 15434: 15429: 15424: 15419: 15413: 15411: 15407: 15406: 15404: 15403: 15398: 15393: 15388: 15383: 15377: 15375: 15369: 15368: 15366: 15365: 15360: 15354: 15352: 15348: 15347: 15345: 15344: 15339: 15334: 15329: 15324: 15319: 15314: 15309: 15304: 15299: 15293: 15291: 15287: 15286: 15284: 15283: 15278: 15273: 15268: 15263: 15252: 15250: 15246: 15245: 15243: 15242: 15237: 15232: 15227: 15222: 15217: 15212: 15207: 15201: 15199: 15195: 15194: 15192: 15191: 15186: 15181: 15180: 15179: 15169: 15164: 15162:Thermodynamics 15159: 15154: 15149: 15144: 15143: 15142: 15132: 15127: 15125:Accretion disk 15122: 15121: 15120: 15115: 15105: 15100: 15095: 15090: 15089: 15088: 15083: 15073: 15067: 15065: 15061: 15060: 15058: 15057: 15052: 15047: 15042: 15037: 15032: 15027: 15022: 15021: 15020: 15015: 15010: 15000: 14999: 14998: 14988: 14983: 14982: 14981: 14971: 14966: 14960: 14958: 14954: 14953: 14951: 14950: 14949: 14948: 14943: 14938: 14933: 14928: 14923: 14918: 14908: 14903: 14902: 14901: 14891: 14890: 14889: 14886: 14881: 14870: 14868: 14864: 14863: 14856: 14854: 14852: 14851: 14846: 14841: 14836: 14831: 14826: 14821: 14816: 14811: 14806: 14801: 14799:BTZ black hole 14795: 14793: 14789: 14788: 14786: 14785: 14779: 14776: 14775: 14768: 14767: 14760: 14753: 14745: 14739: 14738: 14733: 14728: 14705: 14700: 14693: 14690: 14689: 14688: 14683: 14678: 14673: 14657: 14651: 14639: 14607: 14600: 14599: 14598: 14596: 14595:External links 14593: 14591: 14590: 14543: 14496: 14460:(4): 294–307. 14449: 14439:hep-ph/0511217 14428: 14426: 14423: 14421: 14420: 14385: 14379: 14366: 14348: 14330: 14324: 14307: 14301: 14285:Thorne, Kip S. 14277: 14271: 14255: 14237: 14223:Hawking, S. W. 14219: 14193: 14178: 14172: 14151: 14145: 14129: 14113: 14095: 14081: 14079: 14076: 14074: 14073: 14067: 14054: 14049:978-0316016407 14048: 14030: 14024: 14010:Thorne, Kip S. 14006: 14000: 13987: 13981: 13964: 13958: 13938: 13920: 13905: 13887: 13873:Penrose, Roger 13865: 13859: 13841: 13835: 13822: 13804: 13788: 13786: 13783: 13781: 13778: 13775: 13774: 13721: 13672: 13600: 13570:10.1.1.267.174 13552:hep-th/9306083 13528: 13483: 13410: 13396:hep-th/9508151 13377: 13346: 13317: 13273: 13243:hep-th/9601029 13220: 13205: 13180:hep-th/0003004 13157: 13085: 13050: 13027: 12994: 12963: 12886: 12833: 12803:hep-th/0502050 12780: 12727: 12674: 12668:hep-ph/0612159 12653: 12592: 12539: 12480: 12467:10.1086/312838 12423: 12410:10.1086/379143 12370: 12351:(1): 581–624. 12335: 12316: 12293: 12274: 12254: 12221: 12191: 12164: 12133: 12090: 12047: 11994: 11961: 11948:10.1086/506579 11924:(2): 730–752. 11908: 11816: 11799:Science | AAAS 11786: 11784:section 4.1.5. 11778: 11739: 11694:(3): 393–402. 11678: 11652: 11620: 11567: 11554:10.1086/306528 11530:(2): 678–686. 11511: 11455: 11425: 11346: 11290: 11233:(22): 221101. 11205: 11160:(17): 171101. 11139: 11094:(24): 241102. 11070: 11034: 10965: 10929: 10899: 10837: 10807: 10748: 10729: 10691: 10660: 10629: 10598: 10567: 10531: 10501: 10475: 10455:(2): 198–206. 10439: 10380: 10353: 10348:10.1086/174758 10334:(2): 557–559. 10314: 10273: 10220: 10190: 10163:(2): 175–181. 10147: 10113: 10101: 10071:hep-th/0409024 10048: 10035:10.1086/498446 10011:(2): 937–951. 9995: 9934: 9897:(1): L41–L44. 9881: 9846: 9802:(11): 115004. 9779: 9749:hep-ph/9803315 9726: 9673: 9643:hep-ph/0106219 9620: 9597:Philip Gibbs. 9589: 9529: 9467: 9458:|journal= 9432: 9383: 9366: 9336: 9329: 9290: 9226: 9177:Hawking, S. W. 9168: 9156:Wondrium Daily 9142: 9135: 9099: 9057:(4): 922–936. 9034: 9011:(1): 366–386. 8991: 8988:. 16 May 2024. 8973: 8968:10.1086/151796 8938: 8926: 8914: 8902: 8878: 8848: 8843:10.1086/151796 8813: 8757: 8720:(4): 445–454. 8704: 8677: 8646: 8634: 8591: 8579: 8544: 8532: 8520: 8467: 8435: 8423: 8411: 8399: 8354:(12): 124012. 8338: 8319: 8289: 8270:(2): 289–295. 8254: 8242: 8206: 8157: 8088: 8062: 8050: 8016: 7986: 7974: 7962: 7928: 7916: 7904: 7875: 7855: 7826: 7806: 7794: 7741: 7729: 7684:(16): 161101. 7660: 7615:(22): 221101. 7584: 7571:10.1086/508457 7547:(1): 518–539. 7531: 7459: 7452: 7430: 7419: 7399: 7387: 7376:on 18 May 2008 7349: 7338:on 18 May 2008 7311: 7277: 7270: 7245: 7168: 7156: 7123: 7091: 7060: 7022: 6989: 6974:. 6 May 2020. 6959: 6915: 6880: 6865: 6818: 6754: 6685: 6648:Hawking, S. W. 6634: 6579:(2): 161–170. 6563:Hawking, S. W. 6555:Bardeen, J. M. 6546: 6512: 6484: 6467:NobelPrize.org 6454: 6399: 6334: 6262: 6225: 6207: 6167: 6130: 6090: 6064: 6045:(1): 265–296. 6024: 5979: 5931: 5891: 5872:(4): 965–967. 5851: 5830:(5): 455–459. 5804: 5761: 5708:Wheeler, J. A. 5695: 5636: 5569: 5532:(12): 123012. 5516: 5457: 5414: 5385: 5366:(4): 374–381. 5354:Volkoff, G. M. 5338: 5327: 5303: 5284:(5): 394–400. 5266: 5255: 5235: 5214: 5188: 5169: 5130: 5119:on 21 May 2009 5094: 5075: 5053: 5042:on 18 May 2013 5012: 5010: 5009: 5008: 5007: 4991: 4910: 4874: 4843: 4832: 4808: 4793: 4739: 4686: 4644: 4602: 4547: 4485: 4474: 4447: 4416: 4380: 4374:978-9401709347 4373: 4331: 4319: 4272:(1): 421–439. 4251: 4250: 4248: 4245: 4242: 4241: 4228: 4215: 4186: 4174: 4167: 4163: 4159: 4154: 4149: 4146: 4142: 4138: 4135: 4130: 4125: 4121: 4115: 4112: 4096: 4078: 4077: 4075: 4072: 4070: 4069: 4064: 4059: 4054: 4049: 4044: 4039: 4034: 4029: 4024: 4019: 4014: 4009: 4004: 4002:BTZ black hole 3999: 3994: 3989: 3984: 3979: 3969: 3967: 3964: 3908: 3905: 3899: 3893:Main article: 3890: 3887: 3757:speed of light 3746: 3698: 3697: 3696: 3684: 3681: 3679: 3678:Open questions 3676: 3634: 3631: 3612:standard model 3604:supersymmetric 3584: 3581: 3577:Sagittarius A* 3555: 3552: 3532:APM 08279+5255 3444: 3441: 3428:Main article: 3425: 3422: 3409:Louise Webster 3385:X-ray binaries 3359: 3358:X-ray binaries 3356: 3323:compact object 3290:Accretion disk 3285: 3282: 3276: 3273: 3250: 3247: 3227:proper motions 3211:Main article: 3208: 3205: 3166: 3163: 3120:Sagittarius A* 3097:Sagittarius A* 3077: 3074: 3065: 3062: 3053: 3050: 3046: 3043: 3005: 3002: 2986: 2968:Main article: 2965: 2962: 2937: 2934: 2885: 2882: 2823: 2819: 2815: 2812: 2807: 2802: 2798: 2775: 2772: 2750: 2747: 2744: 2731: 2728: 2724: 2721: 2718:Star formation 2701: 2698: 2691: 2688: 2684: 2681: 2635:Main article: 2632: 2629: 2599: 2596: 2590: 2587: 2583: 2582: 2571: 2564: 2560: 2555: 2552: 2548: 2542: 2537: 2533: 2528: 2525: 2519: 2516: 2513: 2510: 2505: 2489:test particles 2477:Main article: 2474: 2471: 2441:frame-dragging 2425:Main article: 2422: 2419: 2402:Main article: 2399: 2396: 2331:Main article: 2328: 2325: 2279: 2272: 2271: 2270: 2265: 2258: 2257: 2256: 2251: 2244: 2243: 2242: 2241: 2240: 2235:Main article: 2232: 2229: 2228: 2227: 2216: 2209: 2205: 2200: 2197: 2191: 2185: 2180: 2160: 2157: 2153: 2147: 2146: 2134: 2131: 2128: 2117: 2113: 2109: 2103: 2100: 2093: 2089: 2084: 2081: 2078: 2072: 2066: 2061: 2036: 2035: 2032: 2027: 2021: 2015: 2014: 2011: 2008: 2005: 2002: 1996: 1995: 1991: 1984: 1981: 1978: 1975: 1969: 1968: 1962: 1959: 1956: 1953: 1947: 1946: 1940: 1937: 1934: 1931: 1925: 1924: 1919: 1914: 1905: 1904: 1893: 1890: 1882: 1878: 1874: 1869: 1866: 1860: 1857: 1839: 1838: 1827: 1822: 1816: 1812: 1808: 1802: 1799: 1750: 1749: 1736: 1732: 1728: 1725: 1717: 1713: 1709: 1702: 1698: 1692: 1688: 1681: 1673: 1669: 1665: 1662: 1656: 1652: 1583: 1580: 1549:field theories 1513:frame dragging 1491: 1488: 1441: 1438: 1386: 1383: 1276:Brandon Carter 1225:Martin Kruskal 1208: 1205: 1183: 1180: 1172: 1169: 1165: 1162: 1158: 1155: 1124: 1121: 1037: 1036: 1034: 1033: 1026: 1019: 1011: 1008: 1007: 1006: 1005: 992: 975: 974: 971: 970: 963: 958: 953: 948: 943: 938: 933: 928: 923: 918: 913: 908: 903: 898: 893: 888: 883: 878: 873: 868: 863: 858: 853: 848: 843: 838: 833: 828: 823: 818: 813: 808: 803: 797: 793: 792: 791: 788: 787: 784: 783: 778: 773: 768: 763: 758: 753: 748: 743: 738: 733: 728: 723: 718: 713: 708: 703: 698: 687: 681: 680: 679: 676: 675: 670: 669: 668: 667: 662: 654: 653: 649: 648: 647: 646: 644:Post-Newtonian 641: 636: 628: 627: 623: 622: 621: 620: 615: 610: 605: 600: 595: 587: 586: 580: 576: 575: 572: 568: 567: 566: 565: 562: 561: 556: 555: 554: 553: 548: 543: 535: 534: 528: 527: 526: 525: 520: 515: 510: 505: 503:Frame-dragging 500: 495: 490: 485: 480: 478:Kepler problem 470: 466: 465: 464: 461: 460: 457: 456: 451: 446: 441: 435: 431: 430: 429: 426: 425: 424: 423: 418: 416: 415: 410: 405: 399: 397: 389: 388: 374: 371: 367: 362: 358: 353: 350: 346: 342: 339: 334: 331: 327: 317: 309: 308: 293: 290: 267: 264: 252:Sagittarius A* 248:binary systems 236:accretion disk 212: 209: 161:Objects whose 74: 67: 66: 65: 49: 42: 41: 40: 39: 38: 26: 9: 6: 4: 3: 2: 17884: 17873: 17870: 17868: 17865: 17863: 17860: 17858: 17855: 17854: 17852: 17842: 17832: 17830: 17825: 17820: 17818: 17813: 17808: 17806: 17801: 17796: 17794: 17784: 17782: 17772: 17771: 17768: 17755: 17752: 17750: 17747: 17745: 17742: 17740: 17739:Zamolodchikov 17737: 17735: 17734:Zamolodchikov 17732: 17730: 17727: 17725: 17722: 17720: 17717: 17715: 17712: 17710: 17707: 17705: 17702: 17700: 17697: 17695: 17692: 17690: 17687: 17685: 17682: 17680: 17677: 17675: 17672: 17670: 17667: 17665: 17662: 17660: 17657: 17655: 17652: 17650: 17647: 17645: 17642: 17640: 17637: 17635: 17632: 17630: 17627: 17625: 17622: 17620: 17617: 17615: 17612: 17610: 17607: 17605: 17602: 17600: 17597: 17595: 17592: 17590: 17587: 17585: 17582: 17580: 17577: 17575: 17572: 17570: 17567: 17565: 17562: 17560: 17557: 17555: 17552: 17550: 17547: 17545: 17542: 17540: 17537: 17535: 17532: 17530: 17527: 17525: 17522: 17520: 17517: 17515: 17512: 17510: 17507: 17505: 17502: 17500: 17497: 17495: 17492: 17490: 17487: 17485: 17482: 17480: 17477: 17475: 17472: 17470: 17467: 17465: 17462: 17460: 17457: 17455: 17452: 17450: 17447: 17445: 17442: 17440: 17437: 17435: 17432: 17430: 17427: 17425: 17422: 17420: 17417: 17415: 17412: 17410: 17407: 17405: 17402: 17400: 17397: 17395: 17392: 17390: 17387: 17385: 17382: 17380: 17377: 17375: 17372: 17370: 17367: 17365: 17362: 17360: 17357: 17355: 17352: 17350: 17347: 17345: 17342: 17340: 17337: 17335: 17332: 17330: 17327: 17325: 17322: 17320: 17317: 17315: 17312: 17310: 17307: 17305: 17302: 17300: 17297: 17295: 17292: 17290: 17287: 17285: 17282: 17280: 17277: 17276: 17274: 17270: 17264: 17261: 17259: 17258:Matrix theory 17256: 17255: 17253: 17251: 17247: 17241: 17238: 17236: 17233: 17232: 17230: 17228: 17224: 17218: 17215: 17213: 17210: 17208: 17205: 17203: 17200: 17198: 17195: 17193: 17190: 17188: 17185: 17183: 17180: 17179: 17177: 17175: 17174:Supersymmetry 17171: 17165: 17162: 17160: 17157: 17155: 17152: 17150: 17147: 17145: 17142: 17140: 17137: 17135: 17132: 17130: 17127: 17123: 17120: 17118: 17111: 17107: 17104: 17103: 17102: 17099: 17097: 17094: 17093: 17092: 17089: 17087: 17084: 17081: 17078: 17076: 17073: 17071: 17068: 17066: 17063: 17062: 17060: 17056: 17050: 17048: 17044: 17042: 17039: 17037: 17034: 17031: 17024: 17017: 17010: 17003: 16996: 16993: 16991: 16988: 16986: 16983: 16981: 16978: 16976: 16973: 16972: 16970: 16968: 16964: 16958: 16955: 16953: 16950: 16948: 16945: 16943: 16940: 16938: 16935: 16933: 16930: 16928: 16925: 16923: 16920: 16918: 16915: 16914: 16912: 16910: 16906: 16900: 16897: 16895: 16892: 16890: 16887: 16885: 16882: 16880: 16877: 16875: 16872: 16870: 16867: 16865: 16862: 16860: 16857: 16855: 16852: 16850: 16847: 16846: 16844: 16842: 16838: 16832: 16829: 16827: 16826:Dual graviton 16824: 16822: 16819: 16817: 16814: 16812: 16809: 16807: 16804: 16802: 16799: 16797: 16794: 16793: 16791: 16787: 16781: 16778: 16776: 16773: 16771: 16768: 16766: 16763: 16762: 16760: 16758: 16754: 16748: 16745: 16743: 16742:RNS formalism 16740: 16738: 16735: 16733: 16730: 16728: 16725: 16723: 16720: 16718: 16715: 16713: 16710: 16708: 16705: 16701: 16698: 16694: 16691: 16689: 16686: 16685: 16684: 16681: 16679: 16678:Type I string 16676: 16675: 16674: 16671: 16669: 16666: 16664: 16661: 16659: 16656: 16655: 16653: 16649: 16643: 16640: 16636: 16633: 16631: 16628: 16627: 16626: 16623: 16621: 16618: 16616: 16613: 16612: 16610: 16606: 16602: 16601:String theory 16595: 16590: 16588: 16583: 16581: 16576: 16575: 16572: 16562: 16552: 16546: 16545: 16541: 16539: 16536: 16534: 16531: 16529: 16526: 16524: 16521: 16519: 16516: 16514: 16511: 16509: 16506: 16504: 16501: 16499: 16496: 16494: 16491: 16489: 16486: 16484: 16481: 16479: 16476: 16474: 16471: 16469: 16466: 16464: 16461: 16459: 16456: 16454: 16453:Chandrasekhar 16451: 16449: 16446: 16444: 16441: 16439: 16436: 16434: 16431: 16429: 16426: 16424: 16421: 16419: 16416: 16414: 16413:Schwarzschild 16411: 16409: 16406: 16404: 16401: 16399: 16396: 16394: 16391: 16390: 16388: 16384: 16374: 16370: 16369: 16366: 16363: 16361: 16358: 16356: 16352: 16351: 16348: 16345: 16343: 16340: 16338: 16335: 16333: 16330: 16327: 16323: 16319: 16318: 16315: 16312: 16309: 16306: 16304: 16300: 16299:Schwarzschild 16296: 16295: 16292: 16289: 16287: 16284: 16282: 16279: 16277: 16274: 16272: 16269: 16266: 16262: 16258: 16257: 16255: 16253: 16249: 16243: 16240: 16238: 16235: 16233: 16230: 16229: 16227: 16221: 16215: 16212: 16209: 16205: 16201: 16198: 16196: 16195:Shapiro delay 16193: 16191: 16188: 16185: 16181: 16177: 16174: 16171: 16167: 16164: 16163: 16160: 16157: 16154: 16151: 16149: 16146: 16144: 16141: 16139: 16138:collaboration 16135: 16131: 16128: 16126: 16122: 16119: 16118: 16115: 16112: 16110: 16107: 16105: 16104:Event horizon 16102: 16100: 16097: 16096: 16094: 16090: 16084: 16081: 16079: 16076: 16074: 16071: 16069: 16066: 16064: 16061: 16059: 16056: 16054: 16051: 16049: 16048:ADM formalism 16046: 16045: 16043: 16039: 16033: 16030: 16028: 16025: 16023: 16020: 16018: 16015: 16013: 16010: 16009: 16007: 16001: 15995: 15992: 15990: 15987: 15986: 15984: 15980: 15977: 15975: 15969: 15959: 15956: 15954: 15953:Biquaternions 15951: 15949: 15946: 15944: 15941: 15939: 15936: 15935: 15933: 15931: 15927: 15921: 15918: 15916: 15913: 15911: 15908: 15906: 15903: 15901: 15898: 15896: 15893: 15891: 15888: 15886: 15883: 15881: 15880:Time dilation 15878: 15877: 15875: 15871: 15865: 15862: 15861: 15859: 15855: 15849: 15846: 15844: 15841: 15839: 15836: 15834: 15833:Proper length 15831: 15829: 15826: 15824: 15821: 15819: 15816: 15814: 15811: 15809: 15806: 15805: 15803: 15797: 15791: 15788: 15786: 15783: 15780: 15777: 15775: 15771: 15768: 15767: 15765: 15761: 15758: 15756: 15750: 15746: 15739: 15734: 15732: 15727: 15725: 15720: 15719: 15716: 15704: 15696: 15694: 15686: 15685: 15682: 15676: 15673: 15671: 15668: 15666: 15663: 15661: 15658: 15656: 15653: 15651: 15650:Markarian 501 15648: 15646: 15643: 15641: 15638: 15636: 15633: 15631: 15628: 15626: 15623: 15621: 15618: 15616: 15613: 15611: 15608: 15606: 15603: 15601: 15598: 15596: 15593: 15591: 15588: 15586: 15583: 15581: 15578: 15576: 15575:XTE J1118+480 15573: 15571: 15570:XTE J1650-500 15568: 15566: 15563: 15562: 15560: 15556: 15550: 15547: 15545: 15542: 15540: 15537: 15535: 15532: 15530: 15527: 15525: 15522: 15520: 15517: 15515: 15512: 15510: 15507: 15505: 15502: 15500: 15497: 15495: 15492: 15490: 15487: 15485: 15482: 15480: 15477: 15475: 15472: 15470: 15467: 15463: 15460: 15458: 15455: 15454: 15453: 15450: 15448: 15445: 15443: 15440: 15438: 15435: 15433: 15430: 15428: 15425: 15423: 15420: 15418: 15415: 15414: 15412: 15408: 15402: 15399: 15397: 15394: 15392: 15389: 15387: 15384: 15382: 15379: 15378: 15376: 15374: 15370: 15364: 15361: 15359: 15356: 15355: 15353: 15349: 15343: 15340: 15338: 15335: 15333: 15330: 15328: 15325: 15323: 15320: 15318: 15315: 15313: 15310: 15308: 15305: 15303: 15300: 15298: 15295: 15294: 15292: 15288: 15282: 15279: 15277: 15274: 15272: 15269: 15267: 15264: 15261: 15257: 15256:Schwarzschild 15254: 15253: 15251: 15247: 15241: 15238: 15236: 15233: 15231: 15228: 15226: 15223: 15221: 15218: 15216: 15213: 15211: 15208: 15206: 15203: 15202: 15200: 15196: 15190: 15187: 15185: 15182: 15178: 15175: 15174: 15173: 15170: 15168: 15165: 15163: 15160: 15158: 15155: 15153: 15150: 15148: 15145: 15141: 15138: 15137: 15136: 15133: 15131: 15128: 15126: 15123: 15119: 15116: 15114: 15111: 15110: 15109: 15106: 15104: 15101: 15099: 15098:Photon sphere 15096: 15094: 15093:Event horizon 15091: 15087: 15084: 15082: 15079: 15078: 15077: 15074: 15072: 15069: 15068: 15066: 15062: 15056: 15053: 15051: 15048: 15046: 15043: 15041: 15038: 15036: 15033: 15031: 15028: 15026: 15023: 15019: 15018:Related links 15016: 15014: 15011: 15009: 15006: 15005: 15004: 15001: 14997: 14996:Related links 14994: 14993: 14992: 14989: 14987: 14984: 14980: 14979:Related links 14977: 14976: 14975: 14972: 14970: 14967: 14965: 14962: 14961: 14959: 14955: 14947: 14944: 14942: 14939: 14937: 14934: 14932: 14929: 14927: 14924: 14922: 14919: 14917: 14914: 14913: 14912: 14909: 14907: 14904: 14900: 14897: 14896: 14895: 14892: 14887: 14885: 14882: 14880: 14877: 14876: 14875: 14872: 14871: 14869: 14865: 14860: 14850: 14847: 14845: 14842: 14840: 14837: 14835: 14832: 14830: 14827: 14825: 14822: 14820: 14817: 14815: 14812: 14810: 14807: 14805: 14804:Schwarzschild 14802: 14800: 14797: 14796: 14794: 14790: 14784: 14781: 14780: 14777: 14773: 14766: 14761: 14759: 14754: 14752: 14747: 14746: 14743: 14737: 14734: 14732: 14729: 14724: 14719: 14715: 14711: 14706: 14704: 14701: 14699: 14696: 14695: 14687: 14684: 14682: 14679: 14677: 14674: 14672: 14668: 14665: 14661: 14658: 14655: 14652: 14649: 14645: 14644: 14640: 14638: 14634: 14633: 14628: 14625: 14624: 14619: 14618: 14610: 14587: 14583: 14579: 14575: 14571: 14567: 14562: 14557: 14553: 14549: 14544: 14540: 14536: 14532: 14528: 14524: 14520: 14515: 14510: 14506: 14502: 14497: 14493: 14489: 14485: 14481: 14477: 14473: 14468: 14463: 14459: 14455: 14450: 14447: 14440: 14435: 14430: 14429: 14425:Review papers 14416: 14411: 14407: 14403: 14399: 14395: 14391: 14390:"Black holes" 14386: 14382: 14376: 14372: 14367: 14355: 14351: 14345: 14341: 14340: 14335: 14331: 14327: 14321: 14317: 14313: 14308: 14304: 14298: 14294: 14290: 14289:Wheeler, John 14286: 14282: 14278: 14274: 14268: 14264: 14260: 14259:Melia, Fulvio 14256: 14244: 14240: 14234: 14230: 14229: 14224: 14220: 14208: 14204: 14200: 14196: 14190: 14186: 14185: 14179: 14175: 14169: 14165: 14161: 14157: 14152: 14148: 14142: 14138: 14134: 14130: 14126: 14122: 14121:DeWitt, B. S. 14118: 14114: 14111: 14107: 14104: 14098: 14092: 14088: 14083: 14082: 14070: 14064: 14060: 14055: 14051: 14045: 14041: 14040: 14035: 14031: 14027: 14021: 14017: 14016: 14011: 14007: 14003: 13997: 13993: 13988: 13984: 13978: 13973: 13972: 13965: 13961: 13955: 13950: 13949: 13943: 13942:Melia, Fulvio 13939: 13927: 13923: 13921:9780525658221 13917: 13913: 13912: 13906: 13894: 13890: 13884: 13880: 13879: 13874: 13870: 13866: 13862: 13856: 13852: 13851: 13846: 13842: 13838: 13832: 13828: 13823: 13811: 13807: 13805:9781108819053 13801: 13797: 13796: 13790: 13789: 13770: 13766: 13762: 13758: 13754: 13750: 13745: 13740: 13736: 13732: 13725: 13717: 13713: 13708: 13703: 13699: 13695: 13691: 13687: 13683: 13676: 13668: 13664: 13660: 13656: 13652: 13648: 13643: 13638: 13634: 13630: 13625: 13624:gr-qc/9305007 13620: 13616: 13613: 13612: 13604: 13596: 13592: 13588: 13584: 13580: 13576: 13571: 13566: 13562: 13558: 13553: 13548: 13544: 13541: 13540: 13532: 13524: 13520: 13516: 13512: 13507: 13502: 13498: 13494: 13487: 13479: 13475: 13471: 13467: 13463: 13459: 13455: 13451: 13446: 13441: 13438:(9): 092002. 13437: 13433: 13432: 13427: 13423: 13417: 13415: 13406: 13402: 13397: 13392: 13388: 13381: 13365: 13361: 13357: 13350: 13342: 13336: 13328: 13324: 13320: 13314: 13310: 13306: 13302: 13298: 13293: 13288: 13284: 13277: 13269: 13265: 13261: 13257: 13253: 13249: 13244: 13239: 13235: 13231: 13224: 13216: 13212: 13208: 13202: 13198: 13194: 13190: 13186: 13181: 13176: 13172: 13168: 13161: 13153: 13149: 13144: 13139: 13134: 13129: 13125: 13121: 13116: 13115:gr-qc/9912119 13111: 13107: 13103: 13099: 13092: 13090: 13081: 13077: 13073: 13069: 13065: 13061: 13054: 13046: 13042: 13038: 13031: 13015: 13011: 13010: 13005: 12998: 12982: 12978: 12974: 12967: 12959: 12955: 12951: 12947: 12942: 12937: 12932: 12927: 12923: 12919: 12914: 12913:gr-qc/0407075 12909: 12905: 12901: 12897: 12890: 12882: 12878: 12874: 12870: 12866: 12862: 12857: 12852: 12848: 12844: 12837: 12829: 12825: 12821: 12817: 12813: 12809: 12804: 12799: 12795: 12791: 12784: 12776: 12772: 12768: 12764: 12760: 12756: 12751: 12750:gr-qc/0508120 12746: 12742: 12738: 12731: 12723: 12719: 12715: 12711: 12707: 12703: 12698: 12693: 12689: 12685: 12678: 12669: 12664: 12657: 12649: 12645: 12640: 12635: 12631: 12627: 12622: 12617: 12613: 12609: 12608: 12603: 12596: 12588: 12584: 12580: 12576: 12572: 12568: 12563: 12558: 12554: 12550: 12543: 12535: 12531: 12526: 12521: 12517: 12513: 12508: 12503: 12499: 12495: 12491: 12484: 12476: 12472: 12468: 12464: 12460: 12456: 12451: 12446: 12442: 12438: 12434: 12427: 12419: 12415: 12411: 12407: 12403: 12399: 12394: 12389: 12385: 12381: 12374: 12366: 12362: 12358: 12354: 12350: 12346: 12339: 12323: 12319: 12313: 12309: 12308: 12303: 12302:Sparke, L. S. 12297: 12281: 12277: 12271: 12267: 12266: 12258: 12242: 12238: 12237: 12232: 12225: 12209: 12205: 12201: 12195: 12187: 12183: 12179: 12175: 12168: 12153:on 2 May 2008 12152: 12148: 12144: 12137: 12129: 12125: 12121: 12117: 12113: 12109: 12105: 12101: 12094: 12086: 12082: 12078: 12074: 12070: 12066: 12062: 12058: 12051: 12043: 12039: 12035: 12031: 12027: 12023: 12018: 12013: 12009: 12005: 11998: 11982: 11978: 11974: 11970: 11965: 11957: 11953: 11949: 11945: 11941: 11937: 11932: 11927: 11923: 11919: 11912: 11893: 11889: 11885: 11881: 11877: 11873: 11869: 11864: 11859: 11855: 11851: 11844: 11837: 11835: 11833: 11831: 11829: 11827: 11825: 11823: 11821: 11804: 11800: 11796: 11790: 11781: 11775: 11771: 11767: 11762: 11757: 11753: 11746: 11744: 11735: 11731: 11727: 11723: 11719: 11715: 11711: 11707: 11702: 11701:gr-qc/9505010 11697: 11693: 11689: 11682: 11666: 11662: 11656: 11640: 11636: 11635: 11630: 11624: 11616: 11612: 11608: 11604: 11600: 11596: 11591: 11586: 11582: 11578: 11571: 11563: 11559: 11555: 11551: 11547: 11543: 11538: 11533: 11529: 11525: 11518: 11516: 11507: 11503: 11499: 11495: 11491: 11487: 11482: 11477: 11473: 11469: 11462: 11460: 11443: 11439: 11435: 11429: 11421: 11417: 11413: 11409: 11405: 11400: 11395: 11391: 11387: 11382: 11377: 11373: 11369: 11365: 11361: 11357: 11350: 11342: 11338: 11334: 11330: 11326: 11322: 11317: 11312: 11308: 11304: 11297: 11295: 11278: 11274: 11270: 11266: 11262: 11258: 11254: 11250: 11246: 11241: 11236: 11232: 11228: 11224: 11220: 11216: 11209: 11201: 11197: 11193: 11189: 11185: 11181: 11177: 11173: 11168: 11163: 11159: 11155: 11154: 11146: 11144: 11135: 11131: 11127: 11123: 11119: 11115: 11111: 11107: 11102: 11097: 11093: 11089: 11085: 11081: 11074: 11058: 11054: 11053: 11048: 11044: 11038: 11030: 11026: 11021: 11016: 11012: 11008: 11004: 11000: 10995: 10990: 10986: 10982: 10981: 10976: 10969: 10953: 10949: 10948: 10943: 10939: 10933: 10917: 10913: 10909: 10903: 10895: 10891: 10887: 10883: 10879: 10875: 10871: 10867: 10862: 10857: 10853: 10849: 10841: 10825: 10821: 10817: 10811: 10803: 10799: 10794: 10789: 10785: 10781: 10776: 10771: 10767: 10763: 10759: 10752: 10744: 10740: 10733: 10718:. 12 May 2022 10717: 10713: 10709: 10707: 10702: 10695: 10679: 10675: 10671: 10664: 10648: 10644: 10640: 10633: 10617: 10613: 10609: 10602: 10586: 10582: 10578: 10571: 10555: 10551: 10550: 10545: 10541: 10535: 10519: 10515: 10511: 10505: 10489: 10485: 10479: 10470: 10466: 10462: 10458: 10454: 10450: 10443: 10430: 10426: 10422: 10418: 10414: 10410: 10406: 10402: 10398: 10394: 10387: 10385: 10368: 10364: 10357: 10349: 10345: 10341: 10337: 10333: 10329: 10325: 10324:Dingus, B. L. 10318: 10309: 10304: 10300: 10296: 10292: 10288: 10284: 10277: 10269: 10265: 10261: 10257: 10253: 10249: 10244: 10239: 10236:(3): 035009. 10235: 10231: 10224: 10208: 10204: 10200: 10194: 10186: 10182: 10178: 10174: 10170: 10166: 10162: 10158: 10151: 10135: 10131: 10127: 10123: 10122:Siegel, Ethan 10117: 10110: 10105: 10097: 10093: 10089: 10085: 10081: 10077: 10072: 10067: 10063: 10059: 10052: 10044: 10040: 10036: 10032: 10028: 10024: 10019: 10014: 10010: 10006: 9999: 9991: 9987: 9983: 9979: 9975: 9971: 9967: 9963: 9958: 9953: 9949: 9945: 9938: 9930: 9926: 9922: 9918: 9914: 9910: 9905: 9900: 9896: 9892: 9885: 9870:on 8 May 2013 9869: 9865: 9861: 9857: 9850: 9839: 9835: 9831: 9827: 9823: 9819: 9815: 9810: 9805: 9801: 9797: 9790: 9783: 9775: 9771: 9767: 9763: 9759: 9755: 9750: 9745: 9741: 9737: 9730: 9722: 9718: 9714: 9710: 9706: 9702: 9697: 9696:gr-qc/0609055 9692: 9689:(8): 084004. 9688: 9684: 9677: 9669: 9665: 9661: 9657: 9653: 9649: 9644: 9639: 9636:(5): 056010. 9635: 9631: 9624: 9608: 9604: 9600: 9593: 9582: 9578: 9574: 9570: 9566: 9562: 9558: 9554: 9550: 9543: 9539: 9533: 9525: 9521: 9517: 9513: 9509: 9505: 9501: 9497: 9492: 9487: 9483: 9479: 9471: 9463: 9451: 9443: 9439: 9435: 9429: 9425: 9421: 9417: 9413: 9408: 9403: 9399: 9392: 9390: 9388: 9381:, Section 5.8 9380: 9375: 9373: 9371: 9354: 9350: 9346: 9340: 9332: 9326: 9322: 9318: 9313: 9308: 9304: 9297: 9295: 9286: 9282: 9277: 9272: 9268: 9264: 9259: 9254: 9250: 9246: 9242: 9235: 9233: 9231: 9222: 9218: 9213: 9208: 9204: 9200: 9196: 9192: 9191: 9186: 9182: 9178: 9172: 9157: 9153: 9146: 9138: 9132: 9128: 9124: 9119: 9114: 9110: 9103: 9092: 9088: 9084: 9080: 9076: 9072: 9068: 9064: 9060: 9056: 9052: 9045: 9038: 9029: 9024: 9019: 9014: 9010: 9006: 9002: 8995: 8987: 8983: 8977: 8969: 8965: 8961: 8957: 8953: 8949: 8942: 8935: 8930: 8923: 8918: 8911: 8906: 8897: 8892: 8885: 8883: 8866: 8862: 8861:Fabio Pacucci 8858: 8852: 8844: 8840: 8836: 8832: 8828: 8824: 8817: 8809: 8805: 8801: 8797: 8793: 8789: 8784: 8779: 8776:(6): 063008. 8775: 8771: 8764: 8762: 8753: 8749: 8745: 8741: 8737: 8733: 8728: 8727:gr-qc/9510053 8723: 8719: 8715: 8708: 8692: 8688: 8681: 8665: 8661: 8657: 8650: 8644:, p. 212 8643: 8638: 8630: 8626: 8622: 8618: 8614: 8610: 8606: 8602: 8595: 8589:, p. 266 8588: 8583: 8575: 8571: 8567: 8563: 8559: 8555: 8554:Physics World 8548: 8541: 8536: 8530:, p. 182 8529: 8524: 8516: 8512: 8508: 8504: 8500: 8496: 8491: 8486: 8482: 8478: 8471: 8455: 8451: 8450: 8445: 8439: 8433:, p. 252 8432: 8427: 8420: 8415: 8409:, p. 205 8408: 8403: 8395: 8391: 8387: 8383: 8379: 8375: 8371: 8367: 8362: 8357: 8353: 8349: 8342: 8326: 8322: 8316: 8311: 8306: 8302: 8301: 8293: 8285: 8281: 8277: 8273: 8269: 8265: 8258: 8251: 8246: 8238: 8232: 8213: 8209: 8203: 8199: 8195: 8191: 8187: 8182: 8177: 8170: 8169: 8161: 8153: 8149: 8144: 8139: 8134: 8129: 8125: 8121: 8116: 8111: 8107: 8103: 8099: 8092: 8076: 8072: 8066: 8060:, p. 222 8059: 8054: 8038: 8034: 8030: 8026: 8020: 8004: 8000: 7996: 7990: 7984:, p. 218 7983: 7978: 7972:, p. 217 7971: 7966: 7950: 7946: 7942: 7938: 7932: 7925: 7920: 7914:, p. 179 7913: 7908: 7902: 7898: 7895: 7882: 7878: 7872: 7868: 7867: 7859: 7853: 7849: 7846: 7833: 7829: 7823: 7819: 7818: 7810: 7804:, p. 848 7803: 7798: 7790: 7786: 7782: 7778: 7774: 7770: 7765: 7760: 7757:(2): 027501. 7756: 7752: 7745: 7738: 7733: 7725: 7721: 7717: 7713: 7709: 7705: 7701: 7697: 7692: 7687: 7683: 7679: 7675: 7671: 7664: 7656: 7652: 7648: 7644: 7640: 7636: 7632: 7628: 7623: 7618: 7614: 7610: 7609: 7604: 7600: 7593: 7591: 7589: 7580: 7576: 7572: 7568: 7564: 7560: 7555: 7550: 7546: 7542: 7535: 7527: 7523: 7518: 7513: 7508: 7503: 7499: 7495: 7490: 7489:gr-qc/0201056 7485: 7482:(1): 2002–1. 7481: 7477: 7473: 7469: 7468:Berger, B. K. 7463: 7455: 7449: 7445: 7441: 7434: 7426: 7422: 7416: 7412: 7411: 7403: 7396: 7391: 7372: 7365: 7364: 7359: 7353: 7334: 7327: 7326: 7321: 7315: 7299: 7295: 7291: 7284: 7282: 7273: 7267: 7263: 7259: 7255: 7254:Thorne, K. S. 7249: 7233: 7229: 7225: 7221: 7217: 7213: 7209: 7205: 7201: 7196: 7191: 7187: 7183: 7179: 7172: 7166:, p. 253 7165: 7160: 7144: 7140: 7139: 7134: 7127: 7111: 7107: 7106: 7101: 7095: 7079: 7075: 7071: 7064: 7057: 7044: 7040: 7036: 7029: 7027: 7010: 7006: 7002: 6996: 6994: 6977: 6973: 6969: 6963: 6954: 6949: 6944: 6939: 6936:: 1057–1085. 6935: 6931: 6927: 6919: 6902: 6897: 6896: 6891: 6884: 6876: 6872: 6868: 6862: 6858: 6857:1721.1/103077 6854: 6850: 6846: 6841: 6836: 6832: 6828: 6822: 6814: 6810: 6805: 6800: 6796: 6792: 6787: 6782: 6778: 6774: 6773: 6768: 6764: 6758: 6750: 6746: 6742: 6738: 6734: 6730: 6726: 6722: 6717: 6712: 6709:(6): 061102. 6708: 6705: 6704: 6696: 6694: 6692: 6690: 6681: 6677: 6673: 6669: 6665: 6661: 6657: 6653: 6649: 6643: 6641: 6639: 6622: 6618: 6614: 6610: 6606: 6602: 6598: 6594: 6590: 6586: 6582: 6578: 6574: 6573: 6568: 6564: 6560: 6556: 6550: 6543: 6539: 6535: 6531: 6527: 6523: 6516: 6501: 6497: 6496: 6488: 6472: 6468: 6464: 6458: 6450: 6446: 6442: 6438: 6434: 6430: 6425: 6424:gr-qc/0301045 6420: 6416: 6412: 6411: 6403: 6392: 6388: 6384: 6380: 6376: 6372: 6368: 6364: 6360: 6359: 6351: 6347: 6341: 6339: 6330: 6326: 6321: 6316: 6311: 6306: 6302: 6298: 6293: 6288: 6284: 6280: 6276: 6269: 6267: 6258: 6254: 6250: 6246: 6242: 6238: 6237: 6229: 6221: 6217: 6211: 6203: 6199: 6195: 6191: 6187: 6183: 6182: 6177: 6171: 6163: 6159: 6155: 6151: 6147: 6143: 6142: 6134: 6126: 6122: 6118: 6114: 6110: 6106: 6105: 6100: 6099:Newman, E. T. 6094: 6079: 6075: 6068: 6060: 6056: 6052: 6048: 6044: 6040: 6039: 6034: 6028: 6020: 6016: 6012: 6008: 6004: 6000: 5996: 5992: 5991: 5983: 5975: 5971: 5967: 5963: 5959: 5955: 5951: 5947: 5946: 5941: 5935: 5927: 5923: 5919: 5915: 5911: 5907: 5906: 5901: 5895: 5887: 5883: 5879: 5875: 5871: 5867: 5866: 5861: 5855: 5846: 5841: 5837: 5833: 5829: 5825: 5824: 5819: 5815: 5808: 5793: 5789: 5785: 5781: 5780: 5775: 5768: 5766: 5746: 5742: 5738: 5734: 5730: 5726: 5722: 5721: 5720:Physics Today 5713: 5709: 5705: 5699: 5691: 5687: 5682: 5677: 5673: 5669: 5664: 5659: 5655: 5651: 5647: 5640: 5632: 5628: 5623: 5618: 5614: 5610: 5606: 5602: 5597: 5592: 5589:(2): 021501. 5588: 5584: 5580: 5573: 5565: 5561: 5557: 5553: 5549: 5545: 5540: 5535: 5531: 5527: 5520: 5512: 5508: 5503: 5498: 5494: 5490: 5485: 5480: 5476: 5472: 5468: 5461: 5453: 5449: 5445: 5441: 5437: 5433: 5429: 5425: 5418: 5410: 5406: 5402: 5398: 5397: 5389: 5381: 5377: 5373: 5369: 5365: 5361: 5360: 5355: 5351: 5345: 5343: 5334: 5330: 5324: 5320: 5316: 5315: 5307: 5299: 5295: 5291: 5287: 5283: 5279: 5278: 5270: 5262: 5258: 5252: 5248: 5247: 5239: 5232: 5217: 5211: 5207: 5202: 5201: 5192: 5184: 5180: 5176: 5172: 5166: 5162: 5158: 5154: 5150: 5146: 5145: 5140: 5134: 5115: 5108: 5104: 5098: 5082: 5078: 5072: 5068: 5064: 5057: 5038: 5034: 5030: 5023: 5016: 5003: 4998: 4993:Translation: 4992: 4988: 4984: 4980: 4976: 4972: 4968: 4960: 4955: 4950:Translation: 4949: 4948: 4947: 4946: 4943: 4939: 4935: 4931: 4927: 4923: 4917: 4915: 4898: 4893: 4889: 4885: 4878: 4862: 4858: 4854: 4847: 4839: 4835: 4829: 4825: 4821: 4820: 4812: 4805: 4800: 4798: 4789: 4785: 4780: 4775: 4771: 4767: 4763: 4759: 4758: 4753: 4749: 4743: 4735: 4731: 4727: 4723: 4719: 4715: 4711: 4707: 4704:(6477): 495. 4703: 4699: 4698: 4690: 4683: 4679: 4675: 4671: 4667: 4663: 4659: 4655: 4648: 4641: 4637: 4633: 4629: 4625: 4621: 4617: 4613: 4606: 4598: 4594: 4590: 4586: 4582: 4578: 4574: 4570: 4563: 4556: 4554: 4552: 4540: 4536: 4532: 4528: 4524: 4520: 4516: 4512: 4508: 4507: 4499: 4495: 4489: 4481: 4477: 4471: 4467: 4463: 4462: 4457: 4451: 4435: 4431: 4427: 4424:Hamilton, A. 4420: 4404: 4400: 4399: 4394: 4390: 4384: 4376: 4370: 4366: 4362: 4357: 4356:gr-qc/9710068 4352: 4348: 4344: 4338: 4336: 4328: 4323: 4315: 4311: 4307: 4303: 4298: 4293: 4289: 4285: 4280: 4275: 4271: 4267: 4263: 4256: 4252: 4238: 4232: 4226:are possible. 4225: 4219: 4212: 4208: 4204: 4200: 4196: 4190: 4172: 4165: 4161: 4157: 4152: 4144: 4140: 4136: 4128: 4123: 4119: 4113: 4110: 4100: 4089: 4086:The value of 4083: 4079: 4068: 4065: 4063: 4060: 4058: 4055: 4053: 4050: 4048: 4045: 4043: 4040: 4038: 4035: 4033: 4030: 4028: 4025: 4023: 4020: 4018: 4015: 4013: 4010: 4008: 4007:Golden binary 4005: 4003: 4000: 3998: 3995: 3993: 3990: 3988: 3985: 3983: 3980: 3978: 3974: 3971: 3970: 3963: 3961: 3956: 3954: 3949: 3945: 3941: 3937: 3933: 3928: 3926: 3922: 3917: 3911: 3896: 3886: 3884: 3879: 3875: 3871: 3866: 3864: 3860: 3856: 3852: 3847: 3845: 3841: 3836: 3831: 3828: 3827:absolute zero 3824: 3820: 3799: 3791: 3782: 3774: 3766: 3758: 3743: 3736: 3728: 3725: 3702: 3694: 3690: 3675: 3673: 3669: 3665: 3661: 3655: 3653: 3652:string theory 3649: 3645: 3639: 3627: 3625: 3621: 3617: 3613: 3609: 3605: 3601: 3597: 3590: 3580: 3578: 3573: 3570: 3566: 3562: 3551: 3549: 3545: 3539: 3537: 3533: 3529: 3525: 3521: 3517: 3513: 3509: 3505: 3501: 3497: 3491: 3489: 3485: 3481: 3476: 3475:spectral line 3464: 3460: 3455: 3450: 3440: 3437: 3431: 3421: 3419: 3414: 3410: 3406: 3402: 3397: 3393: 3390: 3386: 3379: 3375: 3370: 3365: 3355: 3352: 3350: 3345: 3343: 3339: 3335: 3330: 3328: 3324: 3319: 3316: 3313: 3309: 3301: 3296: 3291: 3281: 3263: 3258: 3256: 3237: 3232: 3228: 3219: 3214: 3204: 3202: 3197: 3193: 3191: 3186: 3184: 3180: 3171: 3162: 3159: 3155: 3151: 3149: 3145: 3140: 3138: 3133: 3129: 3125: 3121: 3116: 3112: 3110: 3106: 3098: 3094: 3087: 3082: 3073: 3071: 3061: 3059: 3039: 3037: 3031: 3028: 3022: 3020: 3015: 3011: 2999: 2997: 2993: 2989: 2985: 2981: 2977: 2971: 2961: 2959: 2955: 2951: 2947: 2943: 2933: 2931: 2927: 2923: 2919: 2915: 2910: 2904: 2898: 2895: 2891: 2881: 2879: 2874: 2872: 2868: 2864: 2859: 2848: 2847: 2821: 2817: 2813: 2810: 2805: 2800: 2796: 2787: 2782: 2771: 2768: 2762: 2748: 2745: 2742: 2719: 2715: 2710: 2707: 2695: 2679: 2675: 2671: 2667: 2662: 2660: 2656: 2648: 2643: 2638: 2628: 2626: 2622: 2621:Kerr solution 2618: 2617:exotic matter 2614: 2613:scalar fields 2610: 2604: 2595: 2586: 2569: 2562: 2558: 2553: 2550: 2546: 2540: 2535: 2531: 2526: 2523: 2503: 2495: 2494: 2493: 2490: 2486: 2480: 2470: 2468: 2464: 2460: 2456: 2451: 2449: 2444: 2442: 2433: 2428: 2418: 2414: 2412: 2405: 2404:Photon sphere 2398:Photon sphere 2395: 2393: 2388: 2383: 2381: 2377: 2373: 2369: 2363: 2361: 2357: 2351: 2349: 2344: 2340: 2334: 2324: 2321: 2316: 2314: 2308: 2306: 2302: 2297: 2293: 2290: 2276: 2262: 2248: 2238: 2237:Event horizon 2231:Event horizon 2214: 2207: 2203: 2198: 2195: 2189: 2183: 2178: 2170: 2169: 2168: 2166: 2152: 2132: 2115: 2111: 2107: 2101: 2098: 2091: 2087: 2082: 2079: 2076: 2070: 2059: 2051: 2050: 2049: 2047: 2043: 2033: 2030: 2026: 2022: 2020: 2017: 2016: 2012: 2003: 2001: 1998: 1997: 1994: 1990: 1985: 1976: 1974: 1971: 1970: 1967: 1963: 1954: 1952: 1949: 1948: 1945: 1941: 1932: 1930: 1927: 1926: 1920: 1915: 1912: 1911: 1891: 1888: 1880: 1876: 1872: 1867: 1864: 1858: 1855: 1848: 1847: 1846: 1844: 1843:dimensionless 1825: 1820: 1814: 1810: 1806: 1800: 1797: 1790: 1789: 1788: 1786: 1782: 1777: 1775: 1771: 1767: 1763: 1759: 1755: 1734: 1730: 1726: 1723: 1715: 1711: 1707: 1700: 1696: 1690: 1686: 1679: 1671: 1667: 1663: 1660: 1654: 1650: 1640: 1639: 1638: 1636: 1632: 1627: 1625: 1621: 1617: 1612: 1610: 1606: 1602: 1598: 1588: 1579: 1577: 1573: 1572:lepton number 1569: 1568:baryon number 1565: 1562: 1556: 1554: 1550: 1546: 1542: 1538: 1528: 1524: 1522: 1518: 1514: 1510: 1507:(through the 1506: 1500: 1497: 1487: 1485: 1480: 1478: 1470: 1469: 1464: 1463: 1457: 1455: 1451: 1447: 1437: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1407: 1403: 1399: 1396: 1392: 1382: 1380: 1376: 1372: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1343:James Bardeen 1339: 1337: 1334:, a galactic 1333: 1329: 1325: 1321: 1317: 1313: 1312:Roger Penrose 1309: 1305: 1301: 1295: 1293: 1289: 1285: 1281: 1277: 1273: 1272:Werner Israel 1269: 1265: 1261: 1257: 1253: 1249: 1244: 1241: 1237: 1233: 1228: 1226: 1222: 1218: 1217:event horizon 1214: 1204: 1201: 1198:provided the 1197: 1191: 1187: 1178: 1153: 1149: 1145: 1140: 1138: 1134: 1130: 1119: 1115: 1111: 1106: 1103: 1099: 1095: 1091: 1086: 1084: 1080: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1032: 1027: 1025: 1020: 1018: 1013: 1012: 1010: 1009: 1003: 993: 990: 985: 979: 978: 977: 976: 969: 968: 964: 962: 959: 957: 954: 952: 949: 947: 944: 942: 939: 937: 934: 932: 929: 927: 924: 922: 919: 917: 914: 912: 909: 907: 906:Chandrasekhar 904: 902: 899: 897: 894: 892: 889: 887: 884: 882: 879: 877: 874: 872: 869: 867: 864: 862: 859: 857: 854: 852: 849: 847: 844: 842: 839: 837: 834: 832: 829: 827: 824: 822: 821:Schwarzschild 819: 817: 814: 812: 809: 807: 804: 802: 799: 798: 790: 789: 782: 781:Hartle–Thorne 779: 777: 774: 772: 769: 767: 764: 762: 759: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 717: 714: 712: 709: 707: 704: 702: 699: 696: 692: 691:Schwarzschild 689: 688: 684: 678: 677: 666: 663: 661: 658: 657: 656: 655: 651: 650: 645: 642: 640: 637: 635: 632: 631: 630: 629: 625: 624: 619: 616: 614: 611: 609: 606: 604: 601: 599: 596: 594: 591: 590: 589: 588: 584: 583: 573: 570: 569: 564: 563: 552: 549: 547: 544: 542: 539: 538: 537: 536: 533: 530: 529: 524: 521: 519: 516: 514: 513:Event horizon 511: 509: 506: 504: 501: 499: 496: 494: 491: 489: 486: 484: 481: 479: 476: 475: 474: 473: 463: 462: 455: 452: 450: 447: 445: 442: 440: 437: 436: 428: 427: 422: 419: 414: 411: 409: 406: 404: 401: 400: 398: 396: 393: 392: 391: 390: 372: 369: 365: 360: 356: 351: 348: 344: 337: 332: 329: 325: 315: 311: 310: 307: 304: 303: 299: 289: 287: 281: 278: 273: 263: 261: 257: 253: 249: 245: 241: 237: 233: 228: 226: 222: 218: 207: 203: 198: 196: 192: 188: 184: 183:neutron stars 180: 176: 172: 168: 164: 159: 157: 153: 149: 145: 141: 137: 133: 129: 128:event horizon 125: 121: 117: 114:'s theory of 113: 109: 105: 101: 97: 93: 82: 78: 71: 61: 57: 53: 46: 37: 33: 19: 17841:Solar System 17284:Arkani-Hamed 17182:Supergravity 17149:Moduli space 17046: 17041:Dirac string 16967:Gauge theory 16947:Loop algebra 16884:Black string 16878: 16747:GS formalism 16543: 16237:Kaluza–Klein 16098: 15989:Introduction 15915:Twin paradox 15605:PKS 1302-102 15479:Gravity well 15447:Compact star 15401:Microquasars 15386:Most massive 15290:Alternatives 15055:X-ray binary 14974:Neutron star 14911:Supermassive 14888:Hawking star 14829:Supermassive 14771: 14713: 14641: 14631: 14613: 14551: 14547: 14504: 14500: 14457: 14453: 14397: 14394:Scholarpedia 14393: 14370: 14358:. Retrieved 14338: 14315: 14292: 14262: 14247:. Retrieved 14227: 14211:. Retrieved 14183: 14155: 14136: 14124: 14086: 14058: 14038: 14014: 13991: 13970: 13947: 13930:. Retrieved 13910: 13897:. Retrieved 13877: 13849: 13826: 13814:. Retrieved 13794: 13734: 13730: 13724: 13689: 13685: 13675: 13614: 13609: 13603: 13542: 13537: 13531: 13496: 13492: 13486: 13435: 13429: 13386: 13380: 13368:. Retrieved 13364:the original 13359: 13349: 13282: 13276: 13233: 13229: 13223: 13166: 13160: 13105: 13101: 13063: 13059: 13053: 13036: 13030: 13018:. Retrieved 13009:ScienceAlert 13007: 12997: 12985:. Retrieved 12976: 12966: 12903: 12899: 12889: 12849:(4–5): 117. 12846: 12842: 12836: 12796:(7–8): 793. 12793: 12789: 12783: 12740: 12736: 12730: 12690:(1–2): 1–7. 12687: 12683: 12677: 12656: 12611: 12605: 12595: 12552: 12548: 12542: 12497: 12493: 12483: 12440: 12436: 12426: 12386:(1): 27–29. 12383: 12379: 12373: 12348: 12344: 12338: 12326:. Retrieved 12306: 12296: 12284:. Retrieved 12264: 12257: 12245:. Retrieved 12234: 12224: 12212:. Retrieved 12208:the original 12194: 12177: 12173: 12167: 12155:. Retrieved 12151:the original 12147:The bulletin 12146: 12136: 12103: 12099: 12093: 12060: 12056: 12050: 12007: 12003: 11997: 11985:. Retrieved 11976: 11964: 11921: 11917: 11911: 11899:. Retrieved 11853: 11849: 11807:. Retrieved 11798: 11789: 11751: 11691: 11687: 11681: 11671:17 September 11669:. Retrieved 11655: 11643:. Retrieved 11639:the original 11632: 11623: 11580: 11576: 11570: 11527: 11523: 11471: 11467: 11446:. Retrieved 11428: 11371: 11367: 11349: 11306: 11302: 11281:. Retrieved 11277:the original 11230: 11226: 11208: 11157: 11151: 11091: 11087: 11073: 11061:. Retrieved 11050: 11037: 10984: 10978: 10968: 10956:. Retrieved 10945: 10932: 10920:. Retrieved 10911: 10902: 10851: 10847: 10840: 10830:30 September 10828:. Retrieved 10820:Science News 10819: 10810: 10765: 10761: 10751: 10745:(2041–8205). 10742: 10732: 10720:. Retrieved 10715: 10698: 10694: 10682:. Retrieved 10674:Science News 10673: 10663: 10651:. Retrieved 10642: 10632: 10620:. Retrieved 10611: 10601: 10589:. Retrieved 10580: 10570: 10558:. Retrieved 10547: 10534: 10522:. Retrieved 10513: 10504: 10492:. Retrieved 10478: 10452: 10448: 10442: 10396: 10392: 10373:16 September 10371:. Retrieved 10356: 10331: 10327: 10317: 10290: 10286: 10276: 10233: 10229: 10223: 10211:. Retrieved 10207:the original 10202: 10193: 10160: 10156: 10150: 10138:. Retrieved 10129: 10116: 10109:Carroll 2004 10104: 10061: 10057: 10051: 10008: 10004: 9998: 9947: 9943: 9937: 9894: 9890: 9884: 9872:. Retrieved 9868:the original 9863: 9859: 9849: 9799: 9795: 9782: 9739: 9735: 9729: 9686: 9682: 9676: 9633: 9629: 9623: 9611:. Retrieved 9592: 9581:the original 9552: 9548: 9532: 9481: 9477: 9470: 9397: 9379:Carroll 2004 9357:. Retrieved 9353:the original 9348: 9339: 9302: 9248: 9244: 9194: 9188: 9171: 9159:. Retrieved 9155: 9145: 9108: 9102: 9091:the original 9054: 9050: 9037: 9008: 9004: 8994: 8976: 8951: 8947: 8941: 8929: 8922:Carroll 2004 8917: 8910:Carroll 2004 8905: 8871:29 September 8869:. Retrieved 8860: 8851: 8826: 8822: 8816: 8773: 8769: 8717: 8713: 8707: 8695:. Retrieved 8691:the original 8680: 8668:. Retrieved 8664:the original 8659: 8649: 8637: 8604: 8600: 8594: 8587:Carroll 2004 8582: 8560:(1): 34–37. 8557: 8553: 8547: 8540:Carroll 2004 8535: 8528:Wheeler 2007 8523: 8483:(2): 46–52. 8480: 8476: 8470: 8458:. Retrieved 8447: 8438: 8431:Carroll 2004 8426: 8419:Carroll 2004 8414: 8407:Carroll 2004 8402: 8351: 8347: 8341: 8329:. Retrieved 8299: 8292: 8267: 8263: 8257: 8245: 8219:. Retrieved 8167: 8160: 8105: 8101: 8091: 8079:. Retrieved 8075:the original 8065: 8058:Carroll 2004 8053: 8041:. Retrieved 8029:math.ucr.edu 8028: 8019: 8007:. Retrieved 8003:the original 7998: 7989: 7982:Carroll 2004 7977: 7970:Carroll 2004 7965: 7953:. Retrieved 7940: 7931: 7924:Carroll 2004 7919: 7912:Wheeler 2007 7907: 7887:25 September 7885:. Retrieved 7865: 7858: 7838:25 September 7836:. Retrieved 7816: 7809: 7797: 7754: 7750: 7744: 7732: 7681: 7677: 7663: 7612: 7606: 7544: 7540: 7534: 7479: 7475: 7462: 7443: 7433: 7409: 7402: 7397:, Appendix B 7390: 7378:. Retrieved 7371:the original 7362: 7358:Preskill, J. 7352: 7340:. Retrieved 7333:the original 7324: 7320:Preskill, J. 7314: 7302:. Retrieved 7298:the original 7293: 7261: 7258:Price, R. H. 7248: 7236:. Retrieved 7188:(1): 41–47. 7185: 7181: 7171: 7164:Carroll 2004 7159: 7147:. Retrieved 7136: 7126: 7114:. Retrieved 7103: 7094: 7084:24 September 7082:. Retrieved 7073: 7063: 7054: 7049:24 September 7047:. Retrieved 7039:Science News 7038: 7013:. Retrieved 7005:www.wbur.org 7004: 6980:. Retrieved 6962: 6933: 6929: 6918: 6906:. Retrieved 6901:the original 6893: 6883: 6830: 6821: 6776: 6770: 6757: 6706: 6701: 6655: 6651: 6625:. Retrieved 6576: 6570: 6549: 6525: 6521: 6515: 6504:, retrieved 6500:the original 6494: 6487: 6475:. Retrieved 6466: 6457: 6414: 6408: 6402: 6391:the original 6362: 6356: 6282: 6278: 6240: 6234: 6228: 6219: 6210: 6185: 6179: 6170: 6145: 6139: 6133: 6108: 6102: 6093: 6081:. Retrieved 6077: 6067: 6042: 6036: 6027: 5994: 5988: 5982: 5949: 5943: 5934: 5909: 5903: 5894: 5869: 5863: 5854: 5827: 5821: 5807: 5795:. Retrieved 5783: 5777: 5752:. Retrieved 5745:the original 5727:(1): 30–41. 5724: 5718: 5698: 5653: 5649: 5639: 5586: 5582: 5572: 5529: 5525: 5519: 5474: 5470: 5460: 5427: 5423: 5417: 5400: 5394: 5388: 5363: 5357: 5313: 5306: 5281: 5275: 5269: 5245: 5238: 5226: 5219:. Retrieved 5199: 5191: 5143: 5133: 5121:. Retrieved 5114:the original 5103:'t Hooft, G. 5097: 5085:. Retrieved 5066: 5056: 5046:16 September 5044:. Retrieved 5037:the original 5032: 5028: 5015: 4978: 4974: 4933: 4929: 4901:. Retrieved 4887: 4877: 4865:. Retrieved 4856: 4846: 4818: 4811: 4761: 4755: 4742: 4701: 4695: 4689: 4657: 4653: 4647: 4615: 4611: 4605: 4575:(2): 90–96. 4572: 4568: 4539:the original 4510: 4504: 4488: 4460: 4450: 4438:. Retrieved 4429: 4419: 4407:. Retrieved 4396: 4383: 4346: 4322: 4269: 4265: 4255: 4231: 4218: 4189: 4099: 4087: 4082: 3977:Black string 3957: 3929: 3918: 3914: 3867: 3848: 3832: 3815: 3797: 3789: 3741: 3734: 3726: 3723: 3700: 3656: 3640: 3628: 3592: 3583:Alternatives 3574: 3569:Microlensing 3557: 3554:Microlensing 3540: 3492: 3482:; a disk of 3472: 3469:January 2015 3433: 3398: 3394: 3392:black hole. 3383: 3364:X-ray binary 3353: 3346: 3331: 3320: 3317: 3305: 3259: 3224: 3198: 3194: 3187: 3176: 3160: 3156: 3152: 3141: 3117: 3113: 3102: 3067: 3040: 3032: 3026: 3023: 3000: 2983: 2979: 2975: 2973: 2939: 2908: 2899: 2887: 2875: 2860: 2845: 2777: 2763: 2711: 2696: 2674:compact star 2670:denser state 2663: 2652: 2605: 2601: 2592: 2584: 2482: 2452: 2447: 2445: 2438: 2415: 2407: 2384: 2364: 2356:tidal forces 2352: 2336: 2317: 2309: 2298: 2294: 2286: 2150: 2148: 2045: 2041: 2039: 2024: 1988: 1840: 1785:GRS 1915+105 1778: 1765: 1753: 1751: 1634: 1630: 1628: 1613: 1593: 1557: 1533: 1501: 1493: 1484:John Wheeler 1481: 1468:Science News 1466: 1460: 1458: 1443: 1388: 1340: 1296: 1264:axisymmetric 1245: 1229: 1210: 1192: 1188: 1168:to 3.0  1141: 1137:neutron star 1120:at 1.4  1107: 1087: 1040: 966: 926:Raychaudhuri 522: 395:Introduction 282: 272:John Michell 269: 229: 206:solar masses 199: 167:John Michell 160: 91: 89: 36: 17857:Black holes 17805:Mathematics 17644:Silverstein 17144:Orientifold 16879:Black holes 16874:Black brane 16831:Dual photon 16326:Kerr–Newman 16297:Spherical: 16166:Other tests 16109:Singularity 16041:Formulation 16003:Fundamental 15857:Formulation 15838:Proper time 15799:Fundamental 15595:Centaurus A 15549:Planet Nine 15452:Exotic star 15381:Black holes 15327:Planck star 15276:Kerr–Newman 14991:White dwarf 14941:Radio-Quiet 14899:Microquasar 14772:Black holes 14632:In Our Time 14627:Black Holes 14614:black hole 14400:(1): 4277. 14360:23 February 14293:Gravitation 14125:Black Holes 13020:20 February 12443:(1): 9–12. 12433:Merritt, D. 12180:(1): 9–12. 11283:12 February 11063:11 February 10213:12 December 9555:(7): 1141. 9538:Penrose, R. 9251:(2): 1432. 9181:Penrose, R. 8954:: 347–370. 8829:: 347–370. 8685:Palmer, D. 8386:10773/24121 7149:27 November 7116:27 November 6528:(1): 9–12, 6346:Penrose, R. 6243:(14): 905. 6148:(5): 1776. 6083:22 December 5912:(5): 1743. 5900:Kruskal, M. 5704:Ruffini, R. 5403:: 871–877. 5087:23 February 4981:: 424–434. 4936:: 189–196. 4804:Thorne 1994 4748:Michell, J. 4343:Wald, R. M. 4199:world lines 4062:Planck star 3973:Black brane 3878:Cumrun Vafa 3779:), and the 3624:preon stars 3589:Exotic star 3465:galaxy on 5 3413:Paul Murdin 3338:binary star 3255:light-years 3010:nanokelvins 2964:Evaporation 2918:cosmic rays 2907:1 TeV/ 2890:high-energy 2871:Hubble flow 2786:Planck mass 2448:ergosurface 2327:Singularity 2013:30 km 2004:2-150  1977:10–10  1955:10–10  1933:10–10  1505:Gauss's law 1422:light-years 1385:Observation 1367:temperature 1260:Ezra Newman 1133:white dwarf 941:van Stockum 871:Oppenheimer 726:Kerr–Newman 518:Singularity 173:. In 1916, 148:temperature 54:image of a 17851:Categories 17664:Strominger 17659:Steinhardt 17654:Staudacher 17569:Polchinski 17519:Nanopoulos 17479:Mandelstam 17459:Kontsevich 17299:Berenstein 17227:Holography 17207:Superspace 17106:K3 surface 17065:Worldsheet 16980:Instantons 16608:Background 16478:Zel'dovich 16386:Scientists 16365:Alcubierre 16172:of Mercury 16170:precession 16099:Black hole 15982:Background 15974:relativity 15943:World line 15938:Light cone 15763:Background 15755:relativity 15745:Relativity 15645:Q0906+6930 15635:Hercules A 15565:Cygnus X-1 15534:White hole 15509:Quasi-star 15462:Preon star 15457:Quark star 15442:Big Bounce 15302:Black star 15260:Derivation 15108:Ergosphere 15064:Properties 15045:Quasi-star 15035:Quark star 14946:Radio-Loud 14834:Primordial 14824:Kugelblitz 14561:2112.06515 14514:1904.05363 14203:1234.83001 14117:Carter, B. 13932:6 November 13816:6 November 13445:1703.02140 12507:2201.13296 12328:16 October 12286:16 October 11408:1826/11732 11381:1602.03846 11374:(2): L22. 11362:) (2016). 11316:2210.03750 11240:1602.03841 11167:1602.07309 11101:1602.03840 10994:2304.13252 10922:12 January 10861:1512.01220 10775:2105.01169 10768:(1): L12. 10560:25 January 10361:Naeye, R. 10064:(1): 203. 9491:1712.01860 9258:1603.08522 9018:2405.09175 8936:, Box 25.6 8361:1804.04910 8331:12 January 7691:1710.05832 7622:1706.01812 7195:1903.11704 7074:Boston.com 6943:2209.06833 6840:1512.01413 6786:1906.11238 6716:1602.03837 6617:1125.83309 6559:Carter, B. 6216:Carter, B. 6188:(6): 331. 6176:Carter, B. 6111:(6): 918. 6033:Hewish, A. 5940:Hewish, A. 5814:Snyder, H. 5754:5 December 5663:1711.00314 5656:(2): L25. 5596:1711.00473 5539:1710.07579 5484:1710.05938 5477:(2): L19. 5319:A K Peters 4279:1601.01323 4247:References 4224:black ring 4195:light cone 4090:can exceed 4057:White hole 3666:, related 3664:black star 3587:See also: 3565:arcseconds 3447:See also: 3418:V404 Cygni 3401:Cygnus X-1 3378:Cygnus X-1 3362:See also: 3288:See also: 3109:Messier 87 3084:A view of 2903:braneworld 2856:10 kg 2465:and other 2427:Ergosphere 2421:Ergosphere 2048:, through 1964:0.001–400 1942:>1,000 1766:unphysical 1624:stationary 1410:Messier 87 1375:black body 1332:Cygnus X-1 1262:found the 1207:Golden age 1129:Lev Landau 1102:Betelgeuse 1067:point mass 794:Scientists 626:Formalisms 574:Formalisms 523:Black hole 449:World line 296:See also: 242:, forming 238:heated by 221:gas clouds 195:Cygnus X-1 132:black body 106:and other 92:black hole 60:Messier 87 17781:Astronomy 17699:Veneziano 17579:Rajaraman 17474:Maldacena 17364:Gopakumar 17314:Dijkgraaf 17309:Curtright 16975:Anomalies 16854:NS5-brane 16775:U-duality 16770:S-duality 16765:T-duality 16448:Robertson 16433:Friedmann 16428:Eddington 16418:de Sitter 16252:Solutions 16130:detectors 16125:astronomy 16092:Phenomena 16027:Geodesics 15930:Spacetime 15873:Phenomena 15670:AT2018hyz 15317:Gravastar 15307:Dark star 15140:Microlens 15013:Hypernova 15008:Micronova 15003:Supernova 14957:Formation 14586:245123647 14539:256465740 14492:118494056 14467:0806.2316 14213:2 January 13744:1207.3123 13737:(2): 62. 13637:CiteSeerX 13565:CiteSeerX 13506:1201.2079 13335:cite book 13292:0807.4520 13215:119383028 12881:118403957 12856:0804.0552 12722:119063004 12621:0908.2672 12587:118635353 12562:0911.2187 12534:246430448 12500:(1): 83. 12247:6 January 12042:119119359 12017:1107.5932 12010:(2): 67. 11956:118445260 11734:119508131 11726:0264-9381 11645:12 August 11590:0903.1105 11481:0810.4674 11416:209315965 11341:252781040 11273:217275338 11200:206273829 11134:217406416 10802:233851995 10706:CC BY 4.0 10614:(video). 10243:0806.3381 10185:118913634 10111:, Ch. 9.6 10096:119047329 9929:119120429 9904:1003.3470 9809:0806.3414 9721:119375284 9603:John Baez 9577:117459073 9524:205263326 9460:ignored ( 9450:cite book 9285:118578313 9118:0706.1109 8924:, Ch. 6.7 8912:, Ch. 6.6 8896:0706.0622 8808:119264596 8783:1106.2425 8642:Wald 1984 8490:0705.1029 8460:9 October 8310:0706.0622 8252:, Ch. 9.3 8231:cite book 8181:0802.0519 8115:0801.3471 8033:John Baez 7789:118487989 7764:1105.3950 7737:Wald 1984 7724:217163611 7655:206291714 7238:21 August 7220:2397-3366 6813:145906806 6779:(1): L1. 6749:124959784 6477:8 October 6387:116755736 6365:(3): 57. 6292:1205.6112 5690:119359694 5564:119206732 5511:119342447 4764:: 35–57. 4734:210984462 4535:250916407 4327:Wald 1984 4314:119166670 4306:0035-8711 4158:− 4129:− 3948:entangled 3925:unitarity 3660:gravastar 3463:Milky Way 3376:image of 3231:Milky Way 3124:Milky Way 3058:timescale 3017:than the 2956:found in 2930:evaporate 2811:ℏ 2746:∼ 2647:Milky Way 2615:or other 2378:like the 2376:causality 2289:spacetime 2116:⊙ 2099:≈ 1889:≤ 1859:≤ 1801:≤ 1724:≤ 1668:ϵ 1664:π 1440:Etymology 1430:Milky Way 1324:Greenwich 1211:In 1958, 1142:In 1939, 1108:In 1931, 1088:In 1924, 1041:In 1915, 886:Robertson 851:Friedmann 846:Eddington 836:Nordström 826:de Sitter 683:Solutions 608:Geodesics 603:Friedmann 585:Equations 571:Equations 532:Spacetime 467:Phenomena 373:ν 370:μ 361:κ 352:ν 349:μ 341:Λ 333:ν 330:μ 256:Milky Way 96:spacetime 18:Blackhole 17862:Galaxies 17754:Zwiebach 17709:Verlinde 17704:Verlinde 17679:Townsend 17674:Susskind 17609:Sagnotti 17574:Polyakov 17529:Nekrasov 17494:Minwalla 17489:Martinec 17454:Knizhnik 17449:Klebanov 17444:Kapustin 17409:'t Hooft 17344:Fischler 17279:Aganagić 17250:M-theory 17139:Conifold 17134:Orbifold 17117:manifold 17058:Geometry 16864:M5-brane 16859:M2-brane 16796:Graviton 16712:F-theory 16561:Category 16438:LemaĂźtre 16403:Einstein 16393:PoincarĂ© 16353:Others: 16337:Taub–NUT 16303:interior 16225:theories 16223:Advanced 16190:redshift 16005:concepts 15823:Rapidity 15801:concepts 15693:Category 15580:A0620-00 15539:Wormhole 15437:Big Bang 15337:Fuzzball 15220:ER = EPR 15086:Theorems 14884:Electron 14879:Extremal 14809:Rotating 14667:Archived 14507:(1): 4. 14354:Archived 14336:(1984). 14314:(2000). 14291:(1973). 14261:(2007). 14243:Archived 14207:Archived 14135:(1999). 14106:Archived 14036:(2008). 14012:(1994). 13944:(2003). 13926:Archived 13893:Archived 13875:(1996). 13847:(1988). 13810:Archived 13769:55581818 13716:23552926 13667:17058654 13659:10055503 13587:10055062 13478:39957660 13470:28585922 13370:14 March 13327:15877702 13152:28163633 13108:(1): 6. 13014:Archived 12987:17 March 12981:Archived 12950:15210982 12828:15083147 12775:12984346 12648:18263809 12322:Archived 12280:Archived 12241:Archived 12214:14 March 12157:11 March 11981:Archived 11892:Archived 11888:17677758 11809:19 March 11803:Archived 11665:Archived 11615:12991878 11562:18243528 11442:Archived 11420:Archived 11265:27314708 11192:27176511 11126:27367378 11057:Archived 11029:37100940 11020:10132962 10958:26 April 10952:Archived 10916:Archived 10894:21730194 10886:26785487 10824:Archived 10708:license. 10684:11 April 10678:Archived 10647:Archived 10622:11 April 10616:Archived 10591:11 April 10585:Archived 10554:Archived 10524:11 April 10518:Archived 10494:17 March 10488:Archived 10486:. NASA. 10429:27717447 10421:17817517 10367:Archived 10365:. NASA. 10268:17240525 10140:17 March 10134:Archived 10124:(2017). 9982:15085124 9838:Archived 9834:53370175 9774:15903444 9613:16 March 9607:Archived 9540:(2002). 9516:29211709 9442:14844338 9087:55495712 8865:Archived 8697:26 March 8670:26 March 8629:10012548 8515:17261076 8454:Archived 8394:55732213 8325:Archived 8212:Archived 8152:28163607 8108:(6): 6. 8081:13 March 8043:11 March 8037:Archived 8009:26 March 7955:11 March 7949:Archived 7897:Archived 7881:Archived 7848:Archived 7832:Archived 7716:29099225 7647:28621973 7526:28179859 7470:(2002). 7442:(1983). 7425:Archived 7304:24 March 7260:(1986). 7232:Archived 7228:85543351 7143:Archived 7110:Archived 7078:Archived 7043:Archived 7015:12 April 7009:Archived 6976:Archived 6908:15 April 6765:(2019). 6741:26918975 6621:Archived 6609:54690354 6565:(1973). 6506:11 March 6471:Archived 6449:14404560 6348:(1965). 6329:28179837 6285:(7): 7. 5816:(1939). 5797:3 August 5786:: 4–11. 5710:(1971). 5631:30003183 5452:29449468 5333:Archived 5261:Archived 5221:12 April 5183:Archived 5179:17747682 5141:(1926). 5105:(2009). 5081:Archived 4969:(1916). 4924:(1916). 4903:25 March 4867:10 March 4861:Archived 4838:Archived 4750:(1784). 4726:32001633 4597:55890996 4496:(1978). 4480:Archived 4458:(2003). 4434:Archived 4403:Archived 3966:See also 3953:Don Page 3670:and the 3648:fuzzball 3635:☉ 3630:10  3534:and the 3524:NGC 1277 3520:NGC 4889 3516:NGC 4258 3512:NGC 3377 3508:NGC 3115 3277:☉ 3251:☉ 3190:ringdown 3054:☉ 3047:☉ 3042:10  3006:☉ 2842:10  2732:☉ 2725:☉ 2706:neutrons 2702:☉ 2692:☉ 2685:☉ 2655:pressure 2609:Big Bang 2368:wormhole 2320:topology 2161:☉ 2009:☉ 1986:10 km ≈ 1982:☉ 1960:☉ 1938:☉ 1758:extremal 1607:that is 1597:solution 1509:ADM mass 1418:Gaia BH1 1393:and the 1341:Work by 1248:Roy Kerr 1184:☉ 1177:GW170817 1173:☉ 1166:☉ 1159:☉ 1125:☉ 1083:singular 1055:solution 1053:found a 1002:Category 866:LemaĂźtre 831:Reissner 816:PoincarĂ© 801:Einstein 746:Taub–NUT 711:Wormhole 695:interior 408:Timeline 286:geodesic 262:masses. 240:friction 225:galaxies 213:☉ 124:boundary 112:Einstein 17817:Physics 17767:Portals 17684:Trivedi 17669:Sundrum 17634:Shenker 17624:Seiberg 17619:Schwarz 17589:Randall 17549:Novikov 17539:Nielsen 17524:Năstase 17434:Kallosh 17419:Gibbons 17359:Gliozzi 17349:Friedan 17339:Ferrara 17324:Douglas 17319:Distler 16869:S-brane 16849:D-brane 16806:Tachyon 16801:Dilaton 16615:Strings 16503:Hawking 16498:Penrose 16483:Novikov 16463:Wheeler 16408:Hilbert 16398:Lorentz 16355:pp-wave 16176:lensing 15972:General 15753:Special 15703:Commons 15665:P172+18 15620:TON 618 15558:Notable 15410:Related 15396:Quasars 15391:Nearest 15351:Analogs 15281:Hayward 15249:Metrics 14894:Stellar 14819:Virtual 14814:Charged 14783:Outline 14635:at the 14609:Scholia 14566:Bibcode 14519:Bibcode 14472:Bibcode 14402:Bibcode 14103:website 13749:Bibcode 13694:Bibcode 13629:Bibcode 13595:9363821 13557:Bibcode 13511:Bibcode 13497:Pramana 13450:Bibcode 13401:Bibcode 13297:Bibcode 13268:1041890 13248:Bibcode 13185:Bibcode 13143:5253844 13120:Bibcode 13068:Bibcode 12958:2607263 12918:Bibcode 12861:Bibcode 12808:Bibcode 12755:Bibcode 12702:Bibcode 12626:Bibcode 12567:Bibcode 12512:Bibcode 12475:6508110 12455:Bibcode 12418:9507887 12398:Bibcode 12353:Bibcode 12182:Bibcode 12128:4195462 12108:Bibcode 12085:4222070 12065:Bibcode 12022:Bibcode 11987:7 March 11936:Bibcode 11901:27 July 11868:Bibcode 11766:Bibcode 11706:Bibcode 11595:Bibcode 11542:Bibcode 11506:1431308 11486:Bibcode 11448:9 April 11386:Bibcode 11321:Bibcode 11245:Bibcode 11172:Bibcode 11106:Bibcode 10999:Bibcode 10866:Bibcode 10848:Science 10780:Bibcode 10722:22 June 10457:Bibcode 10401:Bibcode 10393:Science 10336:Bibcode 10295:Bibcode 10287:Physics 10248:Bibcode 10165:Bibcode 10076:Bibcode 10043:1509957 10023:Bibcode 9990:4408378 9962:Bibcode 9909:Bibcode 9814:Bibcode 9754:Bibcode 9701:Bibcode 9668:1203487 9648:Bibcode 9557:Bibcode 9496:Bibcode 9412:Bibcode 9359:19 July 9317:Bibcode 9263:Bibcode 9221:2416467 9199:Bibcode 9161:29 June 9123:Bibcode 9079:1968902 9059:Bibcode 8956:Bibcode 8831:Bibcode 8788:Bibcode 8752:9517046 8732:Bibcode 8609:Bibcode 8562:Bibcode 8495:Bibcode 8366:Bibcode 8272:Bibcode 8221:27 July 8186:Bibcode 8143:5253845 8120:Bibcode 7769:Bibcode 7696:Bibcode 7627:Bibcode 7579:1762307 7559:Bibcode 7517:5256073 7494:Bibcode 7200:Bibcode 6982:2 April 6875:9085016 6791:Bibcode 6721:Bibcode 6680:4290107 6660:Bibcode 6601:0334798 6581:Bibcode 6530:Bibcode 6429:Bibcode 6367:Bibcode 6320:5255892 6297:Bibcode 6245:Bibcode 6190:Bibcode 6150:Bibcode 6113:Bibcode 6047:Bibcode 6019:4253103 5999:Bibcode 5974:4277613 5954:Bibcode 5914:Bibcode 5874:Bibcode 5832:Bibcode 5729:Bibcode 5668:Bibcode 5622:6036631 5601:Bibcode 5544:Bibcode 5489:Bibcode 5432:Bibcode 5424:Science 5405:Bibcode 5368:Bibcode 5286:Bibcode 5149:Bibcode 5123:24 June 4983:Bibcode 4938:Bibcode 4766:Bibcode 4706:Bibcode 4697:Science 4682:4222070 4662:Bibcode 4640:4195462 4620:Bibcode 4577:Bibcode 4515:Bibcode 4440:28 June 4284:Bibcode 3808:⁠ 3794:⁠ 3763:), the 3739:⁠ 3720:⁠ 3717:⁠ 3705:⁠ 3620:leptons 3608:Q stars 3334:quasars 3306:Due to 2463:quasars 2348:density 2163:is the 1923:radius 1921:Approx. 1916:Approx. 1515:by the 1426:parsecs 1359:entropy 1328:Toronto 1236:pulsars 1057:to the 921:Hawking 916:Penrose 891:Bardeen 881:Wheeler 811:Hilbert 806:Lorentz 766:pp-wave 403:History 266:History 244:quasars 142:, with 100:gravity 50:Direct 17749:Zumino 17744:Zaslow 17729:Yoneya 17719:Witten 17639:Siegel 17614:Scherk 17584:Ramond 17559:Ooguri 17484:Marolf 17439:Kaluza 17424:Kachru 17414:Hoƙava 17404:Harvey 17399:Hanson 17384:Gubser 17374:Greene 17304:Bousso 17289:Atiyah 16841:Branes 16651:Theory 16544:others 16533:Thorne 16523:Misner 16508:Taylor 16493:Geroch 16488:Ehlers 16458:Zwicky 16276:Kasner 15640:3C 273 15630:NeVe 1 15610:OJ 287 15332:Q star 15198:Issues 14931:Blazar 14921:Quasar 14714:Nature 14692:Videos 14616:(Q589) 14584:  14537:  14490:  14377:  14346:  14322:  14299:  14269:  14249:16 May 14235:  14201:  14191:  14170:  14143:  14093:  14065:  14046:  14022:  13998:  13979:  13956:  13918:  13899:16 May 13885:  13857:  13833:  13802:  13767:  13714:  13686:Nature 13665:  13657:  13639:  13593:  13585:  13567:  13476:  13468:  13325:  13315:  13266:  13213:  13203:  13150:  13140:  13037:Nature 12956:  12948:  12941:470711 12938:  12879:  12826:  12773:  12720:  12646:  12585:  12532:  12473:  12416:  12314:  12272:  12126:  12100:Nature 12083:  12057:Nature 12040:  11954:  11886:  11776:  11732:  11724:  11613:  11560:  11504:  11414:  11358:& 11339:  11271:  11263:  11217:& 11198:  11190:  11132:  11124:  11082:& 11027:  11017:  10980:Nature 10892:  10884:  10800:  10653:8 July 10435:  10427:  10419:  10293:: 14. 10266:  10183:  10094:  10041:  9988:  9980:  9944:Nature 9927:  9832:  9772:  9719:  9666:  9575:  9522:  9514:  9478:Nature 9440:  9430:  9327:  9283:  9219:  9133:  9085:  9077:  8806:  8750:  8627:  8513:  8392:  8317:  8204:  8150:  8140:  7873:  7824:  7787:  7722:  7714:  7672:& 7653:  7645:  7577:  7524:  7514:  7450:  7417:  7380:17 May 7342:17 May 7268:  7226:  7218:  6873:  6863:  6811:  6747:  6739:  6678:  6652:Nature 6627:4 June 6615:  6607:  6599:  6447:  6385:  6327:  6317:  6017:  5990:Nature 5972:  5945:Nature 5688:  5629:  5619:  5562:  5509:  5450:  5325:  5253:  5229:  5212:  5208:–135. 5177:  5167:  5073:  4830:  4788:106576 4786:  4732:  4724:  4680:  4654:Nature 4638:  4612:Nature 4595:  4533:  4472:  4409:8 June 4371:  4312:  4304:  4092:  3997:Blanet 3668:nestar 3662:, the 3616:preons 3600:quarks 3528:OJ 287 3467:  3411:, and 3300:NuSTAR 3272:  3246:  3137:plasma 2942:matter 2936:Growth 2619:. The 2149:where 2123:  2023:up to 1768:. The 1361:, and 1306:, and 1254:for a 1250:found 1000:  967:others 961:Thorne 951:Newman 931:Taylor 911:Ehlers 896:Walker 861:Zwicky 736:Kasner 232:matter 152:kelvin 98:where 17829:Stars 17689:Turok 17599:Roček 17564:Ovrut 17554:Olive 17534:Neveu 17514:Myers 17509:Mukhi 17499:Moore 17469:Linde 17464:Klein 17389:Gukov 17379:Gross 17369:Green 17354:Gates 17334:Dvali 17294:Banks 16538:Weiss 16518:Bondi 16513:Hulse 16443:Milne 16347:discs 16291:Milne 16286:Gödel 16143:Virgo 15373:Lists 14874:Micro 14844:Rogue 14792:Types 14582:S2CID 14556:arXiv 14535:S2CID 14509:arXiv 14488:S2CID 14462:arXiv 14434:arXiv 13765:S2CID 13739:arXiv 13663:S2CID 13619:arXiv 13591:S2CID 13547:arXiv 13501:arXiv 13474:S2CID 13440:arXiv 13391:arXiv 13323:S2CID 13287:arXiv 13264:S2CID 13238:arXiv 13211:S2CID 13175:arXiv 13110:arXiv 12954:S2CID 12908:arXiv 12877:S2CID 12851:arXiv 12824:S2CID 12798:arXiv 12771:S2CID 12745:arXiv 12718:S2CID 12692:arXiv 12663:arXiv 12644:S2CID 12616:arXiv 12583:S2CID 12557:arXiv 12530:S2CID 12502:arXiv 12471:S2CID 12445:arXiv 12414:S2CID 12388:arXiv 12124:S2CID 12081:S2CID 12038:S2CID 12012:arXiv 11952:S2CID 11926:arXiv 11895:(PDF) 11884:S2CID 11858:arXiv 11846:(PDF) 11756:arXiv 11730:S2CID 11696:arXiv 11611:S2CID 11585:arXiv 11558:S2CID 11532:arXiv 11502:S2CID 11476:arXiv 11412:S2CID 11376:arXiv 11337:S2CID 11311:arXiv 11269:S2CID 11235:arXiv 11196:S2CID 11162:arXiv 11130:S2CID 11096:arXiv 10989:arXiv 10890:S2CID 10856:arXiv 10798:S2CID 10770:arXiv 10425:S2CID 10264:S2CID 10238:arXiv 10181:S2CID 10092:S2CID 10066:arXiv 10039:S2CID 10013:arXiv 9986:S2CID 9952:arXiv 9925:S2CID 9899:arXiv 9874:8 May 9841:(PDF) 9830:S2CID 9804:arXiv 9792:(PDF) 9770:S2CID 9744:arXiv 9717:S2CID 9691:arXiv 9664:S2CID 9638:arXiv 9584:(PDF) 9573:S2CID 9545:(PDF) 9520:S2CID 9486:arXiv 9438:S2CID 9402:arXiv 9307:arXiv 9281:S2CID 9253:arXiv 9217:JSTOR 9113:arXiv 9094:(PDF) 9083:S2CID 9075:JSTOR 9047:(PDF) 9013:arXiv 8891:arXiv 8804:S2CID 8778:arXiv 8748:S2CID 8722:arXiv 8511:S2CID 8485:arXiv 8390:S2CID 8356:arXiv 8305:arXiv 8215:(PDF) 8176:arXiv 8172:(PDF) 8110:arXiv 7785:S2CID 7759:arXiv 7720:S2CID 7686:arXiv 7651:S2CID 7617:arXiv 7575:S2CID 7549:arXiv 7484:arXiv 7374:(PDF) 7367:(PDF) 7336:(PDF) 7329:(PDF) 7224:S2CID 7190:arXiv 6938:arXiv 6871:S2CID 6835:arXiv 6809:S2CID 6781:arXiv 6745:S2CID 6711:arXiv 6676:S2CID 6605:S2CID 6445:S2CID 6419:arXiv 6394:(PDF) 6383:S2CID 6353:(PDF) 6287:arXiv 6015:S2CID 5970:S2CID 5748:(PDF) 5715:(PDF) 5686:S2CID 5658:arXiv 5591:arXiv 5560:S2CID 5534:arXiv 5507:S2CID 5479:arXiv 5117:(PDF) 5110:(PDF) 5040:(PDF) 5025:(PDF) 4997:arXiv 4954:arXiv 4784:JSTOR 4730:S2CID 4678:S2CID 4636:S2CID 4593:S2CID 4565:(PDF) 4542:(PDF) 4531:S2CID 4501:(PDF) 4351:arXiv 4310:S2CID 4274:arXiv 4088:cJ/GM 4074:Notes 3544:bulge 3459:X-ray 3389:X-ray 2878:stars 2863:dense 1992:Earth 1913:Class 1543:—the 1424:(480 1336:X-ray 1065:of a 936:Hulse 876:Gödel 856:Milne 751:Milne 716:Gödel 413:Tests 260:solar 104:light 52:radio 17714:Wess 17694:Vafa 17604:Rohm 17504:Motl 17429:Kaku 17394:Guth 17329:Duff 16473:Kerr 16423:Weyl 16322:Kerr 16182:and 16136:and 16134:LIGO 15342:Geon 15266:Kerr 14867:Size 14446:SLAC 14375:ISBN 14362:2016 14344:ISBN 14320:ISBN 14297:ISBN 14267:ISBN 14251:2020 14233:ISBN 14215:2022 14189:ISBN 14168:ISBN 14141:ISBN 14091:ISBN 14063:ISBN 14044:ISBN 14020:ISBN 13996:ISBN 13977:ISBN 13954:ISBN 13934:2021 13916:ISBN 13901:2020 13883:ISBN 13855:ISBN 13831:ISBN 13818:2021 13800:ISBN 13735:2013 13712:PMID 13655:PMID 13583:PMID 13466:PMID 13372:2009 13341:link 13313:ISBN 13201:ISBN 13148:PMID 13022:2024 12989:2018 12946:PMID 12330:2020 12312:ISBN 12288:2020 12270:ISBN 12249:2015 12236:NASA 12216:2009 12159:2008 11989:2016 11903:2018 11811:2018 11774:ISBN 11722:ISSN 11673:2018 11647:2014 11634:NASA 11450:2018 11438:LIGO 11285:2016 11261:PMID 11188:PMID 11122:PMID 11065:2016 11025:PMID 10960:2023 10924:2016 10882:PMID 10832:2019 10724:2022 10686:2019 10655:2016 10624:2019 10593:2019 10562:2024 10526:2019 10496:2018 10417:PMID 10375:2008 10215:2010 10142:2018 9978:PMID 9876:2013 9615:2018 9512:PMID 9462:help 9428:ISBN 9361:2013 9325:ISBN 9163:2022 9131:ISBN 8873:2020 8699:2009 8672:2009 8625:PMID 8462:2018 8333:2020 8315:ISBN 8237:link 8223:2018 8202:ISBN 8148:PMID 8083:2018 8045:2018 8011:2009 7957:2018 7889:2020 7871:ISBN 7840:2020 7822:ISBN 7712:PMID 7643:PMID 7601:and 7522:PMID 7448:ISBN 7415:ISBN 7382:2009 7344:2009 7306:2009 7266:ISBN 7240:2020 7216:ISSN 7151:2016 7118:2016 7086:2017 7051:2017 7017:2019 6984:2021 6910:2019 6861:ISBN 6737:PMID 6629:2021 6508:2008 6479:2020 6325:PMID 6085:2023 5799:2023 5756:2009 5627:PMID 5448:PMID 5323:ISBN 5251:ISBN 5223:2019 5210:ISBN 5175:PMID 5165:ISBN 5125:2010 5089:2016 5071:ISBN 5048:2012 4964:and 4905:2022 4869:2018 4828:ISBN 4722:PMID 4470:ISBN 4442:2020 4411:2015 4398:NASA 4369:ISBN 4302:ISSN 3942:, a 3876:and 3857:and 3691:and 3561:lens 3488:jets 3225:The 3179:LIGO 3148:M87* 3132:M87* 3103:The 3086:M87* 3019:Moon 2926:CERN 2844:GeV/ 2318:The 2102:2.95 2029:Moon 1918:mass 1570:and 1494:The 1465:and 1462:Life 1326:and 1314:and 1288:mass 946:Taub 901:Kerr 841:Weyl 721:Kerr 639:BSSN 284:the 169:and 154:for 120:mass 17724:Yau 17649:SÆĄn 17629:Sen 16528:Yau 16153:GEO 14936:OVV 14926:LQG 14718:doi 14662:'s 14660:ESA 14646:: " 14637:BBC 14629:on 14574:doi 14527:doi 14480:doi 14410:doi 14199:Zbl 14160:doi 13757:doi 13702:doi 13690:496 13647:doi 13575:doi 13519:doi 13458:doi 13305:doi 13256:doi 13234:379 13193:doi 13138:PMC 13128:doi 13076:doi 13041:doi 12936:PMC 12926:doi 12904:101 12869:doi 12847:467 12816:doi 12763:doi 12710:doi 12688:616 12634:doi 12612:400 12575:doi 12520:doi 12498:933 12463:doi 12441:539 12406:doi 12384:596 12361:doi 12116:doi 12104:235 12073:doi 12061:235 12030:doi 12008:742 11944:doi 11922:649 11876:doi 11714:doi 11603:doi 11581:701 11550:doi 11528:509 11494:doi 11472:692 11404:hdl 11394:doi 11372:818 11329:doi 11253:doi 11231:116 11180:doi 11158:116 11114:doi 11092:116 11015:PMC 11007:doi 10985:616 10874:doi 10852:350 10788:doi 10766:910 10465:doi 10409:doi 10397:217 10344:doi 10332:434 10303:doi 10256:doi 10173:doi 10084:doi 10031:doi 10009:637 9970:doi 9948:428 9917:doi 9895:713 9822:doi 9762:doi 9740:429 9709:doi 9656:doi 9565:doi 9504:doi 9482:553 9420:doi 9271:doi 9249:459 9207:doi 9195:314 9067:doi 9023:doi 9009:531 8964:doi 8952:178 8839:doi 8827:178 8796:doi 8740:doi 8617:doi 8570:doi 8503:doi 8382:hdl 8374:doi 8280:doi 8194:doi 8138:PMC 8128:doi 7777:doi 7704:doi 7682:119 7635:doi 7613:118 7567:doi 7545:652 7512:PMC 7502:doi 7208:doi 6948:doi 6934:518 6853:hdl 6845:doi 6799:doi 6777:875 6729:doi 6707:116 6668:doi 6656:248 6613:Zbl 6589:doi 6538:doi 6437:doi 6375:doi 6315:PMC 6305:doi 6253:doi 6198:doi 6158:doi 6146:164 6121:doi 6055:doi 6007:doi 5995:218 5962:doi 5950:217 5922:doi 5910:119 5882:doi 5870:110 5840:doi 5788:doi 5737:doi 5676:doi 5654:852 5617:PMC 5609:doi 5552:doi 5497:doi 5475:850 5440:doi 5428:359 5401:305 5376:doi 5294:doi 5206:134 5157:doi 4892:doi 4774:doi 4714:doi 4702:367 4670:doi 4658:235 4628:doi 4616:235 4585:doi 4523:doi 4361:doi 4292:doi 4270:457 3975:or 3771:), 3504:M87 3500:M32 3480:Sun 3266:4.3 3240:2.6 2980:πGM 2978:/(8 2924:at 2852:2.2 2838:1.2 2483:In 1412:'s 1400:of 1365:to 1238:by 1186:. 956:Yau 634:ADM 219:of 185:by 17853:: 17025:, 17018:, 17011:, 17004:, 16202:/ 16168:: 16123:: 14716:. 14712:. 14580:. 14572:. 14564:. 14552:31 14550:. 14533:. 14525:. 14517:. 14505:22 14503:. 14486:. 14478:. 14470:. 14458:77 14456:. 14408:. 14396:. 14392:. 14352:. 14287:; 14283:; 14241:. 14205:. 14197:. 14166:. 13924:. 13891:. 13871:; 13808:. 13763:. 13755:. 13747:. 13733:. 13710:. 13700:. 13688:. 13684:. 13661:. 13653:. 13645:. 13635:. 13627:. 13615:71 13589:. 13581:. 13573:. 13563:. 13555:. 13543:71 13517:. 13509:. 13472:. 13464:. 13456:. 13448:. 13436:80 13434:. 13424:; 13413:^ 13399:. 13358:. 13337:}} 13333:{{ 13321:. 13311:. 13303:. 13295:. 13262:. 13254:. 13246:. 13232:. 13209:. 13199:. 13191:. 13183:. 13146:. 13136:. 13126:. 13118:. 13104:. 13100:. 13088:^ 13074:. 13064:26 13062:. 13039:. 13012:. 13006:. 12979:. 12975:. 12952:. 12944:. 12934:. 12924:. 12916:. 12902:. 12898:. 12875:. 12867:. 12859:. 12845:. 12822:. 12814:. 12806:. 12794:53 12792:. 12769:. 12761:. 12753:. 12741:15 12739:. 12716:. 12708:. 12700:. 12686:. 12642:. 12632:. 12624:. 12610:. 12604:. 12581:. 12573:. 12565:. 12553:42 12551:. 12528:. 12518:. 12510:. 12496:. 12492:. 12469:. 12461:. 12453:. 12439:. 12412:. 12404:. 12396:. 12382:. 12359:. 12349:33 12347:. 12320:. 12278:. 12239:. 12233:. 12178:16 12176:. 12145:. 12122:. 12114:. 12102:. 12079:. 12071:. 12059:. 12036:. 12028:. 12020:. 12006:. 11979:. 11975:. 11971:. 11950:. 11942:. 11934:. 11920:. 11890:. 11882:. 11874:. 11866:. 11854:16 11852:. 11848:. 11819:^ 11797:. 11772:. 11764:. 11742:^ 11728:. 11720:. 11712:. 11704:. 11692:13 11690:. 11663:. 11631:. 11609:. 11601:. 11593:. 11579:. 11556:. 11548:. 11540:. 11526:. 11514:^ 11500:. 11492:. 11484:. 11470:. 11458:^ 11440:. 11436:. 11418:. 11410:. 11402:. 11392:. 11384:. 11370:. 11366:. 11335:. 11327:. 11319:. 11307:32 11305:. 11293:^ 11267:. 11259:. 11251:. 11243:. 11229:. 11225:. 11194:. 11186:. 11178:. 11170:. 11156:. 11142:^ 11128:. 11120:. 11112:. 11104:. 11090:. 11055:. 11049:. 11023:. 11013:. 11005:. 10997:. 10983:. 10977:. 10950:. 10944:. 10910:. 10888:. 10880:. 10872:. 10864:. 10850:. 10818:. 10796:. 10786:. 10778:. 10764:. 10760:. 10741:. 10714:. 10676:. 10672:. 10641:. 10610:. 10583:. 10579:. 10552:. 10546:. 10516:. 10512:. 10463:. 10453:13 10451:. 10423:. 10415:. 10407:. 10395:. 10383:^ 10342:. 10330:. 10301:. 10289:. 10285:. 10262:. 10254:. 10246:. 10234:78 10232:. 10201:. 10179:. 10171:. 10161:33 10159:. 10132:. 10128:. 10090:. 10082:. 10074:. 10060:. 10037:. 10029:. 10021:. 10007:. 9984:. 9976:. 9968:. 9960:. 9946:. 9923:. 9915:. 9907:. 9893:. 9862:. 9858:. 9836:. 9828:. 9820:. 9812:. 9800:35 9798:. 9794:. 9768:. 9760:. 9752:. 9738:. 9715:. 9707:. 9699:. 9687:74 9685:. 9662:. 9654:. 9646:. 9634:65 9632:. 9605:. 9601:. 9571:. 9563:. 9553:34 9551:. 9547:. 9518:. 9510:. 9502:. 9494:. 9480:. 9454:: 9452:}} 9448:{{ 9436:. 9426:. 9418:. 9410:. 9386:^ 9369:^ 9347:. 9323:. 9315:. 9293:^ 9279:. 9269:. 9261:. 9247:. 9243:. 9229:^ 9215:. 9205:. 9193:. 9187:. 9179:; 9154:. 9129:. 9121:. 9081:. 9073:. 9065:. 9055:40 9053:. 9049:. 9021:. 9007:. 9003:. 8962:. 8950:. 8881:^ 8863:. 8859:. 8837:. 8825:. 8802:. 8794:. 8786:. 8774:84 8772:. 8760:^ 8746:. 8738:. 8730:. 8718:29 8716:. 8658:. 8623:. 8615:. 8605:41 8603:. 8568:. 8556:. 8509:. 8501:. 8493:. 8481:24 8479:. 8446:. 8388:. 8380:. 8372:. 8364:. 8352:97 8350:. 8323:. 8313:. 8278:. 8266:. 8233:}} 8229:{{ 8210:. 8200:. 8192:. 8184:. 8146:. 8136:. 8126:. 8118:. 8106:11 8104:. 8100:. 8035:. 8031:. 8027:. 7997:. 7947:. 7943:. 7939:. 7879:. 7830:. 7783:. 7775:. 7767:. 7755:84 7753:. 7718:. 7710:. 7702:. 7694:. 7680:. 7649:. 7641:. 7633:. 7625:. 7611:. 7587:^ 7573:. 7565:. 7557:. 7543:. 7520:. 7510:. 7500:. 7492:. 7478:. 7474:. 7423:. 7292:. 7280:^ 7256:; 7230:. 7222:. 7214:. 7206:. 7198:. 7184:. 7180:. 7141:. 7135:. 7108:. 7102:. 7076:. 7072:. 7053:. 7041:. 7037:. 7025:^ 7003:. 6992:^ 6970:. 6946:. 6932:. 6928:. 6892:. 6869:. 6859:. 6851:. 6843:. 6807:. 6797:. 6789:. 6775:. 6769:. 6743:. 6735:. 6727:. 6719:. 6688:^ 6674:. 6666:. 6654:. 6637:^ 6619:. 6611:. 6603:. 6597:MR 6595:. 6587:. 6577:31 6575:. 6569:. 6561:; 6557:; 6536:, 6526:16 6524:, 6469:. 6465:. 6443:. 6435:. 6427:. 6415:42 6413:. 6381:. 6373:. 6363:14 6361:. 6355:. 6337:^ 6323:. 6313:. 6303:. 6295:. 6283:15 6281:. 6277:. 6265:^ 6251:. 6241:34 6239:. 6196:. 6186:26 6184:. 6156:. 6144:. 6119:. 6107:. 6076:. 6053:. 6041:. 6013:. 6005:. 5993:. 5968:. 5960:. 5948:. 5920:. 5908:. 5880:. 5868:. 5838:. 5828:56 5826:. 5820:. 5784:17 5782:. 5776:. 5764:^ 5735:. 5725:24 5723:. 5717:. 5706:; 5684:. 5674:. 5666:. 5652:. 5648:. 5625:. 5615:. 5607:. 5599:. 5587:97 5585:. 5581:. 5558:. 5550:. 5542:. 5530:96 5528:. 5505:. 5495:. 5487:. 5473:. 5469:. 5446:. 5438:. 5426:. 5399:. 5374:. 5364:55 5362:. 5352:; 5341:^ 5331:. 5317:. 5292:. 5282:49 5280:. 5259:. 5225:. 5181:. 5173:. 5163:. 5155:. 5079:. 5033:19 5031:. 5027:. 4979:18 4977:. 4973:. 4932:. 4928:. 4913:^ 4890:. 4886:. 4859:. 4855:. 4836:. 4826:. 4822:. 4796:^ 4782:. 4772:. 4762:74 4760:. 4754:. 4728:. 4720:. 4712:. 4700:. 4676:, 4668:, 4656:, 4634:, 4626:, 4614:, 4591:. 4583:. 4573:12 4571:. 4567:. 4550:^ 4529:. 4521:. 4511:41 4509:. 4503:. 4478:. 4464:. 4432:. 4428:. 4401:. 4395:. 4367:. 4359:. 4334:^ 4308:. 4300:. 4290:. 4282:. 4268:. 4264:. 3885:. 3792:= 3735:Għ 3703:= 3674:. 3579:. 3567:. 3538:. 3530:, 3526:, 3522:, 3518:, 3514:, 3510:, 3506:, 3502:, 3498:, 3420:. 3407:, 3372:A 3270:10 3262:S2 3244:10 2976:ħc 2850:≈ 2836:≈ 2716:. 2487:, 2469:. 2350:. 2315:. 1966:AU 1944:AU 1892:1. 1578:. 1555:. 1523:. 1436:. 1381:. 1345:, 1302:, 1290:, 1286:: 1274:, 227:. 90:A 17769:: 17115:2 17113:G 17082:? 17047:p 17032:) 17029:8 17027:E 17022:7 17020:E 17015:6 17013:E 17008:4 17006:F 17001:2 16999:G 16997:( 16593:e 16586:t 16579:v 16328:) 16324:( 16310:) 16301:( 16267:) 16263:( 16210:) 16206:( 16186:) 16155:) 16132:( 15781:) 15772:( 15737:e 15730:t 15723:v 15262:) 15258:( 14764:e 14757:t 14750:v 14726:. 14720:: 14620:. 14588:. 14576:: 14568:: 14558:: 14541:. 14529:: 14521:: 14511:: 14494:. 14482:: 14474:: 14464:: 14442:. 14436:: 14418:. 14412:: 14404:: 14398:3 14383:. 14364:. 14328:. 14305:. 14275:. 14253:. 14217:. 14176:. 14162:: 14149:. 14127:. 14112:. 14099:. 14071:. 14052:. 14028:. 14004:. 13985:. 13962:. 13936:. 13903:. 13863:. 13839:. 13820:. 13771:. 13759:: 13751:: 13741:: 13718:. 13704:: 13696:: 13669:. 13649:: 13631:: 13621:: 13597:. 13577:: 13559:: 13549:: 13525:. 13521:: 13513:: 13503:: 13480:. 13460:: 13452:: 13442:: 13407:. 13403:: 13393:: 13374:. 13343:) 13329:. 13307:: 13299:: 13289:: 13270:. 13258:: 13250:: 13240:: 13217:. 13195:: 13187:: 13177:: 13154:. 13130:: 13122:: 13112:: 13106:4 13082:. 13078:: 13070:: 13047:. 13043:: 13024:. 12991:. 12960:. 12928:: 12920:: 12910:: 12883:. 12871:: 12863:: 12853:: 12830:. 12818:: 12810:: 12800:: 12777:. 12765:: 12757:: 12747:: 12724:. 12712:: 12704:: 12694:: 12671:. 12665:: 12650:. 12636:: 12628:: 12618:: 12589:. 12577:: 12569:: 12559:: 12536:. 12522:: 12514:: 12504:: 12477:. 12465:: 12457:: 12447:: 12420:. 12408:: 12400:: 12390:: 12367:. 12363:: 12355:: 12332:. 12290:. 12251:. 12218:. 12188:. 12184:: 12161:. 12130:. 12118:: 12110:: 12087:. 12075:: 12067:: 12044:. 12032:: 12024:: 12014:: 11991:. 11958:. 11946:: 11938:: 11928:: 11905:. 11878:: 11870:: 11860:: 11813:. 11782:. 11768:: 11758:: 11736:. 11716:: 11708:: 11698:: 11675:. 11649:. 11617:. 11605:: 11597:: 11587:: 11564:. 11552:: 11544:: 11534:: 11508:. 11496:: 11488:: 11478:: 11452:. 11406:: 11396:: 11388:: 11378:: 11343:. 11331:: 11323:: 11313:: 11287:. 11255:: 11247:: 11237:: 11202:. 11182:: 11174:: 11164:: 11136:. 11116:: 11108:: 11098:: 11067:. 11031:. 11009:: 11001:: 10991:: 10962:. 10926:. 10896:. 10876:: 10868:: 10858:: 10834:. 10804:. 10790:: 10782:: 10772:: 10726:. 10688:. 10657:. 10626:. 10595:. 10564:. 10528:. 10498:. 10471:. 10467:: 10459:: 10431:. 10411:: 10403:: 10377:. 10350:. 10346:: 10338:: 10311:. 10305:: 10297:: 10291:1 10270:. 10258:: 10250:: 10240:: 10217:. 10187:. 10175:: 10167:: 10144:. 10098:. 10086:: 10078:: 10068:: 10062:7 10045:. 10033:: 10025:: 10015:: 9992:. 9972:: 9964:: 9954:: 9931:. 9919:: 9911:: 9901:: 9878:. 9864:4 9824:: 9816:: 9806:: 9776:. 9764:: 9756:: 9746:: 9723:. 9711:: 9703:: 9693:: 9670:. 9658:: 9650:: 9640:: 9617:. 9567:: 9559:: 9526:. 9506:: 9498:: 9488:: 9464:) 9444:. 9422:: 9414:: 9404:: 9363:. 9333:. 9319:: 9309:: 9287:. 9273:: 9265:: 9255:: 9223:. 9209:: 9201:: 9165:. 9139:. 9125:: 9115:: 9069:: 9061:: 9031:. 9025:: 9015:: 8970:. 8966:: 8958:: 8899:. 8893:: 8875:. 8845:. 8841:: 8833:: 8810:. 8798:: 8790:: 8780:: 8754:. 8742:: 8734:: 8724:: 8701:. 8674:. 8631:. 8619:: 8611:: 8576:. 8572:: 8564:: 8558:9 8517:. 8505:: 8497:: 8487:: 8464:. 8396:. 8384:: 8376:: 8368:: 8358:: 8335:. 8307:: 8286:. 8282:: 8274:: 8268:7 8239:) 8225:. 8196:: 8188:: 8178:: 8154:. 8130:: 8122:: 8112:: 8085:. 8047:. 8013:. 7959:. 7891:. 7842:. 7791:. 7779:: 7771:: 7761:: 7726:. 7706:: 7698:: 7688:: 7657:. 7637:: 7629:: 7619:: 7581:. 7569:: 7561:: 7551:: 7528:. 7504:: 7496:: 7486:: 7480:5 7456:. 7384:. 7346:. 7308:. 7274:. 7242:. 7210:: 7202:: 7192:: 7186:3 7153:. 7120:. 7088:. 7019:. 6986:. 6956:. 6950:: 6940:: 6912:. 6877:. 6855:: 6847:: 6837:: 6815:. 6801:: 6793:: 6783:: 6751:. 6731:: 6723:: 6713:: 6682:. 6670:: 6662:: 6631:. 6591:: 6583:: 6540:: 6532:: 6481:. 6451:. 6439:: 6431:: 6421:: 6377:: 6369:: 6331:. 6307:: 6299:: 6289:: 6259:. 6255:: 6247:: 6204:. 6200:: 6192:: 6164:. 6160:: 6152:: 6127:. 6123:: 6115:: 6109:6 6087:. 6061:. 6057:: 6049:: 6043:8 6021:. 6009:: 6001:: 5976:. 5964:: 5956:: 5928:. 5924:: 5916:: 5888:. 5884:: 5876:: 5848:. 5842:: 5834:: 5801:. 5790:: 5758:. 5739:: 5731:: 5692:. 5678:: 5670:: 5660:: 5633:. 5611:: 5603:: 5593:: 5566:. 5554:: 5546:: 5536:: 5513:. 5499:: 5491:: 5481:: 5454:. 5442:: 5434:: 5411:. 5407:: 5382:. 5378:: 5370:: 5300:. 5296:: 5288:: 5159:: 5151:: 5127:. 5091:. 5050:. 5005:. 4999:: 4989:. 4985:: 4962:. 4956:: 4944:. 4940:: 4934:7 4907:. 4894:: 4871:. 4790:. 4776:: 4768:: 4736:. 4716:: 4708:: 4672:: 4664:: 4630:: 4622:: 4599:. 4587:: 4579:: 4525:: 4517:: 4444:. 4413:. 4377:. 4363:: 4353:: 4316:. 4294:: 4286:: 4276:: 4239:. 4173:. 4166:2 4162:Q 4153:2 4148:) 4145:M 4141:/ 4137:J 4134:( 4124:2 4120:M 4114:+ 4111:M 3903:: 3811:. 3805:4 3802:/ 3798:A 3790:S 3785:ħ 3783:( 3777:G 3775:( 3769:k 3767:( 3761:c 3759:( 3753:A 3749:S 3742:A 3731:/ 3727:k 3724:c 3714:4 3711:/ 3708:1 3701:S 3632:M 3274:M 3268:× 3248:M 3242:× 3051:M 3044:M 3027:c 3003:M 2987:B 2984:k 2909:c 2854:× 2846:c 2840:× 2822:G 2818:/ 2814:c 2806:= 2801:P 2797:m 2788:( 2749:7 2743:z 2729:M 2722:M 2699:M 2689:M 2682:M 2570:, 2563:2 2559:c 2554:M 2551:G 2547:6 2541:= 2536:s 2532:r 2527:3 2524:= 2518:O 2515:C 2512:S 2509:I 2504:r 2215:. 2208:2 2204:c 2199:M 2196:G 2190:= 2184:+ 2179:r 2158:M 2154:s 2151:r 2133:, 2130:m 2127:k 2112:M 2108:M 2092:2 2088:c 2083:M 2080:G 2077:2 2071:= 2065:s 2060:r 2046:M 2042:J 2025:M 2006:M 1989:R 1979:M 1957:M 1935:M 1881:2 1877:M 1873:G 1868:J 1865:c 1856:0 1826:, 1821:c 1815:2 1811:M 1807:G 1798:J 1754:M 1735:2 1731:M 1727:G 1716:2 1712:M 1708:G 1701:2 1697:J 1691:2 1687:c 1680:+ 1672:0 1661:4 1655:2 1651:Q 1635:J 1631:Q 1473:" 1181:M 1170:M 1163:M 1156:M 1122:M 1030:e 1023:t 1016:v 697:) 693:( 366:T 357:= 345:g 338:+ 326:G 210:M 208:( 34:. 20:)

Index

Blackhole
Black hole (disambiguation)
Blackness of space with black marked as centre of donut of orange and red gases
radio
supermassive black hole
Messier 87

Schwarzschild black hole
gravitational lensing
spacetime
gravity
light
electromagnetic waves
Einstein
general relativity
mass
boundary
event horizon
black body
Quantum field theory in curved spacetime
Hawking radiation
the same spectrum
temperature
kelvin
stellar black holes
gravitational fields
John Michell
Pierre-Simon Laplace
Karl Schwarzschild
David Finkelstein

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑