Knowledge

Axis–angle representation

Source 📝

27: 3397: 1751: 1363: 2572: 515: 901: 3254: 263:, in all directions, constitute a two-parameter uncountable infinity of rotation vectors encoding the same rotation as the zero vector. These facts must be taken into account when inverting the exponential map, that is, when finding a rotation vector that corresponds to a given rotation matrix. The exponential map is 1546: 1165: 3035: 2414: 2155: 320: 757: 3220: 2934: 3103: 3392:{\displaystyle {\begin{aligned}\theta &=2\arccos r\\{\boldsymbol {\omega }}&={\begin{cases}{\dfrac {\mathbf {v} }{\sin {\tfrac {\theta }{2}}}},&{\text{if }}\theta \neq 0\\0,&{\text{otherwise}}.\end{cases}}\end{aligned}}} 2779: 1746:{\displaystyle R=I+\left(\theta -{\frac {\theta ^{3}}{3!}}+{\frac {\theta ^{5}}{5!}}-\cdots \right)\mathbf {K} +\left({\frac {\theta ^{2}}{2!}}-{\frac {\theta ^{4}}{4!}}+{\frac {\theta ^{6}}{6!}}-\cdots \right)\mathbf {K} ^{2}\,,} 2015: 2010: 1840: 2919: 1104: 1358:{\displaystyle R=\exp(\theta \mathbf {K} )=\sum _{k=0}^{\infty }{\frac {(\theta \mathbf {K} )^{k}}{k!}}=I+\theta \mathbf {K} +{\frac {1}{2!}}(\theta \mathbf {K} )^{2}+{\frac {1}{3!}}(\theta \mathbf {K} )^{3}+\cdots } 1039: 601: 3466: 2676: 2567:{\displaystyle \log R={\begin{cases}0&{\text{if }}\theta =0\\{\dfrac {\theta }{2\sin \theta }}\left(R-R^{\mathsf {T}}\right)&{\text{if }}\theta \neq 0{\text{ and }}\theta \in (-\pi ,\pi )\end{cases}}} 214: 3146: 3259: 679:, is an efficient algorithm for rotating a Euclidean vector, given a rotation axis and an angle of rotation. In other words, Rodrigues' formula provides an algorithm to compute the exponential map from 929:
There are several ways to represent a rotation. It is useful to understand how different representations relate to one another, and how to convert between them. Here the unit vector is denoted
510:{\displaystyle (\mathrm {axis} ,\mathrm {angle} )=\left({\begin{bmatrix}e_{x}\\e_{y}\\e_{z}\end{bmatrix}},\theta \right)=\left({\begin{bmatrix}0\\0\\-1\end{bmatrix}},{\frac {-\pi }{2}}\right).} 1480: 896:{\displaystyle \mathbf {v} _{\mathrm {rot} }=(\cos \theta )\mathbf {v} +(\sin \theta )(\mathbf {e} \times \mathbf {v} )+(1-\cos \theta )(\mathbf {e} \cdot \mathbf {v} )\mathbf {e} \,.} 2298: 3040: 2340: 2689: 713: 2840:, where the off-axis terms do not give information about the rotation axis (which is still defined up to a sign ambiguity). In that case, we must reconsider the above formula. 1948: 1756: 2273: 2390: 2363: 2318: 2187: 152:, which dictates that any rotation or sequence of rotations of a rigid body in a three-dimensional space is equivalent to a pure rotation about a single fixed axis. 2845: 2247: 2227: 2207: 3030:{\displaystyle R=I+2\mathbf {K} ^{2}=I+2({\boldsymbol {\omega }}\otimes {\boldsymbol {\omega }}-I)=2{\boldsymbol {\omega }}\otimes {\boldsymbol {\omega }}-I} 978: 546: 3408: 175:. In this case, both the rotation axis and the angle are represented by a vector codirectional with the rotation axis whose length is the rotation angle 2607: 182: 3507: 1050: 2150:{\displaystyle {\boldsymbol {\omega }}={\frac {1}{2\sin \theta }}{\begin{bmatrix}R_{32}-R_{23}\\R_{13}-R_{31}\\R_{21}-R_{12}\end{bmatrix}}~,} 137:, the angle and axis determine a transformation that rotates three-dimensional vectors. The rotation occurs in the sense prescribed by the 1441: 3532:
This holds for the triplet representation of the rotation group, i.e., spin 1. For higher dimensional representations/spins, see
245:. Thus, there are at least a countable infinity of rotation vectors corresponding to any rotation. Furthermore, all rotations by 156: 3604: 3215:{\displaystyle \mathbf {q} =\left(\cos {\tfrac {\theta }{2}},{\boldsymbol {\omega }}\sin {\tfrac {\theta }{2}}\right)} 3130: 1127: 1852: 672: 667: 134: 2278: 2323: 1891: 968: 962: 630: 121: 105: 3515:, a representation of rigid-body motions and velocities using the concepts of twists, screws, and wrenches 1424: 682: 658:
is a convenient construction of the Cartesian representation of the Rotation Matrix in three dimensions.
149: 1942: 2397: 1845: 1374: 3305: 3117:
and the signs (up to sign ambiguity) can be determined from the signs of the off-axis terms of 
2435: 1902:
continue to denote the 3 × 3 matrix that effects the cross product with the rotation axis
227:
Many rotation vectors correspond to the same rotation. In particular, a rotation vector of length
3497: 68: 3098:{\displaystyle B:={\boldsymbol {\omega }}\otimes {\boldsymbol {\omega }}={\frac {1}{2}}(R+I)\,,} 958: 3239: 64: 2255: 2375: 2348: 2303: 221: 2774:{\displaystyle d_{g}(A,B):=\left\|\log \left(A^{\mathsf {T}}B\right)\right\|_{\mathrm {F} }} 2162: 279:
Say you are standing on the ground and you pick the direction of gravity to be the negative
3564: 1887: 84: 1047:
one derives a closed-form relation between these two representations. Given a unit vector
8: 655: 638: 611: 3568: 3580: 3554: 2232: 2212: 2192: 950: 217: 1373:
is skew-symmetric, and the sum of the squares of its above-diagonal entries is 1, the
954: 634: 92: 20: 3584: 1851:
This is a Lie-algebraic derivation, in contrast to the geometric one in the article
3572: 3534: 2404: 1044: 676: 619: 108:. Only two numbers, not three, are needed to define the direction of a unit vector 88: 2795:. In that case, the off-axis terms will actually provide better information about 2005:{\displaystyle \theta =\arccos \left({\frac {\operatorname {Tr} (R)-1}{2}}\right)} 1835:{\displaystyle R=I+(\sin \theta )\mathbf {K} +(1-\cos \theta )\mathbf {K} ^{2}\,,} 2587: 1938: 972: 924: 138: 71: 3609: 3479: 2601: 654:
and their associated three orthogonal axes in a Cartesian representation into
519:
The above example can be represented as a rotation vector with a magnitude of
3598: 3542: 3538: 2914:{\displaystyle R=I+\mathbf {K} \sin \theta +\mathbf {K} ^{2}(1-\cos \theta )} 2788:
may be numerically imprecise as the derivative of arccos goes to infinity as
1858:
Due to the existence of the above-mentioned exponential map, the unit vector
905:
For the rotation of a single vector it may be more efficient than converting
1099:{\textstyle {\boldsymbol {\omega }}\in {\mathfrak {so}}(3)=\mathbb {R} ^{3}} 971:
effects a transformation from the axis-angle representation of rotations to
3576: 3512: 3502: 314: 2816:. (This is because these are the first two terms of the Taylor series for 618:, and also for converting between different representations of rigid body 741: 304: 75: 56: 1525:
This cyclic pattern continues indefinitely, and so all higher powers of
3140: 2590:. In this case, the log is not unique. However, even in the case where 2583: 626: 3545:(2014). "A compact formula for rotations as spin matrix polynomials". 1034:{\displaystyle \exp \colon {\mathfrak {so}}(3)\to \mathrm {SO} (3)\,.} 596:{\displaystyle {\begin{bmatrix}0\\0\\{\frac {\pi }{2}}\end{bmatrix}}.} 101: 3461:{\displaystyle \theta =2\operatorname {atan2} (|\mathbf {v} |,r)\,,} 3401:
A more numerically stable expression of the rotation angle uses the
26: 3251:, the axis–angle coordinates can be extracted using the following: 615: 241:, encodes exactly the same rotation as a rotation vector of length 130:
suffice to locate it in any particular Cartesian coordinate frame.
3559: 2781:
is the geodesic distance on the 3D manifold of rotation matrices.
2671:{\displaystyle \|\log(R)\|_{\mathrm {F} }={\sqrt {2}}|\theta |\,.} 2252:
The axis-angle representation is not unique since a rotation of
744:
rooted at the origin describing an axis of rotation about which
167:
The axis–angle representation is equivalent to the more concise
42:
define a rotation, concisely represented by the rotation vector
3136: 3135:
The following expression transforms axis–angle coordinates to
754:, Rodrigues' rotation formula to obtain the rotated vector is 610:
The axis–angle representation is convenient when dealing with
209:{\displaystyle {\boldsymbol {\theta }}=\theta \mathbf {e} \,.} 3402: 252:
are the same as no rotation at all, so, for a given integer
3381: 2560: 642: 16:
Parameterization of a rotation into a unit vector and angle
285:
direction. Then if you turn to your left, you will rotate
944: 918: 3533: 3324: 3196: 3170: 2053: 1053: 555: 450: 377: 3411: 3309: 3257: 3149: 3043: 2937: 2848: 2692: 2610: 2462: 2417: 2378: 2351: 2326: 2306: 2281: 2258: 2235: 2215: 2195: 2165: 2018: 1951: 1759: 1549: 1444: 1168: 981: 760: 685: 549: 323: 185: 1106:representing the unit rotation axis, and an angle, 3460: 3391: 3214: 3097: 3029: 2913: 2773: 2670: 2566: 2384: 2357: 2334: 2312: 2292: 2267: 2241: 2221: 2201: 2181: 2149: 2004: 1834: 1745: 1474: 1357: 1098: 1033: 895: 707: 622:, such as homogeneous transformations and twists. 595: 509: 313:axis. Viewing the axis-angle representation as an 208: 1846:Taylor series formula for trigonometric functions 1543:. Thus, from the above equation, it follows that 1475:{\displaystyle \mathbf {K} ^{3}=-\mathbf {K} \,.} 148:. The axis–angle representation is predicated on 3596: 2830:This formulation also has numerical problems at 1881: 2012:and then use that to find the normalized axis, 1937:To retrieve the axis–angle representation of a 719:without computing the full matrix exponential. 2784:For small rotations, the above computation of 1864:representing the rotation axis, and the angle 114:rooted at the origin because the magnitude of 915:into a rotation matrix to rotate the vector. 2630: 2611: 1941:, calculate the angle of rotation from the 963:Rotation group SO(3) § Exponential map 959:Lie algebra § Relation to Lie groups 144:The rotation axis is sometimes called the 100:describing the magnitude and sense (e.g., 3558: 3454: 3091: 2664: 2189:is the component of the rotation matrix, 1828: 1739: 1468: 1086: 1027: 889: 202: 2293:{\displaystyle -{\boldsymbol {\omega }}} 25: 19:For broader coverage of this topic, see 3289: 3185: 3059: 3051: 3017: 3009: 2989: 2981: 2372:is symmetric. For the general case the 2335:{\displaystyle {\boldsymbol {\omega }}} 2328: 2286: 2020: 1055: 187: 157:rotation formalisms in three dimensions 3597: 2744: 2501: 2345:The above calculation of axis vector 945:Exponential map from 𝔰𝔬(3) to SO(3) 919:Relationship to other representations 648:Plugging the three eigenvalues 1 and 637:rotation axis and the rotation angle 2398:rotation matrix#Determining the axis 661: 614:. It is useful to both characterize 224:maps involving this representation. 3124: 3111:are the squares of the elements of 1067: 1064: 993: 990: 708:{\displaystyle {\mathfrak {so}}(3)} 691: 688: 13: 2765: 2635: 1214: 1014: 1011: 775: 772: 769: 357: 354: 351: 348: 345: 337: 334: 331: 328: 162: 14: 3621: 2392:may be found using null space of 256:, all rotation vectors of length 120:is constrained. For example, the 3436: 3312: 3151: 3131:Quaternions and spatial rotation 2955: 2880: 2862: 1818: 1788: 1729: 1632: 1464: 1447: 1335: 1296: 1267: 1229: 1188: 1116:, an equivalent rotation matrix 885: 877: 869: 834: 826: 800: 763: 198: 3526: 3451: 3441: 3431: 3427: 3088: 3076: 2999: 2977: 2908: 2890: 2759: 2723: 2715: 2703: 2660: 2652: 2626: 2620: 2554: 2539: 1983: 1977: 1813: 1795: 1784: 1772: 1340: 1328: 1301: 1289: 1234: 1222: 1192: 1181: 1078: 1072: 1024: 1018: 1007: 1004: 998: 881: 865: 862: 844: 838: 822: 819: 807: 796: 784: 702: 696: 361: 324: 1: 3519: 2300:is the same as a rotation of 1882:Log map from SO(3) to 𝔰𝔬(3) 1531:can be expressed in terms of 3605:Rotation in three dimensions 1943:trace of the rotation matrix 1892:Infinitesimal transformation 633:, its axis–angle data are a 7: 3491: 1853:Rodrigues' rotation formula 1120:is given as follows, where 673:Rodrigues' rotation formula 668:Rodrigues' rotation formula 135:Rodrigues' rotation formula 10: 3626: 3508:Rotations without a matrix 3128: 1885: 948: 922: 665: 274: 18: 3105:so the diagonal terms of 2799:since, for small angles, 2576:An exception occurs when 1870:are sometimes called the 1375:characteristic polynomial 61:axis–angle representation 2678:Given rotation matrices 2268:{\displaystyle -\theta } 1043:Essentially, by using a 150:Euler's rotation theorem 3498:Homogeneous coordinates 2407:of the rotation matrix 2385:{\displaystyle \omega } 2358:{\displaystyle \omega } 2313:{\displaystyle \theta } 1874:of the rotation matrix 1872:exponential coordinates 1438:= 0, this implies that 1425:Cayley–Hamilton theorem 750:is rotated by an angle 605: 106:rotation about the axis 3577:10.3842/SIGMA.2014.084 3462: 3393: 3216: 3099: 3031: 2915: 2775: 2672: 2568: 2386: 2359: 2336: 2314: 2294: 2269: 2243: 2223: 2203: 2183: 2182:{\displaystyle R_{ij}} 2151: 2006: 1836: 1747: 1476: 1359: 1218: 1100: 1035: 897: 709: 639:continuously dependent 597: 511: 210: 52: 3463: 3394: 3238:represented with its 3217: 3100: 3032: 2916: 2776: 2673: 2569: 2387: 2360: 2337: 2315: 2295: 2270: 2244: 2224: 2204: 2184: 2152: 2007: 1886:Further information: 1837: 1748: 1477: 1360: 1198: 1101: 1036: 949:Further information: 923:Further information: 898: 710: 598: 512: 211: 122:elevation and azimuth 74:by two quantities: a 36:and axis unit vector 29: 3409: 3255: 3147: 3041: 2935: 2846: 2690: 2608: 2415: 2376: 2349: 2324: 2304: 2279: 2256: 2233: 2213: 2193: 2163: 2016: 1949: 1888:Rotation group SO(3) 1757: 1547: 1442: 1166: 1128:cross product matrix 1051: 979: 758: 683: 547: 321: 183: 3569:2014SIGMA..10..084C 631:around a fixed axis 612:rigid-body dynamics 216:It is used for the 3458: 3389: 3387: 3380: 3337: 3333: 3212: 3205: 3179: 3095: 3027: 2911: 2771: 2668: 2564: 2559: 2482: 2382: 2355: 2332: 2310: 2290: 2265: 2239: 2219: 2199: 2179: 2147: 2135: 2002: 1832: 1743: 1472: 1355: 1096: 1031: 951:Matrix exponential 893: 705: 593: 584: 507: 475: 420: 237:, for any integer 206: 171:, also called the 155:It is one of many 53: 3373: 3347: 3336: 3332: 3204: 3178: 3074: 2649: 2531: 2517: 2481: 2446: 2242:{\displaystyle j} 2222:{\displaystyle i} 2202:{\displaystyle R} 2143: 2046: 1996: 1934:in what follows. 1714: 1689: 1664: 1618: 1593: 1326: 1287: 1252: 973:rotation matrices 955:Orthogonal matrix 662:Rotating a vector 580: 497: 93:angle of rotation 69:three-dimensional 21:3D rotation group 3617: 3589: 3588: 3562: 3535:Curtright, T. L. 3530: 3487: 3482:of the 3-vector 3477: 3475: 3467: 3465: 3464: 3459: 3444: 3439: 3434: 3398: 3396: 3395: 3390: 3388: 3384: 3383: 3374: 3371: 3348: 3345: 3338: 3335: 3334: 3325: 3315: 3310: 3292: 3250: 3244: 3237: 3221: 3219: 3218: 3213: 3211: 3207: 3206: 3197: 3188: 3180: 3171: 3154: 3125:Unit quaternions 3120: 3116: 3110: 3104: 3102: 3101: 3096: 3075: 3067: 3062: 3054: 3036: 3034: 3033: 3028: 3020: 3012: 2992: 2984: 2964: 2963: 2958: 2930: 2920: 2918: 2917: 2912: 2889: 2888: 2883: 2865: 2839: 2826: 2815: 2798: 2794: 2787: 2780: 2778: 2777: 2772: 2770: 2769: 2768: 2762: 2758: 2757: 2753: 2749: 2748: 2747: 2702: 2701: 2685: 2681: 2677: 2675: 2674: 2669: 2663: 2655: 2650: 2645: 2640: 2639: 2638: 2599: 2581: 2573: 2571: 2570: 2565: 2563: 2562: 2532: 2529: 2518: 2515: 2511: 2507: 2506: 2505: 2504: 2483: 2480: 2463: 2447: 2444: 2410: 2405:matrix logarithm 2395: 2391: 2389: 2388: 2383: 2371: 2364: 2362: 2361: 2356: 2341: 2339: 2338: 2333: 2331: 2319: 2317: 2316: 2311: 2299: 2297: 2296: 2291: 2289: 2274: 2272: 2271: 2266: 2248: 2246: 2245: 2240: 2228: 2226: 2225: 2220: 2208: 2206: 2205: 2200: 2188: 2186: 2185: 2180: 2178: 2177: 2156: 2154: 2153: 2148: 2141: 2140: 2139: 2132: 2131: 2119: 2118: 2105: 2104: 2092: 2091: 2078: 2077: 2065: 2064: 2047: 2045: 2028: 2023: 2011: 2009: 2008: 2003: 2001: 1997: 1992: 1969: 1933: 1928:for all vectors 1927: 1907: 1901: 1877: 1869: 1863: 1841: 1839: 1838: 1833: 1827: 1826: 1821: 1791: 1752: 1750: 1749: 1744: 1738: 1737: 1732: 1726: 1722: 1715: 1713: 1705: 1704: 1695: 1690: 1688: 1680: 1679: 1670: 1665: 1663: 1655: 1654: 1645: 1635: 1630: 1626: 1619: 1617: 1609: 1608: 1599: 1594: 1592: 1584: 1583: 1574: 1542: 1536: 1530: 1521: 1511: 1501: 1491: 1481: 1479: 1478: 1473: 1467: 1456: 1455: 1450: 1437: 1423:. Since, by the 1422: 1392: 1386: 1372: 1364: 1362: 1361: 1356: 1348: 1347: 1338: 1327: 1325: 1314: 1309: 1308: 1299: 1288: 1286: 1275: 1270: 1253: 1251: 1243: 1242: 1241: 1232: 1220: 1217: 1212: 1191: 1161: 1152:for all vectors 1151: 1135: 1125: 1119: 1115: 1105: 1103: 1102: 1097: 1095: 1094: 1089: 1071: 1070: 1058: 1045:Taylor expansion 1040: 1038: 1037: 1032: 1017: 997: 996: 940: 934: 914: 910: 902: 900: 899: 894: 888: 880: 872: 837: 829: 803: 780: 779: 778: 766: 753: 749: 739: 733: 727: 718: 714: 712: 711: 706: 695: 694: 677:Olinde Rodrigues 656:Mercer's theorem 653: 602: 600: 599: 594: 589: 588: 581: 573: 542: 537:pointing in the 536: 535: 533: 532: 529: 526: 516: 514: 513: 508: 503: 499: 498: 493: 485: 480: 479: 436: 432: 425: 424: 417: 416: 403: 402: 389: 388: 360: 340: 317:, this would be 312: 302: 301: 299: 298: 295: 292: 284: 262: 255: 251: 244: 240: 236: 215: 213: 212: 207: 201: 190: 178: 129: 119: 113: 99: 89:axis of rotation 82: 63:parameterizes a 50: 41: 35: 3625: 3624: 3620: 3619: 3618: 3616: 3615: 3614: 3595: 3594: 3593: 3592: 3531: 3527: 3522: 3494: 3483: 3471: 3469: 3440: 3435: 3430: 3410: 3407: 3406: 3386: 3385: 3379: 3378: 3370: 3368: 3359: 3358: 3344: 3342: 3323: 3316: 3311: 3308: 3301: 3300: 3293: 3288: 3285: 3284: 3265: 3258: 3256: 3253: 3252: 3246: 3242: 3225: 3224:Given a versor 3195: 3184: 3169: 3162: 3158: 3150: 3148: 3145: 3144: 3133: 3127: 3118: 3112: 3106: 3066: 3058: 3050: 3042: 3039: 3038: 3016: 3008: 2988: 2980: 2959: 2954: 2953: 2936: 2933: 2932: 2922: 2884: 2879: 2878: 2861: 2847: 2844: 2843: 2831: 2817: 2800: 2796: 2789: 2785: 2764: 2763: 2743: 2742: 2738: 2737: 2733: 2726: 2722: 2721: 2697: 2693: 2691: 2688: 2687: 2683: 2679: 2659: 2651: 2644: 2634: 2633: 2629: 2609: 2606: 2605: 2591: 2577: 2558: 2557: 2530: and  2528: 2514: 2512: 2500: 2499: 2495: 2488: 2484: 2467: 2461: 2458: 2457: 2443: 2441: 2431: 2430: 2416: 2413: 2412: 2408: 2393: 2377: 2374: 2373: 2369: 2350: 2347: 2346: 2327: 2325: 2322: 2321: 2305: 2302: 2301: 2285: 2280: 2277: 2276: 2257: 2254: 2253: 2234: 2231: 2230: 2214: 2211: 2210: 2194: 2191: 2190: 2170: 2166: 2164: 2161: 2160: 2134: 2133: 2127: 2123: 2114: 2110: 2107: 2106: 2100: 2096: 2087: 2083: 2080: 2079: 2073: 2069: 2060: 2056: 2049: 2048: 2032: 2027: 2019: 2017: 2014: 2013: 1970: 1968: 1964: 1950: 1947: 1946: 1939:rotation matrix 1929: 1909: 1903: 1897: 1894: 1884: 1875: 1865: 1859: 1822: 1817: 1816: 1787: 1758: 1755: 1754: 1733: 1728: 1727: 1706: 1700: 1696: 1694: 1681: 1675: 1671: 1669: 1656: 1650: 1646: 1644: 1643: 1639: 1631: 1610: 1604: 1600: 1598: 1585: 1579: 1575: 1573: 1566: 1562: 1548: 1545: 1544: 1538: 1532: 1526: 1513: 1503: 1493: 1483: 1463: 1451: 1446: 1445: 1443: 1440: 1439: 1428: 1394: 1388: 1377: 1368: 1343: 1339: 1334: 1318: 1313: 1304: 1300: 1295: 1279: 1274: 1266: 1244: 1237: 1233: 1228: 1221: 1219: 1213: 1202: 1187: 1167: 1164: 1163: 1153: 1137: 1131: 1121: 1117: 1107: 1090: 1085: 1084: 1063: 1062: 1054: 1052: 1049: 1048: 1010: 989: 988: 980: 977: 976: 969:exponential map 965: 947: 936: 930: 927: 925:Charts on SO(3) 921: 912: 906: 884: 876: 868: 833: 825: 799: 768: 767: 762: 761: 759: 756: 755: 751: 745: 735: 729: 728:is a vector in 723: 716: 687: 686: 684: 681: 680: 670: 664: 649: 608: 583: 582: 572: 569: 568: 562: 561: 551: 550: 548: 545: 544: 538: 530: 527: 524: 523: 521: 520: 486: 484: 474: 473: 464: 463: 457: 456: 446: 445: 444: 440: 419: 418: 412: 408: 405: 404: 398: 394: 391: 390: 384: 380: 373: 372: 371: 367: 344: 327: 322: 319: 318: 308: 296: 293: 290: 289: 287: 286: 280: 277: 257: 253: 246: 242: 238: 228: 197: 186: 184: 181: 180: 176: 169:rotation vector 165: 163:Rotation vector 139:right-hand rule 125: 115: 109: 95: 83:indicating the 78: 72:Euclidean space 43: 37: 31: 24: 17: 12: 11: 5: 3623: 3613: 3612: 3607: 3591: 3590: 3539:Fairlie, D. B. 3524: 3523: 3521: 3518: 3517: 3516: 3510: 3505: 3500: 3493: 3490: 3480:Euclidean norm 3457: 3453: 3450: 3447: 3443: 3438: 3433: 3429: 3426: 3423: 3420: 3417: 3414: 3382: 3377: 3369: 3367: 3364: 3361: 3360: 3357: 3354: 3351: 3343: 3341: 3331: 3328: 3322: 3319: 3314: 3307: 3306: 3304: 3299: 3296: 3294: 3291: 3287: 3286: 3283: 3280: 3277: 3274: 3271: 3268: 3266: 3264: 3261: 3260: 3210: 3203: 3200: 3194: 3191: 3187: 3183: 3177: 3174: 3168: 3165: 3161: 3157: 3153: 3129:Main article: 3126: 3123: 3094: 3090: 3087: 3084: 3081: 3078: 3073: 3070: 3065: 3061: 3057: 3053: 3049: 3046: 3026: 3023: 3019: 3015: 3011: 3007: 3004: 3001: 2998: 2995: 2991: 2987: 2983: 2979: 2976: 2973: 2970: 2967: 2962: 2957: 2952: 2949: 2946: 2943: 2940: 2910: 2907: 2904: 2901: 2898: 2895: 2892: 2887: 2882: 2877: 2874: 2871: 2868: 2864: 2860: 2857: 2854: 2851: 2767: 2761: 2756: 2752: 2746: 2741: 2736: 2732: 2729: 2725: 2720: 2717: 2714: 2711: 2708: 2705: 2700: 2696: 2667: 2662: 2658: 2654: 2648: 2643: 2637: 2632: 2628: 2625: 2622: 2619: 2616: 2613: 2604:of the log is 2602:Frobenius norm 2561: 2556: 2553: 2550: 2547: 2544: 2541: 2538: 2535: 2527: 2524: 2521: 2513: 2510: 2503: 2498: 2494: 2491: 2487: 2479: 2476: 2473: 2470: 2466: 2460: 2459: 2456: 2453: 2450: 2442: 2440: 2437: 2436: 2434: 2429: 2426: 2423: 2420: 2381: 2354: 2330: 2309: 2288: 2284: 2264: 2261: 2238: 2218: 2198: 2176: 2173: 2169: 2146: 2138: 2130: 2126: 2122: 2117: 2113: 2109: 2108: 2103: 2099: 2095: 2090: 2086: 2082: 2081: 2076: 2072: 2068: 2063: 2059: 2055: 2054: 2052: 2044: 2041: 2038: 2035: 2031: 2026: 2022: 2000: 1995: 1991: 1988: 1985: 1982: 1979: 1976: 1973: 1967: 1963: 1960: 1957: 1954: 1883: 1880: 1831: 1825: 1820: 1815: 1812: 1809: 1806: 1803: 1800: 1797: 1794: 1790: 1786: 1783: 1780: 1777: 1774: 1771: 1768: 1765: 1762: 1742: 1736: 1731: 1725: 1721: 1718: 1712: 1709: 1703: 1699: 1693: 1687: 1684: 1678: 1674: 1668: 1662: 1659: 1653: 1649: 1642: 1638: 1634: 1629: 1625: 1622: 1616: 1613: 1607: 1603: 1597: 1591: 1588: 1582: 1578: 1572: 1569: 1565: 1561: 1558: 1555: 1552: 1471: 1466: 1462: 1459: 1454: 1449: 1354: 1351: 1346: 1342: 1337: 1333: 1330: 1324: 1321: 1317: 1312: 1307: 1303: 1298: 1294: 1291: 1285: 1282: 1278: 1273: 1269: 1265: 1262: 1259: 1256: 1250: 1247: 1240: 1236: 1231: 1227: 1224: 1216: 1211: 1208: 1205: 1201: 1197: 1194: 1190: 1186: 1183: 1180: 1177: 1174: 1171: 1093: 1088: 1083: 1080: 1077: 1074: 1069: 1066: 1061: 1057: 1030: 1026: 1023: 1020: 1016: 1013: 1009: 1006: 1003: 1000: 995: 992: 987: 984: 946: 943: 920: 917: 892: 887: 883: 879: 875: 871: 867: 864: 861: 858: 855: 852: 849: 846: 843: 840: 836: 832: 828: 824: 821: 818: 815: 812: 809: 806: 802: 798: 795: 792: 789: 786: 783: 777: 774: 771: 765: 704: 701: 698: 693: 690: 675:, named after 666:Main article: 663: 660: 607: 604: 592: 587: 579: 576: 571: 570: 567: 564: 563: 560: 557: 556: 554: 506: 502: 496: 492: 489: 483: 478: 472: 469: 466: 465: 462: 459: 458: 455: 452: 451: 449: 443: 439: 435: 431: 428: 423: 415: 411: 407: 406: 401: 397: 393: 392: 387: 383: 379: 378: 376: 370: 366: 363: 359: 356: 353: 350: 347: 343: 339: 336: 333: 330: 326: 276: 273: 205: 200: 196: 193: 189: 164: 161: 15: 9: 6: 4: 3: 2: 3622: 3611: 3608: 3606: 3603: 3602: 3600: 3586: 3582: 3578: 3574: 3570: 3566: 3561: 3556: 3552: 3548: 3544: 3543:Zachos, C. K. 3540: 3536: 3529: 3525: 3514: 3511: 3509: 3506: 3504: 3501: 3499: 3496: 3495: 3489: 3486: 3481: 3474: 3455: 3448: 3445: 3424: 3421: 3418: 3415: 3412: 3404: 3399: 3375: 3365: 3362: 3355: 3352: 3349: 3339: 3329: 3326: 3320: 3317: 3302: 3297: 3295: 3281: 3278: 3275: 3272: 3269: 3267: 3262: 3249: 3241: 3236: 3232: 3228: 3222: 3208: 3201: 3198: 3192: 3189: 3181: 3175: 3172: 3166: 3163: 3159: 3155: 3142: 3138: 3132: 3122: 3115: 3109: 3092: 3085: 3082: 3079: 3071: 3068: 3063: 3055: 3047: 3044: 3024: 3021: 3013: 3005: 3002: 2996: 2993: 2985: 2974: 2971: 2968: 2965: 2960: 2950: 2947: 2944: 2941: 2938: 2929: 2925: 2905: 2902: 2899: 2896: 2893: 2885: 2875: 2872: 2869: 2866: 2858: 2855: 2852: 2849: 2841: 2838: 2834: 2828: 2824: 2821: 2814: 2811: 2807: 2803: 2792: 2782: 2754: 2750: 2739: 2734: 2730: 2727: 2718: 2712: 2709: 2706: 2698: 2694: 2665: 2656: 2646: 2641: 2623: 2617: 2614: 2603: 2598: 2594: 2589: 2585: 2580: 2574: 2551: 2548: 2545: 2542: 2536: 2533: 2525: 2522: 2519: 2508: 2496: 2492: 2489: 2485: 2477: 2474: 2471: 2468: 2464: 2454: 2451: 2448: 2438: 2432: 2427: 2424: 2421: 2418: 2406: 2401: 2399: 2379: 2367: 2366:does not work 2352: 2343: 2307: 2282: 2262: 2259: 2250: 2236: 2216: 2196: 2174: 2171: 2167: 2157: 2144: 2136: 2128: 2124: 2120: 2115: 2111: 2101: 2097: 2093: 2088: 2084: 2074: 2070: 2066: 2061: 2057: 2050: 2042: 2039: 2036: 2033: 2029: 2024: 1998: 1993: 1989: 1986: 1980: 1974: 1971: 1965: 1961: 1958: 1955: 1952: 1944: 1940: 1935: 1932: 1926: 1922: 1921: 1916: 1912: 1906: 1900: 1893: 1889: 1879: 1873: 1868: 1862: 1856: 1854: 1849: 1847: 1842: 1829: 1823: 1810: 1807: 1804: 1801: 1798: 1792: 1781: 1778: 1775: 1769: 1766: 1763: 1760: 1740: 1734: 1723: 1719: 1716: 1710: 1707: 1701: 1697: 1691: 1685: 1682: 1676: 1672: 1666: 1660: 1657: 1651: 1647: 1640: 1636: 1627: 1623: 1620: 1614: 1611: 1605: 1601: 1595: 1589: 1586: 1580: 1576: 1570: 1567: 1563: 1559: 1556: 1553: 1550: 1541: 1535: 1529: 1523: 1520: 1516: 1510: 1506: 1500: 1496: 1490: 1486: 1482:As a result, 1469: 1460: 1457: 1452: 1435: 1431: 1426: 1420: 1416: 1412: 1409: 1405: 1401: 1397: 1391: 1384: 1380: 1376: 1371: 1365: 1352: 1349: 1344: 1331: 1322: 1319: 1315: 1310: 1305: 1292: 1283: 1280: 1276: 1271: 1263: 1260: 1257: 1254: 1248: 1245: 1238: 1225: 1209: 1206: 1203: 1199: 1195: 1184: 1178: 1175: 1172: 1169: 1160: 1156: 1150: 1146: 1145: 1140: 1134: 1129: 1124: 1114: 1110: 1091: 1081: 1075: 1059: 1046: 1041: 1028: 1021: 1001: 985: 982: 974: 970: 964: 960: 956: 952: 942: 939: 933: 926: 916: 909: 903: 890: 873: 859: 856: 853: 850: 847: 841: 830: 816: 813: 810: 804: 793: 790: 787: 781: 748: 743: 738: 732: 726: 720: 699: 678: 674: 669: 659: 657: 652: 646: 644: 640: 636: 632: 628: 623: 621: 617: 613: 603: 590: 585: 577: 574: 565: 558: 552: 541: 517: 504: 500: 494: 490: 487: 481: 476: 470: 467: 460: 453: 447: 441: 437: 433: 429: 426: 421: 413: 409: 399: 395: 385: 381: 374: 368: 364: 341: 316: 311: 306: 283: 272: 270: 266: 261: 250: 235: 231: 225: 223: 219: 203: 194: 191: 174: 170: 160: 158: 153: 151: 147: 142: 140: 136: 131: 128: 123: 118: 112: 107: 103: 98: 94: 90: 86: 81: 77: 73: 70: 66: 62: 58: 49: 46: 40: 34: 28: 22: 3550: 3546: 3528: 3513:Screw theory 3503:Pseudovector 3484: 3472: 3400: 3247: 3234: 3230: 3226: 3223: 3134: 3113: 3107: 2927: 2923: 2842: 2836: 2832: 2829: 2822: 2819: 2812: 2809: 2805: 2801: 2790: 2783: 2596: 2592: 2578: 2575: 2402: 2365: 2344: 2251: 2249:-th column. 2229:-th row and 2158: 1936: 1930: 1924: 1919: 1918: 1914: 1910: 1904: 1898: 1895: 1871: 1866: 1860: 1857: 1850: 1843: 1539: 1533: 1527: 1524: 1518: 1514: 1508: 1504: 1498: 1494: 1488: 1484: 1433: 1429: 1418: 1414: 1410: 1407: 1403: 1399: 1395: 1389: 1382: 1378: 1369: 1366: 1158: 1154: 1148: 1143: 1142: 1138: 1132: 1122: 1112: 1108: 1042: 966: 937: 931: 928: 907: 904: 746: 736: 730: 724: 721: 671: 650: 647: 624: 609: 539: 518: 315:ordered pair 309: 307:) about the 303:radians (or 281: 278: 268: 264: 259: 248: 233: 229: 226: 173:Euler vector 172: 168: 166: 154: 145: 143: 132: 126: 116: 110: 96: 79: 60: 54: 47: 44: 38: 32: 3245:and vector 3141:quaternions 3037:and so let 2584:eigenvalues 1136:, that is, 935:instead of 742:unit vector 543:direction, 218:exponential 76:unit vector 57:mathematics 3599:Categories 3520:References 3405:function: 2931:, we have 627:rigid body 269:one-to-one 146:Euler axis 124:angles of 30:The angle 3560:1402.3541 3425:⁡ 3413:θ 3372:otherwise 3353:≠ 3350:θ 3327:θ 3321:⁡ 3290:ω 3279:⁡ 3263:θ 3199:θ 3193:⁡ 3186:ω 3173:θ 3167:⁡ 3060:ω 3056:⊗ 3052:ω 3022:− 3018:ω 3014:⊗ 3010:ω 2994:− 2990:ω 2986:⊗ 2982:ω 2906:θ 2903:⁡ 2897:− 2873:θ 2870:⁡ 2731:⁡ 2657:θ 2631:‖ 2618:⁡ 2612:‖ 2586:equal to 2552:π 2546:π 2543:− 2537:∈ 2534:θ 2523:≠ 2520:θ 2493:− 2478:θ 2475:⁡ 2465:θ 2449:θ 2422:⁡ 2380:ω 2353:ω 2329:ω 2308:θ 2287:ω 2283:− 2263:θ 2260:− 2209:, in the 2121:− 2094:− 2067:− 2043:θ 2040:⁡ 2021:ω 1987:− 1975:⁡ 1962:⁡ 1953:θ 1811:θ 1808:⁡ 1802:− 1782:θ 1779:⁡ 1753:that is, 1720:⋯ 1717:− 1698:θ 1673:θ 1667:− 1648:θ 1624:⋯ 1621:− 1602:θ 1577:θ 1571:− 1568:θ 1461:− 1353:⋯ 1332:θ 1293:θ 1264:θ 1226:θ 1215:∞ 1200:∑ 1185:θ 1179:⁡ 1060:∈ 1056:ω 1008:→ 986:: 874:⋅ 860:θ 857:⁡ 851:− 831:× 817:θ 814:⁡ 794:θ 791:⁡ 616:rotations 575:π 491:π 488:− 468:− 430:θ 222:logarithm 195:θ 188:θ 104:) of the 102:clockwise 91:, and an 85:direction 3585:18776942 3492:See also 3346:if  2760:‖ 2724:‖ 2516:if  2445:if  1402:) = det( 1367:Because 635:constant 629:rotates 267:but not 65:rotation 3565:Bibcode 3553:: 084. 3478:is the 3137:versors 1844:by the 1126:is the 625:When a 534:⁠ 522:⁠ 300:⁠ 288:⁠ 275:Example 3583:  3476:| 3470:| 3468:where 3276:arccos 3240:scalar 3139:(unit 2396:, see 2320:about 2275:about 2159:where 2142:  1959:arccos 1413:) = −( 961:, and 620:motion 87:of an 59:, the 3610:Angle 3581:S2CID 3555:arXiv 3547:SIGMA 3422:atan2 3403:atan2 740:is a 717:SO(3) 67:in a 2818:exp( 2682:and 2600:the 2582:has 2403:The 1917:) = 1896:Let 1890:and 1537:and 967:The 911:and 734:and 643:time 606:Uses 305:-90° 265:onto 220:and 3573:doi 3318:sin 3190:sin 3164:cos 3143:): 2921:At 2900:cos 2867:sin 2827:.) 2793:→ 0 2728:log 2615:log 2472:sin 2419:log 2411:is 2394:R-I 2368:if 2037:sin 1805:cos 1776:sin 1517:= – 1487:= – 1393:is 1387:of 1176:exp 1130:of 983:exp 854:cos 811:sin 788:cos 722:If 715:to 641:on 232:+ 2 133:By 55:In 3601:: 3579:. 3571:. 3563:. 3551:10 3549:. 3541:; 3537:; 3488:. 3233:+ 3229:= 3121:. 3048::= 2926:= 2835:= 2808:+ 2804:≈ 2719::= 2686:, 2595:= 2588:−1 2400:. 2342:. 2129:12 2116:21 2102:31 2089:13 2075:23 2062:32 1972:Tr 1945:: 1923:× 1908:: 1878:. 1855:. 1848:. 1522:. 1512:, 1507:= 1502:, 1497:= 1492:, 1427:, 1417:+ 1406:− 1162:, 1157:∈ 1147:× 1141:= 1139:Kv 1111:∈ 975:, 957:, 953:, 941:. 645:. 310:-z 291:-π 271:. 260:πM 249:πM 234:πM 179:, 159:. 141:. 51:. 3587:. 3575:: 3567:: 3557:: 3485:v 3473:v 3456:, 3452:) 3449:r 3446:, 3442:| 3437:v 3432:| 3428:( 3419:2 3416:= 3376:. 3366:, 3363:0 3356:0 3340:, 3330:2 3313:v 3303:{ 3298:= 3282:r 3273:2 3270:= 3248:v 3243:r 3235:v 3231:r 3227:q 3209:) 3202:2 3182:, 3176:2 3160:( 3156:= 3152:q 3119:B 3114:ω 3108:B 3093:, 3089:) 3086:I 3083:+ 3080:R 3077:( 3072:2 3069:1 3064:= 3045:B 3025:I 3006:2 3003:= 3000:) 2997:I 2978:( 2975:2 2972:+ 2969:I 2966:= 2961:2 2956:K 2951:2 2948:+ 2945:I 2942:= 2939:R 2928:π 2924:θ 2909:) 2894:1 2891:( 2886:2 2881:K 2876:+ 2863:K 2859:+ 2856:I 2853:= 2850:R 2837:π 2833:θ 2825:) 2823:K 2820:θ 2813:K 2810:θ 2806:I 2802:R 2797:θ 2791:θ 2786:θ 2766:F 2755:) 2751:B 2745:T 2740:A 2735:( 2716:) 2713:B 2710:, 2707:A 2704:( 2699:g 2695:d 2684:B 2680:A 2666:. 2661:| 2653:| 2647:2 2642:= 2636:F 2627:) 2624:R 2621:( 2597:π 2593:θ 2579:R 2555:) 2549:, 2540:( 2526:0 2509:) 2502:T 2497:R 2490:R 2486:( 2469:2 2455:0 2452:= 2439:0 2433:{ 2428:= 2425:R 2409:R 2370:R 2237:j 2217:i 2197:R 2175:j 2172:i 2168:R 2145:, 2137:] 2125:R 2112:R 2098:R 2085:R 2071:R 2058:R 2051:[ 2034:2 2030:1 2025:= 1999:) 1994:2 1990:1 1984:) 1981:R 1978:( 1966:( 1956:= 1931:v 1925:v 1920:ω 1915:v 1913:( 1911:K 1905:ω 1899:K 1876:R 1867:θ 1861:ω 1830:, 1824:2 1819:K 1814:) 1799:1 1796:( 1793:+ 1789:K 1785:) 1773:( 1770:+ 1767:I 1764:= 1761:R 1741:, 1735:2 1730:K 1724:) 1711:! 1708:6 1702:6 1692:+ 1686:! 1683:4 1677:4 1661:! 1658:2 1652:2 1641:( 1637:+ 1633:K 1628:) 1615:! 1612:5 1606:5 1596:+ 1590:! 1587:3 1581:3 1564:( 1560:+ 1557:I 1554:= 1551:R 1540:K 1534:K 1528:K 1519:K 1515:K 1509:K 1505:K 1499:K 1495:K 1489:K 1485:K 1470:. 1465:K 1458:= 1453:3 1448:K 1436:) 1434:K 1432:( 1430:P 1421:) 1419:t 1415:t 1411:I 1408:t 1404:K 1400:t 1398:( 1396:P 1390:K 1385:) 1383:t 1381:( 1379:P 1370:K 1350:+ 1345:3 1341:) 1336:K 1329:( 1323:! 1320:3 1316:1 1311:+ 1306:2 1302:) 1297:K 1290:( 1284:! 1281:2 1277:1 1272:+ 1268:K 1261:+ 1258:I 1255:= 1249:! 1246:k 1239:k 1235:) 1230:K 1223:( 1210:0 1207:= 1204:k 1196:= 1193:) 1189:K 1182:( 1173:= 1170:R 1159:R 1155:v 1149:v 1144:ω 1133:ω 1123:K 1118:R 1113:R 1109:θ 1092:3 1087:R 1082:= 1079:) 1076:3 1073:( 1068:o 1065:s 1029:. 1025:) 1022:3 1019:( 1015:O 1012:S 1005:) 1002:3 999:( 994:o 991:s 938:e 932:ω 913:θ 908:e 891:. 886:e 882:) 878:v 870:e 866:( 863:) 848:1 845:( 842:+ 839:) 835:v 827:e 823:( 820:) 808:( 805:+ 801:v 797:) 785:( 782:= 776:t 773:o 770:r 764:v 752:θ 747:v 737:e 731:R 725:v 703:) 700:3 697:( 692:o 689:s 651:e 591:. 586:] 578:2 566:0 559:0 553:[ 540:z 531:2 528:/ 525:π 505:. 501:) 495:2 482:, 477:] 471:1 461:0 454:0 448:[ 442:( 438:= 434:) 427:, 422:] 414:z 410:e 400:y 396:e 386:x 382:e 375:[ 369:( 365:= 362:) 358:e 355:l 352:g 349:n 346:a 342:, 338:s 335:i 332:x 329:a 325:( 297:2 294:/ 282:z 258:2 254:M 247:2 243:θ 239:M 230:θ 204:. 199:e 192:= 177:θ 127:e 117:e 111:e 97:θ 80:e 48:e 45:θ 39:e 33:θ 23:.

Index

3D rotation group

mathematics
rotation
three-dimensional
Euclidean space
unit vector
direction
axis of rotation
angle of rotation
clockwise
rotation about the axis
elevation and azimuth
Rodrigues' rotation formula
right-hand rule
Euler's rotation theorem
rotation formalisms in three dimensions
exponential
logarithm
-90°
ordered pair
rigid-body dynamics
rotations
motion
rigid body
around a fixed axis
constant
continuously dependent
time
Mercer's theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.