Knowledge

Atomic emission spectroscopy

Source đź“ť

139:
must be in a liquid solution. Inductively coupled plasma (ICP) source of the emission consists of an induction coil and plasma. An induction coil is a coil of wire that has an alternating current flowing through it. This current induces a magnetic field inside the coil, coupling a great deal of energy to plasma contained in a quartz tube inside the coil. Plasma is a collection of charged particles (cations and electrons) capable, by virtue of their charge, of interacting with a magnetic field. The plasmas used in atomic emissions are formed by ionizing a flowing stream of argon gas. Plasma's high-temperature results from resistive heating as the charged particles move through the gas. Because plasmas operate at much higher temperatures than flames, they provide better atomization and a higher population of excited states. The predominant form of sample matrix in ICP-AES today is a liquid sample: acidified water or solids digested into aqueous forms. Liquid samples are pumped into the nebulizer and sample chamber via a peristaltic pump. Then the samples pass through a nebulizer that creates a fine mist of liquid particles. Larger water droplets condense on the sides of the spray chamber and are removed via the drain, while finer water droplets move with the argon flow and enter the plasma. With plasma emission, it is possible to analyze solid samples directly. These procedures include incorporating electrothermal vaporization, laser and spark ablation, and glow-discharge vaporization.
116: 79: 1258: 688: 20: 712: 91: 724: 1270: 700: 374: 162:. In traditional arc spectroscopy methods, a sample of the solid was commonly ground up and destroyed during analysis. An electric arc or spark is passed through the sample, heating it to a high temperature to excite the atoms within it. The excited analyte atoms emit light at characteristic wavelengths that can be dispersed with a 138:
Advantages of ICP-AES are the excellent limit of detection and linear dynamic range, multi-element capability, low chemical interference and a stable and reproducible signal. Disadvantages are spectral interferences (many emission lines), cost and operating expense and the fact that samples typically
86:
The sample of a material (analyte) is brought into the flame as a gas, sprayed solution, or directly inserted into the flame by use of a small loop of wire, usually platinum. The heat from the flame evaporates the solvent and breaks intramolecular bonds to create free atoms. The thermal energy also
87:
excites the atoms into excited electronic states that subsequently emit light when they return to the ground electronic state. Each element emits light at a characteristic wavelength, which is dispersed by a grating or prism and detected in the spectrometer.
240:
Stefánsson A, Gunnarsson I, Giroud N (2007). "New methods for the direct determination of dissolved inorganic, organic and total carbon in natural waters by Reagent-Free Ion Chromatography and inductively coupled plasma atomic emission spectrometry".
170:. However, modern spark sources with controlled discharges can be considered quantitative. Both qualitative and quantitative spark analysis are widely used for production quality control in foundry and metal casting facilities. 1089: 189: 110: 635: 762: 154:
atomic emission spectroscopy is used for the analysis of metallic elements in solid samples. For non-conductive materials, the sample is ground with
406: 378: 980: 166:
and detected. In the past, the spark or arc conditions were typically not well controlled, the analysis for the elements in the sample were
913: 858: 827: 822: 295: 1195: 1013: 875: 1144: 963: 101:
A frequent application of the emission measurement with the flame is the regulation of alkali metals for pharmaceutical analytics.
97:
atomic ions emitting light in a flame displays a brilliantly bright yellow emission at 588.9950 and 589.5924 nanometers wavelength.
1084: 886: 807: 787: 361: 276:
Mermet, J. M. (2005). "Is it still possible, necessary and beneficial to perform research in ICP-atomic emission spectrometry?".
1030: 1008: 755: 658: 446: 1096: 1018: 704: 953: 898: 848: 194: 543: 399: 1180: 932: 748: 343: 320: 1185: 1003: 1200: 1170: 1101: 1035: 728: 1301: 1296: 1129: 920: 817: 665: 431: 179: 1306: 1274: 927: 832: 692: 392: 66:
gives the identity of the element while the intensity of the emitted light is proportional to the number of
1061: 797: 1217: 1056: 1025: 958: 436: 1207: 1149: 998: 870: 609: 124: 1233: 1212: 853: 512: 502: 335: 128: 975: 296:
http://www.rsc.org/publishing/journals/JA/article.asp?doi=b416511j%7Cformat=%7Caccessdate=2007-08-31
583: 1106: 802: 672: 553: 461: 147: 893: 651: 1262: 1134: 865: 779: 451: 507: 471: 423: 415: 59: 8: 1190: 903: 812: 548: 184: 1238: 1175: 1154: 970: 948: 881: 792: 578: 573: 568: 441: 365: 313:
Atomic absorption, fluorescence, and flame emission spectroscopy: a practical approach
1139: 1066: 1040: 711: 644: 619: 614: 604: 517: 476: 456: 339: 316: 258: 222: 63: 35: 716: 624: 285: 250: 167: 132: 55: 43: 497: 51: 254: 1290: 563: 163: 115: 771: 599: 522: 262: 151: 78: 47: 16:
Analytical method using radiation to identify chemical elements in a sample
332:
Element-specific chromatographic detection by atomic emission spectroscopy
226: 123:
Inductively coupled plasma atomic emission spectroscopy (ICP-AES) uses an
492: 558: 466: 384: 159: 19: 527: 289: 90: 155: 82:
A flame during the assessment of calcium ions in a flame photometer
740: 373: 94: 310: 70:
of the element. The sample may be excited by various methods.
39: 67: 54:
at a particular wavelength to determine the quantity of an
239: 190:
Inductively coupled plasma atomic emission spectroscopy
111:
Inductively coupled plasma atomic emission spectroscopy
23:
Inductively coupled plasma atomic emission spectrometer
119:Inductively coupled plasma atomic emission source 1288: 38:that uses the intensity of light emitted from a 329: 131:at wavelengths characteristic of a particular 756: 400: 104: 828:Vibrational spectroscopy of linear molecules 212: 127:to produce excited atoms and ions that emit 233: 823:Nuclear resonance vibrational spectroscopy 763: 749: 407: 393: 206: 1196:Inelastic electron tunneling spectroscopy 876:Resonance-enhanced multiphoton ionization 311:Reynolds, R. J.; Thompson, K. C. (1978). 964:Extended X-ray absorption fine structure 414: 114: 89: 77: 18: 362:"Atomic Emission Spectroscopy Tutorial" 1289: 659:Analytical and Bioanalytical Chemistry 275: 744: 447:High-performance liquid chromatograph 388: 1269: 699: 195:Laser-induced breakdown spectroscopy 723: 58:in a sample. The wavelength of the 13: 14: 1318: 1181:Deep-level transient spectroscopy 933:Saturated absorption spectroscopy 354: 1268: 1257: 1256: 1186:Dual-polarization interferometry 770: 722: 710: 698: 687: 686: 372: 142: 1201:Scanning tunneling spectroscopy 1176:Circular dichroism spectroscopy 1171:Acoustic resonance spectroscopy 303: 213:Stáhlavská A (April 1973). "". 1130:Fourier-transform spectroscopy 818:Vibrational circular dichroism 432:Atomic absorption spectrometer 269: 180:Atomic absorption spectroscopy 1: 928:Cavity ring-down spectroscopy 833:Thermal infrared spectroscopy 200: 1062:Inelastic neutron scattering 379:Atomic emission spectroscopy 28:Atomic emission spectroscopy 7: 1123:Data collection, processing 999:Photoelectron/photoemission 437:Flame emission spectrometer 173: 10: 1325: 1208:Photoacoustic spectroscopy 1150:Time-resolved spectroscopy 125:inductively coupled plasma 108: 105:Inductively coupled plasma 1252: 1234:Astronomical spectroscopy 1226: 1213:Photothermal spectroscopy 1163: 1122: 1115: 1077: 1049: 991: 941: 841: 778: 682: 633: 592: 536: 513:Ion mobility spectrometry 503:Electroanalytical methods 485: 422: 336:American Chemical Society 255:10.1016/j.aca.2006.09.001 129:electromagnetic radiation 73: 1218:Pump–probe spectroscopy 1107:Ferromagnetic resonance 899:Laser-induced breakdown 673:Analytical Biochemistry 462:Melting point apparatus 330:Uden, Peter C. (1992). 914:Glow-discharge optical 894:Raman optical activity 808:Rotational–vibrational 652:Analytica Chimica Acta 120: 98: 83: 24: 1302:Scientific techniques 1297:Emission spectroscopy 1135:Hyperspectral imaging 544:Coning and quartering 452:Infrared spectrometer 278:J. Anal. At. Spectrom 118: 93: 81: 22: 1307:Analytical chemistry 887:Coherent anti-Stokes 842:UV–Vis–NIR "Optical" 666:Analytical Chemistry 508:Gravimetric analysis 472:Optical spectrometer 416:Analytical chemistry 381:at Wikimedia Commons 60:atomic spectral line 1191:Hadron spectroscopy 981:Conversion electron 942:X-ray and Gamma ray 849:Ultraviolet–visible 315:. New York: Wiley. 185:Atomic spectroscopy 1239:Force spectroscopy 1164:Measured phenomena 1155:Video spectroscopy 859:Cold vapour atomic 579:Separation process 574:Sample preparation 158:powder to make it 121: 99: 84: 25: 1284: 1283: 1248: 1247: 1140:Spectrophotometry 1067:Neutron spin echo 1041:Beta spectroscopy 954:Energy-dispersive 738: 737: 620:Standard addition 615:Internal standard 605:Calibration curve 518:Mass spectrometry 477:Spectrophotometer 457:Mass spectrometer 442:Gas chromatograph 377:Media related to 64:emission spectrum 36:chemical analysis 34:) is a method of 1314: 1272: 1271: 1260: 1259: 1120: 1119: 1031:phenomenological 780:Vibrational (IR) 765: 758: 751: 742: 741: 726: 725: 714: 702: 701: 690: 689: 625:Isotope dilution 409: 402: 395: 386: 385: 376: 369: 364:. Archived from 349: 334:. Columbus, OH: 326: 298: 293: 290:10.1039/b416511j 273: 267: 266: 243:Anal. Chim. Acta 237: 231: 230: 210: 1324: 1323: 1317: 1316: 1315: 1313: 1312: 1311: 1287: 1286: 1285: 1280: 1244: 1222: 1159: 1111: 1073: 1045: 987: 937: 837: 798:Resonance Raman 774: 769: 739: 734: 678: 629: 588: 532: 481: 424:Instrumentation 418: 413: 360: 357: 352: 346: 323: 306: 301: 274: 270: 238: 234: 211: 207: 203: 176: 145: 113: 107: 76: 17: 12: 11: 5: 1322: 1321: 1310: 1309: 1304: 1299: 1282: 1281: 1279: 1278: 1266: 1253: 1250: 1249: 1246: 1245: 1243: 1242: 1236: 1230: 1228: 1224: 1223: 1221: 1220: 1215: 1210: 1205: 1204: 1203: 1193: 1188: 1183: 1178: 1173: 1167: 1165: 1161: 1160: 1158: 1157: 1152: 1147: 1142: 1137: 1132: 1126: 1124: 1117: 1113: 1112: 1110: 1109: 1104: 1099: 1094: 1093: 1092: 1081: 1079: 1075: 1074: 1072: 1071: 1070: 1069: 1059: 1053: 1051: 1047: 1046: 1044: 1043: 1038: 1033: 1028: 1023: 1022: 1021: 1016: 1014:Angle-resolved 1011: 1006: 995: 993: 989: 988: 986: 985: 984: 983: 973: 968: 967: 966: 961: 956: 945: 943: 939: 938: 936: 935: 930: 925: 924: 923: 918: 917: 916: 901: 896: 891: 890: 889: 879: 873: 868: 863: 862: 861: 851: 845: 843: 839: 838: 836: 835: 830: 825: 820: 815: 810: 805: 800: 795: 790: 784: 782: 776: 775: 768: 767: 760: 753: 745: 736: 735: 733: 732: 720: 708: 696: 683: 680: 679: 677: 676: 669: 662: 655: 648: 640: 638: 631: 630: 628: 627: 622: 617: 612: 607: 602: 596: 594: 590: 589: 587: 586: 581: 576: 571: 566: 561: 556: 551: 546: 540: 538: 534: 533: 531: 530: 525: 520: 515: 510: 505: 500: 498:Chromatography 495: 489: 487: 483: 482: 480: 479: 474: 469: 464: 459: 454: 449: 444: 439: 434: 428: 426: 420: 419: 412: 411: 404: 397: 389: 383: 382: 370: 368:on 2006-05-01. 356: 355:External links 353: 351: 350: 344: 327: 321: 307: 305: 302: 300: 299: 268: 232: 204: 202: 199: 198: 197: 192: 187: 182: 175: 172: 144: 141: 109:Main article: 106: 103: 75: 72: 15: 9: 6: 4: 3: 2: 1320: 1319: 1308: 1305: 1303: 1300: 1298: 1295: 1294: 1292: 1277: 1276: 1267: 1265: 1264: 1255: 1254: 1251: 1240: 1237: 1235: 1232: 1231: 1229: 1225: 1219: 1216: 1214: 1211: 1209: 1206: 1202: 1199: 1198: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1168: 1166: 1162: 1156: 1153: 1151: 1148: 1146: 1143: 1141: 1138: 1136: 1133: 1131: 1128: 1127: 1125: 1121: 1118: 1114: 1108: 1105: 1103: 1100: 1098: 1095: 1091: 1088: 1087: 1086: 1083: 1082: 1080: 1076: 1068: 1065: 1064: 1063: 1060: 1058: 1055: 1054: 1052: 1048: 1042: 1039: 1037: 1034: 1032: 1029: 1027: 1024: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1001: 1000: 997: 996: 994: 990: 982: 979: 978: 977: 974: 972: 969: 965: 962: 960: 957: 955: 952: 951: 950: 947: 946: 944: 940: 934: 931: 929: 926: 922: 919: 915: 912: 911: 910: 907: 906: 905: 902: 900: 897: 895: 892: 888: 885: 884: 883: 880: 877: 874: 872: 871:Near-infrared 869: 867: 864: 860: 857: 856: 855: 852: 850: 847: 846: 844: 840: 834: 831: 829: 826: 824: 821: 819: 816: 814: 811: 809: 806: 804: 801: 799: 796: 794: 791: 789: 786: 785: 783: 781: 777: 773: 766: 761: 759: 754: 752: 747: 746: 743: 731: 730: 721: 719: 718: 713: 709: 707: 706: 697: 695: 694: 685: 684: 681: 675: 674: 670: 668: 667: 663: 661: 660: 656: 654: 653: 649: 647: 646: 642: 641: 639: 637: 632: 626: 623: 621: 618: 616: 613: 611: 610:Matrix effect 608: 606: 603: 601: 598: 597: 595: 591: 585: 582: 580: 577: 575: 572: 570: 569:Pulverization 567: 565: 562: 560: 557: 555: 552: 550: 547: 545: 542: 541: 539: 535: 529: 526: 524: 521: 519: 516: 514: 511: 509: 506: 504: 501: 499: 496: 494: 491: 490: 488: 484: 478: 475: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 448: 445: 443: 440: 438: 435: 433: 430: 429: 427: 425: 421: 417: 410: 405: 403: 398: 396: 391: 390: 387: 380: 375: 371: 367: 363: 359: 358: 347: 345:0-8412-2174-X 341: 337: 333: 328: 324: 322:0-470-26478-0 318: 314: 309: 308: 297: 291: 287: 283: 279: 272: 264: 260: 256: 252: 248: 244: 236: 228: 224: 220: 217:(in German). 216: 209: 205: 196: 193: 191: 188: 186: 183: 181: 178: 177: 171: 169: 165: 164:monochromator 161: 157: 153: 149: 143:Spark and arc 140: 136: 134: 130: 126: 117: 112: 102: 96: 92: 88: 80: 71: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 21: 1273: 1261: 1241:(a misnomer) 1227:Applications 1145:Time-stretch 1036:paramagnetic 908: 854:Fluorescence 772:Spectroscopy 727: 715: 703: 691: 671: 664: 657: 650: 643: 636:publications 600:Chemometrics 584:Sub-sampling 523:Spectroscopy 366:the original 331: 312: 304:Bibliography 281: 277: 271: 249:(1): 69–74. 246: 242: 235: 221:(4): 238–9. 218: 214: 208: 146: 137: 122: 100: 85: 31: 27: 26: 813:Vibrational 729:WikiProject 593:Calibration 554:Dissolution 493:Calorimetry 168:qualitative 1291:Categories 1019:Two-photon 921:absorption 803:Rotational 634:Prominent 559:Filtration 486:Techniques 467:Microscope 201:References 160:conductive 1097:Terahertz 1078:Radiowave 976:Mössbauer 528:Titration 284:: 11–16. 215:Pharmazie 1263:Category 992:Electron 959:Emission 909:emission 866:Vibronic 693:Category 549:Dilution 537:Sampling 263:17386476 174:See also 156:graphite 1275:Commons 1102:ESR/EPR 1050:Nucleon 878:(REMPI) 705:Commons 645:Analyst 564:Masking 227:4716605 133:element 62:in the 56:element 1116:Others 904:Atomic 717:Portal 342:  319:  261:  225:  95:Sodium 44:plasma 1057:Alpha 1026:Auger 1004:X-ray 971:Gamma 949:X-ray 882:Raman 793:Raman 788:FT-IR 294:|url= 148:Spark 74:Flame 68:atoms 52:spark 50:, or 40:flame 340:ISBN 317:ISBN 259:PMID 223:PMID 1085:NMR 286:doi 251:doi 247:582 152:arc 150:or 48:arc 32:AES 1293:: 1090:2D 1009:UV 338:. 282:20 280:. 257:. 245:. 219:28 135:. 46:, 42:, 764:e 757:t 750:v 408:e 401:t 394:v 348:. 325:. 292:. 288:: 265:. 253:: 229:. 30:(

Index


chemical analysis
flame
plasma
arc
spark
element
atomic spectral line
emission spectrum
atoms


Sodium
Inductively coupled plasma atomic emission spectroscopy

inductively coupled plasma
electromagnetic radiation
element
Spark
arc
graphite
conductive
monochromator
qualitative
Atomic absorption spectroscopy
Atomic spectroscopy
Inductively coupled plasma atomic emission spectroscopy
Laser-induced breakdown spectroscopy
PMID
4716605

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑