Knowledge

Arboreal locomotion

Source 📝

543: 328: 131: 33: 178: 426: 389: 142:
the difficulty in balancing a given animal faces. On steep and vertical branches, tipping becomes less of an issue, and pitching backwards or slipping downwards becomes the most likely failure. In this case, large-diameter branches pose a greater challenge since the animal cannot place its forelimbs closer to the center of the branch than its hindlimbs.
163:
Arboreal habitats often contain many obstructions, both in the form of branches emerging from the one being moved on and other branches impinging on the space the animal needs to move through. These obstructions may impede locomotion, or may be used as additional contact points to enhance it. While
141:
Due to the height of many branches and the potentially disastrous consequences of a fall, balance is of primary importance to arboreal animals. On horizontal and gently sloped branches, the primary problem is tipping to the side due to the narrow base of support. The narrower the branch, the greater
107:
may swing from side to side. But during arboreal locomotion, this would result in the center of mass moving beyond the edge of the branch, resulting in a tendency to topple over and fall. Not only do some arboreal animals have to be able to move on branches of varying diameter, but they also have to
74:
to move in them. Some animals may scale trees only occasionally, but others are exclusively arboreal. The habitats pose numerous mechanical challenges to animals moving through them and lead to a variety of anatomical, behavioral and ecological consequences as well as variations throughout different
116:
Branches are frequently oriented at an angle to gravity in arboreal habitats, including being vertical, which poses special problems. As an animal moves up an inclined branch, it must fight the force of gravity to raise its body, making the movement more difficult. To get past this difficulty, many
468:
Arboreal species have behaviors specialized for moving in their habitats, most prominently in terms of posture and gait. Specifically, arboreal mammals take longer steps, extend their limbs further forwards and backwards during a step, adopt a more 'crouched' posture to lower their center of mass,
366:
Frictional gripping is used by primates, relying upon hairless fingertips. Squeezing the branch between the fingertips generates a frictional force that holds the animal's hand to the branch. However, this type of grip depends upon the angle of the frictional force; thus upon the diameter of the
121:
sequence. Conversely, as the animal descends, it must also fight gravity to control its descent and prevent falling. Descent can be particularly problematic for many animals, and highly arboreal species often have specialized methods for controlling their descent. One way animals prevent falling
380:
Small size provides many advantages to arboreal species: such as increasing the relative size of branches to the animal, lower center of mass, increased stability, lower mass (allowing movement on smaller branches), and the ability to move through more cluttered habitat. Size relating to weight
487:
Brachiation is a specialized form of arboreal locomotion, used by primates to move very rapidly while hanging beneath branches. Arguably the epitome of arboreal locomotion, it involves swinging with the arms from one handhold to another. Only a few species are
90:
Arboreal habitats pose numerous mechanical challenges to animals moving in them, which have been solved in diverse ways. These challenges include moving on narrow branches, moving up and down inclines, balancing, crossing gaps, and dealing with obstructions.
343:
to climb tree trunks that are so large as to be essentially flat, from the perspective of such a small animal. However, claws can interfere with an animal's ability to grasp very small branches, as they may wrap too far around and prick the animal's own paw.
108:
eat on these branches, resulting in the need for the ability to balance while using their hands to feed themselves. This resulted in various types of grasping such as pedal grasping in order to clamp themselves onto small branches for better balance.
367:
branch, with larger branches resulting in reduced gripping ability. Animals other than primates that use gripping in climbing include the chameleon, which has mitten-like grasping feet, and many birds that grip branches in perching or moving about.
150:
Some arboreal animals need to be able to move from tree to tree in order to find food and shelter. To be able to get from tree to tree, animals have evolved various adaptations. In some areas trees are close together and can be crossed by simple
1256: 550:
Many species of snake are highly arboreal, and some have evolved specialized musculature for this habitat. While moving in arboreal habitats, snakes move slowly along bare branches using a specialized form of
377:
Many arboreal species lower their center of mass to reduce pitching and toppling movement when climbing. This may be accomplished by postural changes, altered body proportions, or smaller size.
374:
have evolved highly mobile ankle joints that permit rotating the foot into a 'reversed' posture. This allows the claws to hook into the rough surface of the bark, opposing the force of gravity.
504:. Gibbons are the experts of this mode of locomotion, swinging from branch to branch distances of up to 15 m (50 ft), and traveling at speeds of as much as 56 km/h (35 mph). 559:, a much faster mode. As a result, snakes perform best on small perches in cluttered environments, while limbed organisms seem to do best on large perches in uncluttered environments. 883:
Hyams, Sara E.; Jayne, Bruce C.; Cameron, Guy N. (1 November 2012). "Arboreal Habitat Structure Affects Locomotor Speed and Perch Choice of White-Footed Mice (Peromyscus leucopus)".
277:
Arboreal animals frequently have elongated limbs that help them cross gaps, reach fruit or other resources, test the firmness of support ahead, and in some cases, to
99:
Moving along narrow surfaces, such as a branch of a tree, can create special difficulties for animals who are not adapted to deal with balancing on small diameter
1175:"Jayne, B.C. (1982). Comparative morphology of the semispinalis-spinalis muscle of snakes and correlations with locomotion and constriction. J. Morph, 172, 83–96" 677:"Substrate Diameter and Orientation in the Context of Food Type in the Gray Mouse Lemur, Microcebus murinus: Implications for the Origins of Grasping in Primates" 412:
achieve passive stability by hanging beneath the branch. Both pitching and tipping become irrelevant, as the only method of failure would be losing their grip.
1198:
Astley, H. C. and Jayne, B. C. (2007). Effects of perch diameter and incline on the kinematics, performance, and modes of arboreal locomotion of corn snakes (
1083:
Emerson, S.B.; Koehl, M.A.R. (1990). "The interaction of behavioral and morphological change in the evolution of a novel locomotor type: 'Flying' frogs".
1364: 1528: 1208: 1413:
Cartmill, M. (1974). Pads and claws in arboreal locomotion. In Primate Locomotion, (ed. F. A. J. Jenkins), pp. 45–83. New York: Academic Press.
436: 122:
while descending is to increase the amount of contact their limbs are making with the substrate to increase friction and braking power.
281:. However, some species of lizard have reduced limb size that helps them avoid limb movement being obstructed by impinging branches. 339:
Claws can be used to interact with rough substrates and re-orient the direction of the force the animal applies. This is what allows
1469:"The biodynamics of arboreal locomotion: the effects of substrate diameter on locomotor kinetics in the gray short-tailed opossum ( 75:
species. Furthermore, many of these same principles may be applied to climbing without trees, such as on rock piles or mountains.
242: 335:
uses its prehensile tail as a third arm for stabilization and balance, while its claws help better grasp and climb onto branches
214: 1809: 1228:"Astley, H. C. a. J., B.C. (2009). Arboreal habitat structure affects the performance and modes of locomotion of corn snakes ( 1693: 1139: 274:
Arboreal organisms display many specializations for dealing with the mechanical challenges of moving through their habitats.
155:. In other areas, trees are not close together and animals need to have specific adaptations to jump far distances or glide. 1599: 221: 195: 936:"Perch size and structure have species-dependent effects on the arboreal locomotion of rat snakes and boa constrictors" 355:, and functions either by suction or by capillary adhesion. Dry adhesion is best typified by the specialized toes of 261: 228: 1703: 836:"Perch diameter and branching patterns have interactive effects on the locomotion and path choice of anole lizards" 396:'s toes adhere to surfaces via dry adhesion, to allow them to stay firmly attached to a branch or even a flat wall 210: 1040:
Mansfield, Rachel H.; Jayne, Bruce C. (2011). "Arboreal habitat structure affects route choice by rat snakes".
199: 1514:
Lammers, A. R. (2000). "The effects of incline and branch diameter on the kinematics of arboreal locomotion".
1395: 1567: 1418: 1255:
Lucas, Spencer G.; Rinehart, Larry F.; Celeskey, Matthew D.; Berman, David S.; Henrici, Amy C. (June 2022).
1197: 985:"Arboreal habitat structure affects the performance and modes of locomotion of corn snakes (Elaphe guttata)" 1840: 137:
are very good brachiators because their elongated arms enable them to easily swing and grasp on to branches
1725: 1227: 1174: 589:) of North America which is clearly specialised with adaptations for grasping, likely onto tree trunks. 1819: 675:
Toussaint, Séverine; Herrel, Anthony; Ross, Callum F.; Aujard, Fabienne; Pouydebat, Emmanuelle (2015).
40: 534:" species) that has adapted toe membranes allowing it to fall more slowly after leaping from trees. 347:
Adhesion is an alternative to claws, which works best on smooth surfaces. Wet adhesion is common in
1592: 1129: 662: 448: 17: 546:
Arboreal snails use their sticky slime to help in climbing up trees since they lack limbs to do so
324:, the tip of the tail has either a bare patch or adhesive pad, which provides increased friction. 586: 235: 188: 1759: 1688: 1608: 1156: 524:. Some animals can slow their descent in the air using a method known as parachuting, such as 1683: 542: 444: 1232:). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 311A, 207–216" 164:
obstructions tend to impede limbed animals, they benefit snakes by providing anchor points.
130: 117:
animals have to grasp the substrate with all four limbs and increase the frequency of their
996: 892: 782: 370:
To control descent, especially down large diameter branches, some arboreal animals such as
8: 1678: 1585: 1085: 661:, eds. M. Hildebrand D. M. Bramble K. F. Liem and D. B. Wake, pp. 73–88. Cambridge: 615: 552: 360: 352: 100: 1000: 896: 786: 723: 327: 1559: 1502: 1455: 1336: 1307: 1284: 1102: 1065: 816: 751: 704: 556: 1551: 1494: 1447: 1387: 1341: 1288: 1276: 1135: 1110: 1057: 1022: 1014: 965: 957: 916: 908: 865: 857: 820: 808: 800: 743: 696: 676: 289: 55: 1506: 755: 708: 1845: 1563: 1543: 1484: 1459: 1437: 1419:"Scaling of the axial morphology and gap-bridging ability of the brown tree snake ( 1379: 1331: 1323: 1268: 1094: 1069: 1049: 1004: 947: 900: 847: 790: 735: 688: 309: 293: 1363:
Bertram, J. E. A.; Ruina, A.; Cannon, C. E.; Chang, Y. H.; Coleman, M. J. (1999).
1814: 1652: 1303: 1212: 513: 313: 935: 835: 724:"Gait characteristics of vertical climbing in mountain gorillas and chimpanzees" 555:, but when secondary branches emerge from the branch being moved on, snakes use 1850: 1770: 521: 332: 301: 104: 1053: 692: 1834: 1730: 1280: 1018: 961: 912: 861: 804: 775:
Journal of Experimental Zoology Part A: Ecological and Integrative Physiology
747: 700: 582: 493: 381:
affects gliding animals such as the reduced weight per snout-vent length for
321: 317: 305: 285: 1577: 1383: 1312:
and the early evolution of arboreality in terrestrial vertebrate ecosystems"
1796: 1642: 1555: 1498: 1451: 1391: 1345: 1327: 1114: 1061: 1026: 969: 920: 869: 812: 722:
Neufuss, J.; Robbins, M. M.; Baeumer, J.; Humle, T.; Kivell, T. L. (2018).
606:, about 260 million years ago, was also likely a specialised climber. 1257:"A Scansorial Varanopid Eupelycosaur from the Pennsylvanian of New Mexico" 989:
Journal of Experimental Zoology Part A: Ecological Genetics and Physiology
885:
Journal of Experimental Zoology Part A: Ecological Genetics and Physiology
1786: 1765: 1750: 1740: 1735: 1698: 1636: 1272: 531: 526: 492:, and all of these are primates; it is a major means of locomotion among 482: 382: 278: 152: 1791: 1755: 1442: 1106: 952: 852: 489: 79: 1489: 1468: 739: 32: 904: 795: 770: 625: 620: 603: 596: 577: 572: 501: 348: 297: 71: 44: 1547: 1098: 1009: 984: 177: 1745: 599: 568: 517: 371: 340: 1717: 1662: 1657: 1647: 591: 401: 67: 36: 771:"Going the distance: The biomechanics of gap-crossing behaviors" 497: 134: 59: 409: 393: 356: 516:
such as the flying squirrel have adapted membranes, such as
1616: 1254: 470: 118: 63: 721: 78:
Some animals are exclusively arboreal in habitat, such as
674: 405: 39:
are great climbers and can carry their kills up trees to
388: 1362: 103:. During locomotion on the ground, the location of the 1127: 934:Jayne, Bruce C.; Herrmann, Michael P. (July 2011). 834:Jones, Zachary M.; Jayne, Bruce C. (15 June 2012). 202:. Unsourced material may be challenged and removed. 1466: 882: 1832: 1121: 983:Astley, Henry C.; Jayne, Bruce C. (March 2009). 1161:University of California Museum of Paleontology 1154: 1039: 1607: 1593: 1301: 1222: 1220: 933: 433:The examples and perspective in this article 415: 167: 1157:"Vertebrate Flight: Gliding and Parachuting" 1082: 1529:"Gliding flight in the paradise tree snake" 982: 768: 1600: 1586: 1416: 1217: 1163:. Regents of the University of California. 833: 653: 651: 649: 647: 645: 643: 641: 507: 363:to adhere to many substrates, even glass. 1488: 1441: 1365:"A point-mass model of gibbon locomotion" 1335: 1008: 951: 851: 794: 769:Graham, Michelle; Socha, John J. (2020). 262:Learn how and when to remove this message 70:in which trees are present, animals have 1467:Lammers, A.; Biknevicius, A. R. (2004). 541: 387: 326: 129: 31: 1513: 638: 562: 14: 1833: 1810:Animal locomotion on the water surface 1128:Friderun Ankel-Simons (27 July 2010). 500:, and is occasionally used by female 1581: 1526: 681:International Journal of Primatology 537: 419: 200:adding citations to reliable sources 171: 1417:Jayne, B. C.; Riley, M. A. (2007). 1042:Journal of Comparative Physiology A 24: 1316:Proceedings of the Royal Society B 1295: 657:Cartmill, M. (1985). Climbing. In 25: 1862: 27:Movement of animals through trees 1131:Primate Anatomy: An Introduction 659:Functional Vertebrate Morphology 424: 176: 145: 1248: 1191: 1167: 1148: 1076: 940:Journal of Experimental Biology 840:Journal of Experimental Biology 284:Many arboreal species, such as 187:needs additional citations for 158: 85: 1033: 976: 927: 876: 827: 762: 715: 668: 512:To bridge gaps between trees, 476: 13: 1: 631: 447:and discuss the issue on the 1308:"The Late Permian herbivore 567:The earliest known climbing 469:and use a diagonal sequence 7: 1726:Comparative foot morphology 609: 94: 10: 1867: 1356: 602:from Russia dating to the 480: 416:Behavioral specializations 316:to grasp branches. In the 168:Anatomical specializations 125: 111: 1805: 1779: 1716: 1671: 1625: 1615: 1609:Animal locomotion on land 1261:Annals of Carnegie Museum 1054:10.1007/s00359-010-0593-6 693:10.1007/s10764-015-9844-2 1384:10.1242/jeb.202.19.2609 508:Gliding and parachuting 1689:Rectilinear locomotion 1328:10.1098/rspb.2009.0911 1211:June 17, 2010, at the 547: 397: 336: 138: 48: 1684:Undulatory locomotion 1527:Socha, J. J. (2002). 1471:Monodelphis domestica 553:concertina locomotion 545: 408:, and all species of 391: 330: 211:"Arboreal locomotion" 133: 35: 1378:(Pt 19): 2609–2617. 1273:10.2992/007.087.0301 1155:John R. Hutchinson. 563:Evolutionary history 445:improve this article 435:may not represent a 361:van der Waals forces 353:arboreal salamanders 196:improve this article 1841:Arboreal locomotion 1679:Concertina movement 1633:Arboreal locomotion 1322:(1673): 3611–3618. 1001:2009JEZA..311..207A 897:2012JEZA..317..540H 787:2020JEZA..333...60G 616:Suspensory behavior 52:Arboreal locomotion 47:and other predators 1443:10.1242/jeb.002493 953:10.1242/jeb.055293 853:10.1242/jeb.067413 728:Journal of Zoology 557:lateral undulation 548: 398: 337: 290:green tree pythons 139: 49: 43:out of reach from 1828: 1827: 1712: 1711: 1542:(6898): 603–604. 1490:10.1242/jeb.01231 1483:(24): 4325–4336. 1421:Boiga irregularis 1141:978-0-08-046911-9 946:(13): 2189–2201. 846:(12): 2096–2107. 740:10.1111/jzo.12577 538:Limbless climbing 466: 465: 294:emerald tree boas 272: 271: 264: 246: 16:(Redirected from 1858: 1623: 1622: 1602: 1595: 1588: 1579: 1578: 1574: 1573:on 18 July 2011. 1572: 1566:. Archived from 1533: 1523: 1510: 1492: 1463: 1445: 1436:(7): 1148–1160. 1427: 1410: 1408: 1406: 1400: 1394:. Archived from 1369: 1350: 1349: 1339: 1304:Reisz, Robert R. 1302:Fröbisch, Jörg; 1299: 1293: 1292: 1252: 1246: 1245: 1243: 1241: 1236: 1224: 1215: 1195: 1189: 1188: 1186: 1184: 1179: 1171: 1165: 1164: 1152: 1146: 1145: 1125: 1119: 1118: 1093:(8): 1931–1946. 1080: 1074: 1073: 1037: 1031: 1030: 1012: 980: 974: 973: 955: 931: 925: 924: 905:10.1002/jez.1746 880: 874: 873: 855: 831: 825: 824: 798: 796:10.1002/jez.2266 766: 760: 759: 719: 713: 712: 672: 666: 655: 461: 458: 452: 428: 427: 420: 400:Some species of 314:prehensile tails 267: 260: 256: 253: 247: 245: 204: 180: 172: 21: 1866: 1865: 1861: 1860: 1859: 1857: 1856: 1855: 1831: 1830: 1829: 1824: 1815:Fish locomotion 1801: 1775: 1708: 1667: 1653:Knuckle-walking 1611: 1606: 1570: 1548:10.1038/418603a 1531: 1425: 1404: 1402: 1401:on 4 March 2016 1398: 1367: 1359: 1354: 1353: 1300: 1296: 1253: 1249: 1239: 1237: 1234: 1226: 1225: 1218: 1213:Wayback Machine 1206:210, 3862–3872. 1196: 1192: 1182: 1180: 1177: 1173: 1172: 1168: 1153: 1149: 1142: 1126: 1122: 1099:10.2307/2409604 1081: 1077: 1038: 1034: 1010:10.1002/jez.521 981: 977: 932: 928: 881: 877: 832: 828: 767: 763: 720: 716: 673: 669: 656: 639: 634: 612: 565: 540: 510: 485: 479: 462: 456: 453: 442: 429: 425: 418: 302:silky anteaters 268: 257: 251: 248: 205: 203: 193: 181: 170: 161: 148: 128: 114: 97: 88: 28: 23: 22: 15: 12: 11: 5: 1864: 1854: 1853: 1848: 1843: 1826: 1825: 1823: 1822: 1820:Volant animals 1817: 1812: 1806: 1803: 1802: 1800: 1799: 1794: 1789: 1783: 1781: 1777: 1776: 1774: 1773: 1768: 1763: 1753: 1748: 1743: 1738: 1733: 1728: 1722: 1720: 1714: 1713: 1710: 1709: 1707: 1706: 1701: 1696: 1691: 1686: 1681: 1675: 1673: 1669: 1668: 1666: 1665: 1660: 1655: 1650: 1645: 1640: 1629: 1627: 1620: 1613: 1612: 1605: 1604: 1597: 1590: 1582: 1576: 1575: 1524: 1511: 1464: 1414: 1411: 1358: 1355: 1352: 1351: 1294: 1267:(3): 167–205. 1247: 1230:Elaphe guttata 1216: 1200:Elaphe guttata 1190: 1166: 1147: 1140: 1120: 1075: 1048:(1): 119–129. 1032: 995:(3): 207–216. 975: 926: 891:(9): 540–551. 875: 826: 761: 734:(2): 129–138. 714: 687:(3): 583–604. 667: 636: 635: 633: 630: 629: 628: 623: 618: 611: 608: 581:from the Late 564: 561: 539: 536: 522:gliding flight 509: 506: 494:spider monkeys 481:Main article: 478: 475: 464: 463: 457:September 2023 439:of the subject 432: 430: 423: 417: 414: 383:'flying' frogs 333:silky anteater 306:spider monkeys 286:howler monkeys 270: 269: 252:September 2023 184: 182: 175: 169: 166: 160: 157: 147: 144: 127: 124: 113: 110: 105:center of mass 96: 93: 87: 84: 26: 9: 6: 4: 3: 2: 1863: 1852: 1849: 1847: 1844: 1842: 1839: 1838: 1836: 1821: 1818: 1816: 1813: 1811: 1808: 1807: 1804: 1798: 1795: 1793: 1790: 1788: 1785: 1784: 1782: 1778: 1772: 1769: 1767: 1764: 1761: 1757: 1754: 1752: 1749: 1747: 1744: 1742: 1739: 1737: 1734: 1732: 1731:Arthropod leg 1729: 1727: 1724: 1723: 1721: 1719: 1715: 1705: 1702: 1700: 1697: 1695: 1692: 1690: 1687: 1685: 1682: 1680: 1677: 1676: 1674: 1670: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1638: 1634: 1631: 1630: 1628: 1624: 1621: 1618: 1614: 1610: 1603: 1598: 1596: 1591: 1589: 1584: 1583: 1580: 1569: 1565: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1530: 1525: 1521: 1517: 1512: 1508: 1504: 1500: 1496: 1491: 1486: 1482: 1478: 1474: 1472: 1465: 1461: 1457: 1453: 1449: 1444: 1439: 1435: 1431: 1424: 1422: 1415: 1412: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1366: 1361: 1360: 1347: 1343: 1338: 1333: 1329: 1325: 1321: 1317: 1313: 1311: 1305: 1298: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1251: 1233: 1231: 1223: 1221: 1214: 1210: 1207: 1205: 1204:J. Exp. Biol. 1201: 1194: 1176: 1170: 1162: 1158: 1151: 1143: 1137: 1133: 1132: 1124: 1116: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1087: 1079: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1036: 1028: 1024: 1020: 1016: 1011: 1006: 1002: 998: 994: 990: 986: 979: 971: 967: 963: 959: 954: 949: 945: 941: 937: 930: 922: 918: 914: 910: 906: 902: 898: 894: 890: 886: 879: 871: 867: 863: 859: 854: 849: 845: 841: 837: 830: 822: 818: 814: 810: 806: 802: 797: 792: 788: 784: 780: 776: 772: 765: 757: 753: 749: 745: 741: 737: 733: 729: 725: 718: 710: 706: 702: 698: 694: 690: 686: 682: 678: 671: 664: 663:Belknap Press 660: 654: 652: 650: 648: 646: 644: 642: 637: 627: 624: 622: 619: 617: 614: 613: 607: 605: 601: 598: 594: 593: 588: 587:Pennsylvanian 584: 583:Carboniferous 580: 579: 574: 570: 560: 558: 554: 544: 535: 533: 529: 528: 523: 519: 515: 505: 503: 499: 495: 491: 484: 474: 472: 460: 450: 446: 440: 438: 431: 422: 421: 413: 411: 407: 403: 395: 390: 386: 384: 378: 375: 373: 368: 364: 362: 358: 354: 350: 345: 342: 334: 329: 325: 323: 322:crested gecko 319: 318:spider monkey 315: 311: 307: 303: 299: 295: 291: 287: 282: 280: 275: 266: 263: 255: 244: 241: 237: 234: 230: 227: 223: 220: 216: 213: –  212: 208: 207:Find sources: 201: 197: 191: 190: 185:This article 183: 179: 174: 173: 165: 156: 154: 146:Crossing gaps 143: 136: 132: 123: 120: 109: 106: 102: 92: 83: 81: 76: 73: 69: 65: 61: 57: 53: 46: 42: 38: 34: 30: 19: 1643:Hand-walking 1632: 1568:the original 1539: 1535: 1519: 1515: 1480: 1477:J. Exp. Biol 1476: 1470: 1433: 1430:J. Exp. Biol 1429: 1420: 1403:. Retrieved 1396:the original 1375: 1372:J. Exp. Biol 1371: 1319: 1315: 1309: 1297: 1264: 1260: 1250: 1238:. Retrieved 1229: 1203: 1199: 1193: 1181:. Retrieved 1169: 1160: 1150: 1134:. Elsevier. 1130: 1123: 1090: 1084: 1078: 1045: 1041: 1035: 992: 988: 978: 943: 939: 929: 888: 884: 878: 843: 839: 829: 781:(1): 60–73. 778: 774: 764: 731: 727: 717: 684: 680: 670: 658: 604:Late Permian 590: 576: 566: 549: 525: 514:many animals 511: 486: 467: 454: 434: 399: 379: 376: 369: 365: 359:, which use 346: 338: 283: 276: 273: 258: 249: 239: 232: 225: 218: 206: 194:Please help 189:verification 186: 162: 159:Obstructions 149: 140: 115: 98: 89: 86:Biomechanics 77: 51: 50: 29: 1787:Canine gait 1760:Facultative 1746:Unguligrade 1741:Plantigrade 1736:Digitigrade 1704:Other modes 1699:Sidewinding 1637:Brachiation 1405:31 December 532:flying frog 527:Rhacophorus 490:brachiators 483:Brachiation 477:Brachiation 153:brachiation 80:tree snails 1835:Categories 1797:Human gait 1792:Horse gait 632:References 502:orangutans 349:tree frogs 298:chameleons 222:newspapers 101:substrates 56:locomotion 45:scavengers 1771:Quadruped 1289:250015681 1281:0097-4463 1240:15 August 1183:15 August 1086:Evolution 1019:1932-5231 962:0022-0949 913:1932-5231 862:0022-0949 821:160013424 805:2471-5638 748:0952-8369 701:0164-0291 626:Fossorial 621:Cursorial 597:anomodont 578:Eoscansor 573:varanopid 449:talk page 437:full view 372:squirrels 341:squirrels 279:brachiate 41:keep them 1780:Specific 1556:12167849 1516:Am. Zool 1507:24341872 1499:15531652 1452:17371914 1392:10482720 1346:19640883 1306:(2009). 1209:Archived 1115:28564439 1062:20957373 1027:19189381 970:21653813 921:22927206 870:22623198 813:31111626 756:53709339 709:14851589 610:See also 600:synapsid 575:amniote 569:tetrapod 95:Diameter 68:habitats 37:Leopards 18:Arboreal 1846:Habitat 1718:Anatomy 1694:Rolling 1672:Legless 1663:Walking 1658:Running 1648:Jumping 1564:4424131 1522:: 1094. 1460:2671049 1357:Sources 1337:2817304 1310:Suminia 1107:2409604 1070:6663941 997:Bibcode 893:Bibcode 783:Bibcode 592:Suminia 571:is the 518:patagia 498:gibbons 443:Please 402:primate 310:possums 236:scholar 135:Gibbons 126:Balance 112:Incline 72:evolved 60:animals 54:is the 1766:Triped 1751:Uniped 1626:Legged 1562:  1554:  1536:Nature 1505:  1497:  1458:  1450:  1390:  1344:  1334:  1287:  1279:  1138:  1113:  1105:  1068:  1060:  1025:  1017:  968:  960:  919:  911:  868:  860:  819:  811:  803:  754:  746:  707:  699:  357:geckos 312:, use 308:, and 238:  231:  224:  217:  209:  1851:Trees 1756:Biped 1619:class 1571:(PDF) 1560:S2CID 1532:(PDF) 1503:S2CID 1456:S2CID 1426:(PDF) 1399:(PDF) 1368:(PDF) 1285:S2CID 1235:(PDF) 1178:(PDF) 1103:JSTOR 1066:S2CID 817:S2CID 752:S2CID 705:S2CID 410:sloth 394:gecko 243:JSTOR 229:books 66:. In 64:trees 1617:Gait 1552:PMID 1495:PMID 1448:PMID 1407:2010 1388:PMID 1342:PMID 1277:ISSN 1242:2013 1185:2013 1136:ISBN 1111:PMID 1058:PMID 1023:PMID 1015:ISSN 993:311A 966:PMID 958:ISSN 917:PMID 909:ISSN 866:PMID 858:ISSN 809:PMID 801:ISSN 744:ISSN 697:ISSN 595:, a 530:(a " 520:for 496:and 471:gait 392:The 351:and 331:The 320:and 215:news 119:gait 1544:doi 1540:418 1485:doi 1481:207 1438:doi 1434:210 1380:doi 1376:202 1332:PMC 1324:doi 1320:276 1269:doi 1202:)" 1095:doi 1050:doi 1046:197 1005:doi 948:doi 944:214 901:doi 889:317 848:doi 844:215 791:doi 779:333 736:doi 732:306 689:doi 406:bat 198:by 62:in 58:of 1837:: 1558:. 1550:. 1538:. 1534:. 1520:40 1518:. 1501:. 1493:. 1479:. 1475:. 1473:)" 1454:. 1446:. 1432:. 1428:. 1423:)" 1386:. 1374:. 1370:. 1340:. 1330:. 1318:. 1314:. 1283:. 1275:. 1265:87 1263:. 1259:. 1219:^ 1159:. 1109:. 1101:. 1091:44 1089:. 1064:. 1056:. 1044:. 1021:. 1013:. 1003:. 991:. 987:. 964:. 956:. 942:. 938:. 915:. 907:. 899:. 887:. 864:. 856:. 842:. 838:. 815:. 807:. 799:. 789:. 777:. 773:. 750:. 742:. 730:. 726:. 703:. 695:. 685:36 683:. 679:. 640:^ 473:. 404:, 385:. 304:, 300:, 296:, 292:, 288:, 82:. 1762:) 1758:( 1639:) 1635:( 1601:e 1594:t 1587:v 1546:: 1509:. 1487:: 1462:. 1440:: 1409:. 1382:: 1348:. 1326:: 1291:. 1271:: 1244:. 1187:. 1144:. 1117:. 1097:: 1072:. 1052:: 1029:. 1007:: 999:: 972:. 950:: 923:. 903:: 895:: 872:. 850:: 823:. 793:: 785:: 758:. 738:: 711:. 691:: 665:. 585:( 459:) 455:( 451:. 441:. 265:) 259:( 254:) 250:( 240:· 233:· 226:· 219:· 192:. 20:)

Index

Arboreal

Leopards
keep them
scavengers
locomotion
animals
trees
habitats
evolved
tree snails
substrates
center of mass
gait

Gibbons
brachiation

verification
improve this article
adding citations to reliable sources
"Arboreal locomotion"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
brachiate
howler monkeys

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.