Knowledge

Anomaly matching condition

Source đź“ť

813:
by using the low-energy effective theory that only contains the massless degrees of freedom by integrating out massive fields. Since it must be again gauge invariant by adding the same five-dimensional Chern–Simons term, the 't Hooft anomaly does not change by integrating out massive degrees of
583:
we have added go to zero, one gets back to the original theory, plus the fermions we have added; the latter remain good degrees of freedom at every energy scale, as they are free fermions at this limit. The gauge symmetry anomaly can be computed at any energy scale, and must always be zero, so that
859:
In the context of quantum field theory, “UV” actually means the high-energy limit of a theory, and “IR” means the low-energy limit, by analogy to the upper and lower peripheries of visible light, but not actually meaning either light or those particular
286:
The anomaly matching condition by G. 't Hooft proposes that a 't Hooft anomaly of continuous symmetry can be computed both in the high-energy and low-energy degrees of freedom (“UV” and “IR”) and give the same answer.
508: 408: 276: 584:
the theory is consistent. One may now get the anomaly of the symmetry in the original theory by subtracting the free fermions we have added, and the result is independent of the energy scale.
35:
for the flavor symmetry must not depend on what scale is chosen for the calculation if it is done by using the degrees of freedom of the theory at some energy scale. It is also known as the
514:
at the far low energy limit (far “IR” ) or the degrees of freedom at the far high energy limit (far “UV”) in order to calculate the anomaly. In the former case one should only consider
592:
Another way to prove the anomaly matching for continuous symmetries is to use the anomaly inflow mechanism. To be specific, we consider four-dimensional spacetime in the following.
145: 811: 711: 662: 172: 106: 771: 751: 731: 682: 633: 613: 74:, it means that the symmetry is exact as a global symmetry of the quantum theory, but there is some impediment to using it as a gauge in the theory. 511: 413: 313: 181: 910: 897:'t Hooft, G. (1980). "Naturalness, Chiral Symmetry, and Spontaneous Chiral Symmetry Breaking". In 't Hooft, G. (ed.). 823: 926:
Kapustin, A.; Thorngren, R. (2014). "Anomalous discrete symmetries in three dimensions and group cohomology".
1111: 529:
of the underlying short-distance theory. In both cases, the answer must be the same. Indeed, in the case of
1106: 1026:
Callan, Jr., C.G.; Harvey, J.A. (1985). "Anomalies and fermion zero modes on strings and domain walls".
538: 522: 525:
which may be composite particles, while in the latter case one should only consider the elementary
778: 530: 296: 111: 78: 787: 687: 638: 1074: 1035: 1000: 945: 150: 84: 52: 20: 8: 1078: 1039: 1004: 949: 510:
becomes anomalous when the background gauge field is introduced. One may use either the
969: 935: 833: 756: 736: 716: 667: 618: 598: 28: 1086: 1047: 1012: 961: 906: 580: 565: 554: 973: 1082: 1043: 1008: 957: 953: 828: 278:, which is often called the flavor symmetry, and this has a 't Hooft anomaly. 51:
There are two closely related but different types of obstructions to formulating a
986: 549:
One proves this condition by the following procedure: we may add to the theory a
534: 753:
and it cannot be restored by adding any four-dimensional local counter terms of
870: 56: 32: 1100: 774: 573: 175: 965: 902: 777:
shows that we can make it gauge invariant by adding the five-dimensional
569: 550: 989:"The axial anomaly and the bound state spectrum in confining theories" 988: 1062: 940: 784:
With the extra dimension, we can now define the effective action
572:, and cancel the anomaly (so that the gauge symmetry will remain 561: 526: 518: 987:
Frishman, Y.; Scwimmer, A.; Banks, T.; Yankielowicz, S. (1981).
503:{\displaystyle SU(N_{f})_{L}\times SU(N_{f})_{R}\times U(1)_{V}} 403:{\displaystyle SU(N_{f})_{L}\times SU(N_{f})_{R}\times U(1)_{V}} 271:{\displaystyle SU(N_{f})_{L}\times SU(N_{f})_{R}\times U(1)_{V}} 558: 307: 515: 281: 925: 537:
breaking occurs and the Wess–Zumino–Witten term for the
557:
to the current related with this symmetry, as well as
77:
As an example of a 't Hooft anomaly, we consider
790: 759: 739: 719: 690: 670: 641: 621: 601: 416: 316: 184: 153: 114: 87: 892: 890: 733:gauge transformation on the background gauge field 805: 765: 745: 725: 705: 676: 656: 627: 607: 502: 402: 270: 166: 139: 100: 1025: 70:If we say that the symmetry of the theory has a ' 1098: 887: 873:or instantons so is not included in the example. 41:'t Hooft UV-IR anomaly matching condition 896: 855: 853: 851: 849: 1063:"Consequences of anomalous ward identities" 869:. The axial U(1) symmetry is broken by the 1060: 664:. If there is a 't Hooft anomaly for 615:, we introduce the background gauge field 939: 846: 282:Anomaly matching for continuous symmetry 1099: 310:. This theory has the flavor symmetry 178:. This theory has the global symmetry 899:Recent Developments in Gauge Theories 46: 587: 31:states that the calculation of any 13: 791: 691: 642: 16:Principle in quantum field theory 14: 1123: 775:Wess–Zumino consistency condition 635:and compute the effective action 595:For global continuous symmetries 55:that are both called anomalies: 108:massless fermions: This is the 1054: 1019: 980: 958:10.1103/PhysRevLett.112.231602 919: 863: 800: 794: 700: 694: 651: 645: 576:, as needed for consistency). 491: 484: 469: 455: 437: 423: 391: 384: 369: 355: 337: 323: 259: 252: 237: 223: 205: 191: 134: 121: 1: 1061:Wess, J.; Zumino, B. (1971). 880: 1087:10.1016/0370-2693(71)90582-X 1048:10.1016/0550-3213(85)90489-4 1013:10.1016/0550-3213(81)90268-6 7: 817: 713:is not invariant under the 10: 1128: 824:'t Hooft–Polyakov monopole 295:For example, consider the 290: 25:anomaly matching condition 140:{\displaystyle SU(N_{c})} 839: 544: 541:reproduces the anomaly. 928:Physical Review Letters 806:{\displaystyle \Gamma } 706:{\displaystyle \Gamma } 684:, the effective action 657:{\displaystyle \Gamma } 579:In the limit where the 47:'t Hooft anomalies 37:'t Hooft condition 807: 767: 747: 727: 707: 678: 658: 629: 609: 539:Nambu–Goldstone bosons 523:Nambu–Goldstone bosons 504: 404: 297:quantum chromodynamics 272: 168: 141: 102: 79:quantum chromodynamics 65:t Hooft anomalies 808: 768: 748: 728: 708: 679: 659: 630: 610: 505: 410:This flavor symmetry 405: 273: 169: 167:{\displaystyle N_{f}} 142: 103: 101:{\displaystyle N_{f}} 1112:Quantum field theory 788: 757: 737: 717: 688: 668: 639: 619: 599: 414: 314: 182: 151: 112: 85: 72:t Hooft anomaly 53:quantum field theory 21:quantum field theory 1107:Anomalies (physics) 1079:1971PhLB...37...95W 1040:1985NuPhB.250..427C 1005:1981NuPhB.177..157F 950:2014PhRvL.112w1602K 779:Chern–Simons action 803: 763: 743: 723: 703: 674: 654: 625: 605: 581:coupling constants 512:degrees of freedom 500: 400: 268: 164: 147:gauge theory with 137: 98: 1067:Physics Letters B 1028:Nuclear Physics B 993:Nuclear Physics B 912:978-0-306-40479-5 766:{\displaystyle A} 746:{\displaystyle A} 726:{\displaystyle G} 677:{\displaystyle G} 628:{\displaystyle A} 608:{\displaystyle G} 588:Alternative proof 59:Adler–Bell–Jackiw 1119: 1091: 1090: 1058: 1052: 1051: 1034:(1–4): 427–436. 1023: 1017: 1016: 984: 978: 977: 943: 923: 917: 916: 894: 874: 867: 861: 857: 812: 810: 809: 804: 772: 770: 769: 764: 752: 750: 749: 744: 732: 730: 729: 724: 712: 710: 709: 704: 683: 681: 680: 675: 663: 661: 660: 655: 634: 632: 631: 626: 614: 612: 611: 606: 509: 507: 506: 501: 499: 498: 477: 476: 467: 466: 445: 444: 435: 434: 409: 407: 406: 401: 399: 398: 377: 376: 367: 366: 345: 344: 335: 334: 277: 275: 274: 269: 267: 266: 245: 244: 235: 234: 213: 212: 203: 202: 173: 171: 170: 165: 163: 162: 146: 144: 143: 138: 133: 132: 107: 105: 104: 99: 97: 96: 1127: 1126: 1122: 1121: 1120: 1118: 1117: 1116: 1097: 1096: 1095: 1094: 1059: 1055: 1024: 1020: 985: 981: 924: 920: 913: 895: 888: 883: 878: 877: 868: 864: 858: 847: 842: 834:'t Hooft symbol 820: 789: 786: 785: 758: 755: 754: 738: 735: 734: 718: 715: 714: 689: 686: 685: 669: 666: 665: 640: 637: 636: 620: 617: 616: 600: 597: 596: 590: 547: 535:chiral symmetry 494: 490: 472: 468: 462: 458: 440: 436: 430: 426: 415: 412: 411: 394: 390: 372: 368: 362: 358: 340: 336: 330: 326: 315: 312: 311: 305: 293: 284: 262: 258: 240: 236: 230: 226: 208: 204: 198: 194: 183: 180: 179: 158: 154: 152: 149: 148: 128: 124: 113: 110: 109: 92: 88: 86: 83: 82: 49: 29:Gerard 't Hooft 17: 12: 11: 5: 1125: 1115: 1114: 1109: 1093: 1092: 1053: 1018: 999:(1): 157–171. 979: 934:(23): 231602. 918: 911: 885: 884: 882: 879: 876: 875: 871:chiral anomaly 862: 844: 843: 841: 838: 837: 836: 831: 826: 819: 816: 802: 799: 796: 793: 762: 742: 722: 702: 699: 696: 693: 673: 653: 650: 647: 644: 624: 604: 589: 586: 546: 543: 497: 493: 489: 486: 483: 480: 475: 471: 465: 461: 457: 454: 451: 448: 443: 439: 433: 429: 425: 422: 419: 397: 393: 389: 386: 383: 380: 375: 371: 365: 361: 357: 354: 351: 348: 343: 339: 333: 329: 325: 322: 319: 303: 292: 289: 283: 280: 265: 261: 257: 254: 251: 248: 243: 239: 233: 229: 225: 222: 219: 216: 211: 207: 201: 197: 193: 190: 187: 176:Dirac fermions 161: 157: 136: 131: 127: 123: 120: 117: 95: 91: 48: 45: 33:chiral anomaly 15: 9: 6: 4: 3: 2: 1124: 1113: 1110: 1108: 1105: 1104: 1102: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1057: 1049: 1045: 1041: 1037: 1033: 1029: 1022: 1014: 1010: 1006: 1002: 998: 994: 990: 983: 975: 971: 967: 963: 959: 955: 951: 947: 942: 937: 933: 929: 922: 914: 908: 904: 900: 893: 891: 886: 872: 866: 856: 854: 852: 850: 845: 835: 832: 830: 829:'t Hooft loop 827: 825: 822: 821: 815: 797: 782: 780: 776: 760: 740: 720: 697: 671: 648: 622: 602: 593: 585: 582: 577: 575: 574:non-anomalous 571: 568:only to this 567: 563: 560: 556: 552: 542: 540: 536: 532: 528: 524: 520: 517: 513: 495: 487: 481: 478: 473: 463: 459: 452: 449: 446: 441: 431: 427: 420: 417: 395: 387: 381: 378: 373: 363: 359: 352: 349: 346: 341: 331: 327: 320: 317: 309: 302: 298: 288: 279: 263: 255: 249: 246: 241: 231: 227: 220: 217: 214: 209: 199: 195: 188: 185: 177: 159: 155: 129: 125: 118: 115: 93: 89: 80: 75: 73: 68: 66: 62: 60: 54: 44: 42: 38: 34: 30: 26: 22: 1070: 1066: 1056: 1031: 1027: 1021: 996: 992: 982: 931: 927: 921: 903:Plenum Press 898: 865: 783: 594: 591: 578: 548: 300: 294: 285: 76: 71: 69: 64: 58: 50: 40: 36: 24: 18: 570:gauge field 551:gauge field 57:chiral, or 1101:Categories 881:References 1073:(1): 95. 941:1403.0617 860:energies. 814:freedom. 792:Γ 692:Γ 643:Γ 479:× 447:× 379:× 347:× 306:massless 247:× 215:× 174:massless 61:anomalies 974:35171032 966:24972194 818:See also 562:fermions 527:fermions 519:fermions 516:massless 39:and the 1075:Bibcode 1036:Bibcode 1001:Bibcode 946:Bibcode 555:couples 291:Example 63:, and ' 972:  964:  909:  566:couple 564:which 559:chiral 553:which 533:, the 308:quarks 23:, the 970:S2CID 936:arXiv 840:Notes 545:Proof 299:with 81:with 962:PMID 907:ISBN 1083:doi 1044:doi 1032:250 1009:doi 997:177 954:doi 932:112 531:QCD 521:or 27:by 19:In 1103:: 1081:. 1071:37 1069:. 1065:. 1042:. 1030:. 1007:. 995:. 991:. 968:. 960:. 952:. 944:. 930:. 905:. 901:. 889:^ 848:^ 781:. 773:. 67:. 43:. 1089:. 1085:: 1077:: 1050:. 1046:: 1038:: 1015:. 1011:: 1003:: 976:. 956:: 948:: 938:: 915:. 801:] 798:A 795:[ 761:A 741:A 721:G 701:] 698:A 695:[ 672:G 652:] 649:A 646:[ 623:A 603:G 496:V 492:) 488:1 485:( 482:U 474:R 470:) 464:f 460:N 456:( 453:U 450:S 442:L 438:) 432:f 428:N 424:( 421:U 418:S 396:V 392:) 388:1 385:( 382:U 374:R 370:) 364:f 360:N 356:( 353:U 350:S 342:L 338:) 332:f 328:N 324:( 321:U 318:S 304:f 301:N 264:V 260:) 256:1 253:( 250:U 242:R 238:) 232:f 228:N 224:( 221:U 218:S 210:L 206:) 200:f 196:N 192:( 189:U 186:S 160:f 156:N 135:) 130:c 126:N 122:( 119:U 116:S 94:f 90:N

Index

quantum field theory
Gerard 't Hooft
chiral anomaly
quantum field theory
chiral, or Adler–Bell–Jackiw anomalies
quantum chromodynamics
Dirac fermions
quantum chromodynamics
quarks
degrees of freedom
massless
fermions
Nambu–Goldstone bosons
fermions
QCD
chiral symmetry
Nambu–Goldstone bosons
gauge field
couples
chiral
fermions
couple
gauge field
non-anomalous
coupling constants
Wess–Zumino consistency condition
Chern–Simons action
't Hooft–Polyakov monopole
't Hooft loop
't Hooft symbol

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑