Knowledge

Anomalous diffusion

Source đź“ť

20: 627:
is the distance to the nearest boundary. Because the scale of motions in the atmosphere is not limited, as in rivers or the subsurface, a plume continues to experience larger mixing motions as it increases in size, which also increases its diffusivity, resulting in super-diffusion.
636:
The types of anomalous diffusion given above allows one to measure the type, but how does anomalous diffusion arise? There are many possible ways to mathematically define a stochastic process which then has the right kind of power law. Some models are given here.
381:< 1: subdiffusion. This can happen due to crowding or walls. For example, a random walker in a crowded room, or in a maze, is able to move as usual for small random steps, but cannot take large random steps, creating subdiffusion. This appears for example in 218:
It has been found that equations describing normal diffusion are not capable of characterizing some complex diffusion processes, for instance, diffusion process in inhomogeneous or heterogeneous medium, e.g. porous media.
325: 201: 124: 63: 435: 556: 506: 516:
demonstrated that the atmosphere exhibits super-diffusion. In a bounded system, the mixing length (which determines the scale of dominant mixing motions) is given by the
352: 605: 478: 583: 372: 625: 1181:
Regner, Benjamin M.; Vučinić, Dejan; Domnisoru, Cristina; Bartol, Thomas M.; Hetzer, Martin W.; Tartakovsky, Daniel M.; Sejnowski, Terrence J. (2013).
1012: 876:
Sagi, Yoav; Brook, Miri; Almog, Ido; Davidson, Nir (2012). "Observation of Anomalous Diffusion and Fractional Self-Similarity in One Dimension".
648:(fBm), and diffusion in disordered media. Currently the most studied types of anomalous diffusion processes are those involving the following 1774:
Toivonen, Matti S.; Onelli, Olimpia D.; Jacucci, Gianni; Lovikka, Ville; Rojas, Orlando J.; Ikkala, Olli; Vignolini, Silvia (13 March 2018).
265: 2202:"Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking" 1825:"Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking" 226:
Examples of anomalous diffusion in nature have been observed in ultra-cold atoms, harmonic spring-mass systems, scalar mixing in the
798:"Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen" 1705:
Masoliver, Jaume; Montero, Miquel; Weiss, George H. (2003). "Continuous-time random-walk model for financial distributions".
1445:"Anomalous diffusion and power-law relaxation of the time averaged mean squared displacement in worm-like micellar solutions" 2077:
von Kameke, A.; et al. (2010). "Propagation of a chemical wave front in a quasi-two-dimensional superdiffusive flow".
149: 945:
Saporta-Katz, Ori; Efrati, Efi (2019). "Self-Driven Fractional Rotational Diffusion of the Harmonic Three-Mass System".
2272: 1067:
Bronshtein, Irena; Israel, Yonatan; Kepten, Eldad; Mai, Sabina; Shav-Tal, Yaron; Barkai, Eli; Garini, Yuval (2009).
87: 26: 765: 707:
have shown that the motion of molecules in live cells often show a type of anomalous diffusion that breaks the
2314: 2309: 2151:"A fractal Richards' equation to capture the non-Boltzmann scaling of water transport in unsaturated media" 1494:"Transition to superdiffusive behavior in intracellular actin-based transport mediated by molecular motors" 385:
diffusion within cells, or diffusion through porous media. Subdiffusion has been proposed as a measure of
2329: 1378:"A Dual-Permeability Approach to Study Anomalous Moisture Transport Properties of Cement-Based Materials" 1116:"Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking" 720: 677: 641: 1068: 657: 645: 408: 523: 442: 139: 81: 1936: 517: 485: 1248:"Elucidating the Origin of Heterogeneous Anomalous Diffusion in the Cytoplasm of Mammalian Cells" 716: 330: 2252: 588: 454: 2048:
Bouchaud, Jean-Philippe; Georges, Antoine (1990). "Anomalous diffusion in disordered media".
753: 212: 1638: 2213: 2162: 2086: 2057: 2010: 1948: 1893: 1836: 1787: 1724: 1671: 1609: 1505: 1456: 1389: 1332: 1269: 1194: 1127: 1080: 1031: 964: 895: 850: 809: 561: 513: 451:= 2: ballistic motion. The prototypical example is a particle moving at constant velocity: 357: 1881: 1247: 8: 1960: 712: 227: 220: 135: 2217: 2166: 2090: 2061: 2014: 1952: 1937:"A review of progress in single particle tracking: from methods to biophysical insights" 1897: 1840: 1791: 1728: 1675: 1613: 1509: 1469: 1460: 1444: 1393: 1336: 1273: 1198: 1131: 1084: 1035: 968: 899: 854: 813: 2286: 2183: 2150: 2110: 2031: 1998: 1980: 1917: 1756: 1714: 1687: 1578: 1558: 1539: 1425: 1353: 1321:"A Biological Interpretation of Transient Anomalous Subdiffusion. I. Qualitative Model" 1320: 1301: 1259: 1223: 1182: 1158: 1115: 1049: 1021: 988: 954: 927: 885: 708: 610: 251: 1775: 1493: 2278: 2268: 2239: 2231: 2188: 2102: 2069: 2036: 1972: 1964: 1921: 1909: 1862: 1854: 1805: 1748: 1740: 1691: 1582: 1531: 1474: 1429: 1417: 1358: 1305: 1293: 1285: 1228: 1210: 1163: 1145: 1096: 992: 980: 919: 911: 2290: 2174: 2149:
Sun, HongGuang; Meerschaert, Mark M.; Zhang, Yong; Zhu, Jianting; Chen, Wen (2013).
2114: 1984: 1543: 1053: 931: 374:
is the elapsed time. The classes of anomalous diffusions are classified as follows:
2260: 2221: 2178: 2170: 2135: 2094: 2065: 2026: 2018: 1956: 1901: 1844: 1795: 1760: 1732: 1679: 1617: 1602:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
1570: 1521: 1513: 1464: 1407: 1397: 1348: 1340: 1281: 1277: 1218: 1202: 1153: 1135: 1092: 1088: 1039: 1006:
Colbrook, Matthew J.; Ma, Xiangcheng; Hopkins, Philip F.; Squire, Jonathan (2017).
976: 972: 907: 903: 858: 817: 438: 1776:"Anomalous-Diffusion-Assisted Brightness in White Cellulose Nanofibril Membranes" 684: 653: 400: 131: 127: 2140: 2123: 2022: 1662:
Berkowicz, Ruwim (1984). "Spectral methods for atmospheric diffusion modeling".
1344: 1114:
Weigel, Aubrey V.; Simon, Blair; Tamkun, Michael M.; Krapf, Diego (2011-04-19).
838: 2264: 2098: 1736: 1517: 1412: 1402: 1377: 839:"Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen" 759: 696: 386: 1999:"Anomalous Subdiffusion Is a Measure for Cytoplasmic Crowding in Living Cells" 1443:
Jeon, Jae-Hyung; Leijnse, Natascha; Oddershede, Lene B; Metzler, Ralf (2013).
1206: 1069:"Transient anomalous diffusion of telomeres in the nucleus of mammalian cells" 732: 2323: 2235: 1968: 1913: 1858: 1744: 1478: 1421: 1289: 1214: 1149: 915: 862: 822: 797: 672: 243: 1140: 2282: 2243: 2192: 2106: 2040: 1997:
Weiss, Matthias; Elsner, Markus; Kartberg, Fredrik; Nilsson, Tommy (2004).
1976: 1866: 1809: 1800: 1752: 1622: 1597: 1535: 1362: 1297: 1232: 1167: 1100: 1044: 1007: 984: 923: 704: 262:
Unlike typical diffusion, anomalous diffusion is described by a power law,
235: 19: 2315:
Anomalous interface shift kinetics (Computer simulations and Experiments)
2259:, Current Topics in Membranes, vol. 75, Elsevier, pp. 167–207, 2200:
Metzler, Ralf; Jeon, Jae-Hyung; Cherstvy, Andrey G.; Barkai, Eli (2014).
1823:
Metzler, Ralf; Jeon, Jae-Hyung; Cherstvy, Andrey G.; Barkai, Eli (2014).
1719: 744: 738: 700: 668: 239: 223:
were introduced in order to characterize anomalous diffusion phenomena.
2226: 2201: 1849: 1824: 1683: 1526: 692: 688: 320:{\displaystyle \langle r^{2}(\tau )\rangle =K_{\alpha }\tau ^{\alpha }} 77: 1905: 1574: 1246:
Sabri, Adal; Xu, Xinran; Krapf, Diego; Weiss, Matthias (2020-07-28).
1008:"Scaling laws of passive-scalar diffusion in the interstellar medium" 390: 247: 231: 143: 73: 2124:"Anomalous diffusion modeling by fractal and fractional derivatives" 1492:
Bruno, L.; Levi, V.; Brunstein, M.; DespĂłsito, M. A. (2009-07-17).
1264: 1026: 959: 2253:"Mechanisms Underlying Anomalous Diffusion in the Plasma Membrane" 890: 711:. This type of motion require novel formalisms for the underlying 775: 664: 382: 2122:
Chen, Wen; Sun, HongGuang; Zhang, Xiaodi; Korosak, Dean (2010).
762: â€“ A measure of the long-range dependence of a time series 250:, moisture transport in cement-based materials, and worm-like 1773: 1442: 1180: 1598:"Atmospheric Diffusion Shown on a Distance-Neighbour Graph" 1491: 691:
importance. Of particular interest, works by the groups of
1996: 687:
where the mechanism behind anomalous diffusion has direct
508:: hyperballistic. It has been observed in optical systems. 2199: 1822: 1066: 1643:. New Hampshire: John Wiley & Sons. pp. 145–150 16:
Diffusion process with a non-linear relationship to time
1005: 354:
is the so-called generalized diffusion coefficient and
2148: 1183:"Anomalous Diffusion of Single Particles in Cytoplasm" 1113: 875: 640:
These are long range correlations between the signals
437:: superdiffusion. Superdiffusion can be the result of 2310:
Boltzmann's transformation, Parabolic law (animation)
1704: 747: â€“ Filtration of fluids through porous materials 741: â€“ Process forming a path from many random steps 613: 591: 564: 526: 488: 457: 411: 360: 333: 268: 196:{\displaystyle \langle r^{2}(\tau )\rangle =2dD\tau } 152: 90: 29: 1698: 2121: 1935:Manzo, Carlo; Garcia-Parajo, Maria F (2015-12-01). 1556: 756: â€“ Phenomenon in linguistics and data analysis 1934: 944: 778: â€“ Infinitely detailed mathematical structure 735: â€“ Random walk with heavy-tailed step lengths 619: 599: 577: 550: 500: 472: 429: 366: 346: 319: 195: 126:, and time. This behavior is in stark contrast to 118: 57: 1245: 1013:Monthly Notices of the Royal Astronomical Society 257: 2321: 1174: 836: 631: 2047: 1436: 1120:Proceedings of the National Academy of Sciences 1636: 1060: 938: 130:, the typical diffusion process described by 1879: 869: 291: 269: 175: 153: 119:{\displaystyle \langle r^{2}(\tau )\rangle } 113: 91: 58:{\displaystyle \langle r^{2}(\tau )\rangle } 52: 30: 2128:Computers and Mathematics with Applications 2076: 1880:Krapf, Diego; Metzler, Ralf (2019-09-01). 1595: 1376:Zhang, Zhidong; Angst, Ueli (2020-10-01). 1375: 65:for different types of anomalous diffusion 2225: 2182: 2139: 2030: 1848: 1799: 1718: 1661: 1621: 1525: 1468: 1411: 1401: 1352: 1263: 1222: 1157: 1139: 1043: 1025: 958: 889: 821: 683:These processes have growing interest in 1882:"Strange interfacial molecular dynamics" 795: 18: 1319:Saxton, Michael J. (15 February 2007). 2322: 1318: 2250: 1637:Cushman-Roisin, Benoit (March 2014). 207:being the number of dimensions and 13: 1816: 1596:Richardson, L. F. (1 April 1926). 14: 2341: 2303: 512:In 1926, using weather balloons, 441:processes or due to jumps with a 430:{\displaystyle 1<\alpha <2} 607:is the Von Kármán constant, and 551:{\displaystyle l_{m}={\kappa }z} 2175:10.1016/j.advwatres.2012.11.005 1928: 1873: 1767: 1655: 1630: 1589: 1550: 1485: 1369: 1312: 1961:10.1088/0034-4885/78/12/124601 1941:Reports on Progress in Physics 1282:10.1103/PhysRevLett.125.058101 1239: 1107: 1093:10.1103/PhysRevLett.103.018102 999: 977:10.1103/PhysRevLett.122.024102 908:10.1103/PhysRevLett.108.093002 830: 789: 766:Detrended fluctuation analysis 288: 282: 258:Classes of anomalous diffusion 221:Fractional diffusion equations 172: 166: 110: 104: 49: 43: 1: 1640:Environmental Fluid Mechanics 1470:10.1088/1367-2630/15/4/045011 837:von Smoluchowski, M. (1906). 782: 632:Models of anomalous diffusion 2070:10.1016/0370-1573(90)90099-N 1561:(2012). "Beyond ballistic". 678:Continuous time random walks 642:continuous-time random walks 501:{\displaystyle \alpha >2} 246:, colloidal particle in the 7: 2155:Advances in Water Resources 2141:10.1016/j.camwa.2009.08.020 2023:10.1529/biophysj.104.044263 1345:10.1529/biophysj.106.092619 726: 347:{\displaystyle K_{\alpha }} 10: 2346: 2265:10.1016/bs.ctm.2015.03.002 2099:10.1103/physreve.81.066211 1737:10.1103/PhysRevE.67.021112 1664:Boundary-Layer Meteorology 1518:10.1103/PhysRevE.80.011912 1403:10.1007/s11242-020-01469-y 660:and scaled Brownian motion 658:fractional Brownian motion 646:fractional Brownian motion 520:according to the equation 23:Mean squared displacement 1382:Transport in Porous Media 1207:10.1016/j.bpj.2013.01.049 772:) â€“ Statistical term 715:because approaches using 600:{\displaystyle {\kappa }} 439:active cellular transport 82:mean squared displacement 80:relationship between the 863:10.1002/andp.19063261405 823:10.1002/andp.19053220806 473:{\displaystyle r=v\tau } 1252:Physical Review Letters 1141:10.1073/pnas.1016325108 1073:Physical Review Letters 947:Physical Review Letters 878:Physical Review Letters 721:Wiener–Khinchin theorem 717:microcanonical ensemble 695:, Maria Garcia Parajo, 443:heavy-tail distribution 2206:Phys. Chem. Chem. Phys 1829:Phys. Chem. Chem. Phys 1801:10.1002/adma.201704050 1623:10.1098/rspa.1926.0043 1449:New Journal of Physics 750:Long term correlations 621: 601: 585:is the mixing length, 579: 552: 502: 474: 431: 368: 348: 321: 197: 120: 66: 59: 2251:Krapf, Diego (2015), 796:Einstein, A. (1905). 754:Long-range dependence 622: 602: 580: 578:{\displaystyle l_{m}} 553: 503: 475: 432: 369: 367:{\displaystyle \tau } 349: 322: 213:diffusion coefficient 198: 121: 60: 22: 1045:10.1093/mnras/stx261 611: 589: 562: 524: 514:Lewis Fry Richardson 486: 455: 409: 358: 331: 266: 150: 88: 27: 2218:2014PCCP...1624128M 2212:(44): 24128–24164. 2167:2013AdWR...52..292S 2091:2010PhRvE..81f6211V 2062:1990PhR...195..127B 2015:2004BpJ....87.3518W 2003:Biophysical Journal 1953:2015RPPh...78l4601M 1898:2019PhT....72i..48K 1841:2014PCCP...1624128M 1835:(44): 24128–24164. 1792:2018AdM....3004050T 1729:2003PhRvE..67b1112M 1676:1984BoLMe..30..201B 1614:1926RSPSA.110..709R 1559:Morandotti, Roberto 1510:2009PhRvE..80a1912B 1461:2013NJPh...15d5011J 1413:20.500.11850/438735 1394:2020TPMed.135...59Z 1337:2007BpJ....92.1178S 1325:Biophysical Journal 1274:2020PhRvL.125e8101S 1199:2013BpJ...104.1652R 1187:Biophysical Journal 1132:2011PNAS..108.6438W 1085:2009PhRvL.103a8102B 1036:2017MNRAS.467.2421C 969:2019PhRvL.122b4102S 900:2012PhRvL.108i3002S 855:1906AnP...326..756V 814:1905AnP...322..549E 713:statistical physics 652:Generalizations of 518:Von Kármán constant 228:interstellar medium 70:Anomalous diffusion 2330:Physical chemistry 2227:10.1039/c4cp03465a 1850:10.1039/C4CP03465A 1780:Advanced Materials 1684:10.1007/BF00121955 1557:Peccianti, Marco; 843:Annalen der Physik 802:Annalen der Physik 709:ergodic hypothesis 617: 597: 575: 548: 498: 470: 427: 364: 344: 317: 252:micellar solutions 193: 116: 67: 55: 1906:10.1063/PT.3.4294 1707:Physical Review E 1575:10.1038/nphys2486 1498:Physical Review E 1126:(16): 6438–6443. 620:{\displaystyle z} 146:in time (namely, 2337: 2299: 2298: 2297: 2247: 2229: 2196: 2186: 2145: 2143: 2134:(5): 1754–1758. 2118: 2073: 2056:(4–5): 127–293. 2044: 2034: 2009:(5): 3518–3524. 1989: 1988: 1932: 1926: 1925: 1877: 1871: 1870: 1852: 1820: 1814: 1813: 1803: 1771: 1765: 1764: 1722: 1720:cond-mat/0210513 1702: 1696: 1695: 1659: 1653: 1652: 1650: 1648: 1634: 1628: 1627: 1625: 1608:(756): 709–737. 1593: 1587: 1586: 1554: 1548: 1547: 1529: 1489: 1483: 1482: 1472: 1440: 1434: 1433: 1415: 1405: 1373: 1367: 1366: 1356: 1331:(4): 1178–1191. 1316: 1310: 1309: 1267: 1243: 1237: 1236: 1226: 1193:(8): 1652–1660. 1178: 1172: 1171: 1161: 1143: 1111: 1105: 1104: 1064: 1058: 1057: 1047: 1029: 1020:(2): 2421–2429. 1003: 997: 996: 962: 942: 936: 935: 893: 873: 867: 866: 834: 828: 827: 825: 793: 771: 626: 624: 623: 618: 606: 604: 603: 598: 596: 584: 582: 581: 576: 574: 573: 557: 555: 554: 549: 544: 536: 535: 507: 505: 504: 499: 479: 477: 476: 471: 436: 434: 433: 428: 389:crowding in the 373: 371: 370: 365: 353: 351: 350: 345: 343: 342: 326: 324: 323: 318: 316: 315: 306: 305: 281: 280: 202: 200: 199: 194: 165: 164: 125: 123: 122: 117: 103: 102: 64: 62: 61: 56: 42: 41: 2345: 2344: 2340: 2339: 2338: 2336: 2335: 2334: 2320: 2319: 2306: 2295: 2293: 2275: 2050:Physics Reports 1993: 1992: 1933: 1929: 1878: 1874: 1821: 1817: 1786:(16): 1704050. 1772: 1768: 1703: 1699: 1660: 1656: 1646: 1644: 1635: 1631: 1594: 1590: 1569:(12): 858–859. 1555: 1551: 1490: 1486: 1441: 1437: 1374: 1370: 1317: 1313: 1244: 1240: 1179: 1175: 1112: 1108: 1065: 1061: 1004: 1000: 943: 939: 874: 870: 849:(14): 756–780. 835: 831: 794: 790: 785: 769: 729: 685:cell biophysics 654:Brownian motion 634: 612: 609: 608: 592: 590: 587: 586: 569: 565: 563: 560: 559: 540: 531: 527: 525: 522: 521: 487: 484: 483: 456: 453: 452: 410: 407: 406: 401:Brownian motion 359: 356: 355: 338: 334: 332: 329: 328: 311: 307: 301: 297: 276: 272: 267: 264: 263: 260: 244:plasma membrane 160: 156: 151: 148: 147: 128:Brownian motion 98: 94: 89: 86: 85: 76:process with a 37: 33: 28: 25: 24: 17: 12: 11: 5: 2343: 2333: 2332: 2318: 2317: 2312: 2305: 2304:External links 2302: 2301: 2300: 2273: 2248: 2197: 2146: 2119: 2074: 2045: 1991: 1990: 1947:(12): 124601. 1927: 1872: 1815: 1766: 1697: 1670:(1): 201–219. 1654: 1629: 1588: 1563:Nature Physics 1549: 1484: 1435: 1368: 1311: 1238: 1173: 1106: 1059: 998: 937: 868: 829: 808:(8): 549–560. 787: 786: 784: 781: 780: 779: 773: 763: 760:Hurst exponent 757: 751: 748: 742: 736: 728: 725: 697:Joseph Klafter 681: 680: 675: 661: 656:, such as the 633: 630: 616: 595: 572: 568: 547: 543: 539: 534: 530: 510: 509: 497: 494: 491: 481: 469: 466: 463: 460: 446: 426: 423: 420: 417: 414: 404: 394: 387:macromolecular 363: 341: 337: 314: 310: 304: 300: 296: 293: 290: 287: 284: 279: 275: 271: 259: 256: 192: 189: 186: 183: 180: 177: 174: 171: 168: 163: 159: 155: 115: 112: 109: 106: 101: 97: 93: 54: 51: 48: 45: 40: 36: 32: 15: 9: 6: 4: 3: 2: 2342: 2331: 2328: 2327: 2325: 2316: 2313: 2311: 2308: 2307: 2292: 2288: 2284: 2280: 2276: 2274:9780128032954 2270: 2266: 2262: 2258: 2257:Lipid Domains 2254: 2249: 2245: 2241: 2237: 2233: 2228: 2223: 2219: 2215: 2211: 2207: 2203: 2198: 2194: 2190: 2185: 2180: 2176: 2172: 2168: 2164: 2160: 2156: 2152: 2147: 2142: 2137: 2133: 2129: 2125: 2120: 2116: 2112: 2108: 2104: 2100: 2096: 2092: 2088: 2085:(6): 066211. 2084: 2080: 2075: 2071: 2067: 2063: 2059: 2055: 2051: 2046: 2042: 2038: 2033: 2028: 2024: 2020: 2016: 2012: 2008: 2004: 2000: 1995: 1994: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1958: 1954: 1950: 1946: 1942: 1938: 1931: 1923: 1919: 1915: 1911: 1907: 1903: 1899: 1895: 1891: 1887: 1886:Physics Today 1883: 1876: 1868: 1864: 1860: 1856: 1851: 1846: 1842: 1838: 1834: 1830: 1826: 1819: 1811: 1807: 1802: 1797: 1793: 1789: 1785: 1781: 1777: 1770: 1762: 1758: 1754: 1750: 1746: 1742: 1738: 1734: 1730: 1726: 1721: 1716: 1713:(2): 021112. 1712: 1708: 1701: 1693: 1689: 1685: 1681: 1677: 1673: 1669: 1665: 1658: 1642: 1641: 1633: 1624: 1619: 1615: 1611: 1607: 1603: 1599: 1592: 1584: 1580: 1576: 1572: 1568: 1564: 1560: 1553: 1545: 1541: 1537: 1533: 1528: 1523: 1519: 1515: 1511: 1507: 1504:(1): 011912. 1503: 1499: 1495: 1488: 1480: 1476: 1471: 1466: 1462: 1458: 1455:(4): 045011. 1454: 1450: 1446: 1439: 1431: 1427: 1423: 1419: 1414: 1409: 1404: 1399: 1395: 1391: 1387: 1383: 1379: 1372: 1364: 1360: 1355: 1350: 1346: 1342: 1338: 1334: 1330: 1326: 1322: 1315: 1307: 1303: 1299: 1295: 1291: 1287: 1283: 1279: 1275: 1271: 1266: 1261: 1258:(5): 058101. 1257: 1253: 1249: 1242: 1234: 1230: 1225: 1220: 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1184: 1177: 1169: 1165: 1160: 1155: 1151: 1147: 1142: 1137: 1133: 1129: 1125: 1121: 1117: 1110: 1102: 1098: 1094: 1090: 1086: 1082: 1079:(1): 018102. 1078: 1074: 1070: 1063: 1055: 1051: 1046: 1041: 1037: 1033: 1028: 1023: 1019: 1015: 1014: 1009: 1002: 994: 990: 986: 982: 978: 974: 970: 966: 961: 956: 953:(2): 024102. 952: 948: 941: 933: 929: 925: 921: 917: 913: 909: 905: 901: 897: 892: 887: 884:(9): 093002. 883: 879: 872: 864: 860: 856: 852: 848: 845:(in German). 844: 840: 833: 824: 819: 815: 811: 807: 804:(in German). 803: 799: 792: 788: 777: 774: 767: 764: 761: 758: 755: 752: 749: 746: 743: 740: 737: 734: 731: 730: 724: 722: 718: 714: 710: 706: 702: 698: 694: 690: 689:physiological 686: 679: 676: 674: 670: 666: 663:Diffusion in 662: 659: 655: 651: 650: 649: 647: 643: 638: 629: 614: 593: 570: 566: 545: 541: 537: 532: 528: 519: 515: 495: 492: 489: 482: 467: 464: 461: 458: 450: 447: 444: 440: 424: 421: 418: 415: 412: 405: 402: 398: 395: 392: 388: 384: 380: 377: 376: 375: 361: 339: 335: 312: 308: 302: 298: 294: 285: 277: 273: 255: 253: 249: 245: 241: 237: 233: 229: 224: 222: 216: 214: 210: 206: 190: 187: 184: 181: 178: 169: 161: 157: 145: 141: 137: 133: 129: 107: 99: 95: 83: 79: 75: 71: 46: 38: 34: 21: 2294:, retrieved 2256: 2209: 2205: 2158: 2154: 2131: 2127: 2082: 2079:Phys. Rev. E 2078: 2053: 2049: 2006: 2002: 1944: 1940: 1930: 1892:(9): 48–54. 1889: 1885: 1875: 1832: 1828: 1818: 1783: 1779: 1769: 1710: 1706: 1700: 1667: 1663: 1657: 1645:. Retrieved 1639: 1632: 1605: 1601: 1591: 1566: 1562: 1552: 1501: 1497: 1487: 1452: 1448: 1438: 1388:(1): 59–78. 1385: 1381: 1371: 1328: 1324: 1314: 1255: 1251: 1241: 1190: 1186: 1176: 1123: 1119: 1109: 1076: 1072: 1062: 1017: 1011: 1001: 950: 946: 940: 881: 877: 871: 846: 842: 832: 805: 801: 791: 723:break down. 705:Ralf Metzler 682: 673:porous media 639: 635: 511: 448: 396: 378: 261: 240:ion channels 225: 217: 208: 204: 138:, where the 136:Smoluchowski 69: 68: 2161:: 292–295. 1527:11336/60415 745:Percolation 739:Random walk 733:LĂ©vy flight 701:Diego Krapf 669:percolation 644:(CTRW) and 2296:2018-08-13 1265:1910.00102 1027:1610.06590 960:1706.09868 783:References 693:Eli Barkai 238:of cells, 78:non-linear 2236:1463-9076 1969:0034-4885 1922:203336692 1914:0031-9228 1859:1463-9076 1745:1063-651X 1692:121838208 1583:121404743 1479:1367-2630 1430:221495131 1422:1573-1634 1306:203610681 1290:0031-9007 1215:0006-3495 1150:0027-8424 993:119240381 916:0031-9007 891:1109.1503 594:κ 542:κ 490:α 468:τ 419:α 391:cytoplasm 362:τ 340:α 313:α 309:τ 303:α 292:⟩ 286:τ 270:⟨ 248:cytoplasm 232:telomeres 191:τ 176:⟩ 170:τ 154:⟨ 114:⟩ 108:τ 92:⟨ 74:diffusion 53:⟩ 47:τ 31:⟨ 2324:Category 2291:34712482 2283:26015283 2244:25297814 2193:23794783 2115:23202701 2107:20866505 2041:15339818 1985:25691993 1977:26511974 1867:25297814 1810:29532967 1753:12636658 1647:28 April 1544:15216911 1536:19658734 1363:17142285 1298:32794890 1233:23601312 1168:21464280 1101:19659180 1054:20203131 985:30720293 932:24674876 924:22463630 727:See also 665:fractals 558:, where 132:Einstein 2214:Bibcode 2184:3686513 2163:Bibcode 2087:Bibcode 2058:Bibcode 2032:1304817 2011:Bibcode 1949:Bibcode 1894:Bibcode 1837:Bibcode 1788:Bibcode 1761:2966272 1725:Bibcode 1672:Bibcode 1610:Bibcode 1506:Bibcode 1457:Bibcode 1390:Bibcode 1354:1783867 1333:Bibcode 1270:Bibcode 1224:3627875 1195:Bibcode 1159:3081000 1128:Bibcode 1081:Bibcode 1032:Bibcode 965:Bibcode 896:Bibcode 851:Bibcode 810:Bibcode 776:Fractal 383:protein 242:in the 236:nucleus 234:in the 84:(MSD), 2289:  2281:  2271:  2242:  2234:  2191:  2181:  2113:  2105:  2039:  2029:  1983:  1975:  1967:  1920:  1912:  1865:  1857:  1808:  1759:  1751:  1743:  1690:  1581:  1542:  1534:  1477:  1428:  1420:  1361:  1351:  1304:  1296:  1288:  1231:  1221:  1213:  1166:  1156:  1148:  1099:  1052:  991:  983:  930:  922:  914:  703:, and 327:where 144:linear 2287:S2CID 2111:S2CID 1981:S2CID 1918:S2CID 1757:S2CID 1715:arXiv 1688:S2CID 1579:S2CID 1540:S2CID 1426:S2CID 1302:S2CID 1260:arXiv 1050:S2CID 1022:arXiv 989:S2CID 955:arXiv 928:S2CID 886:arXiv 399:= 1: 203:with 72:is a 2279:PMID 2269:ISBN 2240:PMID 2232:ISSN 2189:PMID 2103:PMID 2037:PMID 1973:PMID 1965:ISSN 1910:ISSN 1863:PMID 1855:ISSN 1806:PMID 1749:PMID 1741:ISSN 1649:2017 1532:PMID 1475:ISSN 1418:ISSN 1359:PMID 1294:PMID 1286:ISSN 1229:PMID 1211:ISSN 1164:PMID 1146:ISSN 1097:PMID 981:PMID 920:PMID 912:ISSN 719:and 667:and 493:> 422:< 416:< 215:). 211:the 134:and 2261:doi 2222:doi 2179:PMC 2171:doi 2136:doi 2095:doi 2066:doi 2054:195 2027:PMC 2019:doi 1957:doi 1902:doi 1845:doi 1796:doi 1733:doi 1680:doi 1618:doi 1606:110 1571:doi 1522:hdl 1514:doi 1465:doi 1408:hdl 1398:doi 1386:135 1349:PMC 1341:doi 1278:doi 1256:125 1219:PMC 1203:doi 1191:104 1154:PMC 1136:doi 1124:108 1089:doi 1077:103 1040:doi 1018:467 973:doi 951:122 904:doi 882:108 859:doi 847:326 818:doi 806:322 770:DFA 671:in 230:, 142:is 140:MSD 2326:: 2285:, 2277:, 2267:, 2255:, 2238:. 2230:. 2220:. 2210:16 2208:. 2204:. 2187:. 2177:. 2169:. 2159:52 2157:. 2153:. 2132:59 2130:. 2126:. 2109:. 2101:. 2093:. 2083:81 2081:. 2064:. 2052:. 2035:. 2025:. 2017:. 2007:87 2005:. 2001:. 1979:. 1971:. 1963:. 1955:. 1945:78 1943:. 1939:. 1916:. 1908:. 1900:. 1890:72 1888:. 1884:. 1861:. 1853:. 1843:. 1833:16 1831:. 1827:. 1804:. 1794:. 1784:30 1782:. 1778:. 1755:. 1747:. 1739:. 1731:. 1723:. 1711:67 1709:. 1686:. 1678:. 1668:30 1666:. 1616:. 1604:. 1600:. 1577:. 1565:. 1538:. 1530:. 1520:. 1512:. 1502:80 1500:. 1496:. 1473:. 1463:. 1453:15 1451:. 1447:. 1424:. 1416:. 1406:. 1396:. 1384:. 1380:. 1357:. 1347:. 1339:. 1329:92 1327:. 1323:. 1300:. 1292:. 1284:. 1276:. 1268:. 1254:. 1250:. 1227:. 1217:. 1209:. 1201:. 1189:. 1185:. 1162:. 1152:. 1144:. 1134:. 1122:. 1118:. 1095:. 1087:. 1075:. 1071:. 1048:. 1038:. 1030:. 1016:. 1010:. 987:. 979:. 971:. 963:. 949:. 926:. 918:. 910:. 902:. 894:. 880:. 857:. 841:. 816:. 800:. 699:, 254:. 2263:: 2246:. 2224:: 2216:: 2195:. 2173:: 2165:: 2144:. 2138:: 2117:. 2097:: 2089:: 2072:. 2068:: 2060:: 2043:. 2021:: 2013:: 1987:. 1959:: 1951:: 1924:. 1904:: 1896:: 1869:. 1847:: 1839:: 1812:. 1798:: 1790:: 1763:. 1735:: 1727:: 1717:: 1694:. 1682:: 1674:: 1651:. 1626:. 1620:: 1612:: 1585:. 1573:: 1567:8 1546:. 1524:: 1516:: 1508:: 1481:. 1467:: 1459:: 1432:. 1410:: 1400:: 1392:: 1365:. 1343:: 1335:: 1308:. 1280:: 1272:: 1262:: 1235:. 1205:: 1197:: 1170:. 1138:: 1130:: 1103:. 1091:: 1083:: 1056:. 1042:: 1034:: 1024:: 995:. 975:: 967:: 957:: 934:. 906:: 898:: 888:: 865:. 861:: 853:: 826:. 820:: 812:: 768:( 615:z 571:m 567:l 546:z 538:= 533:m 529:l 496:2 480:. 465:v 462:= 459:r 449:α 445:. 425:2 413:1 403:. 397:α 393:. 379:α 336:K 299:K 295:= 289:) 283:( 278:2 274:r 209:D 205:d 188:D 185:d 182:2 179:= 173:) 167:( 162:2 158:r 111:) 105:( 100:2 96:r 50:) 44:( 39:2 35:r

Index


diffusion
non-linear
mean squared displacement
Brownian motion
Einstein
Smoluchowski
MSD
linear
diffusion coefficient
Fractional diffusion equations
interstellar medium
telomeres
nucleus
ion channels
plasma membrane
cytoplasm
micellar solutions
protein
macromolecular
cytoplasm
Brownian motion
active cellular transport
heavy-tail distribution
Lewis Fry Richardson
Von Kármán constant
continuous-time random walks
fractional Brownian motion
Brownian motion
fractional Brownian motion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑