Knowledge

Alkaline water electrolysis

Source 📝

236:
equipped with a four-wheel design, utilised an internal combustion engine (ICE) fuelled by a mixture of hydrogen and oxygen gases. The hydrogen fuel was stored in a balloon, and ignition was achieved through an electrical starter known as a Volta starter. The combustion process propelled the piston within the cylinder, which, upon descending, activated a wheel through a ratchet mechanism. This invention could be viewed as an early embodiment of a system comprising hydrogen storage, conduits, valves, and a conversion device.
249: 217:(NaOH) at 25-40 wt% is used. These electrodes are separated by a diaphragm, separating the product gases and transporting the hydroxide ions (OH) from one electrode to the other. A recent comparison showed that state-of-the-art nickel based water electrolysers with alkaline electrolytes lead to competitive or even better efficiencies than acidic 288:. In cell tests the best performing electrodes thus far reported consisted of plasma vacuum sprayed Ni alloys on Ni meshes and hot dip galvanized Ni meshes. The latter approach might be interesting for large scale industrial manufacturing as it is cheap and easily scalable, but unfortunately, all the strategies show some degradation. 1053: 256:
The electrodes are typically separated by a thin porous foil, commonly referred to as diaphragm or separator. The diaphragm is non-conductive to electrons, thus avoiding electrical shorts between the electrodes while allowing small distances between the electrodes. The ionic conductivity is supplied
1597: 235:
Hydrogen-based technologies have evolved significantly since the initial discovery of hydrogen and its early application as a buoyant gas approximately 250 years ago. In 1804, the Swiss inventor Francois Isaac de Rivaz secured a patent for the inaugural hydrogen-powered vehicle. This prototype,
239:
Approximately four decades after the military scientist Ritter developed the first electrolyser, the chemists Schoenbein and Sir Grove independently identified and showcased the fuel cell concept. This technology operates in reverse to electrolysis around the year 1839. This discovery marked a
276:
Typically, Nickel based metals are used as the electrodes for alkaline water electrolysis. Considering pure metals, Ni is the least active non-noble metal. The high price of good noble metal electrocatalysts such as platinum group metals and their dissolution during the oxygen evolution is a
1662:
One disadvantage of alkaline water electrolysers is the low-performance profiles caused by the commonly-used thick diaphragms that increase ohmic resistance, the lower intrinsic conductivity of OH− compared to H+, and the higher gas crossover observed for highly porous diaphragms.
506: 1415: 301:
In alkaline media oxygen evolution reactions, multiple adsorbent species (O, OH, OOH, and OO) and multiple steps are involved. Steps 4 and 5 often occur in a single step, but there is evidence that suggests steps 4 and 5 occur separately at pH 11 and higher.
1196: 755: 625: 1921:
Chatenet, Marian; Pollet, Bruno G.; Dekel, Dario R.; Dionigi, Fabio; Deseure, Jonathan; Millet, Pierre; Braatz, Richard D.; Bazant, Martin Z.; Eikerling, Michael; Staffell, Iain; Balcombe, Paul; Shao-Horn, Yang; Schäfer, Helmut (2022).
908: 273:. The diaphragm further avoids the mixing of the produced hydrogen and oxygen at the cathode and anode, respectively. The thickness of asbestos diaphragms ranges from 2 to 5 mm, while Zirfon diaphragms range from 0.2 to 0.5 mm. 865: 1459: 370: 2363:
Cherevko, S; et al. (2016). "Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability".
1280: 411: 1323: 1098:
The hydrogen evolution reaction in alkaline conditions starts with water adsorption and dissociation in the Volmer step and either hydrogen desorption in the Tafel step or Heyrovsky step.
277:
drawback. Ni is considered as more stable during the oxygen evolution, but stainless steel has shown good stability and better catalytic activity than Ni at high temperatures during the
1107: 666: 2496:
Esfandiari, N; et al. (2024). "Metal-based cathodes for hydrogen production by alkaline water electrolysis: Review of materials, degradation mechanism, and durability tests".
1627: 1445: 1309: 1225: 1083: 894: 784: 654: 535: 399: 547: 1048:{\displaystyle 2\mathrm {OH} ^{-}\rightarrow \mathrm {H} _{2}\mathrm {O} +{\frac {1}{2}}\mathrm {O} _{2}+2\mathrm {e} ^{-}\quad (E^{0}=+0.40\,\mathrm {V\;vs.\;SHE} )} 261:
diaphragms have been used for a long time due to their effective gas separation, low cost, and high chemical stability; however, their use is restricted by the
2137: 2434:
Schiller, G; Henne R; Mohr P; Peinecke V (1998). "High Performance Electrodes for an Advanced Intermittently Operated 10-kW Alkaline Water Electrolyzer".
1592:{\displaystyle 2\mathrm {H} _{2}\mathrm {O} +2\mathrm {e} ^{-}\rightarrow \mathrm {H} _{2}+2\mathrm {OH} ^{-}\quad (E^{0}=-0.83\,\mathrm {V\;vs.\;SHE} )} 796: 310: 284:
High surface area Ni catalysts can be achieved by dealloying of Nickel-Zinc or Nickel-Aluminium alloys in alkaline solution, commonly referred to as
2461:
Schalenbach, M; et al. (2018). "An alkaline water electrolyzer with nickel electrodes enables efficient high current density operation".
224:
The technology has a long history in the chemical industry. The first large-scale demand for hydrogen emerged in late 19th century for
218: 1238: 2082:
Zeng, Kai; Zhang, Dongke (June 2010). "Recent progress in alkaline water electrolysis for hydrogen production and applications".
1756:
David, Martín; Ocampo-Martínez, Carlos; Sánchez-Peña, Ricardo (June 2019). "Advances in alkaline water electrolyzers: A review".
240:
significant milestone in the field of hydrogen technology, demonstrating the potential for hydrogen as a source of clean energy.
2391:
Schiller, G; Henne R; Borock V (1995). "Vacuum Plasma Spraying of High-Performance Electrodes for Alkaline Water Electrolysis".
2532: 2121: 2061: 1640: 501:{\displaystyle \mathrm {OH} ^{*}+\mathrm {OH} ^{-}\rightarrow \mathrm {O} ^{*}+\mathrm {H} _{2}\mathrm {O} +\mathrm {e} ^{-}} 1410:{\displaystyle \mathrm {H} _{2}\mathrm {O} +\mathrm {H} ^{*}+\mathrm {e} ^{-}\rightarrow \mathrm {H} _{2}+\mathrm {OH} ^{-}} 252:
Scheme of alkaline water electrolyzers. The catalysts are added to the anode and cathode to reduce the overpotential.
2141: 2114:
Electrochemical Power Sources: Fundamentals, Systems, and Applications: Hydrogen Production by Water Electrolysis
2205:
Haug, P; Koj M; Turek T (2017). "Influence of process conditions on gas purity in alkaline water electrolysis".
2165:"Hydrogen Diffusivity and Electrolyte Permeability of the Zirfon PERL Separator for Alkaline Water Electrolysis" 1191:{\displaystyle 2\mathrm {H} _{2}\mathrm {O} +2\mathrm {e} ^{-}\rightarrow 2\mathrm {H} ^{*}+2\mathrm {OH} ^{-}} 750:{\displaystyle \mathrm {OOH} ^{*}+\mathrm {OH} ^{-}\rightarrow \mathrm {OO} ^{-*}+\mathrm {H} _{2}\mathrm {O} } 2550:"The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation" 1924:"Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments" 278: 2695: 1647:
Cheaper catalysts with respect to the platinum metal group based catalysts used for PEM water electrolysis.
2675: 2328:
Schalenbach, M; et al. (2018). "The electrochemical dissolution of noble metals in alkaline media".
1680:
Divisek, J.; Schmitz, H. (1 January 1982). "A bipolar cell for advanced alkaline water electrolysis".
2690: 2680: 1604: 1422: 1286: 1202: 1060: 871: 761: 631: 512: 376: 1828:
Carmo, M; Fritz D; Mergel J; Stolten D (2013). "A comprehensive review on PEM water electrolysis".
620:{\displaystyle \mathrm {O} ^{*}+\mathrm {OH} ^{-}\rightarrow \mathrm {OOH} ^{*}+\mathrm {e} ^{-}} 1650:
Higher durability due to an exchangeable electrolyte and lower dissolution of anodic catalyst.
2685: 2233: 2615: 2400: 1971: 1875: 1720: 262: 8: 210: 2619: 2404: 2234:"Recent Advances in Non-Precious Metal-Based Electrodes for Alkaline Water Electrolysis" 1879: 1724: 2646: 2603: 2576: 2549: 2478: 2416: 2345: 2305: 2280: 2261: 2187: 2053: 2019: 1998:"Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis" 1948: 1923: 1898: 1863: 1783: 1738: 2604:"Comparative Analysis of Energy and Exergy Performance of Hydrogen Production Methods" 2447: 2651: 2633: 2581: 2528: 2482: 2420: 2349: 2310: 2265: 2253: 2164: 2117: 2057: 2041: 1953: 1903: 1787: 1742: 1693: 2191: 2023: 1997: 2641: 2623: 2571: 2561: 2505: 2474: 2470: 2443: 2408: 2373: 2337: 2300: 2292: 2245: 2218: 2214: 2179: 2091: 2049: 2009: 1943: 1935: 1893: 1883: 1841: 1837: 1773: 1765: 1728: 1689: 214: 2509: 860:{\displaystyle \mathrm {OO} ^{-*}\rightarrow \mathrm {O} _{2(g)}+\mathrm {e} ^{-}} 257:
by the aqueous alkaline solution, which penetrates in the pores of the diaphragm.
225: 2377: 229: 2095: 1733: 1708: 365:{\displaystyle \mathrm {OH} ^{-}\rightarrow \mathrm {OH} ^{*}+\mathrm {e} ^{-}} 2341: 1769: 1709:"An overview of water electrolysis technologies for green hydrogen production" 248: 2669: 2637: 2257: 2655: 2585: 2314: 2249: 1957: 1907: 285: 202: 2183: 2014: 1996:
Schalenbach, M; Tjarks G; Carmo M; Lueke W; Mueller M; Stolten D (2016).
270: 2296: 1653:
Higher gas purity due to lower gas diffusivity in alkaline electrolytes.
2566: 2548:
Diaz-Morales, Oscar; Ferrus-Suspedra, David; Koper, Marc T. M. (2016).
2412: 1939: 1888: 1778: 206: 2628: 1090:
Where the * indicate species adsorbed to the surface of the catalyst.
265:. The state-of-the-art diaphragm is Zirfon, a composite material of 209:
operating in a liquid alkaline electrolyte. Commonly, a solution of
43:
NiO/Asbestos/polysulfone matrix and ZrO2 (Zirfon)/polyphenil sulfide
1864:"Non-Precious Electrodes for Practical Alkaline Water Electrolysis" 266: 258: 2278: 1995: 2547: 1755: 1634: 2433: 2602:
Martínez-Rodríguez, Angel; Abánades, Alberto (November 2020).
1827: 1643:, the advantages of alkaline water electrolysis are mainly: 1275:{\displaystyle 2\mathrm {H} ^{*}\rightarrow \mathrm {H} _{2}} 2281:"Volcano plots in hydrogen electrocatalysis–uses and abuses" 2162: 2601: 1920: 2390: 2321: 2156: 1607: 1462: 1425: 1326: 1289: 1241: 1205: 1110: 1063: 911: 874: 799: 764: 669: 634: 550: 515: 414: 379: 313: 2279:
Quaino, P; Juarez F; Santos E; Schmickler W (2014).
1621: 1591: 1439: 1409: 1303: 1274: 1219: 1190: 1077: 1047: 888: 859: 778: 749: 648: 619: 529: 500: 393: 364: 221:with platinum group metal based electrocatalysts. 2489: 2454: 2667: 2232:Zhou, Daojin; Li, Pengsong; et al. (2020). 2204: 2525:Electrochemical methods for hydrogen production 2107: 2105: 1707:Shiva Kumar, S.; Lim, Hankwon (November 2022). 219:polymer electrolyte membrane water electrolysis 1989: 1857: 1855: 1853: 1851: 1706: 1679: 1823: 1821: 1819: 1817: 1635:Advantages compared to PEM water electrolysis 232:in the 1930s, the technique was competitive. 2427: 2384: 2356: 2102: 1815: 1813: 1811: 1809: 1807: 1805: 1803: 1801: 1799: 1797: 2460: 2327: 2163:Schalenbach, M; Lueke W; Stolten D (2016). 1848: 2495: 2272: 1575: 1565: 1031: 1021: 243: 2645: 2627: 2575: 2565: 2527:. Cambridge: Royal Society of Chemistry. 2516: 2304: 2084:Progress in Energy and Combustion Science 2081: 2013: 1947: 1914: 1897: 1887: 1794: 1777: 1732: 1560: 1016: 2463:International Journal of Hydrogen Energy 2436:International Journal of Hydrogen Energy 2362: 2207:International Journal of Hydrogen Energy 2198: 2138:"AGFA Zirfon Perl Product Specification" 2111: 2075: 1977:. Energy Carriers and Conversion Systems 1682:International Journal of Hydrogen Energy 247: 2046:Hydrogen Safety for Energy Applications 2668: 2231: 2172:Journal of the Electrochemical Society 2039: 2002:Journal of the Electrochemical Society 2597: 2595: 2522: 1861: 1641:Proton exchange membrane electrolysis 2035: 2033: 205:that is characterized by having two 2393:Journal of Thermal Spray Technology 2285:Beilstein Journal of Nanotechnology 1093: 291: 13: 2592: 2054:10.1016/b978-0-12-820492-4.00005-1 1582: 1579: 1576: 1569: 1566: 1562: 1527: 1524: 1506: 1491: 1479: 1468: 1397: 1394: 1379: 1364: 1349: 1340: 1329: 1262: 1247: 1178: 1175: 1157: 1139: 1127: 1116: 1038: 1035: 1032: 1025: 1022: 1018: 983: 965: 946: 935: 920: 917: 847: 823: 805: 802: 743: 732: 714: 711: 696: 693: 678: 675: 672: 607: 592: 589: 586: 571: 568: 553: 488: 479: 468: 453: 438: 435: 420: 417: 352: 337: 334: 319: 316: 149:Specific energy consumption system 14: 2707: 2030: 1862:Colli, A.N.; et al. (2019). 296: 141:Specific energy consumption stack 88:State-of-the-art Operating Ranges 64:Catalyst material on the cathode 48:Bipolar/separator plate material 2541: 2225: 2130: 1657: 1622:{\displaystyle \left(10\right)} 1537: 993: 279:Oxygen Evolution Reaction (OER) 165:System hydrogen production rate 2475:10.1016/j.ijhydene.2018.04.219 2219:10.1016/j.ijhydene.2016.12.111 1964: 1842:10.1016/j.ijhydene.2013.01.151 1749: 1700: 1673: 1586: 1538: 1501: 1440:{\displaystyle \left(9\right)} 1374: 1304:{\displaystyle \left(8\right)} 1257: 1220:{\displaystyle \left(7\right)} 1149: 1078:{\displaystyle \left(6\right)} 1042: 994: 930: 889:{\displaystyle \left(5\right)} 837: 831: 818: 779:{\displaystyle \left(4\right)} 706: 649:{\displaystyle \left(3\right)} 581: 530:{\displaystyle \left(2\right)} 448: 394:{\displaystyle \left(1\right)} 329: 56:Catalyst material on the anode 1: 2510:10.1016/j.pmatsci.2024.101254 2498:Progress in Materials Science 2448:10.1016/S0360-3199(97)00122-5 2048:, Elsevier, pp. 25–115, 1972:"Alkaline Water Electrolysis" 1666: 2378:10.1016/j.cattod.2015.08.014 1694:10.1016/0360-3199(82)90018-0 7: 228:, and before the advent of 199:Alkaline water electrolysis 181:Acceptable degradation rate 40:Style of membrane/diaphragm 35:Alkaline Water Electrolysis 22:Alkaline water electrolysis 10: 2712: 2096:10.1016/j.pecs.2009.11.002 1830:Journal of Hydrogen Energy 1734:10.1016/j.egyr.2022.10.127 1456:Overall cathode reaction: 2342:10.1007/s12678-017-0438-y 1770:10.1016/j.est.2019.03.001 1758:Journal of Energy Storage 226:lighter-than-air aircraft 188: 180: 172: 164: 156: 148: 140: 132: 124: 116: 108: 100: 92: 87: 79: 71: 63: 55: 47: 39: 31: 26: 21: 1928:Chemical Society Reviews 905:Overall anode reaction: 2042:"Hydrogen technologies" 2040:Jordan, Thomas (2022), 244:Structure and materials 157:Cell voltage efficiency 2250:10.1002/cnma.202000010 2112:Smolinka, Tom (2021). 1623: 1593: 1441: 1411: 1305: 1276: 1221: 1192: 1079: 1049: 890: 861: 780: 751: 650: 621: 531: 502: 395: 366: 253: 2523:Scott, Keith (2020). 1624: 1594: 1442: 1412: 1306: 1277: 1222: 1193: 1080: 1050: 891: 862: 781: 752: 651: 622: 532: 503: 396: 367: 251: 32:Type of Electrolysis: 2184:10.1149/2.1251613jes 2015:10.1149/2.0271611jes 1605: 1460: 1423: 1324: 1287: 1239: 1203: 1108: 1061: 909: 872: 797: 762: 667: 632: 548: 513: 412: 377: 311: 263:Rotterdam Convention 83:Stainless steel mesh 80:Cathode PTL material 16:Type of electrolyzer 2696:Hydrogen production 2620:2020Entrp..22.1286M 2469:(27): 11932–11938. 2405:1995JTST....4..185S 2297:10.3762/bjnano.5.96 2178:(14): F1480–F1488. 1880:2019Mate...12.1336C 1725:2022EnRep...813793S 211:potassium hydroxide 2676:Chemical processes 2567:10.1039/C5SC04486C 2413:10.1007/BF02646111 1940:10.1039/d0cs01079k 1889:10.3390/ma12081336 1619: 1589: 1437: 1407: 1301: 1272: 1217: 1188: 1075: 1045: 886: 857: 776: 747: 646: 617: 527: 498: 391: 362: 254: 72:Anode PTL material 2629:10.3390/e22111286 2534:978-1-78801-378-9 2213:(15): 9406–9418. 2123:978-0-12-819424-9 2063:978-0-12-820492-4 1934:(11): 4583–4762. 1639:In comparison to 1632: 1631: 1450: 1449: 1314: 1313: 1230: 1229: 1088: 1087: 961: 899: 898: 789: 788: 659: 658: 540: 539: 404: 403: 196: 195: 27:Typical Materials 2703: 2691:Industrial gases 2681:Electrochemistry 2660: 2659: 2649: 2631: 2599: 2590: 2589: 2579: 2569: 2560:(4): 2639–2645. 2554:Chemical Science 2545: 2539: 2538: 2520: 2514: 2513: 2493: 2487: 2486: 2458: 2452: 2451: 2431: 2425: 2424: 2388: 2382: 2381: 2360: 2354: 2353: 2330:Electrocatalysis 2325: 2319: 2318: 2308: 2276: 2270: 2269: 2229: 2223: 2222: 2202: 2196: 2195: 2169: 2160: 2154: 2153: 2151: 2149: 2140:. Archived from 2134: 2128: 2127: 2109: 2100: 2099: 2079: 2073: 2072: 2071: 2070: 2037: 2028: 2027: 2017: 1993: 1987: 1986: 1984: 1982: 1976: 1968: 1962: 1961: 1951: 1918: 1912: 1911: 1901: 1891: 1859: 1846: 1845: 1825: 1792: 1791: 1781: 1753: 1747: 1746: 1736: 1704: 1698: 1697: 1677: 1628: 1626: 1625: 1620: 1618: 1598: 1596: 1595: 1590: 1585: 1550: 1549: 1536: 1535: 1530: 1515: 1514: 1509: 1500: 1499: 1494: 1482: 1477: 1476: 1471: 1452: 1451: 1446: 1444: 1443: 1438: 1436: 1416: 1414: 1413: 1408: 1406: 1405: 1400: 1388: 1387: 1382: 1373: 1372: 1367: 1358: 1357: 1352: 1343: 1338: 1337: 1332: 1320:Heyrovsky step: 1316: 1315: 1310: 1308: 1307: 1302: 1300: 1281: 1279: 1278: 1273: 1271: 1270: 1265: 1256: 1255: 1250: 1232: 1231: 1226: 1224: 1223: 1218: 1216: 1197: 1195: 1194: 1189: 1187: 1186: 1181: 1166: 1165: 1160: 1148: 1147: 1142: 1130: 1125: 1124: 1119: 1101: 1100: 1094:Cathode reaction 1084: 1082: 1081: 1076: 1074: 1054: 1052: 1051: 1046: 1041: 1006: 1005: 992: 991: 986: 974: 973: 968: 962: 954: 949: 944: 943: 938: 929: 928: 923: 901: 900: 895: 893: 892: 887: 885: 866: 864: 863: 858: 856: 855: 850: 841: 840: 826: 817: 816: 808: 791: 790: 785: 783: 782: 777: 775: 756: 754: 753: 748: 746: 741: 740: 735: 726: 725: 717: 705: 704: 699: 687: 686: 681: 661: 660: 655: 653: 652: 647: 645: 626: 624: 623: 618: 616: 615: 610: 601: 600: 595: 580: 579: 574: 562: 561: 556: 542: 541: 536: 534: 533: 528: 526: 507: 505: 504: 499: 497: 496: 491: 482: 477: 476: 471: 462: 461: 456: 447: 446: 441: 429: 428: 423: 406: 405: 400: 398: 397: 392: 390: 371: 369: 368: 363: 361: 360: 355: 346: 345: 340: 328: 327: 322: 305: 304: 292:Electrochemistry 215:sodium hydroxide 93:Cell temperature 19: 18: 2711: 2710: 2706: 2705: 2704: 2702: 2701: 2700: 2666: 2665: 2664: 2663: 2600: 2593: 2546: 2542: 2535: 2521: 2517: 2494: 2490: 2459: 2455: 2432: 2428: 2389: 2385: 2366:Catalysis Today 2361: 2357: 2326: 2322: 2277: 2273: 2230: 2226: 2203: 2199: 2167: 2161: 2157: 2147: 2145: 2136: 2135: 2131: 2124: 2110: 2103: 2080: 2076: 2068: 2066: 2064: 2038: 2031: 1994: 1990: 1980: 1978: 1974: 1970: 1969: 1965: 1919: 1915: 1860: 1849: 1826: 1795: 1754: 1750: 1719:: 13793–13813. 1705: 1701: 1678: 1674: 1669: 1660: 1637: 1608: 1606: 1603: 1602: 1561: 1545: 1541: 1531: 1523: 1522: 1510: 1505: 1504: 1495: 1490: 1489: 1478: 1472: 1467: 1466: 1461: 1458: 1457: 1426: 1424: 1421: 1420: 1401: 1393: 1392: 1383: 1378: 1377: 1368: 1363: 1362: 1353: 1348: 1347: 1339: 1333: 1328: 1327: 1325: 1322: 1321: 1290: 1288: 1285: 1284: 1266: 1261: 1260: 1251: 1246: 1245: 1240: 1237: 1236: 1206: 1204: 1201: 1200: 1182: 1174: 1173: 1161: 1156: 1155: 1143: 1138: 1137: 1126: 1120: 1115: 1114: 1109: 1106: 1105: 1096: 1064: 1062: 1059: 1058: 1017: 1001: 997: 987: 982: 981: 969: 964: 963: 953: 945: 939: 934: 933: 924: 916: 915: 910: 907: 906: 875: 873: 870: 869: 851: 846: 845: 827: 822: 821: 809: 801: 800: 798: 795: 794: 765: 763: 760: 759: 742: 736: 731: 730: 718: 710: 709: 700: 692: 691: 682: 671: 670: 668: 665: 664: 635: 633: 630: 629: 611: 606: 605: 596: 585: 584: 575: 567: 566: 557: 552: 551: 549: 546: 545: 516: 514: 511: 510: 492: 487: 486: 478: 472: 467: 466: 457: 452: 451: 442: 434: 433: 424: 416: 415: 413: 410: 409: 380: 378: 375: 374: 356: 351: 350: 341: 333: 332: 323: 315: 314: 312: 309: 308: 299: 294: 246: 230:steam reforming 189:System lifetime 133:Part-load range 109:Current density 75:Ti/Ni/zirconium 51:Stainless steel 17: 12: 11: 5: 2709: 2699: 2698: 2693: 2688: 2683: 2678: 2662: 2661: 2591: 2540: 2533: 2515: 2488: 2453: 2442:(9): 761–765. 2426: 2383: 2355: 2336:(2): 153–161. 2320: 2271: 2244:(3): 336–355. 2224: 2197: 2155: 2129: 2122: 2101: 2090:(3): 307–326. 2074: 2062: 2029: 1988: 1963: 1913: 1847: 1793: 1748: 1713:Energy Reports 1699: 1688:(9): 703–710. 1671: 1670: 1668: 1665: 1659: 1656: 1655: 1654: 1651: 1648: 1636: 1633: 1630: 1629: 1617: 1614: 1611: 1600: 1588: 1584: 1581: 1578: 1574: 1571: 1568: 1564: 1559: 1556: 1553: 1548: 1544: 1540: 1534: 1529: 1526: 1521: 1518: 1513: 1508: 1503: 1498: 1493: 1488: 1485: 1481: 1475: 1470: 1465: 1448: 1447: 1435: 1432: 1429: 1418: 1404: 1399: 1396: 1391: 1386: 1381: 1376: 1371: 1366: 1361: 1356: 1351: 1346: 1342: 1336: 1331: 1312: 1311: 1299: 1296: 1293: 1282: 1269: 1264: 1259: 1254: 1249: 1244: 1228: 1227: 1215: 1212: 1209: 1198: 1185: 1180: 1177: 1172: 1169: 1164: 1159: 1154: 1151: 1146: 1141: 1136: 1133: 1129: 1123: 1118: 1113: 1095: 1092: 1086: 1085: 1073: 1070: 1067: 1056: 1044: 1040: 1037: 1034: 1030: 1027: 1024: 1020: 1015: 1012: 1009: 1004: 1000: 996: 990: 985: 980: 977: 972: 967: 960: 957: 952: 948: 942: 937: 932: 927: 922: 919: 914: 897: 896: 884: 881: 878: 867: 854: 849: 844: 839: 836: 833: 830: 825: 820: 815: 812: 807: 804: 787: 786: 774: 771: 768: 757: 745: 739: 734: 729: 724: 721: 716: 713: 708: 703: 698: 695: 690: 685: 680: 677: 674: 657: 656: 644: 641: 638: 627: 614: 609: 604: 599: 594: 591: 588: 583: 578: 573: 570: 565: 560: 555: 538: 537: 525: 522: 519: 508: 495: 490: 485: 481: 475: 470: 465: 460: 455: 450: 445: 440: 437: 432: 427: 422: 419: 402: 401: 389: 386: 383: 372: 359: 354: 349: 344: 339: 336: 331: 326: 321: 318: 298: 297:Anode reaction 295: 293: 290: 245: 242: 194: 193: 190: 186: 185: 182: 178: 177: 174: 173:Lifetime stack 170: 169: 166: 162: 161: 158: 154: 153: 152:4.5-7.0 kWh/Nm 150: 146: 145: 144:4.2-5.9 kWh/Nm 142: 138: 137: 134: 130: 129: 126: 122: 121: 118: 114: 113: 110: 106: 105: 102: 101:Stack pressure 98: 97: 94: 90: 89: 85: 84: 81: 77: 76: 73: 69: 68: 65: 61: 60: 57: 53: 52: 49: 45: 44: 41: 37: 36: 33: 29: 28: 24: 23: 15: 9: 6: 4: 3: 2: 2708: 2697: 2694: 2692: 2689: 2687: 2684: 2682: 2679: 2677: 2674: 2673: 2671: 2657: 2653: 2648: 2643: 2639: 2635: 2630: 2625: 2621: 2617: 2613: 2609: 2605: 2598: 2596: 2587: 2583: 2578: 2573: 2568: 2563: 2559: 2555: 2551: 2544: 2536: 2530: 2526: 2519: 2511: 2507: 2503: 2499: 2492: 2484: 2480: 2476: 2472: 2468: 2464: 2457: 2449: 2445: 2441: 2437: 2430: 2422: 2418: 2414: 2410: 2406: 2402: 2398: 2394: 2387: 2379: 2375: 2371: 2367: 2359: 2351: 2347: 2343: 2339: 2335: 2331: 2324: 2316: 2312: 2307: 2302: 2298: 2294: 2290: 2286: 2282: 2275: 2267: 2263: 2259: 2255: 2251: 2247: 2243: 2239: 2235: 2228: 2220: 2216: 2212: 2208: 2201: 2193: 2189: 2185: 2181: 2177: 2173: 2166: 2159: 2144:on 2018-04-23 2143: 2139: 2133: 2125: 2119: 2115: 2108: 2106: 2097: 2093: 2089: 2085: 2078: 2065: 2059: 2055: 2051: 2047: 2043: 2036: 2034: 2025: 2021: 2016: 2011: 2008:(11): F3197. 2007: 2003: 1999: 1992: 1973: 1967: 1959: 1955: 1950: 1945: 1941: 1937: 1933: 1929: 1925: 1917: 1909: 1905: 1900: 1895: 1890: 1885: 1881: 1877: 1873: 1869: 1865: 1858: 1856: 1854: 1852: 1843: 1839: 1835: 1831: 1824: 1822: 1820: 1818: 1816: 1814: 1812: 1810: 1808: 1806: 1804: 1802: 1800: 1798: 1789: 1785: 1780: 1775: 1771: 1767: 1763: 1759: 1752: 1744: 1740: 1735: 1730: 1726: 1722: 1718: 1714: 1710: 1703: 1695: 1691: 1687: 1683: 1676: 1672: 1664: 1652: 1649: 1646: 1645: 1644: 1642: 1615: 1612: 1609: 1601: 1599: 1572: 1557: 1554: 1551: 1546: 1542: 1532: 1519: 1516: 1511: 1496: 1486: 1483: 1473: 1463: 1454: 1453: 1433: 1430: 1427: 1419: 1417: 1402: 1389: 1384: 1369: 1359: 1354: 1344: 1334: 1318: 1317: 1297: 1294: 1291: 1283: 1267: 1252: 1242: 1234: 1233: 1213: 1210: 1207: 1199: 1183: 1170: 1167: 1162: 1152: 1144: 1134: 1131: 1121: 1111: 1104:Volmer step: 1103: 1102: 1099: 1091: 1071: 1068: 1065: 1057: 1055: 1028: 1013: 1010: 1007: 1002: 998: 988: 978: 975: 970: 958: 955: 950: 940: 925: 912: 903: 902: 882: 879: 876: 868: 852: 842: 834: 828: 813: 810: 793: 792: 772: 769: 766: 758: 737: 727: 722: 719: 701: 688: 683: 663: 662: 642: 639: 636: 628: 612: 602: 597: 576: 563: 558: 544: 543: 523: 520: 517: 509: 493: 483: 473: 463: 458: 443: 430: 425: 408: 407: 387: 384: 381: 373: 357: 347: 342: 324: 307: 306: 303: 289: 287: 282: 280: 274: 272: 268: 264: 260: 250: 241: 237: 233: 231: 227: 222: 220: 216: 212: 208: 204: 201:is a type of 200: 191: 187: 183: 179: 175: 171: 167: 163: 159: 155: 151: 147: 143: 139: 135: 131: 127: 125:Power density 123: 119: 115: 111: 107: 103: 99: 96:60-80 °C 95: 91: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 25: 20: 2686:Electrolysis 2614:(11): 1286. 2611: 2607: 2557: 2553: 2543: 2524: 2518: 2501: 2497: 2491: 2466: 2462: 2456: 2439: 2435: 2429: 2396: 2392: 2386: 2369: 2365: 2358: 2333: 2329: 2323: 2288: 2284: 2274: 2241: 2237: 2227: 2210: 2206: 2200: 2175: 2171: 2158: 2146:. Retrieved 2142:the original 2132: 2116:. Elsevier. 2113: 2087: 2083: 2077: 2067:, retrieved 2045: 2005: 2001: 1991: 1979:. Retrieved 1966: 1931: 1927: 1916: 1871: 1867: 1836:(12): 4901. 1833: 1829: 1761: 1757: 1751: 1716: 1712: 1702: 1685: 1681: 1675: 1661: 1658:Disadvantage 1638: 1455: 1319: 1235:Tafel step: 1097: 1089: 904: 300: 286:Raney nickel 283: 275: 255: 238: 234: 223: 203:electrolyser 198: 197: 176:<90,000 h 168:<760 Nm/h 160:62–82% (HHV) 117:Cell voltage 112:0.2-0.4 A/cm 2372:: 170–180. 2291:: 846–854. 2238:ChemNanoMat 1874:(8): 1336. 1779:2117/178519 1764:: 392–403. 271:Polysulfone 192:20-30 years 128:to 1.0 W/cm 2670:Categories 2504:: 101254. 2399:(2): 185. 2148:29 January 2069:2024-04-27 1981:19 October 1667:References 207:electrodes 184:<3 μV/h 120:1.8-2.40 V 104:<30 bar 2638:1099-4300 2483:103477803 2421:137144045 2350:104106046 2266:213442277 2258:2199-692X 1868:Materials 1788:140072936 1743:253141292 1555:− 1533:− 1502:→ 1497:− 1403:− 1375:→ 1370:− 1355:∗ 1258:→ 1253:∗ 1184:− 1163:∗ 1150:→ 1145:− 989:− 931:→ 926:− 853:− 819:→ 814:∗ 811:− 723:∗ 720:− 707:→ 702:− 684:∗ 613:− 598:∗ 582:→ 577:− 559:∗ 494:− 459:∗ 449:→ 444:− 426:∗ 358:− 343:∗ 330:→ 325:− 213:(KOH) or 2656:33287054 2586:28660036 2315:24991521 2192:55017229 2024:35846371 1958:35575644 1908:31022944 267:zirconia 259:Asbestos 59:Ni/Co/Fe 2647:7712718 2616:Bibcode 2608:Entropy 2577:5477031 2401:Bibcode 2306:4077405 1949:9332215 1899:6515460 1876:Bibcode 1721:Bibcode 67:Ni/C-Pt 2654:  2644:  2636:  2584:  2574:  2531:  2481:  2419:  2348:  2313:  2303:  2264:  2256:  2190:  2120:  2060:  2022:  1956:  1946:  1906:  1896:  1786:  1741:  136:20-40% 2479:S2CID 2417:S2CID 2346:S2CID 2262:S2CID 2188:S2CID 2168:(PDF) 2020:S2CID 1975:(PDF) 1784:S2CID 1739:S2CID 2652:PMID 2634:ISSN 2582:PMID 2529:ISBN 2311:PMID 2254:ISSN 2150:2019 2118:ISBN 2058:ISBN 1983:2014 1954:PMID 1904:PMID 1558:0.83 1014:0.40 269:and 2642:PMC 2624:doi 2572:PMC 2562:doi 2506:doi 2502:143 2471:doi 2444:doi 2409:doi 2374:doi 2370:262 2338:doi 2301:PMC 2293:doi 2246:doi 2215:doi 2180:doi 2176:163 2092:doi 2050:doi 2010:doi 2006:163 1944:PMC 1936:doi 1894:PMC 1884:doi 1838:doi 1774:hdl 1766:doi 1729:doi 1690:doi 2672:: 2650:. 2640:. 2632:. 2622:. 2612:22 2610:. 2606:. 2594:^ 2580:. 2570:. 2556:. 2552:. 2500:. 2477:. 2467:43 2465:. 2440:23 2438:. 2415:. 2407:. 2395:. 2368:. 2344:. 2332:. 2309:. 2299:. 2289:42 2287:. 2283:. 2260:. 2252:. 2240:. 2236:. 2211:42 2209:. 2186:. 2174:. 2170:. 2104:^ 2088:36 2086:. 2056:, 2044:, 2032:^ 2018:. 2004:. 2000:. 1952:. 1942:. 1932:51 1930:. 1926:. 1902:. 1892:. 1882:. 1872:12 1870:. 1866:. 1850:^ 1834:38 1832:. 1796:^ 1782:. 1772:. 1762:23 1760:. 1737:. 1727:. 1715:. 1711:. 1684:. 1613:10 281:. 2658:. 2626:: 2618:: 2588:. 2564:: 2558:7 2537:. 2512:. 2508:: 2485:. 2473:: 2450:. 2446:: 2423:. 2411:: 2403:: 2397:4 2380:. 2376:: 2352:. 2340:: 2334:9 2317:. 2295:: 2268:. 2248:: 2242:6 2221:. 2217:: 2194:. 2182:: 2152:. 2126:. 2098:. 2094:: 2052:: 2026:. 2012:: 1985:. 1960:. 1938:: 1910:. 1886:: 1878:: 1844:. 1840:: 1790:. 1776:: 1768:: 1745:. 1731:: 1723:: 1717:8 1696:. 1692:: 1686:7 1616:) 1610:( 1587:) 1583:E 1580:H 1577:S 1573:. 1570:s 1567:v 1563:V 1552:= 1547:0 1543:E 1539:( 1528:H 1525:O 1520:2 1517:+ 1512:2 1507:H 1492:e 1487:2 1484:+ 1480:O 1474:2 1469:H 1464:2 1434:) 1431:9 1428:( 1398:H 1395:O 1390:+ 1385:2 1380:H 1365:e 1360:+ 1350:H 1345:+ 1341:O 1335:2 1330:H 1298:) 1295:8 1292:( 1268:2 1263:H 1248:H 1243:2 1214:) 1211:7 1208:( 1179:H 1176:O 1171:2 1168:+ 1158:H 1153:2 1140:e 1135:2 1132:+ 1128:O 1122:2 1117:H 1112:2 1072:) 1069:6 1066:( 1043:) 1039:E 1036:H 1033:S 1029:. 1026:s 1023:v 1019:V 1011:+ 1008:= 1003:0 999:E 995:( 984:e 979:2 976:+ 971:2 966:O 959:2 956:1 951:+ 947:O 941:2 936:H 921:H 918:O 913:2 883:) 880:5 877:( 848:e 843:+ 838:) 835:g 832:( 829:2 824:O 806:O 803:O 773:) 770:4 767:( 744:O 738:2 733:H 728:+ 715:O 712:O 697:H 694:O 689:+ 679:H 676:O 673:O 643:) 640:3 637:( 608:e 603:+ 593:H 590:O 587:O 572:H 569:O 564:+ 554:O 524:) 521:2 518:( 489:e 484:+ 480:O 474:2 469:H 464:+ 454:O 439:H 436:O 431:+ 421:H 418:O 388:) 385:1 382:( 353:e 348:+ 338:H 335:O 320:H 317:O

Index

electrolyser
electrodes
potassium hydroxide
sodium hydroxide
polymer electrolyte membrane water electrolysis
lighter-than-air aircraft
steam reforming

Asbestos
Rotterdam Convention
zirconia
Polysulfone
Oxygen Evolution Reaction (OER)
Raney nickel
Proton exchange membrane electrolysis
doi
10.1016/0360-3199(82)90018-0
"An overview of water electrolysis technologies for green hydrogen production"
Bibcode
2022EnRep...813793S
doi
10.1016/j.egyr.2022.10.127
S2CID
253141292
doi
10.1016/j.est.2019.03.001
hdl
2117/178519
S2CID
140072936

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.