Knowledge

Airfoil

Source đź“ť

602: 956:
the current state of theoretical knowledge on the leading-edge stall phenomenon. Morris's theory predicts the critical angle of attack for leading-edge stall onset as the condition at which a global separation zone is predicted in the solution for the inner flow. Morris's theory demonstrates that a subsonic flow about a thin airfoil can be described in terms of an outer region, around most of the airfoil chord, and an inner region, around the nose, that asymptotically match each other. As the flow in the outer region is dominated by classical thin airfoil theory, Morris's equations exhibit many components of thin airfoil theory.
354:
will disrupt the laminar flow, making it turbulent. For example, with rain on the wing, the flow will be turbulent. Under certain conditions, insect debris on the wing will cause the loss of small regions of laminar flow as well. Before NASA's research in the 1970s and 1980s the aircraft design community understood from application attempts in the WW II era that laminar flow wing designs were not practical using common manufacturing tolerances and surface imperfections. That belief changed after new manufacturing methods were developed with composite materials (e.g. laminar-flow airfoils developed by Professor
965: 167: 477: 382: 590: 31: 175: 2038: 485: 43: 2425: 1758: 362:). Machined metal methods were also introduced. NASA's research in the 1980s revealed the practicality and usefulness of laminar flow wing designs and opened the way for laminar-flow applications on modern practical aircraft surfaces, from subsonic general aviation aircraft to transonic large transport aircraft, to supersonic designs. 955:
of the airfoil, which usually occurs at an angle of attack between 10° and 15° for typical airfoils. In the mid-late 2000s, however, a theory predicting the onset of leading-edge stall was proposed by Wallace J. Morris II in his doctoral thesis. Morris's subsequent refinements contain the details on
353:
in the linear regime shows that a negative pressure gradient along the flow has the same effect as reducing the speed. So with the maximum camber in the middle, maintaining a laminar flow over a larger percentage of the wing at a higher cruising speed is possible. However, some surface contamination
241:
and also an aerodynamic force perpendicular to the wind. This does not mean the object qualifies as an airfoil. Airfoils are highly-efficient lifting shapes, able to generate more lift than similarly sized flat plates of the same area, and able to generate lift with significantly less drag. Airfoils
2213: 2218: 1653: 976:* Laminar flow airfoil for a crewed propeller aircraft * Laminar flow at a jet airliner airfoil * Stable airfoil used for flying wings * Aft loaded airfoil allowing for a large main spar and late stall * Transonic supercritical airfoil * Supersonic leading edge airfoil 45: 2033:{\displaystyle {\begin{aligned}&{\frac {dy}{dx}}=A_{0}+A_{1}\cos(\theta )+A_{2}\cos(2\theta )+\dots \\&\gamma (x)=2(\alpha +A_{0})\left({\frac {\sin \theta }{1+\cos \theta }}\right)+2A_{1}\sin(\theta )+2A_{2}\sin(2\theta )+\dots {\text{.}}\end{aligned}}} 46: 1378: 2050: 3111:
Ramesh, Kiran; Gopalarathnam, Ashok; Granlund, Kenneth; Ol, Michael V.; Edwards, Jack R. (July 2014). "Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding".
47: 3165:: "A simple solution for general two-dimensional aerofoil sections can be obtained by neglecting thickness effects and using a mean-line only section model.... This also means small changes in position are equivalent so that 2832:
If the body is shaped, moved, or inclined in such a way as to produce a net deflection or turning of the flow, the local velocity is changed in magnitude, direction, or both. Changing the velocity creates a net force on the
2730: 1492: 2805:, p. 378: "The effect of the wing is to give the air stream a downward velocity component. The reaction force of the deflected air mass must then act on the wing to give it an equal and opposite upward component." 537:. For example, an airfoil of the NACA 4-digit series such as the NACA 2415 (to be read as 2 – 4 – 15) describes an airfoil with a camber of 0.02 chord located at 0.40 chord, with 0.15 chord of maximum thickness. 2634: 2420:{\displaystyle C_{M}=-{\frac {\pi }{2}}\left(\alpha +A_{0}+A_{1}-{\frac {A_{2}}{2}}\right)=-{\frac {\pi }{2}}\alpha -\int _{0}^{\pi }{{\frac {dy}{dx}}\cdot \cos(\theta )(1+\cos \theta )\,d\theta }{\text{.}}} 312:
is increased before the wing achieves maximum thickness to minimize the chance of boundary layer separation. This elongates the wing and moves the point of maximum thickness back from the leading edge.
2523: 404:(a.k.a. lower surface) has a comparatively higher static pressure than the suction surface. The pressure gradient between these two surfaces contributes to the lift force generated for a given airfoil. 1721: 1246: 632:
and others in the 1920s. The theory idealizes the flow around an airfoil as two-dimensional flow around a thin airfoil. It can be imagined as addressing an airfoil of zero thickness and infinite
342:, are fitted to airfoils on almost every aircraft. A trailing edge flap acts similarly to an aileron; however, it, as opposed to an aileron, can be retracted partially into the wing if not used. 1763: 3065:: "The equation can only be used for aircraft with medium to large aspect ratio wings and only up to the stall angle, which is usually between 10° and 15° for typical aircraft configurations." 1178: 284:. Various airfoils serve different flight regimes. Asymmetric airfoils can generate lift at zero angle of attack, while a symmetric airfoil may better suit frequent inverted flight as in an 902: 639:
Thin airfoil theory was particularly notable in its day because it provided a sound theoretical basis for the following important properties of airfoils in two-dimensional inviscid flow:
1265: 744: 44: 662:
airfoil, the aerodynamic center lies exactly one quarter of the chord behind the leading edge, but the position of the center of pressure moves when the angle of attack changes.
97:
deflects the oncoming fluid (for fixed-wing aircraft, a downward force), resulting in a force on the airfoil in the direction opposite to the deflection. This force is known as
3664: 139:
The air deflected by an airfoil causes it to generate a lower-pressure "shadow" above and behind itself. This pressure difference is accompanied by a velocity difference, via
34:
Examples of airfoils in nature and in or on various vehicles. The dolphin flipper at bottom left obeys the same principles in a different fluid medium; it is an example of a
941: 257:
of the lift curve. At about 18 degrees this airfoil stalls, and lift falls off quickly beyond that. The drop in lift can be explained by the action of the upper-surface
830: 797: 774: 691: 565:
is momentarily zero. On a cambered airfoil, the center of pressure is not a fixed location as it moves in response to changes in angle of attack and lift coefficient.
1004:
In thin airfoil theory, the width of the (2D) airfoil is assumed negligible, and the airfoil itself replaced with a 1D blade along its camber line, oriented at the
1419: 466: 369:. Various airfoil generation systems are also used. An example of a general purpose airfoil that finds wide application, and pre–dates the NACA system, is the 2656: 308:. Subsonic airfoils have a round leading edge, which is naturally insensitive to the angle of attack. The cross section is not strictly circular, however: the 2208:{\displaystyle C_{L}=2\pi \left(\alpha +A_{0}+{\frac {A_{1}}{2}}\right)=2\pi \alpha +2\int _{0}^{\pi }{{\frac {dy}{dx}}\cdot (1+\cos \theta )\,d\theta }} 323:
has its maximum thickness close to the leading edge to have a lot of length to slowly shock the supersonic flow back to subsonic speeds. Generally such
2539: 143:, so the resulting flowfield about the airfoil has a higher average velocity on the upper surface than on the lower surface. In some situations (e.g. 331:. Modern aircraft wings may have different airfoil sections along the wing span, each one optimized for the conditions in each section of the wing. 3621: 3680: 2844:“It has been known from the very beginning of flight that wings with a sharp trailing edge must be used in order to obtain a well-defined lift.” 2430: 124:
airfoils can generate lift at zero angle of attack. Airfoils can be designed for use at different speeds by modifying their geometry: those for
150:) the lift force can be related directly to the average top/bottom velocity difference without computing the pressure by using the concept of 1664: 1187: 253:
so some lift is produced at zero angle of attack. With increased angle of attack, lift increases in a roughly linear relation, called the
427:
is the point on the airfoil most remote from the leading edge. The angle between the upper and lower surfaces at the trailing edge is the
1648:{\displaystyle \left(\alpha -{\frac {dy}{dx}}\right)V=-w(x)=-{\frac {1}{2\pi }}\int _{0}^{c}{\frac {\gamma (x')}{x-x'}}\,dx'{\text{,}}} 1126: 3578: 3310: 214:, are similar in cross-section and operate on the same principles as airfoils. Swimming and flying creatures and even many plants and 508:
is the locus of points midway between the upper and lower surfaces. Its shape depends on the thickness distribution along the chord;
2820: 550:, which is the chord-wise location about which the pitching moment is independent of the lift coefficient and the angle of attack. 242:
are used in the design of aircraft, propellers, rotor blades, wind turbines and other applications of aeronautical engineering.
237:
When the wind is obstructed by an object such as a flat plate, a building, or the deck of a bridge, the object will experience
2926:. U.S. Government Printing Office, Washington, D.C.: U.S. Navy, Aviation Training Division. pp. 21–22. NAVWEPS 00-80T-80. 3523: 3440: 3389: 3299: 3467:
Morris, Wallace J.; Rusak, Zvi (October 2013). "Stall onset on aerofoils at low to moderately high Reynolds number flows".
2732:
Thin-airfoil theory shows that, in two-dimensional inviscid flow, the aerodynamic center is at the quarter-chord position.
2526: 644: 555: 261:, which separates and greatly thickens over the upper surface at and past the stall angle. The thickened boundary layer's 3233:. Oxford Applied Mathematics and Computing Science. Oxford: Clarendon Press (published 2009). pp. 140–141, 143–145. 3712: 581:
of the wing also significantly influences the slope of the curve. As aspect ratio decreases, the slope also decreases.
3408: 319:
are much more angular in shape and can have a very sharp leading edge, which is very sensitive to angle of attack. A
309: 845: 577:. The slope is greatest if the angle is zero; and decreases as the angle increases. For a wing of finite span, the 4094: 3921: 3630:
Numerical Analysis of NACA Airfoil 0012 at Different Attack Angles and Obtaining its Aerodynamic Coefficients.
3629: 601: 518:
Thickness measured perpendicular to the camber line. This is sometimes described as the "American convention";
4161: 218:
organisms employ airfoils/hydrofoils: common examples being bird wings, the bodies of fish, and the shape of
570: 521:
Thickness measured perpendicular to the chord line. This is sometimes described as the "British convention".
3669: 270: 151: 839:
Also as a consequence of (3), the section lift coefficient of a cambered airfoil of infinite wingspan is:
707: 3636:
Bearman, Matt (2019). "Going with the Flow? Britain's Contribution to Laminar-Flow Research, 1930–1947".
2876:, pp. 497–503: "If a streamline is curved, there must be a pressure gradient across the streamline." 1116: 350: 328: 155: 3875: 3852: 2751: 578: 540:
Finally, important concepts used to describe the airfoil's behaviour when moving through a fluid are:
3757: 1426: 2741: 359: 190:
rotor blades, are built with airfoil-shaped cross sections. Airfoils are also found in propellers,
140: 17: 3325: 909: 3534: 1046:
The flow across the airfoil generates a circulation around the blade, which can be modeled as a
3752: 3705: 1389: 814: 781: 262: 231: 83: 1373:{\displaystyle w(x)={\frac {1}{2\pi }}\int _{0}^{c}{\frac {\gamma (x')}{x-x'}}\,dx'{\text{,}}} 397:(a.k.a. upper surface) is generally associated with higher velocity and lower static pressure. 4156: 4099: 3513: 3430: 751: 672: 659: 529: 320: 266: 250: 121: 4007: 3908: 3898: 3888: 3817: 3582: 3555: 3476: 3455: 3452:
A universal prediction of stall onset for airfoils at a wide range of Reynolds number flows
3340: 3121: 355: 3659: 1395: 373:. Today, airfoils can be designed for specific functions by the use of computer programs. 8: 1659: 1251: 316: 215: 183: 133: 110: 106: 3559: 3480: 3459: 3344: 3125: 2816: 3785: 3615: 3500: 3356: 3145: 2766: 2637: 648: 546: 451: 339: 4119: 3698: 3641: 3519: 3504: 3492: 3436: 3404: 3385: 3352: 3295: 3149: 3137: 2991:. Reports and Memoranda of the Aeronautical Research Council of Great Britain No 2308 2889:
Flight evaluation of an insect contamination protection system for laminar flow wings
2845: 1487: 1381: 964: 418:
is the point at the front of the airfoil that has maximum curvature (minimum radius).
98: 2947: 2945: 2756: 3563: 3484: 3429:
Houghton, E. L.; Carpenter, P. W.; Collicott, Steven H.; Valentine, Daniel (2012).
3368: 3360: 3348: 3129: 2044: 804: 698: 652: 436: 296:
a symmetric airfoil can be used to increase the range of angles of attack to avoid
195: 191: 63: 4135: 4104: 4002: 3865: 3419: 3289: 2942: 2930: 2904: 2887: 2040:
The resulting lift and moment depend on only the first few terms of this series.
1059: 1005: 800: 629: 617: 569:
In two-dimensional flow around a uniform wing of infinite span, the slope of the
561: 335: 305: 202:. Sails are also airfoils, and the underwater surfaces of sailboats, such as the 166: 125: 117: 71: 27:
Cross-sectional shape of a wing, blade of a propeller, rotor, or turbine, or sail
515:
of an airfoil varies along the chord. It may be measured in either of two ways:
496:
The shape of the airfoil is defined using the following geometrical parameters:
3964: 3805: 3790: 3762: 3737: 3729: 1748: 952: 948: 833: 489: 476: 301: 258: 249:
testing is shown on the right. The curve represents an airfoil with a positive
238: 147: 79: 265:
changes the airfoil's effective shape, in particular it reduces its effective
136:
tend to be slimmer with a sharp leading edge. All have a sharp trailing edge.
4150: 4114: 3959: 3954: 3893: 3827: 3645: 3568: 3543: 3496: 3285: 3141: 621: 594: 423: 297: 274: 102: 3685: 381: 277:, so that the overall drag increases sharply near and past the stall point. 120:. Most foil shapes require a positive angle of attack to generate lift, but 3949: 3860: 3795: 3780: 1047: 589: 414: 366: 281: 129: 75: 4109: 4025: 4017: 3939: 3883: 3842: 3488: 3133: 2725:{\displaystyle {\frac {\partial (C_{M'})}{\partial (C_{L})}}=0{\text{.}}} 1484: 606: 273:
and the lift. The thicker boundary layer also causes a large increase in
246: 219: 203: 74:) is a streamlined body that is capable of generating significantly more 52: 3314: 408:
The geometry of the airfoil is described with a variety of terms :
86:
of similar function designed with water as the working fluid are called
4068: 4030: 3944: 3916: 1102: 973: 969: 227: 187: 30: 1039:, is assumed sufficiently small that one need not distinguish between 327:
airfoils and also the supersonic airfoils have a low camber to reduce
4045: 2746: 811:(The above expression is also applicable to a cambered airfoil where 324: 285: 223: 87: 35: 4050: 4040: 3969: 3822: 3428: 2951: 2936: 2855: 2852:, Section VIII.2, p.179, Dover Publications Inc. ISBN 0-486-60541-8 2761: 633: 625: 289: 199: 144: 3032: 3020: 174: 170:
Streamlines around a NACA 0012 airfoil at moderate angle of attack
4060: 3931: 3721: 1109: 943:
is the section lift coefficient when the angle of attack is zero.
527:
Some important parameters to describe an airfoil's shape are its
370: 365:
Schemes have been devised to define airfoils – an example is the
349:
has a maximum thickness in the middle camber line. Analyzing the
293: 93:
When oriented at a suitable angle, a solid body moving through a
2989:
An analysis of the lift slope of aerofoils of small aspect ratio
2629:{\displaystyle \Delta x/c=\pi /4((A_{1}-A_{2})/C_{L}){\text{.}}} 440:
is the straight line connecting leading and trailing edges. The
3997: 3837: 3747: 207: 3675: 3080: 3044: 2905:"Natural laminar flow experiments on modern airplane surfaces" 82:. Wings, sails and propeller blades are examples of airfoils. 4089: 4084: 4035: 3772: 3742: 3195: 3193: 3110: 2969: 484: 94: 3291:
Theory of Wing Sections, Including a Summary of Airfoil Data
3249: 3237: 269:, which modifies the overall flow field so as to reduce the 3992: 3987: 3832: 3809: 3690: 3535:"Question #136: Lift Coefficient & Thin Airfoil Theory" 3212: 3210: 3208: 1655:
which uniquely determines it in terms of known quantities.
211: 3632:
Journal of Mechatronics and Automation. 2019; 6(3): 8–16p.
3190: 2518:{\displaystyle C_{M}(1/4c)=-\pi /4(A_{1}-A_{2}){\text{.}}} 3537:. Ask a Rocket Scientist: Aerodynamics. Aerospaceweb.org. 389:
The various terms related to airfoils are defined below:
3576: 3261: 3205: 3178: 2861: 1658:
An explicit solution can be obtained through first the
1070:, but the strength is singular at the bladefront, with 2957: 2903:
Holmes, B. J.; Obara, C. J.; Yip, L. P. (1984-06-01).
1716:{\displaystyle x=c\cdot {\frac {1+\cos(\theta )}{2}},} 116:
The lift on an airfoil is primarily the result of its
2784: 2659: 2542: 2433: 2221: 2053: 1761: 1667: 1495: 1398: 1268: 1241:{\displaystyle \rho V\int _{0}^{c}x\;\gamma (x)\,dx.} 1190: 1129: 912: 848: 817: 784: 754: 710: 701:
of a thin symmetric airfoil of infinite wingspan is:
675: 454: 968:
From top to bottom: * Laminar flow airfoil for a RC
593:An airfoil section is displayed at the tip of this 559:, which is the chord-wise location about which the 304:. Thus a large range of angles can be used without 3577:Weltner, Klaus; Ingelman-Sundberg, Martin (1999). 3284: 3092: 3068: 3038: 3026: 2724: 2628: 2517: 2427:The moment about the 1/4 chord point will thus be 2419: 2207: 2032: 1715: 1647: 1413: 1372: 1240: 1172: 935: 896: 824: 791: 768: 738: 685: 651:are coincident and lie exactly one quarter of the 460: 51:Streamlines on an airfoil visualised with a smoke 3544:"Semi-Empirical Prediction of Airfoil Hysteresis" 1173:{\displaystyle \rho V\int _{0}^{c}\gamma (x)\,dx} 1023:at the trailing edge; the camber of the airfoil, 821: 788: 765: 682: 4148: 832:is the angle of attack measured relative to the 3686:Airflow across a wing (University of Cambridge) 3417: 2802: 468:, is the length of the chord line. That is the 101:and can be resolved into two components: lift ( 3379: 2975: 2902: 1454:, and the normal component is correspondingly 897:{\displaystyle \ c_{l}=c_{l_{0}}+2\pi \alpha } 628:and further refined by British aerodynamicist 3706: 3665:Airfoil & Hydrofoil Reference Application 3380:Bertin, John J.; Cummings, Russel M. (2009). 2640:is the position at which the pitching moment 3620:: CS1 maint: multiple names: authors list ( 3308: 3216: 3162: 3013:Abbott, I.H., and Von Doenhoff, A.E. (1949) 3000:Abbott, I.H., and Von Doenhoff, A.E. (1949) 2987:Lyons, D.J., and Bisgood, P.L., (Jan 1945). 616:is a simple theory of airfoils that relates 3466: 3086: 2885: 3713: 3699: 2886:Croom, C. C.; Holmes, B. J. (1985-04-01). 1215: 947:Thin airfoil theory assumes the air is an 480:Different definitions of airfoil thickness 178:Lift and drag curves for a typical airfoil 3567: 3418:Halliday, David; Resnick, Robert (1988). 3367: 3267: 3255: 3243: 3199: 3184: 2404: 2197: 1628: 1353: 1228: 1163: 624:. It was devised by German mathematician 3605: 3511: 3323: 2963: 2873: 963: 600: 588: 483: 475: 380: 173: 165: 41: 29: 3676:Airfoil Playground - Interactive WebApp 3635: 3384:(5th ed.). Pearson Prentice Hall. 3228: 1184:about the leading edge proportional to 1043:and position relative to the fuselage. 1011:. Let the position along the blade be 667:lift coefficient versus angle of attack 14: 4149: 3449: 3424:(3rd ed.). John Wiley & Sons. 3398: 3288:; Von Doenhoff, Albert Edward (1959). 3074: 3050: 2790: 584: 376: 3694: 3541: 3532: 3432:Aerodynamics for Engineering Students 3098: 3062: 803:in radians, measured relative to the 697:As a consequence of (3), the section 2921: 2862:Weltner & Ingelman-Sundberg 1999 2529:is aft of the 'quarter-chord' point 739:{\displaystyle \ c_{l}=2\pi \alpha } 222:. An airfoil-shaped wing can create 2653:with a change in lift coefficient: 280:Airfoil design is a major facet of 24: 3628:Ali Kamranpay, Alireza Mehrabadi. 3599: 3324:Babinsky, Holger (November 2003). 3277: 2689: 2663: 2543: 1450:relative to the blade at position 1421:must balance an inverse flow from 245:A lift and drag curve obtained in 230:or other motor vehicle, improving 25: 4173: 3660:UIUC Airfoil Coordinates Database 3653: 3542:Traub, Lance W. (24 March 2016). 3375:. Cambridge UP. pp. 467–471. 3373:An Introduction to Fluid Dynamics 3309:Auld, Douglass; Srinivas (1995). 2922:Hurt, H. H. Jr. (January 1965) . 2823:from the original on 5 July 2011 2814: 1119:gives that the total lift force 972:* Laminar flow airfoil for a RC 776:is the section lift coefficient, 3579:"Physics of flight - revisited" 3222: 3156: 3104: 3056: 3007: 2994: 2981: 2924:Aerodynamics for Naval Aviators 573:is determined primarily by the 288:airplane. In the region of the 3672:An airfoil simulator from NASA 3533:Scott, Jeff (10 August 2003). 3450:Morris, Wallace J. II (2009). 3039:Abbott & Von Doenhoff 1959 3027:Abbott & Von Doenhoff 1959 2915: 2896: 2879: 2867: 2838: 2819:. NASA Glenn Research Center. 2808: 2796: 2705: 2692: 2684: 2666: 2618: 2600: 2574: 2571: 2525:From this it follows that the 2507: 2481: 2461: 2444: 2401: 2383: 2380: 2374: 2194: 2176: 2012: 2003: 1978: 1972: 1907: 1888: 1879: 1873: 1856: 1847: 1825: 1819: 1701: 1695: 1606: 1595: 1550: 1544: 1408: 1402: 1331: 1320: 1278: 1272: 1225: 1219: 1160: 1154: 609:helicopter's lower rotor blade 13: 1: 2772: 1050:of position-varying strength 959: 182:The wings and stabilizers of 113:to the freestream velocity). 3720: 3608:Fundamentals of Aerodynamics 3512:Phillips, Warren F. (2004). 3229:Acheson, D. J. (1990). 2777: 2215:and the moment coefficient 999: supersonic flow volume 951:so does not account for the 836:instead of the chord line.) 643:on a symmetric airfoil, the 620:to lift for incompressible, 7: 3876:Internal combustion engines 3853:External combustion engines 3454:(PhD). Harvard University. 2803:Halliday & Resnick 1988 2735: 1388:. Since the airfoil is an 936:{\displaystyle \ c_{l_{0}}} 358:for use with wings made of 334:Movable high-lift devices, 161: 132:, while those designed for 10: 4178: 3606:Anderson, John, D (2007). 3469:Journal of Fluid Mechanics 3435:(6th ed.). Elsevier. 3382:Aerodynamics for Engineers 3353:10.1088/0031-9120/38/6/001 3311:"2-D Thin Aerofoil Theory" 3114:Journal of Fluid Mechanics 2976:Bertin & Cummings 2009 1755:with a modified lead term: 4128: 4077: 4059: 4016: 3978: 3930: 3907: 3874: 3851: 3804: 3771: 3730:Classical simple machines 3728: 3518:. John Wiley & Sons. 3316:Aerodynamics for Students 3231:Elementary Fluid Dynamics 1427:small-angle approximation 825:{\displaystyle \alpha \!} 792:{\displaystyle \alpha \!} 306:boundary layer separation 128:generally have a rounded 3569:10.3390/aerospace3020009 3217:Auld & Srinivas 1995 3163:Auld & Srinivas 1995 2817:"Lift from Flow Turning" 2742:Circulation control wing 1747:as a nondimensionalized 1723:and then expanding both 655:behind the leading edge. 597:aircraft, built in 1991. 488:An airfoil designed for 360:fibre-reinforced plastic 4115:Check weighing machines 3421:Fundamentals of Physics 3319:. University of Sydney. 3087:Morris & Rusak 2013 3015:Theory of Wing Sections 3002:Theory of Wing Sections 1117:Kutta–Joukowski theorem 1019:at the wing's front to 769:{\displaystyle c_{l}\!} 686:{\displaystyle 2\pi \!} 472:of the airfoil section. 351:Navier–Stokes equations 156:Kutta–Joukowski theorem 3638:The Aviation Historian 2909:NASA Technical Reports 2752:Kline–Fogleman airfoil 2726: 2630: 2519: 2421: 2209: 2034: 1717: 1649: 1415: 1374: 1262:produces a flow field 1242: 1174: 1001: 937: 898: 826: 793: 770: 740: 687: 610: 598: 493: 481: 462: 386: 263:displacement thickness 179: 171: 55: 39: 4100:Seed-counting machine 3399:Clancy, L.J. (1975). 2727: 2631: 2520: 2422: 2210: 2035: 1718: 1650: 1433:is inclined at angle 1416: 1375: 1243: 1175: 993: subsonic stream 967: 938: 899: 827: 794: 771: 741: 688: 604: 592: 487: 479: 463: 384: 321:supercritical airfoil 177: 169: 141:Bernoulli's principle 50: 33: 4162:Aircraft wing design 3899:Nutating disc engine 3889:Reciprocating engine 3585:on 29 September 2011 3489:10.1017/jfm.2013.440 3369:Batchelor, George. K 3326:"How do wings work?" 3134:10.1017/jfm.2014.297 2952:Houghton et al. 2012 2937:Houghton et al. 2012 2815:Hall, Nancy R. 2657: 2540: 2431: 2219: 2051: 1759: 1665: 1493: 1414:{\displaystyle w(x)} 1396: 1266: 1188: 1127: 987: turbulent flow 910: 846: 815: 782: 752: 708: 673: 452: 385:Airfoil nomenclature 3560:2016Aeros...3....9T 3515:Mechanics of Flight 3481:2013JFM...733..439M 3460:2009PhDT.......146M 3345:2003PhyEd..38..497B 3286:Abbott, Ira Herbert 3126:2014JFM...751..500R 3089:, pp. 439–472. 2343: 2151: 1660:change of variables 1588: 1390:impermeable surface 1313: 1211: 1150: 1123:is proportional to 614:Thin airfoil theory 585:Thin airfoil theory 575:trailing edge angle 470:reference dimension 429:trailing edge angle 377:Airfoil terminology 317:Supersonic airfoils 310:radius of curvature 184:fixed-wing aircraft 107:freestream velocity 3922:Peaucellier-Lipkin 3403:. London: Pitman. 3258:, p. 469-470. 3246:, p. 467-468. 2846:von Mises, Richard 2767:Wing configuration 2722: 2638:aerodynamic center 2626: 2527:center of pressure 2515: 2417: 2329: 2205: 2137: 2030: 2028: 1713: 1645: 1574: 1411: 1384:to the airfoil at 1370: 1299: 1238: 1197: 1170: 1136: 1002: 981: laminar flow 933: 894: 822: 789: 766: 736: 683: 649:aerodynamic center 645:center of pressure 611: 599: 556:center of pressure 547:aerodynamic center 494: 482: 458: 387: 180: 172: 56: 40: 4144: 4143: 4120:Riveting machines 3818:Archimedes' screw 3525:978-0-471-33458-3 3442:978-0-08-096633-5 3391:978-0-13-227268-1 3333:Physics Education 3301:978-0-486-60586-9 2720: 2709: 2624: 2513: 2415: 2363: 2321: 2300: 2246: 2171: 2112: 2024: 1944: 1785: 1708: 1643: 1626: 1572: 1525: 1483:must satisfy the 1368: 1351: 1297: 915: 851: 713: 693:units per radian. 665:the slope of the 461:{\displaystyle c} 347:laminar flow wing 134:supersonic flight 99:aerodynamic force 48: 16:(Redirected from 4169: 3823:Eductor-jet pump 3715: 3708: 3701: 3692: 3691: 3649: 3625: 3619: 3611: 3594: 3592: 3590: 3581:. Archived from 3573: 3571: 3538: 3529: 3508: 3463: 3446: 3425: 3414: 3395: 3376: 3364: 3330: 3320: 3305: 3271: 3265: 3259: 3253: 3247: 3241: 3235: 3234: 3226: 3220: 3214: 3203: 3202:, p. 467-9. 3197: 3188: 3182: 3176: 3174: 3160: 3154: 3153: 3108: 3102: 3096: 3090: 3084: 3078: 3072: 3066: 3060: 3054: 3048: 3042: 3036: 3030: 3024: 3018: 3011: 3005: 3004:, section 7.4(b) 2998: 2992: 2985: 2979: 2973: 2967: 2961: 2955: 2949: 2940: 2934: 2928: 2927: 2919: 2913: 2912: 2900: 2894: 2893: 2883: 2877: 2871: 2865: 2859: 2853: 2850:Theory of Flight 2842: 2836: 2835: 2829: 2828: 2812: 2806: 2800: 2794: 2788: 2731: 2729: 2728: 2723: 2721: 2718: 2710: 2708: 2704: 2703: 2687: 2683: 2682: 2681: 2661: 2648: 2647: 2635: 2633: 2632: 2627: 2625: 2622: 2617: 2616: 2607: 2599: 2598: 2586: 2585: 2567: 2553: 2535: 2524: 2522: 2521: 2516: 2514: 2511: 2506: 2505: 2493: 2492: 2477: 2454: 2443: 2442: 2426: 2424: 2423: 2418: 2416: 2413: 2411: 2364: 2362: 2354: 2346: 2342: 2337: 2322: 2314: 2306: 2302: 2301: 2296: 2295: 2286: 2281: 2280: 2268: 2267: 2247: 2239: 2231: 2230: 2214: 2212: 2211: 2206: 2204: 2172: 2170: 2162: 2154: 2150: 2145: 2118: 2114: 2113: 2108: 2107: 2098: 2093: 2092: 2063: 2062: 2045:lift coefficient 2039: 2037: 2036: 2031: 2029: 2025: 2022: 1996: 1995: 1965: 1964: 1949: 1945: 1943: 1926: 1915: 1906: 1905: 1868: 1840: 1839: 1812: 1811: 1799: 1798: 1786: 1784: 1776: 1768: 1765: 1754: 1746: 1738: 1737: 1736: 1730: 1722: 1720: 1719: 1714: 1709: 1704: 1681: 1654: 1652: 1651: 1646: 1644: 1641: 1639: 1627: 1625: 1624: 1609: 1605: 1590: 1587: 1582: 1573: 1571: 1560: 1531: 1527: 1526: 1524: 1516: 1508: 1482: 1474: 1469: 1468: 1462: 1453: 1449: 1448: 1447: 1441: 1432: 1424: 1420: 1418: 1417: 1412: 1387: 1379: 1377: 1376: 1371: 1369: 1366: 1364: 1352: 1350: 1349: 1334: 1330: 1315: 1312: 1307: 1298: 1296: 1285: 1261: 1254:, the vorticity 1247: 1245: 1244: 1239: 1210: 1205: 1183: 1179: 1177: 1176: 1171: 1149: 1144: 1122: 1114: 1107: 1100: 1093: 1092: 1091: 1090: 1089: 1080: 1069: 1057: 1042: 1038: 1037: 1036: 1030: 1022: 1018: 1014: 1010: 998: 992: 986: 980: 942: 940: 939: 934: 932: 931: 930: 929: 913: 903: 901: 900: 895: 881: 880: 879: 878: 861: 860: 849: 831: 829: 828: 823: 798: 796: 795: 790: 775: 773: 772: 767: 764: 763: 745: 743: 742: 737: 723: 722: 711: 699:lift coefficient 692: 690: 689: 684: 502:mean camber line 467: 465: 464: 459: 402:pressure surface 64:American English 49: 21: 4177: 4176: 4172: 4171: 4170: 4168: 4167: 4166: 4147: 4146: 4145: 4140: 4136:Spring (device) 4124: 4105:Vending machine 4073: 4055: 4012: 3974: 3926: 3903: 3870: 3866:Stirling engine 3847: 3800: 3767: 3724: 3719: 3656: 3613: 3612: 3602: 3600:Further reading 3597: 3588: 3586: 3526: 3443: 3411: 3392: 3328: 3302: 3280: 3278:General Sources 3275: 3274: 3266: 3262: 3254: 3250: 3242: 3238: 3227: 3223: 3215: 3206: 3198: 3191: 3183: 3179: 3166: 3161: 3157: 3109: 3105: 3097: 3093: 3085: 3081: 3073: 3069: 3061: 3057: 3053:, §8.1 to §8.8. 3049: 3045: 3037: 3033: 3025: 3021: 3012: 3008: 2999: 2995: 2986: 2982: 2974: 2970: 2962: 2958: 2950: 2943: 2935: 2931: 2920: 2916: 2901: 2897: 2884: 2880: 2872: 2868: 2860: 2856: 2843: 2839: 2826: 2824: 2813: 2809: 2801: 2797: 2789: 2785: 2780: 2775: 2738: 2717: 2699: 2695: 2688: 2674: 2673: 2669: 2662: 2660: 2658: 2655: 2654: 2645: 2641: 2621: 2612: 2608: 2603: 2594: 2590: 2581: 2577: 2563: 2549: 2541: 2538: 2537: 2530: 2510: 2501: 2497: 2488: 2484: 2473: 2450: 2438: 2434: 2432: 2429: 2428: 2412: 2355: 2347: 2345: 2344: 2338: 2333: 2313: 2291: 2287: 2285: 2276: 2272: 2263: 2259: 2252: 2248: 2238: 2226: 2222: 2220: 2217: 2216: 2163: 2155: 2153: 2152: 2146: 2141: 2103: 2099: 2097: 2088: 2084: 2077: 2073: 2058: 2054: 2052: 2049: 2048: 2027: 2026: 2021: 1991: 1987: 1960: 1956: 1927: 1916: 1914: 1910: 1901: 1897: 1866: 1865: 1835: 1831: 1807: 1803: 1794: 1790: 1777: 1769: 1767: 1762: 1760: 1757: 1756: 1752: 1740: 1732: 1726: 1725: 1724: 1682: 1680: 1666: 1663: 1662: 1640: 1632: 1617: 1610: 1598: 1591: 1589: 1583: 1578: 1564: 1559: 1517: 1509: 1507: 1500: 1496: 1494: 1491: 1490: 1476: 1464: 1458: 1457: 1455: 1451: 1443: 1437: 1436: 1434: 1430: 1422: 1397: 1394: 1393: 1385: 1365: 1357: 1342: 1335: 1323: 1316: 1314: 1308: 1303: 1289: 1284: 1267: 1264: 1263: 1255: 1252:Biot–Savart law 1206: 1201: 1189: 1186: 1185: 1181: 1180:and its moment 1145: 1140: 1128: 1125: 1124: 1120: 1112: 1105: 1095: 1085: 1083: 1082: 1078: 1077: 1071: 1063: 1060:Kutta condition 1051: 1040: 1032: 1026: 1025: 1024: 1020: 1016: 1015:, ranging from 1012: 1008: 1006:angle of attack 1000: 996: 994: 990: 988: 984: 982: 978: 962: 925: 921: 920: 916: 911: 908: 907: 874: 870: 869: 865: 856: 852: 847: 844: 843: 816: 813: 812: 801:angle of attack 783: 780: 779: 759: 755: 753: 750: 749: 718: 714: 709: 706: 705: 674: 671: 670: 630:Hermann Glauert 618:angle of attack 587: 562:pitching moment 453: 450: 449: 395:suction surface 379: 329:drag divergence 164: 126:subsonic flight 118:angle of attack 72:British English 42: 28: 23: 22: 15: 12: 11: 5: 4175: 4165: 4164: 4159: 4142: 4141: 4139: 4138: 4132: 4130: 4126: 4125: 4123: 4122: 4117: 4112: 4107: 4102: 4097: 4092: 4087: 4081: 4079: 4075: 4074: 4072: 4071: 4065: 4063: 4057: 4056: 4054: 4053: 4048: 4043: 4038: 4033: 4028: 4022: 4020: 4014: 4013: 4011: 4010: 4005: 4000: 3995: 3990: 3984: 3982: 3976: 3975: 3973: 3972: 3967: 3965:Wind generator 3962: 3957: 3952: 3947: 3942: 3936: 3934: 3928: 3927: 3925: 3924: 3919: 3913: 3911: 3905: 3904: 3902: 3901: 3896: 3891: 3886: 3880: 3878: 3872: 3871: 3869: 3868: 3863: 3857: 3855: 3849: 3848: 3846: 3845: 3840: 3835: 3830: 3825: 3820: 3814: 3812: 3802: 3801: 3799: 3798: 3793: 3791:Pendulum clock 3788: 3783: 3777: 3775: 3769: 3768: 3766: 3765: 3763:Wheel and axle 3760: 3755: 3750: 3745: 3740: 3738:Inclined plane 3734: 3732: 3726: 3725: 3718: 3717: 3710: 3703: 3695: 3689: 3688: 3683: 3678: 3673: 3667: 3662: 3655: 3654:External links 3652: 3651: 3650: 3633: 3626: 3610:. McGraw-Hill. 3601: 3598: 3596: 3595: 3574: 3539: 3530: 3524: 3509: 3464: 3447: 3441: 3426: 3415: 3409: 3396: 3390: 3377: 3365: 3339:(6): 497–503. 3321: 3306: 3300: 3281: 3279: 3276: 3273: 3272: 3270:, p. 470. 3268:Batchelor 1967 3260: 3256:Batchelor 1967 3248: 3244:Batchelor 1967 3236: 3221: 3204: 3200:Batchelor 1967 3189: 3187:, p. 467. 3185:Batchelor 1967 3177: 3155: 3103: 3091: 3079: 3067: 3055: 3043: 3031: 3019: 3006: 2993: 2980: 2978:, p. 199. 2968: 2956: 2941: 2929: 2914: 2895: 2878: 2866: 2854: 2837: 2807: 2795: 2782: 2781: 2779: 2776: 2774: 2771: 2770: 2769: 2764: 2759: 2757:KĂĽssner effect 2754: 2749: 2744: 2737: 2734: 2716: 2713: 2707: 2702: 2698: 2694: 2691: 2686: 2680: 2677: 2672: 2668: 2665: 2620: 2615: 2611: 2606: 2602: 2597: 2593: 2589: 2584: 2580: 2576: 2573: 2570: 2566: 2562: 2559: 2556: 2552: 2548: 2545: 2509: 2504: 2500: 2496: 2491: 2487: 2483: 2480: 2476: 2472: 2469: 2466: 2463: 2460: 2457: 2453: 2449: 2446: 2441: 2437: 2410: 2407: 2403: 2400: 2397: 2394: 2391: 2388: 2385: 2382: 2379: 2376: 2373: 2370: 2367: 2361: 2358: 2353: 2350: 2341: 2336: 2332: 2328: 2325: 2320: 2317: 2312: 2309: 2305: 2299: 2294: 2290: 2284: 2279: 2275: 2271: 2266: 2262: 2258: 2255: 2251: 2245: 2242: 2237: 2234: 2229: 2225: 2203: 2200: 2196: 2193: 2190: 2187: 2184: 2181: 2178: 2175: 2169: 2166: 2161: 2158: 2149: 2144: 2140: 2136: 2133: 2130: 2127: 2124: 2121: 2117: 2111: 2106: 2102: 2096: 2091: 2087: 2083: 2080: 2076: 2072: 2069: 2066: 2061: 2057: 2020: 2017: 2014: 2011: 2008: 2005: 2002: 1999: 1994: 1990: 1986: 1983: 1980: 1977: 1974: 1971: 1968: 1963: 1959: 1955: 1952: 1948: 1942: 1939: 1936: 1933: 1930: 1925: 1922: 1919: 1913: 1909: 1904: 1900: 1896: 1893: 1890: 1887: 1884: 1881: 1878: 1875: 1872: 1869: 1867: 1864: 1861: 1858: 1855: 1852: 1849: 1846: 1843: 1838: 1834: 1830: 1827: 1824: 1821: 1818: 1815: 1810: 1806: 1802: 1797: 1793: 1789: 1783: 1780: 1775: 1772: 1766: 1764: 1749:Fourier series 1712: 1707: 1703: 1700: 1697: 1694: 1691: 1688: 1685: 1679: 1676: 1673: 1670: 1638: 1635: 1631: 1623: 1620: 1616: 1613: 1608: 1604: 1601: 1597: 1594: 1586: 1581: 1577: 1570: 1567: 1563: 1558: 1555: 1552: 1549: 1546: 1543: 1540: 1537: 1534: 1530: 1523: 1520: 1515: 1512: 1506: 1503: 1499: 1410: 1407: 1404: 1401: 1363: 1360: 1356: 1348: 1345: 1341: 1338: 1333: 1329: 1326: 1322: 1319: 1311: 1306: 1302: 1295: 1292: 1288: 1283: 1280: 1277: 1274: 1271: 1237: 1234: 1231: 1227: 1224: 1221: 1218: 1214: 1209: 1204: 1200: 1196: 1193: 1169: 1166: 1162: 1159: 1156: 1153: 1148: 1143: 1139: 1135: 1132: 995: 989: 983: 977: 961: 958: 949:inviscid fluid 945: 944: 928: 924: 919: 904: 893: 890: 887: 884: 877: 873: 868: 864: 859: 855: 834:zero-lift line 820: 809: 808: 787: 777: 762: 758: 746: 735: 732: 729: 726: 721: 717: 695: 694: 681: 678: 663: 656: 622:inviscid flows 586: 583: 567: 566: 551: 525: 524: 523: 522: 519: 509: 492:(PSU 90-125WL) 474: 473: 457: 432: 419: 406: 405: 398: 378: 375: 356:Franz Wortmann 338:and sometimes 259:boundary layer 163: 160: 148:potential flow 105:to the remote 26: 9: 6: 4: 3: 2: 4174: 4163: 4160: 4158: 4155: 4154: 4152: 4137: 4134: 4133: 4131: 4127: 4121: 4118: 4116: 4113: 4111: 4108: 4106: 4103: 4101: 4098: 4096: 4093: 4091: 4088: 4086: 4083: 4082: 4080: 4078:Miscellaneous 4076: 4070: 4067: 4066: 4064: 4062: 4058: 4052: 4049: 4047: 4044: 4042: 4039: 4037: 4034: 4032: 4029: 4027: 4024: 4023: 4021: 4019: 4015: 4009: 4006: 4004: 4001: 3999: 3996: 3994: 3991: 3989: 3986: 3985: 3983: 3981: 3977: 3971: 3968: 3966: 3963: 3961: 3960:Water turbine 3958: 3956: 3955:Steam turbine 3953: 3951: 3948: 3946: 3943: 3941: 3938: 3937: 3935: 3933: 3929: 3923: 3920: 3918: 3915: 3914: 3912: 3910: 3906: 3900: 3897: 3895: 3894:Rotary engine 3892: 3890: 3887: 3885: 3882: 3881: 3879: 3877: 3873: 3867: 3864: 3862: 3859: 3858: 3856: 3854: 3850: 3844: 3841: 3839: 3836: 3834: 3831: 3829: 3828:Hydraulic ram 3826: 3824: 3821: 3819: 3816: 3815: 3813: 3811: 3807: 3803: 3797: 3794: 3792: 3789: 3787: 3784: 3782: 3779: 3778: 3776: 3774: 3770: 3764: 3761: 3759: 3756: 3754: 3751: 3749: 3746: 3744: 3741: 3739: 3736: 3735: 3733: 3731: 3727: 3723: 3716: 3711: 3709: 3704: 3702: 3697: 3696: 3693: 3687: 3684: 3682: 3679: 3677: 3674: 3671: 3668: 3666: 3663: 3661: 3658: 3657: 3647: 3643: 3640:(29): 74–87. 3639: 3634: 3631: 3627: 3623: 3617: 3609: 3604: 3603: 3584: 3580: 3575: 3570: 3565: 3561: 3557: 3553: 3549: 3545: 3540: 3536: 3531: 3527: 3521: 3517: 3516: 3510: 3506: 3502: 3498: 3494: 3490: 3486: 3482: 3478: 3474: 3470: 3465: 3461: 3457: 3453: 3448: 3444: 3438: 3434: 3433: 3427: 3423: 3422: 3416: 3412: 3410:0-273-01120-0 3406: 3402: 3397: 3393: 3387: 3383: 3378: 3374: 3370: 3366: 3362: 3358: 3354: 3350: 3346: 3342: 3338: 3334: 3327: 3322: 3318: 3317: 3312: 3307: 3303: 3297: 3293: 3292: 3287: 3283: 3282: 3269: 3264: 3257: 3252: 3245: 3240: 3232: 3225: 3218: 3213: 3211: 3209: 3201: 3196: 3194: 3186: 3181: 3173: 3169: 3164: 3159: 3151: 3147: 3143: 3139: 3135: 3131: 3127: 3123: 3119: 3115: 3107: 3100: 3095: 3088: 3083: 3076: 3071: 3064: 3059: 3052: 3047: 3040: 3035: 3028: 3023: 3017:, section 1.3 3016: 3010: 3003: 2997: 2990: 2984: 2977: 2972: 2966:, p. 27. 2965: 2964:Phillips 2004 2960: 2954:, p. 17. 2953: 2948: 2946: 2939:, p. 18. 2938: 2933: 2925: 2918: 2910: 2906: 2899: 2891: 2890: 2882: 2875: 2874:Babinsky 2003 2870: 2863: 2858: 2851: 2847: 2841: 2834: 2822: 2818: 2811: 2804: 2799: 2792: 2787: 2783: 2768: 2765: 2763: 2760: 2758: 2755: 2753: 2750: 2748: 2745: 2743: 2740: 2739: 2733: 2714: 2711: 2700: 2696: 2678: 2675: 2670: 2652: 2644: 2639: 2613: 2609: 2604: 2595: 2591: 2587: 2582: 2578: 2568: 2564: 2560: 2557: 2554: 2550: 2546: 2534: 2528: 2502: 2498: 2494: 2489: 2485: 2478: 2474: 2470: 2467: 2464: 2458: 2455: 2451: 2447: 2439: 2435: 2408: 2405: 2398: 2395: 2392: 2389: 2386: 2377: 2371: 2368: 2365: 2359: 2356: 2351: 2348: 2339: 2334: 2330: 2326: 2323: 2318: 2315: 2310: 2307: 2303: 2297: 2292: 2288: 2282: 2277: 2273: 2269: 2264: 2260: 2256: 2253: 2249: 2243: 2240: 2235: 2232: 2227: 2223: 2201: 2198: 2191: 2188: 2185: 2182: 2179: 2173: 2167: 2164: 2159: 2156: 2147: 2142: 2138: 2134: 2131: 2128: 2125: 2122: 2119: 2115: 2109: 2104: 2100: 2094: 2089: 2085: 2081: 2078: 2074: 2070: 2067: 2064: 2059: 2055: 2046: 2041: 2018: 2015: 2009: 2006: 2000: 1997: 1992: 1988: 1984: 1981: 1975: 1969: 1966: 1961: 1957: 1953: 1950: 1946: 1940: 1937: 1934: 1931: 1928: 1923: 1920: 1917: 1911: 1902: 1898: 1894: 1891: 1885: 1882: 1876: 1870: 1862: 1859: 1853: 1850: 1844: 1841: 1836: 1832: 1828: 1822: 1816: 1813: 1808: 1804: 1800: 1795: 1791: 1787: 1781: 1778: 1773: 1770: 1750: 1744: 1735: 1729: 1710: 1705: 1698: 1692: 1689: 1686: 1683: 1677: 1674: 1671: 1668: 1661: 1656: 1636: 1633: 1629: 1621: 1618: 1614: 1611: 1602: 1599: 1592: 1584: 1579: 1575: 1568: 1565: 1561: 1556: 1553: 1547: 1541: 1538: 1535: 1532: 1528: 1521: 1518: 1513: 1510: 1504: 1501: 1497: 1489: 1486: 1480: 1473: 1467: 1461: 1446: 1440: 1428: 1405: 1399: 1391: 1383: 1361: 1358: 1354: 1346: 1343: 1339: 1336: 1327: 1324: 1317: 1309: 1304: 1300: 1293: 1290: 1286: 1281: 1275: 1269: 1259: 1253: 1248: 1235: 1232: 1229: 1222: 1216: 1212: 1207: 1202: 1198: 1194: 1191: 1167: 1164: 1157: 1151: 1146: 1141: 1137: 1133: 1130: 1118: 1111: 1104: 1098: 1088: 1075: 1067: 1062:implies that 1061: 1055: 1049: 1044: 1035: 1029: 1007: 975: 971: 966: 957: 954: 950: 926: 922: 917: 905: 891: 888: 885: 882: 875: 871: 866: 862: 857: 853: 842: 841: 840: 837: 835: 818: 806: 802: 785: 778: 760: 756: 747: 733: 730: 727: 724: 719: 715: 704: 703: 702: 700: 679: 676: 668: 664: 661: 657: 654: 650: 646: 642: 641: 640: 637: 635: 631: 627: 623: 619: 615: 608: 605:Airfoil of a 603: 596: 595:Denney Kitfox 591: 582: 580: 576: 572: 564: 563: 558: 557: 552: 549: 548: 543: 542: 541: 538: 536: 532: 531: 520: 517: 516: 514: 510: 507: 503: 499: 498: 497: 491: 486: 478: 471: 455: 447: 443: 439: 438: 433: 430: 426: 425: 424:trailing edge 420: 417: 416: 411: 410: 409: 403: 399: 396: 392: 391: 390: 383: 374: 372: 368: 363: 361: 357: 352: 348: 343: 341: 337: 332: 330: 326: 322: 318: 314: 311: 307: 303: 299: 295: 291: 287: 283: 278: 276: 275:pressure drag 272: 268: 264: 260: 256: 252: 248: 243: 240: 235: 233: 229: 225: 221: 217: 213: 209: 205: 201: 197: 193: 189: 186:, as well as 185: 176: 168: 159: 157: 153: 149: 146: 142: 137: 135: 131: 127: 123: 119: 114: 112: 108: 104: 103:perpendicular 100: 96: 91: 89: 85: 81: 77: 73: 69: 65: 61: 54: 37: 32: 19: 4157:Aerodynamics 4095:Agricultural 3979: 3950:Quasiturbine 3861:Steam engine 3796:Quartz clock 3781:Atomic clock 3637: 3607: 3587:. Retrieved 3583:the original 3551: 3547: 3514: 3472: 3468: 3451: 3431: 3420: 3401:Aerodynamics 3400: 3381: 3372: 3336: 3332: 3315: 3290: 3263: 3251: 3239: 3230: 3224: 3180: 3171: 3167: 3158: 3117: 3113: 3106: 3101:, p. 9. 3094: 3082: 3070: 3058: 3046: 3034: 3022: 3014: 3009: 3001: 2996: 2988: 2983: 2971: 2959: 2932: 2923: 2917: 2908: 2898: 2888: 2881: 2869: 2857: 2849: 2840: 2831: 2825:. Retrieved 2810: 2798: 2786: 2650: 2642: 2532: 2042: 1742: 1733: 1727: 1657: 1478: 1471: 1465: 1459: 1444: 1438: 1257: 1249: 1096: 1086: 1073: 1065: 1053: 1048:vortex sheet 1045: 1033: 1027: 1003: 946: 838: 810: 696: 666: 638: 613: 612: 579:aspect ratio 574: 568: 560: 554: 545: 539: 534: 528: 526: 512: 505: 501: 495: 469: 445: 444:, or simply 442:chord length 441: 435: 428: 422: 415:leading edge 413: 407: 401: 394: 388: 364: 346: 344: 333: 315: 282:aerodynamics 279: 254: 244: 236: 220:sand dollars 181: 138: 130:leading edge 115: 109:) and drag ( 92: 67: 59: 57: 4110:Wind tunnel 4026:Vacuum tube 4018:Electronics 3940:Gas turbine 3884:Gas turbine 3843:Vacuum pump 3806:Compressors 3786:Chronometer 3681:Desktopaero 3475:: 439–472. 3120:: 500–538. 3075:Morris 2009 3051:Clancy 1975 2791:Clancy 1975 1485:convolution 1392:, the flow 1115:, then the 974:pylon racer 607:Kamov Ka-26 367:NACA system 292:and near a 271:circulation 247:wind tunnel 204:centerboard 196:compressors 152:circulation 53:wind tunnel 4151:Categories 4069:Automobile 4031:Transistor 3945:Jet engine 3917:Pantograph 3099:Traub 2016 3063:Scott 2003 2827:2011-06-29 2773:References 2047:satisfies 1425:. By the 1101:. If the 970:park flyer 960:Derivation 571:lift curve 437:chord line 228:automobile 188:helicopter 88:hydrofoils 4046:Capacitor 4008:Propeller 3646:2051-1930 3616:cite book 3548:Aerospace 3505:122817884 3497:0022-1120 3294:. Dover. 3150:121962230 3142:0022-1120 2778:Citations 2747:Hydrofoil 2690:∂ 2664:∂ 2649:does not 2588:− 2561:π 2544:Δ 2495:− 2471:π 2468:− 2409:θ 2399:θ 2396:⁡ 2378:θ 2372:⁡ 2366:⋅ 2340:π 2331:∫ 2327:− 2324:α 2316:π 2311:− 2283:− 2254:α 2241:π 2236:− 2202:θ 2192:θ 2189:⁡ 2174:⋅ 2148:π 2139:∫ 2129:α 2126:π 2079:α 2071:π 2019:… 2010:θ 2001:⁡ 1976:θ 1970:⁡ 1941:θ 1938:⁡ 1924:θ 1921:⁡ 1892:α 1871:γ 1863:… 1854:θ 1845:⁡ 1823:θ 1817:⁡ 1699:θ 1693:⁡ 1678:⋅ 1615:− 1593:γ 1576:∫ 1569:π 1557:− 1539:− 1505:− 1502:α 1475:. Thus, 1380:oriented 1340:− 1318:γ 1301:∫ 1294:π 1250:From the 1217:γ 1199:∫ 1192:ρ 1152:γ 1138:∫ 1131:ρ 1103:main flow 1099:≈ 0 892:α 889:π 819:α 786:α 734:α 731:π 680:π 535:thickness 513:thickness 506:mean line 325:transonic 286:aerobatic 224:downforce 36:hydrofoil 4061:Vehicles 4051:Inductor 4041:Resistor 3980:Aerofoil 3970:Windmill 3909:Linkages 3722:Machines 3589:25 April 3554:(2): 9. 3371:(1967). 3170:≈ 2848:(1945), 2821:Archived 2762:Parafoil 2736:See also 2679:′ 1637:′ 1622:′ 1603:′ 1488:equation 1456:(α- 1362:′ 1347:′ 1328:′ 1076:)∝ 669:line is 660:cambered 634:wingspan 626:Max Munk 533:and its 490:winglets 290:ailerons 232:traction 200:turbines 162:Overview 154:and the 145:inviscid 122:cambered 111:parallel 68:aerofoil 18:Airfoils 4129:Springs 3932:Turbine 3670:FoilSim 3556:Bibcode 3477:Bibcode 3456:Bibcode 3361:1657792 3341:Bibcode 3122:Bibcode 3041:, §4.3. 3029:, §4.2. 2793:, §5.2. 1741:γ( 1731:⁄ 1477:γ( 1463:⁄ 1442:⁄ 1435:α- 1256:γ( 1110:density 1084:√ 1081:⁄ 1072:γ( 1064:γ( 1058:. The 1052:γ( 1031:⁄ 799:is the 371:Clark-Y 294:wingtip 216:sessile 60:airfoil 3998:Rudder 3838:Trompe 3773:Clocks 3748:Pulley 3644:  3522:  3503:  3495:  3439:  3407:  3388:  3359:  3298:  3148:  3140:  1753:θ 1382:normal 1113:ρ 1009:α 997:  991:  985:  979:  914:  906:where 850:  748:where 712:  530:camber 267:camber 251:camber 226:on an 210:, and 208:rudder 4090:Robot 4085:Mecha 4036:Diode 3810:pumps 3758:Wedge 3753:Screw 3743:Lever 3501:S2CID 3357:S2CID 3329:(PDF) 3146:S2CID 2833:body. 2536:, by 953:stall 807:line. 805:chord 658:on a 653:chord 446:chord 340:slats 336:flaps 302:stall 255:slope 95:fluid 84:Foils 78:than 66:) or 4003:Flap 3993:Wing 3988:Sail 3833:Pump 3808:and 3642:ISSN 3622:link 3591:2021 3520:ISBN 3493:ISSN 3437:ISBN 3405:ISBN 3386:ISBN 3296:ISBN 3138:ISSN 2651:vary 2636:The 2531:0.25 2043:The 1739:and 1108:has 1094:for 647:and 553:The 544:The 511:The 500:The 434:The 421:The 412:The 400:The 393:The 298:spin 239:drag 212:keel 198:and 192:fans 80:drag 76:lift 3564:doi 3485:doi 3473:733 3349:doi 3130:doi 3118:751 2393:cos 2369:cos 2186:cos 1998:sin 1967:sin 1935:cos 1918:sin 1842:cos 1814:cos 1751:in 1690:cos 1068:)=0 504:or 58:An 4153:: 3618:}} 3614:{{ 3562:. 3550:. 3546:. 3499:. 3491:. 3483:. 3471:. 3355:. 3347:. 3337:38 3335:. 3331:. 3313:. 3207:^ 3192:^ 3175:." 3172:dx 3168:ds 3144:. 3136:. 3128:. 3116:. 2944:^ 2907:. 2830:. 1734:dx 1728:dy 1466:dx 1460:dy 1445:dx 1439:dy 1429:, 1034:dx 1028:dy 636:. 448:, 345:A 234:. 206:, 194:, 158:. 90:. 3714:e 3707:t 3700:v 3648:. 3624:) 3593:. 3572:. 3566:: 3558:: 3552:3 3528:. 3507:. 3487:: 3479:: 3462:. 3458:: 3445:. 3413:. 3394:. 3363:. 3351:: 3343:: 3304:. 3219:. 3152:. 3132:: 3124:: 3077:. 2911:. 2892:. 2864:. 2719:. 2715:0 2712:= 2706:) 2701:L 2697:C 2693:( 2685:) 2676:M 2671:C 2667:( 2646:′ 2643:M 2623:. 2619:) 2614:L 2610:C 2605:/ 2601:) 2596:2 2592:A 2583:1 2579:A 2575:( 2572:( 2569:4 2565:/ 2558:= 2555:c 2551:/ 2547:x 2533:c 2512:. 2508:) 2503:2 2499:A 2490:1 2486:A 2482:( 2479:4 2475:/ 2465:= 2462:) 2459:c 2456:4 2452:/ 2448:1 2445:( 2440:M 2436:C 2414:. 2406:d 2402:) 2390:+ 2387:1 2384:( 2381:) 2375:( 2360:x 2357:d 2352:y 2349:d 2335:0 2319:2 2308:= 2304:) 2298:2 2293:2 2289:A 2278:1 2274:A 2270:+ 2265:0 2261:A 2257:+ 2250:( 2244:2 2233:= 2228:M 2224:C 2199:d 2195:) 2183:+ 2180:1 2177:( 2168:x 2165:d 2160:y 2157:d 2143:0 2135:2 2132:+ 2123:2 2120:= 2116:) 2110:2 2105:1 2101:A 2095:+ 2090:0 2086:A 2082:+ 2075:( 2068:2 2065:= 2060:L 2056:C 2023:. 2016:+ 2013:) 2007:2 2004:( 1993:2 1989:A 1985:2 1982:+ 1979:) 1973:( 1962:1 1958:A 1954:2 1951:+ 1947:) 1932:+ 1929:1 1912:( 1908:) 1903:0 1899:A 1895:+ 1889:( 1886:2 1883:= 1880:) 1877:x 1874:( 1860:+ 1857:) 1851:2 1848:( 1837:2 1833:A 1829:+ 1826:) 1820:( 1809:1 1805:A 1801:+ 1796:0 1792:A 1788:= 1782:x 1779:d 1774:y 1771:d 1745:) 1743:x 1711:, 1706:2 1702:) 1696:( 1687:+ 1684:1 1675:c 1672:= 1669:x 1642:, 1634:x 1630:d 1619:x 1612:x 1607:) 1600:x 1596:( 1585:c 1580:0 1566:2 1562:1 1554:= 1551:) 1548:x 1545:( 1542:w 1536:= 1533:V 1529:) 1522:x 1519:d 1514:y 1511:d 1498:( 1481:) 1479:x 1472:V 1470:) 1452:x 1431:V 1423:V 1409:) 1406:x 1403:( 1400:w 1386:x 1367:, 1359:x 1355:d 1344:x 1337:x 1332:) 1325:x 1321:( 1310:c 1305:0 1291:2 1287:1 1282:= 1279:) 1276:x 1273:( 1270:w 1260:) 1258:x 1236:. 1233:x 1230:d 1226:) 1223:x 1220:( 1213:x 1208:c 1203:0 1195:V 1182:M 1168:x 1165:d 1161:) 1158:x 1155:( 1147:c 1142:0 1134:V 1121:F 1106:V 1097:x 1087:x 1079:1 1074:x 1066:c 1056:) 1054:x 1041:x 1021:c 1017:0 1013:x 927:0 923:l 918:c 886:2 883:+ 876:0 872:l 867:c 863:= 858:l 854:c 761:l 757:c 728:2 725:= 720:l 716:c 677:2 456:c 431:. 300:– 70:( 62:( 38:. 20:)

Index

Airfoils

hydrofoil
wind tunnel
American English
British English
lift
drag
Foils
hydrofoils
fluid
aerodynamic force
perpendicular
freestream velocity
parallel
angle of attack
cambered
subsonic flight
leading edge
supersonic flight
Bernoulli's principle
inviscid
potential flow
circulation
Kutta–Joukowski theorem


fixed-wing aircraft
helicopter
fans

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑