Knowledge

Electrophilic aromatic directing groups

Source 📝

1633: 1672: 1699: 1198: 1379: 984: 954: 1093: 906: 1039: 1161: 1726: 169: 1148:
moderately repels the electrons in the bond attaching it to the ring. Thus, there is a weak electron-donating +I effect. There is an almost zero -M effect since the electron-withdrawing resonance capacity of the carbonyl group is effectively removed by the delocalisation of the negative charge of the
1034:
Because of the full or partial positive charge on the element directly attached to the ring for each of these groups, they all have a moderate to strong electron-withdrawing inductive effect (known as the -I effect). They also exhibit electron-withdrawing resonance effects, (known as the -M effect):
1218:
is something of an anomaly in this circumstance. Above, it is described as a weak electron withdrawing group but this is only partly true. It is correct that fluorine has a -I effect, which results in electrons being withdrawn inductively. However, another effect that plays a role is the +M effect
1173:
These groups have a strong electron-withdrawing inductive effect (-I) either by virtue of their positive charge or because of the powerfully electronegativity of the halogens. There is no resonance effect because there are no orbitals or electron pairs which can overlap with those of the ring. The
1371:
Nitrogen has a lone pair of electrons. However, the lone pair of its monomer form is unfavourable to donate through resonance. Only the dimer form is available for +M effect. However, the dimer form is less stable in a solution. Therefore, the nitroso group is less available to donate electrons.
1282:
are about the same or a little more reactive than chlorobenzene, because although the resonance donation is even worse, the inductive effect is also weakened due to their lower electronegativities. Thus the overall order of reactivity is U-shaped, with a minimum at chlorobenzene/bromobenzene
1359:
Due to the electronegativity difference between carbon and nitrogen, the nitroso group has a relatively strong -I effect, but not as strong as the nitro group. (Positively charged nitrogen atoms on alkylammonium cations and on nitro groups have a much stronger -I effect)
184:
Electron donating groups are typically divided into three levels of activating ability (The "extreme" category can be seen as "strong".) Electron withdrawing groups are assigned to similar groupings. Activating substituents favour electrophilic substitution about the
235:
The activating groups are mostly resonance donors (+M). Although many of these groups are also inductively withdrawing (–I), which is a deactivating effect, the resonance (or mesomeric) effect is almost always stronger, with the exception of Cl, Br, and I.
501:
While all deactivating groups are inductively withdrawing (–I), most of them are also withdrawing through resonance (–M) as well. Halogen substituents are an exception: they are resonance donors (+M). With the exception of the halides, they are
1089:. The negative oxygen was 'forced' to give electron density to the carbons (because it has a negative charge, it has an extra +I effect). Even when cold and with neutral (and relatively weak) electrophiles, the reaction still occurs rapidly. 1046:
Thus, these groups make the aromatic ring very electron-poor (δ+) relative to benzene and, therefore, they strongly deactivate the ring (i.e. reactions proceed much slower in rings bearing these groups compared to those reactions in benzene.)
1625:
When two substituents are already present on the ring, the third substituent's new location is relatively predictable. If the existing substituents reinforce or the molecule is highly symmetric, there may be no ambiguity. Otherwise:
1671: 1074:(known as the –I effect). However, the other effect called resonance add electron density back to the ring (known as the +M effect) and dominate over that of inductive effect. Hence the result is that they are EDGs and 543:
The inductive and resonance properties compete with each other but the resonance effect dominates for purposes of directing the sites of reactivity. For nitration, for example, fluorine directs strongly to the
2238: 1632: 1014:
Another common argument, which makes identical predictions, considers the stabilization or destabilization by substituents of the Wheland intermediates resulting from electrophilic attack at the
943:
attack, whereas the anion releases electron density into the same positions, activating them for attack. This is precisely the result that the drawing of resonance structures would predict.
137:(EWG) will have the opposite effect on the nucleophilicity of the ring. The EWG removes electron density from a π system, making it less reactive in this type of reaction, and therefore called 144:
EDGs and EWGs also determine the positions (relative to themselves) on the aromatic ring where substitution reactions are most likely to take place. Electron donating groups are generally
1250:
This -I and +M effect is true for all halides - there is some electron withdrawing and donating character of each. To understand why the reactivity changes occur, we need to consider the
1266:
has 3p valence orbitals, hence the orbital energies will be further apart and the geometry less favourable, leading to less donation the stabilize the carbocationic intermediate, hence
1026:
positions. The Hammond postulate then dictates that the relative transition state energies will reflect the differences in the ground state energies of the Wheland intermediates.
477:
Due to a stronger resonance effect and inductive effect than the heavier halogens, fluorine is anomalous. The partial rate factor of electrophilic aromatic substitution on
1698: 912:
Specifically, any formal negative or positive charges in minor resonance contributors (ones in accord with the natural polarization but not necessarily obeying the
1725: 2157:
Andrew, D. Abell; Brent, K. Nabbs; Alan, R. Battersby (12 February 1998). "Synthesis and Properties of Ring-Deactivated Deuterated (Hydroxymethyl)pyrroles".
2078:
Rosenthal, Joel; Schuster, David I. (2003-06-01). "The Anomalous Reactivity of Fluorobenzene in Electrophilic Aromatic Substitution and Related Phenomena".
1482:
The effect is illustrated for electrophilic aromatic substitutions with alkyl substituents of differing steric demand for electrophilic aromatic nitration.
1219:
which adds electron density back into the benzene ring (thus having the opposite effect of the -I effect but by a different mechanism). This is called the
1920: 1096:
The phenolate has a negatively charged oxygen. That is very unstable that the oxygen has a stronger +M effect (compared to phenol) and an extra +I effect.
899: 927:!) an electron-deficient benzyl cation or electron-excessive benzyl anion, respectively. The latter species admit tractable quantum calculation using 923:
The perturbation of a conjugating electron-withdrawing or electron-donating group causes the π electron distribution on a benzene ring to resemble (
2300: 2224: 983: 1315: 1243:
positions of fluorobenzene are considerably less reactive than benzene. Thus, electrophilic aromatic substitution on fluorobenzene is strongly
2380: 2296: 2220: 953: 1391: 145: 1894: 215:
position. This is not a case of favoring the meta- position like para- and ortho- directing functional groups, but rather disfavouring the
920:. A carbon atom with a larger coefficient will be preferentially attacked, due to more favorable orbital overlap with the electrophile. 1070:
Due to the electronegativity difference between carbon and oxygen / nitrogen, there will be a slight electron withdrawing effect through
1174:
inductive effect acts like that for the carboxylate anion but in the opposite direction (i.e. it produces small positive charges on the
157: 976:
positions, because the (partial) formal negative charges at these positions indicate a local electron excess. On the other hand, the
532:
Since the halogens are very electronegative they cause inductive withdrawal (withdrawal of electrons from the carbon atom of benzene).
1386:
As a result, the nitroso group is a deactivator. However, it has available to donate electron density to the benzene ring during the
160:. The selectivities observed with EDGs and EWGs were first described in 1892 and have been known as the Crum Brown–Gibson rule. 1085:
Phenol is an ortho/para director, but in a presence of base, the reaction is more rapid. It is due to the higher reactivity of
1223:(hence +M) and the result for fluorine is that the +M effect approximately cancels out the -I effect. The effect of this for 1749: 1310:
plays a role as well. This can also explain why phosphorus in phosphanes can't donate electron density to carbon through
149: 28: 2426: 2356: 2272: 2196: 2133: 1947: 17: 1338:
Due to the lone pair of electrons, halogen groups are available for donating electrons. Hence they are therefore
2410: 2323: 2029: 2395: 616: 1258:
of fluorine are the 2p orbitals which is the same for carbon - hence they will be very close in energy and
1769: 528:
directors, halides mildly deactivate the arene. This unusual behavior can be explained by two properties:
210: 205: 199: 2449: 1821: 642: 119: 1799: 1609:-butyl group is very bulky (there are 3 methyl groups attached to a single carbon) and will lead the 277: 1696:
When multiple substituents are comparably activating, steric hindrance dominates regioselectivity.
1117: 1197: 2021: 2014: 1613:
product as the major one. Even with toluene, the product is not 2:1 but having a slightly less
1121: 493:
positions, due to the proximity of these positions to the electronegative fluoro substituent.
1451:
positions are not generally equal. In the case of a fluorine substituent, for instance, the
1113: 1109: 992: 962: 91: 1375:
Oppositely, withdrawing electron density is more favourable: (see the picture on the right).
2087: 1964: 1847: 1187: 898:, the directing effects of different substituents can often be guessed through analysis of 2057: 1128:-butylbenzene) with the ring p orbital. Hence they are more reactive than benzene and are 485:
position, making it an activating group. Conversely, it is moderately deactivated at the
8: 1378: 317: 52: 2091: 357: 2374: 2290: 2214: 1994: 2406: 2362: 2352: 2329: 2319: 2278: 2268: 2202: 2192: 2139: 2129: 2128:. Greeves, Nick., Warren, Stuart G. (2nd ed.). Oxford: Oxford University Press. 2103: 2035: 2025: 1943: 1327: 895: 111: 87: 48: 1998: 1435:
positions reacting with the same partial rate factor, we would expect twice as much
1368:
The nitroso group has both a +M and -M effect, but the -M effect is more favorable.
1314:(i.e. +I effect) although it is less electronegative than carbon (2.19 vs 2.55, see 2166: 2095: 2065:
Handouts for Organic Chemistry Lectures given at Imperial College London, Chemistry
1984: 1976: 1876: 1311: 1220: 1071: 209:
positions, while strongly and moderately deactivating groups direct attacks to the
95: 83: 79: 1852:"XXX.—A rule for determining whether a given benzene mono-derivative shall give a 1443:
product due to this statistical effect. However, the partial rate factors at the
928: 1319: 1259: 1251: 1154: 772: 714: 471: 44: 1630:
The most-activating substituent usually controls over the less-activating one.
1405: 1307: 1255: 1092: 988: 659: 474:
of the substituent's 3p (or higher) orbital with the 2p orbital of the carbon.
2206: 894:
Although the full electronic structure of an arene can only be computed using
2443: 2366: 2282: 2143: 2107: 1980: 1868: 1288: 1284: 1271: 1267: 1224: 917: 905: 675: 478: 470:
and beyond is relatively weak. This is mainly because of the relatively poor
127: 115: 40: 36: 2333: 1496: 1300: 1292: 1275: 1231:
position is reactivity that is comparable to (or even higher than) that of
1105: 977: 875: 824: 424: 194: 2039: 1921:"Ortho-, Para- and Meta- Directors in Electrophilic Aromatic Substitution" 1306:
Notice that iodobenzene is still less reactive than fluorobenzene because
1880: 1387: 1296: 1279: 1201:
They have formal or partial positive charges, which deactivates the ring.
1150: 1145: 1038: 739: 539:
they can donate electron density through pi bonding (resonance donation).
449: 411: 107: 32: 2170: 1989: 916:) reflect locations having a larger or smaller density of charge in the 1423:
position on benzene when a group is attached to it. When a group is an
913: 2099: 1160: 950:
has resonance structures with negative charges around the ring system:
1086: 710: 536: 361: 2012:
Hoggett, J. G.; Moodie, R. B.; Penton, J. R.; Schofield, K. (1971).
1851: 1283:(relative nitration rates compared to benzene = 1 in parentheses): 1263: 1215: 980:
resonance structures have positive charges around the ring system:
755: 679: 467: 268: 118:
to which such a group is attached is more likely to participate in
1050: 1491: 1232: 1063: 1051: 947: 859: 700: 153: 1330:(pKa = 3). (That's 10 times more acidic than hydrofluoric acid) 1235:. Because inductive effects depends strongly on proximity, the 1503: 1055: 759: 509: 391: 168: 2351:. Giuliano, Robert M., 1954- (Ninth ed.). New York, NY. 1059: 1011:
positions indicate electron deficiency at these positions.
1003:
position, since the (partial) formal positive charges at the
958: 798: 776: 365: 347: 337: 321: 297: 2011: 1620: 1719:
In particular, the position between two substituents, each
1463:
position. Aside from these effects, there is often also a
2427:"12.15. Multiple Multiple Substituent Substituent Effects" 1168: 406:–I, +M; though other interactions may be involved as well 1323: 1605:
product being the major product. On the other hand, the
1601:
The methyl group in toluene is small and will lead the
1459:, due to a stronger inductive withdrawal effect at the 180:
positions relative to a substituent X on a benzene ring
1029: 2191:. Schore, Neil Eric, 1948- (8e ed.). New York. 1164:
The negative charge was spread through both oxygens.
1108:
are electron donating groups. The carbon on that is
466:
In general, the resonance effect of elements in the
106:
effects, respectively—thus making the π system more
2013: 2346: 2077: 918:molecular orbital for a bond most likely to break 2441: 2316:Frontier orbitals and organic chemical reactions 152:, while electron withdrawing groups (except the 2239:"Substitution Reactions of Benzene Derivatives" 2189:Organic chemistry : structure and function 2156: 1938:Norman, Richard O. C.; Coxon, James M. (1993). 1802:. University of Calgary Department of Chemistry 931:: the cation withdraws electron density at the 889: 2020:. London: Cambridge University Press. p.  1793: 1791: 193:positions. Weakly deactivating groups direct 1942:(3rd ed.). CRC Press. pp. 353–354. 1455:partial rate factor is much smaller than the 1210: 1205: 1112:and less electronegative than those that are 2313: 1724: 1697: 1670: 1631: 1475:position, leading to a larger amount of the 982: 952: 904: 122:reaction. EDGs are therefore often known as 2299:) CS1 maint: multiple names: authors list ( 2223:) CS1 maint: multiple names: authors list ( 1937: 1846: 1788: 1467:, due to increased steric hindrance at the 1190:.) Hence these groups are deactivating and 2379:: CS1 maint: location missing publisher ( 2295:: CS1 maint: location missing publisher ( 2219:: CS1 maint: location missing publisher ( 1962: 2123: 1988: 1965:"The alkyl group is a –I + R substituent" 1826:Illustrated Glossary of Organic Chemistry 1774:Illustrated Glossary of Organic Chemistry 1621:Directing effect on multiple substituents 564:). On the other hand, iodine directs to 552:position is inductively deactivated (86% 2159:Journal of the American Chemical Society 1377: 1196: 1159: 1091: 1037: 223:-positions more than they disfavour the 167: 1814: 1762: 1169:Alkylammonium and trifluoromethyl group 596:Substituent Name (in approximate order 248:Substituent Name (in approximate order 14: 2442: 2187:C., Vollhardt, K. Peter (2018-01-29). 1149:anion on the oxygen. Thus overall the 991:can withdraw electron density through 496: 197:to attack the benzene molecule at the 78:in structural formulas) is an atom or 2393: 2182: 2180: 2119: 2117: 2055: 2051: 2049: 1918: 1157:group) has an activating influence. 1144:Inductively, the negatively charged 961:can donate electron density through 230: 150:electrophilic aromatic substitutions 1750:Electrophilic aromatic substitution 1333: 1326:= -10) being much more acidic than 1303:reacts slower than benzene itself. 1030:Carbonyls, sulfonic acids and nitro 130:can interfere with the reaction. 29:electrophilic aromatic substitution 24: 2262: 2186: 2177: 2114: 2046: 1382:The -M effect of the nitroso group 25: 2461: 2016:Nitration and aromatic reactivity 1963:Salvatella, Luis (October 2017). 1919:James, Ashenhurst (29 Jan 2018). 1404: 1186:position and it destabilises the 520:directing groups but unlike most 2347:Carey, Francis A. (2013-01-07). 1797: 1349: 481:is often larger than one at the 2419: 2387: 2340: 2307: 2256: 2231: 2150: 2071: 1940:Principles of Organic Synthesis 1856:-di-derivative or a mixture of 1100: 2403:Some Organic Reaction Pathways 2056:Smith, Ed (12 February 2018). 2005: 1956: 1931: 1912: 1887: 1840: 1828:. UCLA Department of Chemistry 1776:. UCLA Department of Chemistry 1139: 13: 1: 2080:Journal of Chemical Education 1755: 1683:-trifluoromethyl)aniline and 1042:The -M effect of nitrobenzene 617:trifluoromethylsulfonyl group 163: 1770:"Electron withdrawing group" 1723:to the other, reacts last. 1363: 1354: 890:Traditional rationalizations 7: 2124:Jonathan., Clayden (2012). 1743: 1390:, making it still being an 1116:. They have overlap on the 10: 2466: 2265:Advanced organic chemistry 1211:Induction versus resonance 1206:Halides' competing effects 633: 605:Type of electronic effect 598:of deactivating strength) 572:positions comparably (54% 281: 257:Type of electronic effect 135:electron withdrawing group 120:electrophilic substitution 2263:E., Lewis, David (2016). 1822:"Electron donating group" 1733:to either substituent in 1679:to the amine in diethyl-( 1640:to the amine in diethyl-( 1182:positions but not on the 847: 820: 749: 735: 669: 612: 405: 387: 333: 311: 292: 82:that donates some of its 1981:10.1016/j.eq.2017.06.004 1925:Master Organic Chemistry 535:Since the halogens have 250:of activating strength) 68:electron releasing group 1850:; Gibson, John (1892). 1706:to the methyl group in 1665:directors control over 1299:(0.12). But still, all 1254:occurring in each. The 880:-F(para), -Cl, -Br, -I 278:metal-hydrogen exchange 110:. As a result of these 60:electron donating group 1738: 1715: 1692: 1653: 1383: 1316:electronegativity list 1270:is less reactive than 1202: 1165: 1097: 1043: 996: 965: 909: 392:phenyl (or aryl) group 181: 98:(or induction)—called 39:influence the overall 2394:Peter, Sykes (1979). 2314:Fleming, Ian (1976). 1895:"Substituent Effects" 1800:"Substituent Effects" 1729:New substituents add 1728: 1701: 1674: 1635: 1471:position but not the 1381: 1200: 1163: 1118:carbon–hydrogen bonds 1095: 1041: 999:Attack occurs at the 986: 956: 908: 777:alkoxycarbonyl groups 548:position because the 537:non-bonding electrons 171: 2243:Chemistry LibreTexts 1881:10.1039/ct8926100367 1644:-methyl)aniline and 1388:Wheland intermediate 1262:will be favourable. 1188:Wheland intermediate 939:positions, favoring 799:aminocarbonyl groups 711:trihalomethyl groups 172:Diagram showing the 146:ortho/para directors 31:reactions, existing 2092:2003JChEd..80..679R 1691:-fluorobenzaldehyde 1687:to the fluoride in 1122:carbon–carbon bonds 728:(X = F, Cl, Br, I) 497:Deactivating groups 139:deactivating groups 88:conjugated π system 1739: 1716: 1693: 1654: 1384: 1203: 1166: 1124:in compounds like 1098: 1044: 997: 966: 910: 900:resonance diagrams 867:–I, +M (dimer) or 506:directing groups. 358:(di)alkylphosphino 182: 112:electronic effects 55:that are formed. 2450:Functional groups 2349:Organic chemistry 2318:. London: Wiley. 2171:10.1021/ja973656+ 2126:Organic chemistry 2100:10.1021/ed080p679 1969:Educación Química 1702:Substituents add 1675:Substituents add 1636:Substituents add 1599: 1598: 1328:hydrofluoric acid 1151:carboxylate group 968:Attack occurs at 896:quantum mechanics 887: 886: 740:haloformyl groups 651:(R = alkyl or H) 608:Directing effect 464: 463: 450:carboxylate group 366:sulfhydryl groups 260:Directing effect 231:Activating groups 124:activating groups 96:inductive effects 49:positional isomer 16:(Redirected from 2457: 2434: 2433: 2431: 2423: 2417: 2416: 2400: 2391: 2385: 2384: 2378: 2370: 2344: 2338: 2337: 2311: 2305: 2304: 2294: 2286: 2260: 2254: 2253: 2251: 2250: 2235: 2229: 2228: 2218: 2210: 2184: 2175: 2174: 2154: 2148: 2147: 2121: 2112: 2111: 2075: 2069: 2068: 2062: 2053: 2044: 2043: 2019: 2009: 2003: 2002: 1992: 1960: 1954: 1953: 1935: 1929: 1928: 1916: 1910: 1909: 1907: 1905: 1891: 1885: 1884: 1864:-di-derivatives" 1844: 1838: 1837: 1835: 1833: 1818: 1812: 1811: 1809: 1807: 1795: 1786: 1785: 1783: 1781: 1766: 1648:to the amide in 1485: 1484: 1419:positions and 1 1334:Directing effect 1256:valence orbitals 1252:orbital overlaps 1221:mesomeric effect 1072:inductive effect 746:(X = Cl, Br, I) 587: 586: 338:acylamido groups 239: 238: 156:) are generally 94:(mesomerism) or 84:electron density 80:functional group 21: 18:Activating group 2465: 2464: 2460: 2459: 2458: 2456: 2455: 2454: 2440: 2439: 2438: 2437: 2429: 2425: 2424: 2420: 2413: 2398: 2392: 2388: 2372: 2371: 2359: 2345: 2341: 2326: 2312: 2308: 2288: 2287: 2275: 2261: 2257: 2248: 2246: 2237: 2236: 2232: 2212: 2211: 2199: 2185: 2178: 2155: 2151: 2136: 2122: 2115: 2076: 2072: 2060: 2054: 2047: 2032: 2010: 2006: 1961: 1957: 1950: 1936: 1932: 1917: 1913: 1903: 1901: 1893: 1892: 1888: 1845: 1841: 1831: 1829: 1820: 1819: 1815: 1805: 1803: 1796: 1789: 1779: 1777: 1768: 1767: 1763: 1758: 1746: 1657:In particular, 1652:-cyanobenzamide 1623: 1409: 1366: 1357: 1352: 1336: 1320:hydroiodic acid 1260:orbital overlap 1213: 1208: 1171: 1146:carboxylate ion 1142: 1103: 1087:phenolate anion 1068: 1032: 892: 815: 806: 790: 784: 727: 718: 713:(strongest for 693: 687: 680:sulfonyl groups 667: 650: 643:ammonium groups 628: 624: 499: 472:orbital overlap 457: 439: 435: 431: 419: 403: 399: 373: 309: 305: 233: 166: 23: 22: 15: 12: 11: 5: 2463: 2453: 2452: 2436: 2435: 2418: 2411: 2405:. p. 32. 2386: 2357: 2339: 2324: 2306: 2273: 2255: 2230: 2197: 2176: 2149: 2134: 2113: 2086:(6): 679–690. 2070: 2045: 2030: 2004: 1975:(4): 232–237. 1955: 1948: 1930: 1911: 1886: 1848:Brown, A. Crum 1839: 1813: 1787: 1760: 1759: 1757: 1754: 1753: 1752: 1745: 1742: 1741: 1740: 1737:-chlorotoluene 1717: 1714:-butyl)toluene 1694: 1655: 1622: 1619: 1597: 1596: 1593: 1590: 1587: 1584: 1577: 1576: 1573: 1570: 1567: 1564: 1557: 1556: 1553: 1550: 1547: 1544: 1537: 1536: 1533: 1530: 1527: 1524: 1517: 1516: 1513:-butylbenzene 1508: 1501: 1494: 1489: 1427:director with 1408: 1406:Steric effects 1403: 1365: 1362: 1356: 1353: 1351: 1348: 1335: 1332: 1308:polarizability 1212: 1209: 1207: 1204: 1170: 1167: 1141: 1138: 1102: 1099: 1067: 1049: 1031: 1028: 891: 888: 885: 884: 883:–I, +M (weak) 881: 878: 872: 871: 865: 862: 856: 855: 846: 839: 836: 822: 818: 817: 813: 804: 801: 797:(substituted) 794: 793: 788: 782: 779: 769: 768: 762: 752: 751: 748: 742: 737: 733: 732: 729: 725: 722: 716: 707: 706: 703: 697: 696: 691: 685: 682: 676:sulfonic acids 672: 671: 668: 665: 662: 656: 655: 652: 648: 645: 641:(substituted) 638: 637: 632: 629: 626: 622: 619: 614: 610: 609: 606: 603: 600: 594: 541: 540: 533: 498: 495: 462: 461: 458: 455: 452: 446: 445: 442: 437: 433: 429: 421: 420: 417: 414: 408: 407: 404: 401: 397: 394: 389: 385: 384: 381: 371: 368: 354: 353: 350: 348:acyloxy groups 344: 343: 340: 335: 331: 330: 324: 314: 313: 310: 307: 303: 300: 296:(substituted) 294: 290: 289: 280: 274: 271: 266: 262: 261: 258: 255: 252: 246: 232: 229: 165: 162: 158:meta directors 128:steric effects 35:groups on the 9: 6: 4: 3: 2: 2462: 2451: 2448: 2447: 2445: 2428: 2422: 2414: 2408: 2404: 2397: 2390: 2382: 2376: 2368: 2364: 2360: 2358:9780073402741 2354: 2350: 2343: 2335: 2331: 2327: 2321: 2317: 2310: 2302: 2298: 2292: 2284: 2280: 2276: 2274:9780199758975 2270: 2266: 2259: 2244: 2240: 2234: 2226: 2222: 2216: 2208: 2204: 2200: 2198:9781319079451 2194: 2190: 2183: 2181: 2172: 2168: 2164: 2160: 2153: 2145: 2141: 2137: 2135:9780199270293 2131: 2127: 2120: 2118: 2109: 2105: 2101: 2097: 2093: 2089: 2085: 2081: 2074: 2066: 2059: 2052: 2050: 2041: 2037: 2033: 2027: 2023: 2018: 2017: 2008: 2000: 1996: 1991: 1986: 1982: 1978: 1974: 1970: 1966: 1959: 1951: 1949:9780748761623 1945: 1941: 1934: 1926: 1922: 1915: 1900: 1896: 1890: 1882: 1878: 1874: 1871: 1870: 1869:J. Chem. Soc. 1865: 1863: 1859: 1855: 1849: 1843: 1827: 1823: 1817: 1801: 1794: 1792: 1775: 1771: 1765: 1761: 1751: 1748: 1747: 1736: 1732: 1727: 1722: 1718: 1713: 1709: 1705: 1700: 1695: 1690: 1686: 1682: 1678: 1673: 1668: 1664: 1660: 1656: 1651: 1647: 1643: 1639: 1634: 1629: 1628: 1627: 1618: 1616: 1612: 1608: 1604: 1594: 1591: 1588: 1585: 1582: 1579: 1578: 1574: 1571: 1568: 1565: 1562: 1559: 1558: 1554: 1551: 1548: 1545: 1542: 1539: 1538: 1534: 1531: 1528: 1525: 1522: 1519: 1518: 1515: 1512: 1509: 1507: 1505: 1502: 1500: 1498: 1495: 1493: 1490: 1487: 1486: 1483: 1480: 1478: 1474: 1470: 1466: 1465:steric effect 1462: 1458: 1454: 1450: 1446: 1442: 1438: 1434: 1430: 1426: 1422: 1418: 1415:positions, 2 1414: 1407: 1402: 1400: 1398: 1394: 1389: 1380: 1376: 1373: 1369: 1361: 1350:Nitroso group 1347: 1345: 1341: 1331: 1329: 1325: 1321: 1317: 1313: 1309: 1304: 1302: 1298: 1295:(0.060) < 1294: 1290: 1286: 1281: 1277: 1273: 1272:fluorobenzene 1269: 1268:chlorobenzene 1265: 1261: 1257: 1253: 1248: 1246: 1242: 1238: 1234: 1230: 1226: 1225:fluorobenzene 1222: 1217: 1199: 1195: 1193: 1189: 1185: 1181: 1177: 1162: 1158: 1156: 1152: 1147: 1137: 1135: 1131: 1127: 1123: 1119: 1115: 1114:sp hybridized 1111: 1110:sp hybridized 1107: 1094: 1090: 1088: 1083: 1081: 1077: 1073: 1065: 1061: 1057: 1053: 1048: 1040: 1036: 1027: 1025: 1021: 1017: 1012: 1010: 1006: 1002: 994: 990: 985: 981: 979: 975: 971: 964: 960: 955: 951: 949: 946:For example, 944: 942: 938: 934: 930: 929:Hückel theory 926: 925:very slightly 921: 919: 915: 907: 903: 901: 897: 882: 879: 877: 874: 873: 870: 869:–M (monomer) 866: 863: 861: 860:nitroso group 858: 857: 854: 850: 844: 840: 837: 834: 830: 826: 823: 819: 816: 810: 802: 800: 796: 795: 792: 780: 778: 774: 771: 770: 767: 763: 761: 757: 754: 753: 747: 743: 741: 738: 734: 730: 723: 720: 712: 709: 708: 704: 702: 699: 698: 695: 683: 681: 677: 674: 673: 663: 661: 658: 657: 653: 646: 644: 640: 639: 636: 630: 620: 618: 615: 611: 607: 604: 601: 599: 595: 593: 592:deactivation 590:Magnitude of 589: 588: 585: 583: 579: 575: 571: 567: 563: 559: 555: 551: 547: 538: 534: 531: 530: 529: 527: 523: 519: 515: 511: 507: 505: 494: 492: 488: 484: 480: 479:fluorobenzene 475: 473: 469: 459: 453: 451: 448: 447: 443: 441: 426: 423: 422: 415: 413: 410: 409: 395: 393: 390: 386: 382: 380: 377: 369: 367: 363: 359: 356: 355: 351: 349: 346: 345: 341: 339: 336: 332: 329: 325: 323: 322:alkoxy groups 319: 316: 315: 301: 299: 295: 291: 288: 284: 279: 275: 272: 270: 267: 264: 263: 259: 256: 253: 251: 247: 245: 242:Magnitude of 241: 240: 237: 228: 226: 222: 218: 214: 213: 208: 207: 202: 201: 196: 195:electrophiles 192: 188: 179: 175: 170: 161: 159: 155: 151: 147: 142: 140: 136: 131: 129: 125: 121: 117: 116:aromatic ring 113: 109: 105: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 56: 54: 50: 46: 42: 41:reaction rate 38: 37:aromatic ring 34: 30: 19: 2432:. p. 7. 2421: 2402: 2389: 2348: 2342: 2315: 2309: 2267:. New York. 2264: 2258: 2247:. Retrieved 2245:. 2013-10-02 2242: 2233: 2188: 2162: 2158: 2152: 2125: 2083: 2079: 2073: 2067:. p. 3. 2064: 2015: 2007: 1990:10261/184773 1972: 1968: 1958: 1939: 1933: 1924: 1914: 1902:. Retrieved 1899:www.mhhe.com 1898: 1889: 1872: 1867: 1861: 1857: 1853: 1842: 1830:. Retrieved 1825: 1816: 1804:. Retrieved 1778:. Retrieved 1773: 1764: 1734: 1730: 1720: 1711: 1707: 1703: 1688: 1684: 1680: 1676: 1666: 1662: 1658: 1649: 1645: 1641: 1637: 1624: 1614: 1610: 1606: 1602: 1600: 1580: 1560: 1540: 1520: 1514: 1510: 1506: 1499: 1497:ethylbenzene 1481: 1476: 1472: 1468: 1464: 1460: 1456: 1452: 1448: 1444: 1440: 1436: 1432: 1428: 1425:ortho / para 1424: 1420: 1416: 1412: 1411:There are 2 1410: 1396: 1392: 1385: 1374: 1370: 1367: 1358: 1343: 1339: 1337: 1305: 1301:halobenzenes 1287:(0.18) > 1276:bromobenzene 1274:. However, 1249: 1244: 1240: 1236: 1228: 1214: 1191: 1183: 1179: 1175: 1172: 1153:(unlike the 1143: 1133: 1129: 1125: 1106:Alkyl groups 1104: 1101:Alkyl groups 1084: 1079: 1075: 1069: 1045: 1033: 1023: 1019: 1015: 1013: 1008: 1004: 1000: 998: 978:nitrobenzene 973: 969: 967: 945: 940: 936: 932: 924: 922: 911: 893: 868: 852: 848: 842: 832: 828: 825:fluoro group 811: 808: 786: 765: 745: 689: 634: 597: 591: 581: 577: 573: 569: 565: 561: 557: 553: 549: 545: 542: 525: 521: 517: 513: 508: 503: 500: 490: 486: 482: 476: 468:third period 465: 427: 425:alkyl groups 378: 375: 327: 306:, -NHR, -NR 298:amino groups 286: 282: 249: 243: 234: 227:- position. 224: 220: 216: 211: 204: 198: 190: 186: 183: 177: 173: 143: 138: 134: 132: 123: 108:nucleophilic 103: 99: 75: 71: 67: 63: 59: 57: 26: 2058:"LECTURE 2" 1875:: 367–369. 1832:16 November 1806:16 November 1798:Hunt, Ian. 1780:16 November 1439:product as 1346:directors. 1280:iodobenzene 1247:selective. 1194:directing: 1140:Carboxylate 1136:directors. 1082:directors. 989:nitro group 959:amino group 876:halo groups 835:positions) 760:acyl groups 701:cyano group 660:nitro group 412:vinyl group 269:oxido group 244:activation 174:ortho, meta 33:substituent 2412:0851869998 2325:0471018201 2249:2021-09-18 2207:1007924903 2031:0521080290 1756:References 1581:ortho/para 1488:Substrate 1318:) and why 1291:(0.064) ~ 963:resonance. 914:octet rule 602:Structure 383:+M (weak) 254:Structure 164:Categories 47:effect on 43:or have a 2375:cite book 2367:822971422 2291:cite book 2283:933277973 2215:cite book 2144:761379371 2108:0021-9584 1617:product. 1479:product. 1364:Resonance 1355:Induction 1312:induction 1062:(such as 993:resonance 736:Moderate 428:(e.g. -CH 362:alkylthio 334:Moderate 126:, though 92:resonance 45:directing 2444:Category 1999:46641895 1744:See also 1563:product 1543:product 1523:product 1399:director 1264:Chlorine 1216:Fluorine 1155:carboxyl 1052:Anilines 841:–I, +M ( 809:-CONHR, 773:carboxyl 576:and 45% 276:+I, +M, 265:Extreme 154:halogens 53:products 2334:2048204 2088:Bibcode 1904:2 April 1669:ones. 1492:toluene 1233:benzene 1227:at the 1064:anisole 1056:phenols 948:aniline 750:–I, –M 670:–I, –M 631:–I, –M 613:Strong 580:, 1.3% 560:, 0.6% 510:Halides 342:-NHCOR 318:hydroxy 312:–I, +M 293:Strong 86:into a 51:of the 2409:  2365:  2355:  2332:  2322:  2281:  2271:  2205:  2195:  2142:  2132:  2106:  2040:205846 2038:  2028:  1997:  1946:  1860:- and 1583:ratio 1504:cumene 1060:ethers 1058:, and 764:-CHO, 756:formyl 556:, 13% 416:-CH=CH 364:, and 352:-OCOR 219:- and 200:ortho- 2430:(PDF) 2399:(PDF) 2165:(8). 2061:(PDF) 1995:S2CID 1858:ortho 1704:ortho 1685:ortho 1677:ortho 1659:ortho 1646:ortho 1638:ortho 1615:ortho 1603:ortho 1595:0.22 1592:0.48 1589:0.76 1586:1.57 1521:ortho 1469:ortho 1461:ortho 1453:ortho 1445:ortho 1437:ortho 1429:ortho 1413:ortho 1393:ortho 1340:ortho 1241:ortho 1176:ortho 1130:ortho 1076:ortho 1016:ortho 1005:ortho 970:ortho 933:ortho 864:-N=O 849:ortho 843:ortho 829:ortho 821:Weak 812:-CONR 803:-CONH 766:-COR 744:-COX 719:group 705:-C≡N 578:ortho 566:ortho 558:ortho 550:ortho 522:ortho 514:ortho 487:ortho 388:Weak 376:-SR, 326:-OH, 283:ortho 217:ortho 212:meta- 206:para- 187:ortho 114:, an 66:) or 2407:ISBN 2381:link 2363:OCLC 2353:ISBN 2330:OCLC 2320:ISBN 2301:link 2297:link 2279:OCLC 2269:ISBN 2225:link 2221:link 2203:OCLC 2193:ISBN 2140:OCLC 2130:ISBN 2104:ISSN 2036:OCLC 2026:ISBN 1944:ISBN 1906:2015 1862:para 1854:meta 1834:2012 1808:2012 1782:2012 1735:meta 1731:para 1721:meta 1712:tert 1708:para 1689:para 1681:meta 1667:meta 1663:para 1650:para 1642:para 1611:para 1561:para 1541:meta 1511:tert 1477:para 1473:para 1457:para 1449:para 1447:and 1441:para 1433:para 1431:and 1421:para 1417:meta 1397:para 1344:para 1293:PhBr 1289:PhCl 1278:and 1245:para 1239:and 1237:meta 1229:para 1192:meta 1184:meta 1180:para 1178:and 1134:para 1126:tert 1120:(or 1080:para 1024:meta 1020:para 1009:para 1007:and 1001:meta 987:The 974:para 972:and 957:The 941:meta 937:para 935:and 853:para 833:meta 775:and 758:and 678:and 635:meta 582:meta 574:para 570:para 568:and 562:meta 554:para 546:para 526:para 518:para 512:are 504:meta 491:meta 489:and 483:para 432:, -C 379:-SH 328:-OR 320:and 287:para 225:meta 221:para 203:and 191:para 189:and 178:para 176:and 148:for 90:via 2396:"2" 2167:doi 2163:120 2096:doi 2022:200 1985:hdl 1977:doi 1877:doi 1575:73 1572:62 1569:59 1566:37 1555:11 1535:16 1532:30 1529:45 1526:58 1324:pKa 1297:PhI 1285:PhF 1022:or 902:. 838:-F 787:-CO 785:H, 781:-CO 731:–I 724:-CX 715:-CF 690:-SO 688:H, 684:-SO 664:-NO 654:–I 647:-NR 621:-SO 584:). 460:+I 454:-CO 444:-R 370:-PR 302:-NH 273:-O 133:An 102:or 72:ERG 64:EDG 58:An 27:In 2446:: 2401:. 2377:}} 2373:{{ 2361:. 2328:. 2293:}} 2289:{{ 2277:. 2241:. 2217:}} 2213:{{ 2201:. 2179:^ 2161:. 2138:. 2116:^ 2102:. 2094:. 2084:80 2082:. 2063:. 2048:^ 2034:. 2024:. 1993:. 1983:. 1973:28 1971:. 1967:. 1923:. 1897:. 1873:61 1866:. 1824:. 1790:^ 1772:. 1710:-( 1552:8 1549:6 1546:5 1401:. 1395:/ 1342:/ 1054:, 851:, 845:) 831:, 807:, 791:R 721:) 694:R 625:CF 524:, 516:, 440:) 396:-C 374:, 360:, 285:, 141:. 104:+I 100:+M 74:, 2415:. 2383:) 2369:. 2336:. 2303:) 2285:. 2252:. 2227:) 2209:. 2173:. 2169:: 2146:. 2110:. 2098:: 2090:: 2042:. 2001:. 1987:: 1979:: 1952:. 1927:. 1908:. 1883:. 1879:: 1836:. 1810:. 1784:. 1661:/ 1607:t 1322:( 1132:/ 1078:/ 1066:) 1018:/ 995:. 827:( 814:2 805:2 789:2 783:2 726:3 717:3 692:2 686:3 666:2 649:3 627:3 623:2 456:2 438:5 436:H 434:2 430:3 418:2 402:5 400:H 398:6 372:2 308:2 304:2 76:Z 70:( 62:( 20:)

Index

Activating group
electrophilic aromatic substitution
substituent
aromatic ring
reaction rate
directing
positional isomer
products
functional group
electron density
conjugated π system
resonance
inductive effects
nucleophilic
electronic effects
aromatic ring
electrophilic substitution
steric effects
ortho/para directors
electrophilic aromatic substitutions
halogens
meta directors

electrophiles
ortho-
para-
meta-
oxido group
metal-hydrogen exchange
amino groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.