Knowledge

Universal vertex

Source đź“ť

177: 22: 1254:
by an adjacency subroutine that always answers in such a way as to leave an odd number of remaining graphs that have a universal vertex. Until all edges are tested, the total number of remaining graphs will be even, so the algorithm will be unable to determine whether the graph it is querying has a universal vertex.
1253:
if no algorithm can test the property guaranteeing fewer queries. Testing the existence of a universal vertex is evasive, on graphs with an even number of vertices. There are an odd number of these graphs that have a universal vertex. A testing algorithm can be forced to query all pairs of vertices
568:, in which one counts the graphs in which one chosen vertex is universal, then corrects for overcounting by subtracting the counts for graphs with two chosen universal vertices, then adding the counts for graphs with three chosen universal vertices, etc. This produces the formula 269:, formed by systems of triangles connected together at a common shared vertex, the universal vertex. The assumption that the graph is finite is important; there exist infinite graphs in which every two vertices have one shared neighbor, but with no universal vertex. 237:
form a subclass of the trivially perfect graphs, so they also contain a universal vertex. They may be defined as the graphs that can be formed by repeated addition of either a universal vertex or an isolated vertex (one with no incident edges).
525: 695: 1142: 228:
by adding an edge connecting every ancestor–descendant pair in the tree. These always contain a universal vertex, the root of the tree. More strongly they may be characterized as the finite graphs in which every connected
1187:
on how many queries (subroutine calls) are needed to test whether a labeled graph has a property, given access to the graph only through a subroutine that can test whether two given vertices are adjacent. In a graph with
527:
This implies that a strong product has a dominating vertex if and only if both of its factors do; in this case the upper bound on its dominating number is one, and in any other case the lower bound is greater than one.
280:
is a subset of another vertex's closed neighborhood. In a graph with a universal vertex, any removal sequence that leaves the universal vertex in place, removing all of the other vertices, fits this definition.
253:
vertex to all the faces of a lower-dimensional base, including all of the vertices of the base. The polytope is said to be pyramidal at its apex, and it may have more than one apex. However, the existence of
1582: 1611: 426: 807: 265:
states that, if every two vertices in a finite graph have exactly one shared neighbor, then the graph contains a universal vertex. The graphs described by this theorem are the
1247: 758: 363: 114:, showing that there are an odd number of such graphs on any even number of vertices. This, in turn, can be used to show that the property of having a universal graph is 1068: 421: 392: 325:
goes to infinity. The dismantlable graphs are also called cop-win graphs, because the side playing the cop wins a certain cop-and-robber game defined on these graphs.
882: 1043: 958: 1016: 840: 166: 573: 1206: 1178: 1063: 986: 926: 902: 717: 558: 323: 303: 140: 332:, a set that includes or is adjacent to every vertex. For this reason, in the context of dominating set problems, a universal vertex may also be called a 118:: testing this property may require checking the adjacency of all pairs of vertices. However, a universal vertex can be recognized immediately from its 1357: 1318:, Graduate Studies in Mathematics, vol. 89, Atlantic Association for Research in the Mathematical Sciences (AARMS), Halifax, NS, p. 7, 1826:; Golovach, Petr A.; Thilikos, Dimitrios M. (2021), "Parameterized complexity of elimination distance to first-order logic properties", 258:
means that the graph of a polytope may have a universal vertex, or all vertices universal, without the polytope itself being a pyramid.
1409:(1977), "Aggregation of inequalities in integer programming", in Hammer, P. L.; Johnson, E. L.; Korte, B. H.; Nemhauser, G. L. (eds.), 1184: 115: 1808: 852: 168:. Universal vertices can be described by a short logical formula, which has been used in graph algorithms for related properties. 809:
is the number of pairs of vertices that do not include a chosen universal vertex, and taking this number as the exponent of a
1853: 1710: 1451: 1331: 1551: 1183:
The property of having a universal vertex (or equivalently an isolated vertex) has been considered with respect to the
565: 1587: 1803:"Sequence A327367 (Number of labeled simple graphs with n vertices, at least one of which is isolated)" 1646: 1644:
Bonato, Anthony; Kemkes, Graeme; Prałat, Paweł (2012), "Almost all cop-win graphs contain a universal vertex",
1615: 1277: 209: 1882: 1828:
36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021
277: 249:, and more generally a higher-dimensional pyramid is a polytope whose faces of all dimensions connect an 763: 103:, the vertex at the apex of the pyramid is universal. When a graph contains a universal vertex, it is a 1149: 1211: 722: 1153: 1157: 1145: 337: 342: 64:
of the cone. This terminology should be distinguished from the unrelated usage of these words for
520:{\displaystyle \max\{\gamma (G),\gamma (H)\}\leq \gamma (G\boxtimes H)\leq \gamma (G)\gamma (H).} 221: 111: 84: 397: 368: 1272: 1733:
Fisher, David C. (1994), "Domination, fractional domination, 2-packing, and graph products",
1690: 1433: 1406: 989: 119: 41: 1772: 1313: 861: 1754: 1720: 1669: 1490: 1388: 1341: 1298: 1028: 1021:
The property of having a universal vertex can be expressed by a formula in the first-order
931: 690:{\displaystyle \displaystyle \sum _{k=1}^{n}(-1)^{k+1}{\binom {n}{k}}2^{\tbinom {n-k}{2}}.} 65: 276:, meaning that it can be reduced to a single vertex by repeatedly removing a vertex whose 8: 1541: 1413:, Annals of Discrete Mathematics, vol. 1, Amsterdam: North-Holland, pp. 145–162 1402: 995: 819: 255: 205: 201: 181: 145: 80: 328:
When a graph has a universal vertex, the vertex set consisting only of that vertex is a
208:
that have a universal vertex, and may be constructed by adding a universal vertex to an
1859: 1831: 1776: 1429: 1376: 1191: 1163: 1048: 971: 911: 887: 702: 543: 308: 288: 273: 242: 125: 305:-vertex dismantlable graphs that have a universal vertex tends to one in the limit as 1863: 1849: 1706: 1507: 1447: 1327: 905: 1425: 1845: 1841: 1742: 1698: 1686: 1655: 1624: 1478: 1439: 1366: 1319: 1286: 1137:{\displaystyle \exists u\forall v{\bigl (}(u\neq v)\Rightarrow (u\sim v){\bigr )}.} 561: 266: 230: 189: 88: 45: 845:
1, 1, 4, 23, 256, 5319, 209868, 15912975, 2343052576, 675360194287, ... (sequence
1750: 1716: 1665: 1486: 1384: 1337: 1294: 1022: 250: 234: 196:(lower right). In each example the universal vertex is the center yellow vertex. 193: 176: 69: 1660: 1290: 560:
vertices, at least one of which is universal (or equivalently isolated, in the
329: 285:
dismantlable graphs have a universal vertex, in the sense that the fraction of
53: 1746: 1702: 1511: 1443: 928:-vertex unlabeled graphs with a universal vertex is the same as the number of 1876: 1775:; Young, Neal E. (2002), "Lecture Notes on Evasiveness of Graph Properties", 1275:; Pizaña, M. A. (2004), "The clique operator on cographs and serial graphs", 537: 110:
The number of labeled graphs containing a universal vertex can be counted by
104: 48:
that is adjacent to all other vertices of the graph. It may also be called a
1503: 1144:
The existence of this formula, and its small number of alternations between
1629: 1545: 1515: 1482: 1208:
vertices, one can determine the entire graph, and test any property, using
810: 33: 1823: 1798: 1466: 225: 217: 213: 185: 92: 1380: 282: 246: 73: 56:
in the graph. A graph that contains a universal vertex may be called a
1323: 1371: 1836: 1781: 813:
counts the number of graphs with the chosen vertices as universal.
100: 21: 1270: 1697:, Springer Monographs in Mathematics, Springer, Cham, p. 2, 96: 1540: 1065:
has a universal vertex if and only if it models the formula
107:, and almost all cop-win graphs contain a universal vertex. 1802: 847: 1469:(1964), "On the number of vertices of a convex polytope", 1355:
Wolk, E. S. (1962), "The comparability graph of a tree",
1411:
Studies in Integer Programming (Proc. Worksh. Bonn 1975)
1685: 1548:; Rosenberg, Ivo G.; Davies, Roy O. (1976), "There are 1045:
to indicate the adjacency relation in a graph, a graph
904:
is even, and vice versa. The unlabeled version of this
1797: 1591: 1555: 1216: 768: 727: 719:
is the number of vertices chosen to be universal, and
651: 1822: 1590: 1554: 1214: 1194: 1166: 1160:
of a graph can be made to have universal vertices by
1071: 1051: 1031: 998: 974: 934: 914: 890: 864: 822: 766: 725: 705: 577: 576: 546: 429: 400: 371: 345: 311: 291: 148: 128: 908:
problem is trivial, in the sense that the number of
79:Graphs that contain a universal vertex include the 1643: 1605: 1577:{\displaystyle \scriptstyle 2^{\aleph _{\alpha }}} 1576: 1241: 1200: 1172: 1136: 1057: 1037: 1010: 980: 952: 920: 896: 876: 834: 801: 752: 711: 689: 552: 519: 415: 386: 357: 317: 297: 160: 134: 1424: 640: 627: 1874: 1358:Proceedings of the American Mathematical Society 1180:steps of removing a vertex from each component. 430: 272:Every finite graph with a universal vertex is a 216:may be formed by adding a universal vertex to a 171: 988:vertices, a universal vertex is a vertex whose 180:Four types of graph with a universal vertex: a 1767: 1765: 1763: 1606:{\displaystyle \scriptstyle \aleph _{\alpha }} 99:), and graphs of higher-dimensional pyramidal 1502: 1401: 1232: 1219: 1126: 1086: 792: 771: 743: 730: 675: 654: 60:, and its universal vertex may be called the 531: 463: 433: 1771: 1760: 1271:LarriĂłn, F.; de Mello, C. P.; Morgana, A.; 760:is the number of ways to make this choice. 233:contains a universal vertex. The connected 1835: 1809:On-Line Encyclopedia of Integer Sequences 1780: 1659: 1628: 1370: 1435:Configuration from a Graphical Viewpoint 175: 20: 16:Vertex adjacent to all others in a graph 1793: 1791: 1875: 1732: 1311: 1681: 1679: 1788: 1735:SIAM Journal on Discrete Mathematics 1465: 1354: 1695:Domination in Graphs: Core Concepts 241:In geometry, the three-dimensional 13: 1676: 1593: 1562: 1223: 1185:Aanderaa–Karp–Rosenberg conjecture 1156:algorithm for testing whether all 1078: 1072: 802:{\displaystyle {\tbinom {n-k}{2}}} 775: 734: 658: 631: 14: 1894: 25:A graph with a universal vertex, 1242:{\displaystyle {\tbinom {n}{2}}} 753:{\displaystyle {\tbinom {n}{k}}} 1816: 1726: 1471:Canadian Journal of Mathematics 842:, these numbers of graphs are: 1846:10.1109/LICS52264.2021.9470540 1693:; Henning, Michael A. (2023), 1637: 1616:Canadian Mathematical Bulletin 1584:friendship graphs of cardinal 1534: 1516:"On a problem of graph theory" 1496: 1459: 1418: 1395: 1348: 1305: 1264: 1121: 1109: 1106: 1103: 1091: 963: 947: 935: 609: 599: 511: 505: 499: 493: 484: 472: 460: 454: 445: 439: 410: 404: 381: 375: 1: 1257: 1249:queries. A graph property is 884:, these numbers are odd when 566:inclusion–exclusion principle 172:In special families of graphs 142:-vertex graph, it has degree 358:{\displaystyle G\boxtimes H} 52:, as it forms a one-element 7: 245:have wheel graphs as their 10: 1899: 1799:Sloane, N. J. A. 1661:10.1016/j.disc.2012.02.018 1291:10.1016/j.disc.2003.10.023 416:{\displaystyle \gamma (H)} 387:{\displaystyle \gamma (G)} 1747:10.1137/S0895480191217806 1703:10.1007/978-3-031-09496-5 1523:Studia Sci. Math. Hungar. 1444:10.1007/978-0-8176-8364-1 1315:A course on the web graph 1154:fixed-parameter tractable 699:In each term of the sum, 532:Combinatorial enumeration 365:, the domination numbers 1438:, Springer, p. 21, 1312:Bonato, Anthony (2008), 564:) can be counted by the 338:strong product of graphs 222:trivially perfect graphs 85:trivially perfect graphs 1830:, IEEE, pp. 1–13, 1691:Hedetniemi, Stephen T. 1630:10.4153/cmb-1976-064-1 1607: 1578: 1483:10.4153/CJM-1964-067-6 1407:Hammer, Peter Ladislaw 1243: 1202: 1174: 1150:existential quantifers 1138: 1059: 1039: 1012: 982: 954: 922: 898: 878: 877:{\displaystyle n>1} 836: 803: 754: 713: 691: 598: 554: 521: 423:obey the inequalities 417: 388: 359: 319: 299: 197: 162: 136: 29: 1608: 1579: 1244: 1203: 1175: 1139: 1060: 1040: 1038:{\displaystyle \sim } 1013: 983: 955: 953:{\displaystyle (n-1)} 923: 899: 879: 837: 804: 755: 714: 692: 578: 555: 522: 418: 389: 360: 320: 300: 179: 163: 137: 66:universal quantifiers 24: 1883:Graph theory objects 1647:Discrete Mathematics 1588: 1552: 1278:Discrete Mathematics 1212: 1192: 1164: 1069: 1049: 1029: 996: 972: 932: 912: 888: 862: 820: 764: 723: 703: 574: 544: 427: 398: 369: 343: 309: 289: 256:neighborly polytopes 146: 126: 1430:Servatius, Brigitte 1152:, can be used in a 1011:{\displaystyle n-1} 835:{\displaystyle n=1} 278:closed neighborhood 161:{\displaystyle n-1} 112:inclusion–exclusion 1603: 1602: 1574: 1573: 1239: 1237: 1198: 1170: 1134: 1055: 1035: 1008: 978: 950: 918: 894: 874: 832: 799: 797: 750: 748: 709: 687: 686: 680: 550: 517: 413: 384: 355: 315: 295: 274:dismantlable graph 263:friendship theorem 224:are obtained from 198: 192:(lower left), and 158: 132: 30: 1855:978-1-6654-4895-6 1812:, OEIS Foundation 1712:978-3-031-09495-8 1687:Haynes, Teresa W. 1654:(10): 1652–1657, 1453:978-0-8176-8363-4 1333:978-0-8218-4467-0 1230: 1201:{\displaystyle n} 1173:{\displaystyle k} 1058:{\displaystyle G} 981:{\displaystyle n} 921:{\displaystyle n} 906:graph enumeration 897:{\displaystyle n} 790: 741: 712:{\displaystyle k} 673: 638: 553:{\displaystyle n} 334:dominating vertex 318:{\displaystyle n} 298:{\displaystyle n} 267:friendship graphs 135:{\displaystyle n} 89:friendship graphs 50:dominating vertex 1890: 1867: 1866: 1839: 1820: 1814: 1813: 1795: 1786: 1785: 1784: 1769: 1758: 1757: 1730: 1724: 1723: 1683: 1674: 1672: 1663: 1641: 1635: 1633: 1632: 1612: 1610: 1609: 1604: 1601: 1600: 1583: 1581: 1580: 1575: 1572: 1571: 1570: 1569: 1538: 1532: 1530: 1520: 1500: 1494: 1493: 1463: 1457: 1456: 1422: 1416: 1414: 1399: 1393: 1391: 1374: 1352: 1346: 1344: 1309: 1303: 1301: 1285:(1–3): 183–191, 1273:Neumann-Lara, V. 1268: 1248: 1246: 1245: 1240: 1238: 1236: 1235: 1222: 1207: 1205: 1204: 1199: 1179: 1177: 1176: 1171: 1143: 1141: 1140: 1135: 1130: 1129: 1090: 1089: 1064: 1062: 1061: 1056: 1044: 1042: 1041: 1036: 1017: 1015: 1014: 1009: 987: 985: 984: 979: 968:In a graph with 960:-vertex graphs. 959: 957: 956: 951: 927: 925: 924: 919: 903: 901: 900: 895: 883: 881: 880: 875: 850: 841: 839: 838: 833: 808: 806: 805: 800: 798: 796: 795: 786: 774: 759: 757: 756: 751: 749: 747: 746: 733: 718: 716: 715: 710: 696: 694: 693: 688: 682: 681: 679: 678: 669: 657: 645: 644: 643: 630: 623: 622: 597: 592: 562:complement graph 559: 557: 556: 551: 526: 524: 523: 518: 422: 420: 419: 414: 393: 391: 390: 385: 364: 362: 361: 356: 324: 322: 321: 316: 304: 302: 301: 296: 235:threshold graphs 231:induced subgraph 204:are exactly the 190:friendship graph 167: 165: 164: 159: 141: 139: 138: 133: 46:undirected graph 38:universal vertex 28: 1898: 1897: 1893: 1892: 1891: 1889: 1888: 1887: 1873: 1872: 1871: 1870: 1856: 1824:Fomin, Fedor V. 1821: 1817: 1796: 1789: 1770: 1761: 1731: 1727: 1713: 1684: 1677: 1642: 1638: 1596: 1592: 1589: 1586: 1585: 1565: 1561: 1560: 1556: 1553: 1550: 1549: 1542:Chvátal, Václav 1539: 1535: 1518: 1501: 1497: 1464: 1460: 1454: 1426:Pisanski, TomaĹľ 1423: 1419: 1403:Chvátal, Václav 1400: 1396: 1372:10.2307/2034179 1353: 1349: 1334: 1324:10.1090/gsm/089 1310: 1306: 1269: 1265: 1260: 1231: 1218: 1217: 1215: 1213: 1210: 1209: 1193: 1190: 1189: 1165: 1162: 1161: 1125: 1124: 1085: 1084: 1070: 1067: 1066: 1050: 1047: 1046: 1030: 1027: 1026: 1023:logic of graphs 997: 994: 993: 973: 970: 969: 966: 933: 930: 929: 913: 910: 909: 889: 886: 885: 863: 860: 859: 856: 846: 821: 818: 817: 791: 776: 770: 769: 767: 765: 762: 761: 742: 729: 728: 726: 724: 721: 720: 704: 701: 700: 697: 674: 659: 653: 652: 650: 646: 639: 626: 625: 624: 612: 608: 593: 582: 575: 572: 571: 545: 542: 541: 534: 428: 425: 424: 399: 396: 395: 370: 367: 366: 344: 341: 340: 310: 307: 306: 290: 287: 286: 210:independent set 194:threshold graph 188:(upper right), 174: 147: 144: 143: 127: 124: 123: 95:(the graphs of 70:logic of graphs 26: 17: 12: 11: 5: 1896: 1886: 1885: 1869: 1868: 1854: 1815: 1787: 1773:Lovász, LászlĂł 1759: 1741:(3): 493–498, 1725: 1711: 1675: 1636: 1623:(4): 431–433, 1599: 1595: 1568: 1564: 1559: 1533: 1495: 1458: 1452: 1417: 1394: 1365:(5): 789–795, 1347: 1332: 1304: 1262: 1261: 1259: 1256: 1234: 1229: 1226: 1221: 1197: 1169: 1133: 1128: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1102: 1099: 1096: 1093: 1088: 1083: 1080: 1077: 1074: 1054: 1034: 1007: 1004: 1001: 977: 965: 962: 949: 946: 943: 940: 937: 917: 893: 873: 870: 867: 844: 831: 828: 825: 816:Starting from 794: 789: 785: 782: 779: 773: 745: 740: 737: 732: 708: 685: 677: 672: 668: 665: 662: 656: 649: 642: 637: 634: 629: 621: 618: 615: 611: 607: 604: 601: 596: 591: 588: 585: 581: 570: 549: 538:labeled graphs 536:The number of 533: 530: 516: 513: 510: 507: 504: 501: 498: 495: 492: 489: 486: 483: 480: 477: 474: 471: 468: 465: 462: 459: 456: 453: 450: 447: 444: 441: 438: 435: 432: 412: 409: 406: 403: 383: 380: 377: 374: 354: 351: 348: 330:dominating set 314: 294: 184:(upper left), 173: 170: 157: 154: 151: 131: 54:dominating set 15: 9: 6: 4: 3: 2: 1895: 1884: 1881: 1880: 1878: 1865: 1861: 1857: 1851: 1847: 1843: 1838: 1833: 1829: 1825: 1819: 1811: 1810: 1804: 1800: 1794: 1792: 1783: 1778: 1774: 1768: 1766: 1764: 1756: 1752: 1748: 1744: 1740: 1736: 1729: 1722: 1718: 1714: 1708: 1704: 1700: 1696: 1692: 1688: 1682: 1680: 1671: 1667: 1662: 1657: 1653: 1649: 1648: 1640: 1631: 1626: 1622: 1618: 1617: 1597: 1566: 1557: 1547: 1546:Kotzig, Anton 1543: 1537: 1528: 1524: 1517: 1513: 1509: 1508:RĂ©nyi, AlfrĂ©d 1505: 1499: 1492: 1488: 1484: 1480: 1476: 1472: 1468: 1462: 1455: 1449: 1445: 1441: 1437: 1436: 1431: 1427: 1421: 1412: 1408: 1404: 1398: 1390: 1386: 1382: 1378: 1373: 1368: 1364: 1360: 1359: 1351: 1343: 1339: 1335: 1329: 1325: 1321: 1317: 1316: 1308: 1300: 1296: 1292: 1288: 1284: 1280: 1279: 1274: 1267: 1263: 1255: 1252: 1227: 1224: 1195: 1186: 1181: 1167: 1159: 1155: 1151: 1147: 1131: 1118: 1115: 1112: 1100: 1097: 1094: 1081: 1075: 1052: 1032: 1024: 1019: 1005: 1002: 999: 991: 975: 961: 944: 941: 938: 915: 907: 891: 871: 868: 865: 854: 849: 843: 829: 826: 823: 814: 812: 787: 783: 780: 777: 738: 735: 706: 683: 670: 666: 663: 660: 647: 635: 632: 619: 616: 613: 605: 602: 594: 589: 586: 583: 579: 569: 567: 563: 547: 539: 529: 514: 508: 502: 496: 490: 487: 481: 478: 475: 469: 466: 457: 451: 448: 442: 436: 407: 401: 378: 372: 352: 349: 346: 339: 335: 331: 326: 312: 292: 284: 279: 275: 270: 268: 264: 259: 257: 252: 248: 244: 239: 236: 232: 227: 223: 219: 215: 211: 207: 203: 195: 191: 187: 183: 178: 169: 155: 152: 149: 129: 121: 117: 113: 108: 106: 105:cop-win graph 102: 98: 94: 90: 86: 82: 77: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 35: 23: 19: 1827: 1818: 1806: 1738: 1734: 1728: 1694: 1651: 1645: 1639: 1620: 1614: 1536: 1526: 1522: 1512:SĂłs, Vera T. 1498: 1474: 1470: 1467:Klee, Victor 1461: 1434: 1420: 1410: 1397: 1362: 1356: 1350: 1314: 1307: 1282: 1276: 1266: 1250: 1182: 1020: 967: 857: 815: 811:power of two 698: 535: 333: 327: 271: 262: 260: 240: 226:rooted trees 214:wheel graphs 199: 109: 93:wheel graphs 78: 61: 57: 49: 37: 34:graph theory 31: 18: 1504:ErdĹ‘s, Paul 1477:: 701–720, 992:is exactly 964:Recognition 218:cycle graph 186:wheel graph 74:apex graphs 1837:2104.02998 1782:cs/0205031 1258:References 1158:components 336:. For the 283:Almost all 72:, and for 1864:233169117 1598:α 1594:ℵ 1567:α 1563:ℵ 1529:: 215–235 1146:universal 1116:∼ 1107:⇒ 1098:≠ 1079:∀ 1073:∃ 1033:∼ 1003:− 942:− 781:− 664:− 603:− 580:∑ 503:γ 491:γ 488:≤ 479:⊠ 470:γ 467:≤ 452:γ 437:γ 402:γ 373:γ 350:⊠ 247:skeletons 153:− 101:polytopes 1877:Category 1514:(1966), 1432:(2013), 1025:. Using 243:pyramids 122:: in an 97:pyramids 1801:(ed.), 1755:1285586 1721:4607811 1670:2901161 1491:0166682 1389:0172273 1381:2034179 1342:2389013 1299:2059518 1251:evasive 851:in the 848:A327367 212:. The 116:evasive 68:in the 1862:  1852:  1753:  1719:  1709:  1668:  1489:  1450:  1387:  1379:  1340:  1330:  1297:  990:degree 220:. The 120:degree 91:. For 87:, and 44:of an 42:vertex 1860:S2CID 1832:arXiv 1777:arXiv 1519:(PDF) 1377:JSTOR 540:with 206:trees 202:stars 81:stars 40:is a 1850:ISBN 1807:The 1707:ISBN 1448:ISBN 1328:ISBN 1148:and 869:> 858:For 853:OEIS 394:and 261:The 251:apex 200:The 182:star 62:apex 58:cone 36:, a 1842:doi 1743:doi 1699:doi 1656:doi 1652:312 1625:doi 1613:", 1479:doi 1440:doi 1367:doi 1320:doi 1287:doi 1283:282 431:max 32:In 1879:: 1858:, 1848:, 1840:, 1805:, 1790:^ 1762:^ 1751:MR 1749:, 1737:, 1717:MR 1715:, 1705:, 1689:; 1678:^ 1666:MR 1664:, 1650:, 1621:19 1619:, 1544:; 1525:, 1521:, 1510:; 1506:; 1487:MR 1485:, 1475:16 1473:, 1446:, 1428:; 1405:; 1385:MR 1383:, 1375:, 1363:13 1361:, 1338:MR 1336:, 1326:, 1295:MR 1293:, 1281:, 1018:. 855:). 83:, 76:. 1844:: 1834:: 1779:: 1745:: 1739:7 1701:: 1673:. 1658:: 1634:. 1627:: 1558:2 1531:. 1527:1 1481:: 1442:: 1415:. 1392:. 1369:: 1345:. 1322:: 1302:. 1289:: 1233:) 1228:2 1225:n 1220:( 1196:n 1168:k 1132:. 1127:) 1122:) 1119:v 1113:u 1110:( 1104:) 1101:v 1095:u 1092:( 1087:( 1082:v 1076:u 1053:G 1006:1 1000:n 976:n 948:) 945:1 939:n 936:( 916:n 892:n 872:1 866:n 830:1 827:= 824:n 793:) 788:2 784:k 778:n 772:( 744:) 739:k 736:n 731:( 707:k 684:. 676:) 671:2 667:k 661:n 655:( 648:2 641:) 636:k 633:n 628:( 620:1 617:+ 614:k 610:) 606:1 600:( 595:n 590:1 587:= 584:k 548:n 515:. 512:) 509:H 506:( 500:) 497:G 494:( 485:) 482:H 476:G 473:( 464:} 461:) 458:H 455:( 449:, 446:) 443:G 440:( 434:{ 411:) 408:H 405:( 382:) 379:G 376:( 353:H 347:G 313:n 293:n 156:1 150:n 130:n 27:u

Index


graph theory
vertex
undirected graph
dominating set
universal quantifiers
logic of graphs
apex graphs
stars
trivially perfect graphs
friendship graphs
wheel graphs
pyramids
polytopes
cop-win graph
inclusion–exclusion
evasive
degree

star
wheel graph
friendship graph
threshold graph
stars
trees
independent set
wheel graphs
cycle graph
trivially perfect graphs
rooted trees

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑