Knowledge

Sylow theorems

Source 📝

820: 3095: 7480: 3139: 52: 5356: 1633:
to give statements about the structure of its subgroups: essentially, it gives a technique to transport basic number-theoretic information about a group to its group structure. From this observation, classifying finite groups becomes a game of finding which combinations/constructions of groups of
6378:
of the input (the degree of the group times the number of generators). These algorithms are described in textbook form in Seress, and are now becoming practical as the constructive recognition of finite simple groups becomes a reality. In particular, versions of this algorithm are used in the
5018: 3157:
is even, then 4 divides the order of the group, and the subgroups of order 2 are no longer Sylow subgroups, and in fact they fall into two conjugacy classes, geometrically according to whether they pass through two vertices or two faces. These are related by an
1612:
The Sylow theorems are a powerful statement about the structure of groups in general, but are also powerful in applications of finite group theory. This is because they give a method for using the prime decomposition of the cardinality of a finite group
3502:
Since Sylow's theorem ensures the existence of p-subgroups of a finite group, it's worthwhile to study groups of prime power order more closely. Most of the examples use Sylow's theorem to prove that a group of a particular order is not
3378: 4292:
The Sylow theorems have been proved in a number of ways, and the history of the proofs themselves is the subject of many papers, including Waterhouse, Scharlau, Casadio and Zappa, Gow, and to some extent Meo.
5351:{\displaystyle |\Omega |={p^{k}m \choose p^{k}}=\prod _{j=0}^{p^{k}-1}{\frac {p^{k}m-j}{p^{k}-j}}=m\prod _{j=1}^{p^{k}-1}{\frac {p^{k-\nu _{p}(j)}m-j/p^{\nu _{p}(j)}}{p^{k-\nu _{p}(j)}-j/p^{\nu _{p}(j)}}}} 4308:-subgroups in various ways, and each such action can be exploited to prove one of the Sylow theorems. The following proofs are based on combinatorial arguments of Wielandt. In the following, we use 3032: 6359:
itself. The algorithmic version of this (and many improvements) is described in textbook form in Butler, including the algorithm described in Cannon. These versions are still used in the
1715: 3940: 3083: 2386: 1917: 2929: 5802: 1634:
smaller order can be applied to construct a group. For example, a typical application of these theorems is in the classification of finite groups of some fixed cardinality, e.g.
1203: 2452: 3131:
odd, 2 = 2 is the highest power of 2 dividing the order, and thus subgroups of order 2 are Sylow subgroups. These are the groups generated by a reflection, of which there are
497: 472: 435: 2955: 2165: 1765: 1850: 4468: 4358: 5759: 4332: 2802: 2252: 2226: 2123: 1791: 1668: 3633: 2873: 2766: 2599: 2572: 2491: 2325: 2287: 2001: 1450: 1382: 4406: 1061: 7483: 2842: 2822: 2739: 2719: 2699: 2679: 2659: 2639: 2619: 2545: 2525: 1631: 1597: 1577: 1557: 1533: 1513: 1493: 1472: 1422: 1402: 1355: 1335: 1315: 1294: 1270: 1250: 1230: 1165: 1145: 1125: 1105: 1085: 1027: 1007: 987: 967: 932: 1678:
Collections of subgroups that are each maximal in one sense or another are common in group theory. The surprising result here is that in the case of
799: 3310: 6801: 4269: 6493: 3642:≡ 1 (mod 3). The only value satisfying these constraints is 1; therefore, there is only one subgroup of order 3, and it must be 4265: 4052:
shows that a Sylow subgroup of a normal subgroup provides a factorization of a finite group. A slight generalization known as
905: 357: 5528: 4705: 4579: 4545: 7537: 4284:'s strengthening of the conjugacy portion of Sylow's theorem to control what sorts of elements are used in the conjugation. 1209: 307: 3763:
then has 10 distinct cyclic subgroups of order 3, each of which has 2 elements of order 3 (plus the identity). This means
3507:. For groups of small order, the congruence condition of Sylow's theorem is often sufficient to force the existence of a 904:
contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the
2013: 792: 302: 7428: 7122: 7102: 6527: 863: 841: 2982: 834: 3135:, and they are all conjugate under rotations; geometrically the axes of symmetry pass through a vertex and a side. 2848:. However, there are groups that have proper, non-trivial normal subgroups but no normal Sylow subgroups, such as 1681: 3885: 3712:, and so the group is not simple, or is of prime order and is cyclic. This rules out every group up to order 30 1954: 718: 17: 3045: 2348: 7471: 7169: 6380: 1863: 785: 2902: 3470:-subgroup, which is abelian, as all diagonal matrices commute, and because Theorem 2 states that all Sylow 5764: 7466: 6360: 1170: 402: 216: 2392: 7420: 6429: 6282: 4482: 4297: 889: 134: 4746: 4624:
elements, providing the desired subgroup. This is the maximal possible size of a stabilizer subgroup
7461: 3660:
must equal 1 (mod 5); thus it must also have a single normal subgroup of order 5. Since 3 and 5 are
7224: 4194:)-conjugate. Burnside's fusion theorem can be used to give a more powerful factorization called a 1064: 828: 600: 334: 211: 99: 480: 455: 418: 3669: 3385: 6858: 3949:. One may easily prove this theorem by Sylow's third theorem. Indeed, observe that the number 2934: 2128: 1926:
The following theorems were first proposed and proven by Ludwig Sylow in 1872, and published in
1724: 7219: 6393: 4253: 4049: 2038:, then there exists an element (and thus a cyclic subgroup generated by this element) of order 1812: 845: 750: 540: 4447: 4337: 4264:
has on the structure of the entire group. This control is exploited at several stages of the
7321:
Kantor, William M.; Taylor, Donald E. (1988). "Polynomial-time versions of Sylow's theorem".
6974: 6438: 6433: 5726: 4311: 3697: 2774: 2009: 1928: 624: 2231: 2201: 2102: 1770: 1637: 7438: 7399: 7352: 7305: 7249: 7185: 7132: 7066: 7008: 6958: 6927: 6905: 6875: 6838: 6784: 6731: 4277: 3618: 3149:
reflections no longer correspond to Sylow 2-subgroups, and fall into two conjugacy classes.
2851: 2744: 2577: 2550: 2469: 2303: 2265: 1979: 1428: 1360: 564: 552: 170: 104: 7446: 7407: 7360: 7313: 7257: 7193: 7148: 7082: 7024: 6966: 6913: 6854: 6792: 6739: 6459: 8: 6708:
Casadio, Giuseppina; Zappa, Guido (1990). "History of the Sylow theorem and its proofs".
4979: 4381: 3876: 2332: 1037: 877: 139: 34: 6802:"A formal proof of Sylow's theorem. An experiment in abstract algebra with Isabelle HOL" 1043: 7136: 7070: 7032: 7012: 6842: 6482: 6463: 4195: 3864: 3159: 2827: 2807: 2724: 2704: 2684: 2664: 2644: 2624: 2604: 2530: 2510: 1616: 1582: 1562: 1542: 1518: 1498: 1478: 1457: 1407: 1387: 1340: 1320: 1300: 1279: 1255: 1235: 1215: 1150: 1130: 1110: 1090: 1070: 1012: 992: 972: 952: 917: 124: 96: 6888: 6870: 7542: 7510: 7494: 7491: 7424: 7387: 7383: 7340: 7336: 7293: 7288: 7269: 7237: 7233: 7173: 7118: 7074: 7054: 7016: 6996: 6946: 6941: 6922: 6893: 6826: 6772: 6719: 6523: 6467: 6367: 4243: 3860: 1718: 529: 372: 266: 7203:"Polynomial-time algorithms for finding elements of prime order and Sylow subgroups" 6281:
The problem of finding a Sylow subgroup of a given group is an important problem in
2883:
There is an analogue of the Sylow theorems for infinite groups. One defines a Sylow
695: 7513: 7442: 7403: 7379: 7356: 7332: 7309: 7283: 7253: 7229: 7202: 7189: 7144: 7110: 7078: 7046: 7020: 6988: 6962: 6936: 6909: 6883: 6850: 6846: 6818: 6788: 6762: 6735: 6455: 6447: 6403: 4261: 897: 680: 672: 664: 656: 648: 636: 576: 516: 506: 348: 290: 165: 7159: 7140: 7434: 7395: 7348: 7301: 7245: 7181: 7128: 7106: 7062: 7004: 6954: 6901: 6834: 6780: 6727: 6375: 5634: 3643: 3508: 2845: 2080: 1536: 764: 757: 743: 700: 588: 511: 341: 255: 195: 75: 3852:= 6 is perfectly possible. And in fact, the smallest simple non-cyclic group is 7265: 3709: 3110: 3094: 771: 707: 397: 377: 279: 200: 190: 175: 160: 114: 91: 27:
Theorems that help decompose a finite group based on prime factors of its order
6822: 3105:
all reflections are conjugate, as reflections correspond to Sylow 2-subgroups.
7531: 7479: 7391: 7344: 7297: 7241: 7177: 7058: 7000: 6950: 6897: 6830: 6776: 6767: 6748: 6723: 6398: 4281: 3205: 690: 612: 446: 319: 185: 7156:
Cannon, John J. (1971). "Computing local structure of large finite groups".
7368:
Kantor, William M. (1990). "Finding Sylow normalizers in polynomial time".
4273: 3693: 3689: 3673: 3504: 1947: 1273: 912: 901: 545: 244: 233: 180: 155: 150: 109: 80: 43: 7114: 3435:
is a subgroup where all its elements have orders which are powers of 
5638: 3705: 3373:{\displaystyle {\begin{bmatrix}x^{im}&0\\0&x^{jm}\end{bmatrix}}} 3109:
A simple illustration of Sylow subgroups and the Sylow theorems are the
1919:. These properties can be exploited to further analyze the structure of 7050: 6992: 6522:. with contribution by Victor J. Katz. Pearson Education. p. 322. 6451: 5981: 4103:)-conjugate. The proof is a simple application of Sylow's theorem: If 2494: 712: 440: 6710: 3138: 7518: 7499: 5365:
remains in any of the factors inside the product on the right. Hence
4957:, one can show the existence of ω of the former type by showing that 533: 6370:, it has been proven, in Kantor and Kantor and Taylor, that a Sylow 893: 70: 3759:
would have a normal subgroup of order 3, and could not be simple.
6408: 5459:
denote the set of points of Ω that are fixed under the action of
3704:
states that if the order of a group is the product of one or two
3661: 1965: 1030: 885: 412: 326: 2771:
A very important consequence of Theorem 2 is that the condition
7274: 51: 2008:
The following weaker version of theorem 1 was first proved by
6979: 6335:. In other words, a polycyclic generating system of a Sylow 5685: 3677: 3664:, the intersection of these two subgroups is trivial, and so 3066: 2369: 6608: 4252:
Less trivial applications of the Sylow theorems include the
6753: 3795:
also has 24 distinct elements of order 5. But the order of
5535:
by assumption. The result follows immediately by writing
4268:, and for instance defines the case divisions used in the 3688:
A more complex example involves the order of the smallest
3427:
and all its powers have an order which is a power of 
7489: 7035:(1959). "Ein Beweis für die Existenz der Sylowgruppen". 6668: 5012:
places), and can also be shown by a simple computation:
3799:
is only 30, so a simple group of order 30 cannot exist.
3676:
of order 15. Thus, there is only one group of order 15 (
7508: 6560: 5700:
act on Ω by left multiplication. Applying the Lemma to
4296:
One proof of the Sylow theorems exploits the notion of
3544:
Group of order 30, groups of order 20, groups of order
6809: 3319: 2895:-power order) that is maximal for inclusion among all 1721:
to each other and have the largest possible order: if
1212:. Lagrange's theorem states that for any finite group 6536: 5767: 5729: 5021: 4450: 4384: 4340: 4314: 3888: 3621: 3598:= 15 is such a number using the Sylow theorems: Let 3313: 3048: 2985: 2937: 2905: 2878: 2854: 2830: 2810: 2777: 2747: 2727: 2707: 2687: 2667: 2647: 2627: 2607: 2580: 2553: 2533: 2513: 2472: 2395: 2351: 2306: 2268: 2234: 2204: 2131: 2105: 1982: 1866: 1815: 1773: 1727: 1684: 1640: 1619: 1585: 1565: 1545: 1521: 1501: 1481: 1460: 1431: 1410: 1390: 1363: 1343: 1323: 1303: 1282: 1258: 1238: 1218: 1173: 1153: 1133: 1113: 1093: 1073: 1046: 1015: 995: 975: 955: 920: 483: 458: 421: 2621:-subgroup, and so is conjugate to every other Sylow 1232:
the order (number of elements) of every subgroup of
6644: 6632: 6596: 6548: 6158:denote the set of fixed points of this action. Let 4210:is contained in the center of its normalizer, then 3166:, half the minimal rotation in the dihedral group. 892:that give detailed information about the number of 7419:. Cambridge Tracts in Mathematics. Vol. 152. 6680: 6656: 6620: 6134:, and it follows that this number is a divisor of 5796: 5753: 5350: 4462: 4400: 4352: 4326: 3934: 3646:(since it has no distinct conjugates). Similarly, 3627: 3474:-subgroups are conjugate to each other, the Sylow 3372: 3077: 3026: 2949: 2923: 2867: 2836: 2816: 2796: 2760: 2733: 2713: 2693: 2673: 2653: 2633: 2613: 2593: 2566: 2539: 2519: 2485: 2446: 2380: 2319: 2281: 2246: 2220: 2159: 2117: 1995: 1911: 1844: 1785: 1759: 1709: 1662: 1625: 1591: 1571: 1551: 1527: 1507: 1487: 1466: 1444: 1416: 1396: 1376: 1349: 1329: 1309: 1288: 1264: 1244: 1224: 1197: 1159: 1139: 1119: 1099: 1079: 1055: 1021: 1001: 981: 961: 926: 491: 466: 429: 6871:"The mathematical life of Cauchy's group theorem" 6800:Kammüller, Florian; Paulson, Lawrence C. (1999). 5073: 5041: 3292:. Thus by Theorem 1, the order of the Sylow 3162:, which can be represented by rotation through π/ 2507:The Sylow theorems imply that for a prime number 7529: 7484:Abstract Algebra/Group Theory/The Sylow Theorems 6799: 6511: 6347:(including the identity) and taking elements of 1539:to each other. Furthermore, the number of Sylow 1208:The Sylow theorems assert a partial converse to 6977:(1980). "The early proofs of Sylow's theorem". 6474: 5396:It may be noted that conversely every subgroup 3748:= 10, since neither 4 nor 7 divides 10, and if 2641:-subgroup. Due to the maximality condition, if 6584: 6572: 4974:(if none existed, that valuation would exceed 4287: 3767:has at least 20 distinct elements of order 3. 3683: 3027:{\displaystyle n_{p}=|\operatorname {Cl} (K)|} 2804:is equivalent to the condition that the Sylow 7370: 7323: 7210: 7099:Fundamental Algorithms for Permutation Groups 7037: 6374:-subgroup and its normalizer can be found in 3863:over 5 elements. It has order 60, and has 24 3559:distinct primes are some of the applications. 3169:Another example are the Sylow p-subgroups of 1087:) that is not a proper subgroup of any other 876:In mathematics, specifically in the field of 793: 7320: 7165: 6707: 6674: 6566: 6434:"Théorèmes sur les groupes de substitutions" 6351:-power order contained in the normalizer of 6339:-subgroup can be found by starting from any 4035: − 1)! ≡ −1 (mod  2891:-subgroup (that is, every element in it has 2931:denote the set of conjugates of a subgroup 1710:{\displaystyle \operatorname {Syl} _{p}(G)} 6973: 6542: 5451:-group, let Ω be a finite set acted on by 4604:The proof will show the existence of some 3935:{\displaystyle (p-1)!\equiv -1{\pmod {p}}} 1272:. The Sylow theorems state that for every 800: 786: 7287: 7223: 6940: 6887: 6766: 4470:, and let Ω denote the set of subsets of 3609:be the number of Sylow 3-subgroups. Then 3573:has more than one Sylow 5-subgroup, then 1515:-subgroups of a group (for a given prime 864:Learn how and when to remove this message 485: 460: 423: 7158:Computers in Algebra and Number Theory ( 7105:. Vol. 559. Berlin, New York City: 7031: 6920: 6602: 6554: 6517: 6422: 6154:act on Ω by conjugation, and again let Ω 6076:. For this group action, the stabilizer 3672:of groups of order 3 and 5, that is the 3137: 3093: 3078:{\displaystyle n_{p}\equiv 1{\bmod {p}}} 2381:{\displaystyle n_{p}\equiv 1{\bmod {p}}} 1559:-subgroups of a group for a given prime 888:named after the Norwegian mathematician 827:This article includes a list of general 7264: 7200: 6650: 6638: 4838:, the ones we are looking for, one has 3497: 2887:-subgroup in an infinite group to be a 1912:{\displaystyle {\text{gcd}}(|G:P|,p)=1} 14: 7530: 7414: 7367: 7155: 7096: 6686: 6662: 6626: 6614: 6483:"Classification of groups of order 60" 6480: 6055:-subgroup. By Theorem 2, the orbit of 4266:classification of finite simple groups 3581: 2924:{\displaystyle \operatorname {Cl} (K)} 2574:. Conversely, if a subgroup has order 906:classification of finite simple groups 358:Classification of finite simple groups 7509: 7490: 6428: 6066:, so by the orbit-stabilizer theorem 4755:, which counts the number of factors 4023: − 2)! ≡ 1 (mod  1067:of every group element is a power of 7270:"Sylow's theorem in polynomial time" 6499:from the original on 28 October 2020 6288:One proof of the existence of Sylow 5797:{\displaystyle p\nmid |\Omega _{0}|} 4360:for the negation of this statement. 4304:acts on itself or on the set of its 4300:in various creative ways. The group 4256:, which studies the control a Sylow 3960:-subgroups in the symmetric group 3565:(Groups of order 60): If the order | 2186:be a prime factor with multiplicity 1424:. Moreover, every subgroup of order 813: 6868: 6746: 6590: 6578: 6331:is also such that is divisible by 4092:-conjugate if and only if they are 3924: 3870: 3602:be a group of order 15 = 3 · 5 and 3590:are such that every group of order 3307:, is the set of diagonal matrices 1198:{\displaystyle {\text{Syl}}_{p}(G)} 24: 7160:Proc. SIAM-AMS Sympos. Appl. Math. 6749:"Sylow's proof of Sylow's theorem" 6520:A First Course In Abstract Algebra 5780: 5045: 5027: 4334:as notation for "a divides b" and 4127:is contained in the normalizer of 2879:Sylow theorems for infinite groups 2447:{\displaystyle n_{p}=|G:N_{G}(P)|} 833:it lacks sufficient corresponding 25: 7554: 7454: 7103:Lecture Notes in Computer Science 4485:on Ω by left multiplication: for 4270:Alperin–Brauer–Gorenstein theorem 4044: 3741:must equal 1 (mod 3). Therefore, 3413:, its primitive roots have order 7478: 6923:"Die Entdeckung der Sylow-Sätze" 3986:times the number of p-cycles in 2547:-subgroup is of the same order, 818: 50: 7090: 6304:and the index is divisible by 6292:-subgroups is constructive: if 5657:, then there exists an element 5606:, then there exists an element 3917: 3867:of order 5, and 20 of order 3. 3734:must divide 10 ( = 2 · 5), and 2502: 2190:of the order of a finite group 2099:, then there exists an element 1960:of the order of a finite group 1297:of the order of a finite group 7168:. Vol. 4. Providence RI: 6032:Let Ω be the set of all Sylow 5932:denote the order of any Sylow 5790: 5775: 5748: 5736: 5501:will lie in an orbit of order 5340: 5334: 5303: 5297: 5269: 5263: 5229: 5223: 5031: 5023: 4633:, since for any fixed element 4408:is divisible by a prime power 4394: 4386: 4202:is a finite group whose Sylow 3928: 3918: 3901: 3889: 3813:must divide 6 ( = 2 · 3) and 3784:must divide 6 ( = 2 · 3), and 3594:is cyclic. One can show that 3198: ≡ 1 (mod  3020: 3016: 3010: 3000: 2918: 2912: 2899:-subgroups in the group. Let 2440: 2436: 2430: 2410: 1900: 1890: 1876: 1872: 1825: 1817: 1737: 1729: 1704: 1698: 1650: 1642: 1192: 1186: 1036:(meaning its cardinality is a 719:Infinite dimensional Lie group 13: 1: 6889:10.1016/S0315-0860(03)00003-X 6696: 6381:Magma computer algebra system 6276: 6044:act on Ω by conjugation. Let 5637:to each other (and therefore 4060:is a finite group with Sylow 3193:are primes ≥ 3 and 1607: 1147:-subgroups for a given prime 7538:Theorems about finite groups 7417:Permutation Group Algorithms 7384:10.1016/0196-6774(90)90009-4 7337:10.1016/0196-6774(88)90002-8 7289:10.1016/0022-0000(85)90052-2 7234:10.1016/0196-6774(85)90029-X 7201:Kantor, William M. (1985a). 6942:10.1016/0315-0860(88)90048-1 5008:from it involves a carry in 4816:. This means that for those 4276:whose Sylow 2-subgroup is a 3034:is finite, then every Sylow 1673: 492:{\displaystyle \mathbb {Z} } 467:{\displaystyle \mathbb {Z} } 430:{\displaystyle \mathbb {Z} } 7: 7467:Encyclopedia of Mathematics 6921:Scharlau, Winfried (1988). 6386: 6361:GAP computer algebra system 5951:denote the number of Sylow 5625:. In particular, all Sylow 4288:Proof of the Sylow theorems 4143:, but in the normalizer of 3684:Small groups are not simple 3089: 2297:. Then the following hold: 2083:to each other. That is, if 1717:, all members are actually 1602: 217:List of group theory topics 10: 7559: 7421:Cambridge University Press 6518:Fraleigh, John B. (2004). 6283:computational group theory 5531:), which is a multiple of 4978:). This is an instance of 4745:, and therefore using the 4139:are conjugate not only in 3038:-subgroup is conjugate to 2950:{\displaystyle K\subset G} 2160:{\displaystyle g^{-1}Hg=K} 1760:{\displaystyle |G|=p^{n}m} 1404:that divides the order of 6701: 6253:} so that, by the Lemma, 5684:Let Ω be the set of left 5556:over all distinct orbits 5004:digits zero, subtracting 4950:over all distinct orbits 4747:additive p-adic valuation 4111:, then the normalizer of 4054:Burnside's fusion theorem 3838:| = 60 = 2 · 3 · 5, then 3820:must equal 1 (mod 7), so 3806:| = 42 = 2 · 3 · 7. Here 3791:must equal 1 (mod 5). So 1845:{\displaystyle |P|=p^{n}} 6768:10.33232/BIMS.0033.55.63 6675:Kantor & Taylor 1988 6567:Casadio & Zappa 1990 6415: 5424:, namely any one of the 5393:, completing the proof. 4706:orbit-stabilizer theorem 4463:{\displaystyle p\nmid u} 4412:has a subgroup of order 4353:{\displaystyle a\nmid b} 3834:On the other hand, for | 3417:− 1, which implies that 335:Elementary abelian group 212:Glossary of group theory 6823:10.1023/A:1006269330992 5754:{\displaystyle p\nmid } 4327:{\displaystyle a\mid b} 4131:). By Sylow's theorem 3670:internal direct product 3586:Some non-prime numbers 2797:{\displaystyle n_{p}=1} 2289:be the number of Sylow 2194:, so that the order of 1964:, there exists a Sylow 1579:is congruent to 1 (mod 1384:, the highest power of 1317:, there exists a Sylow 1127:. The set of all Sylow 848:more precise citations. 7162:, New York City, 1970) 6980:Arch. Hist. Exact Sci. 6975:Waterhouse, William C. 6754:Irish Math. Soc. Bull. 6711:Boll. Storia Sci. Mat. 6308:, then the normalizer 6168:and observe that then 5804:, hence in particular 5798: 5755: 5352: 5198: 5115: 4860:, while for any other 4464: 4402: 4354: 4328: 4254:focal subgroup theorem 4214:has a normal subgroup 3999: − 2)! 3936: 3629: 3374: 3150: 3106: 3079: 3028: 2951: 2925: 2869: 2838: 2818: 2798: 2762: 2735: 2715: 2695: 2675: 2655: 2635: 2615: 2595: 2568: 2541: 2521: 2487: 2448: 2382: 2321: 2283: 2248: 2247:{\displaystyle n>0} 2222: 2221:{\displaystyle p^{n}m} 2161: 2119: 2118:{\displaystyle g\in G} 2034:dividing the order of 1997: 1913: 1846: 1787: 1786:{\displaystyle n>0} 1761: 1711: 1664: 1663:{\displaystyle |G|=60} 1627: 1593: 1573: 1553: 1529: 1509: 1489: 1468: 1446: 1418: 1398: 1378: 1351: 1331: 1311: 1290: 1266: 1246: 1226: 1199: 1161: 1141: 1121: 1101: 1081: 1057: 1023: 1009:, i.e., a subgroup of 1003: 983: 963: 928: 751:Linear algebraic group 493: 468: 431: 7415:Seress, Ákos (2003). 7275:J. Comput. Syst. Sci. 7115:10.1007/3-540-54955-2 6481:Gracia–Saz, Alfonso. 6266:| = 1 (mod  6222:) in particular, and 5815:so there exists some 5799: 5756: 5353: 5165: 5082: 4465: 4403: 4355: 4329: 4001:. On the other hand, 3937: 3630: 3628:{\displaystyle \mid } 3569:| = 60 and 3397:. Since the order of 3375: 3141: 3097: 3080: 3029: 2952: 2926: 2870: 2868:{\displaystyle S_{4}} 2839: 2819: 2799: 2763: 2761:{\displaystyle p^{n}} 2736: 2716: 2696: 2676: 2656: 2636: 2616: 2601:, then it is a Sylow 2596: 2594:{\displaystyle p^{n}} 2569: 2567:{\displaystyle p^{n}} 2542: 2522: 2488: 2486:{\displaystyle N_{G}} 2449: 2383: 2322: 2320:{\displaystyle n_{p}} 2284: 2282:{\displaystyle n_{p}} 2249: 2223: 2162: 2120: 2063:Given a finite group 2026:Given a finite group 2010:Augustin-Louis Cauchy 1998: 1996:{\displaystyle p^{n}} 1929:Mathematische Annalen 1914: 1847: 1788: 1762: 1712: 1665: 1628: 1594: 1574: 1554: 1530: 1510: 1490: 1469: 1447: 1445:{\displaystyle p^{n}} 1419: 1399: 1379: 1377:{\displaystyle p^{n}} 1352: 1332: 1312: 1291: 1267: 1252:divides the order of 1247: 1227: 1200: 1167:is sometimes written 1162: 1142: 1122: 1102: 1082: 1063:or equivalently, the 1058: 1024: 1004: 984: 964: 929: 494: 469: 432: 7172:. pp. 161–176. 6245:. It follows that Ω 6116:, the normalizer of 5765: 5727: 5717:| = (mod  5019: 4996:ends with precisely 4986:notation the number 4448: 4382: 4338: 4312: 4278:quasi-dihedral group 4218:of order coprime to 3981: − 1 3886: 3827:= 1. So, as before, 3755:= 1 then, as above, 3619: 3498:Example applications 3311: 3046: 2983: 2935: 2903: 2852: 2828: 2808: 2775: 2745: 2725: 2705: 2685: 2665: 2645: 2625: 2605: 2578: 2551: 2531: 2511: 2470: 2393: 2349: 2304: 2266: 2232: 2202: 2129: 2103: 1980: 1864: 1813: 1771: 1725: 1682: 1638: 1617: 1583: 1563: 1543: 1519: 1499: 1479: 1458: 1429: 1408: 1388: 1361: 1341: 1321: 1301: 1280: 1256: 1236: 1216: 1171: 1151: 1131: 1111: 1091: 1071: 1044: 1013: 993: 973: 953: 918: 884:are a collection of 481: 456: 419: 7097:Butler, G. (1991). 6810:J. Automat. Reason. 6394:Frattini's argument 5926: —  5580: —  5441: —  5404:gives rise to sets 4546:stabilizer subgroup 4401:{\displaystyle |G|} 4372: —  4272:classifying finite 4050:Frattini's argument 3865:cyclic permutations 3831:can not be simple. 3653:must divide 3, and 3582:Cyclic group orders 3494:) are all abelian. 2965: —  2741:-subgroup of order 2721:is a subgroup of a 2180: —  2067:and a prime number 2061: —  2030:and a prime number 2024: —  1944: —  1801:, then every Sylow 878:finite group theory 125:Group homomorphisms 35:Algebraic structure 7511:Weisstein, Eric W. 7495:"Sylow p-Subgroup" 7492:Weisstein, Eric W. 7266:Kantor, William M. 7051:10.1007/BF01240818 6993:10.1007/BF00327877 6452:10.1007/BF01442913 6368:permutation groups 6203:). By Theorem 2, 6030: 5940:of a finite group 5920: 5869:. Furthermore, if 5794: 5751: 5704:on Ω, we see that 5682: 5574: 5488: 5439: 5348: 4647:, the right coset 4528:. For a given set 4460: 4422: 4398: 4366: 4350: 4324: 4196:semidirect product 4115:contains not only 3932: 3625: 3370: 3364: 3303:One such subgroup 3160:outer automorphism 3151: 3107: 3075: 3024: 2963: 2947: 2921: 2865: 2834: 2814: 2794: 2758: 2731: 2711: 2691: 2671: 2651: 2631: 2611: 2591: 2564: 2537: 2517: 2483: 2444: 2378: 2317: 2279: 2244: 2218: 2198:can be written as 2174: 2157: 2115: 2055: 2022: 2012:, and is known as 1993: 1938: 1909: 1842: 1783: 1757: 1707: 1660: 1623: 1589: 1569: 1549: 1525: 1505: 1485: 1464: 1442: 1414: 1394: 1374: 1347: 1327: 1307: 1286: 1262: 1242: 1222: 1210:Lagrange's theorem 1195: 1157: 1137: 1117: 1097: 1077: 1056:{\displaystyle p,} 1053: 1019: 999: 979: 959: 924: 890:Peter Ludwig Sylow 601:Special orthogonal 489: 464: 427: 308:Lagrange's theorem 6747:Gow, Rod (1994). 6211:are conjugate in 6028: 5918: 5761:by definition so 5680: 5572: 5563:and reducing mod 5486: 5476:| (mod  5437: 5346: 5157: 5071: 4420: 4364: 4280:. These rely on 4260:-subgroup of the 3861:alternating group 3443:choices for both 2961: 2837:{\displaystyle G} 2817:{\displaystyle p} 2734:{\displaystyle p} 2714:{\displaystyle H} 2694:{\displaystyle G} 2674:{\displaystyle p} 2654:{\displaystyle H} 2634:{\displaystyle p} 2614:{\displaystyle p} 2540:{\displaystyle p} 2520:{\displaystyle p} 2172: 2053: 2020: 1936: 1870: 1626:{\displaystyle G} 1592:{\displaystyle p} 1572:{\displaystyle p} 1552:{\displaystyle p} 1528:{\displaystyle p} 1508:{\displaystyle p} 1488:{\displaystyle G} 1467:{\displaystyle p} 1417:{\displaystyle G} 1397:{\displaystyle p} 1350:{\displaystyle G} 1330:{\displaystyle p} 1310:{\displaystyle G} 1289:{\displaystyle p} 1265:{\displaystyle G} 1245:{\displaystyle G} 1225:{\displaystyle G} 1178: 1160:{\displaystyle p} 1140:{\displaystyle p} 1120:{\displaystyle G} 1100:{\displaystyle p} 1080:{\displaystyle p} 1022:{\displaystyle G} 1002:{\displaystyle G} 982:{\displaystyle p} 962:{\displaystyle G} 927:{\displaystyle p} 874: 873: 866: 810: 809: 385: 384: 267:Alternating group 224: 223: 16:(Redirected from 7550: 7524: 7523: 7514:"Sylow Theorems" 7505: 7504: 7482: 7475: 7462:"Sylow theorems" 7450: 7411: 7372: 7364: 7325: 7317: 7291: 7276: 7261: 7227: 7212: 7207: 7197: 7167: 7161: 7152: 7086: 7039: 7033:Wielandt, Helmut 7028: 6981: 6970: 6944: 6917: 6891: 6869:Meo, M. (2004). 6865: 6863: 6857:. Archived from 6811: 6806: 6796: 6770: 6755: 6743: 6712: 6690: 6684: 6678: 6672: 6666: 6660: 6654: 6648: 6642: 6636: 6630: 6624: 6618: 6612: 6606: 6600: 6594: 6588: 6582: 6576: 6570: 6564: 6558: 6552: 6546: 6540: 6534: 6533: 6515: 6509: 6508: 6506: 6504: 6498: 6490:math.toronto.edu 6487: 6478: 6472: 6471: 6426: 6404:Maximal subgroup 6271: 6265: 6258: 6187: 6177: 6167: 6146: 6141: 6133: 6115: 6079: 6075: 6050: 6043: 6039: 6023: 6009: 6004: 5996: 5968: 5927: 5924: 5901: 5899: 5893: 5887: 5877:-subgroup, then 5846: 5824: 5814: 5812: 5803: 5801: 5800: 5795: 5793: 5788: 5787: 5778: 5760: 5758: 5757: 5752: 5722: 5716: 5712: 5695: 5664: 5656: 5632: 5613: 5605: 5593: 5581: 5578: 5566: 5562: 5559: 5555: 5553: 5542: 5540: 5534: 5519: 5517: 5508: 5500: 5496: 5481: 5475: 5468: 5462: 5454: 5450: 5446: 5442: 5428:distinct cosets 5410: 5392: 5376: 5361:and no power of 5357: 5355: 5354: 5349: 5347: 5345: 5344: 5343: 5333: 5332: 5318: 5307: 5306: 5296: 5295: 5274: 5273: 5272: 5262: 5261: 5247: 5233: 5232: 5222: 5221: 5200: 5197: 5190: 5189: 5179: 5158: 5156: 5149: 5148: 5138: 5128: 5127: 5117: 5114: 5107: 5106: 5096: 5078: 5077: 5076: 5070: 5069: 5060: 5056: 5055: 5044: 5034: 5026: 4995: 4993: 4980:Kummer's theorem 4973: 4968: 4956: 4953: 4949: 4947: 4936: 4934: 4928: 4922: 4903: 4898: 4885: 4880: 4863: 4859: 4854: 4837: 4832: 4819: 4815: 4806: 4793: 4777: 4744: 4737: 4735: 4729: 4720: 4700: 4695: 4689: 4688: 4675: 4662: 4659:is contained in 4658: 4654: 4650: 4646: 4631: 4627: 4618: 4614: 4610: 4600: 4570: 4534: 4527: 4501: 4494: 4481: 4473: 4469: 4467: 4466: 4461: 4443: 4431: 4407: 4405: 4404: 4399: 4397: 4389: 4373: 4370: 4359: 4357: 4356: 4351: 4333: 4331: 4330: 4325: 4303: 4262:derived subgroup 4238:= {1}, that is, 4159:that normalizes 4068:and two subsets 4040: 4028: 4016: 4000: 3985: 3983: 3982: 3976: 3973: 3945:for every prime 3941: 3939: 3938: 3933: 3931: 3877:Wilson's theorem 3871:Wilson's theorem 3723:is simple, and | 3715: 3634: 3632: 3631: 3626: 3534: <  3518:Groups of order 3461: 3422: 3412: 3379: 3377: 3376: 3371: 3369: 3368: 3361: 3360: 3334: 3333: 3291: 3265: 3251: 3246: + 1)( 3230: − 1)( 3204:, which are all 3203: 3153:By contrast, if 3084: 3082: 3081: 3076: 3074: 3073: 3058: 3057: 3041: 3037: 3033: 3031: 3030: 3025: 3023: 3003: 2995: 2994: 2978: 2974: 2970: 2966: 2956: 2954: 2953: 2948: 2930: 2928: 2927: 2922: 2898: 2894: 2886: 2874: 2872: 2871: 2866: 2864: 2863: 2843: 2841: 2840: 2835: 2823: 2821: 2820: 2815: 2803: 2801: 2800: 2795: 2787: 2786: 2767: 2765: 2764: 2759: 2757: 2756: 2740: 2738: 2737: 2732: 2720: 2718: 2717: 2712: 2700: 2698: 2697: 2692: 2680: 2678: 2677: 2672: 2660: 2658: 2657: 2652: 2640: 2638: 2637: 2632: 2620: 2618: 2617: 2612: 2600: 2598: 2597: 2592: 2590: 2589: 2573: 2571: 2570: 2565: 2563: 2562: 2546: 2544: 2543: 2538: 2526: 2524: 2523: 2518: 2492: 2490: 2489: 2484: 2482: 2481: 2465: 2461: 2457: 2453: 2451: 2450: 2445: 2443: 2429: 2428: 2413: 2405: 2404: 2387: 2385: 2384: 2379: 2377: 2376: 2361: 2360: 2342: 2338: 2330: 2326: 2324: 2323: 2318: 2316: 2315: 2296: 2292: 2288: 2286: 2285: 2280: 2278: 2277: 2261: 2258:does not divide 2257: 2253: 2251: 2250: 2245: 2227: 2225: 2224: 2219: 2214: 2213: 2197: 2193: 2189: 2185: 2181: 2178: 2166: 2164: 2163: 2158: 2144: 2143: 2124: 2122: 2121: 2116: 2098: 2094: 2090: 2086: 2078: 2074: 2070: 2066: 2062: 2059: 2046: 2041: 2037: 2033: 2029: 2025: 2014:Cauchy's theorem 2002: 2000: 1999: 1994: 1992: 1991: 1974: 1968: 1963: 1959: 1952: 1945: 1942: 1922: 1918: 1916: 1915: 1910: 1893: 1879: 1871: 1868: 1859: 1855: 1851: 1849: 1848: 1843: 1841: 1840: 1828: 1820: 1808: 1804: 1800: 1797:does not divide 1796: 1792: 1790: 1789: 1784: 1766: 1764: 1763: 1758: 1753: 1752: 1740: 1732: 1716: 1714: 1713: 1708: 1694: 1693: 1669: 1667: 1666: 1661: 1653: 1645: 1632: 1630: 1629: 1624: 1598: 1596: 1595: 1590: 1578: 1576: 1575: 1570: 1558: 1556: 1555: 1550: 1534: 1532: 1531: 1526: 1514: 1512: 1511: 1506: 1495:, and the Sylow 1494: 1492: 1491: 1486: 1473: 1471: 1470: 1465: 1451: 1449: 1448: 1443: 1441: 1440: 1423: 1421: 1420: 1415: 1403: 1401: 1400: 1395: 1383: 1381: 1380: 1375: 1373: 1372: 1356: 1354: 1353: 1348: 1336: 1334: 1333: 1328: 1316: 1314: 1313: 1308: 1295: 1293: 1292: 1287: 1271: 1269: 1268: 1263: 1251: 1249: 1248: 1243: 1231: 1229: 1228: 1223: 1204: 1202: 1201: 1196: 1185: 1184: 1179: 1176: 1166: 1164: 1163: 1158: 1146: 1144: 1143: 1138: 1126: 1124: 1123: 1118: 1106: 1104: 1103: 1098: 1086: 1084: 1083: 1078: 1062: 1060: 1059: 1054: 1028: 1026: 1025: 1020: 1008: 1006: 1005: 1000: 988: 986: 985: 980: 968: 966: 965: 960: 933: 931: 930: 925: 869: 862: 858: 855: 849: 844:this article by 835:inline citations 822: 821: 814: 802: 795: 788: 744:Algebraic groups 517:Hyperbolic group 507:Arithmetic group 498: 496: 495: 490: 488: 473: 471: 470: 465: 463: 436: 434: 433: 428: 426: 349:Schur multiplier 303:Cauchy's theorem 291:Quaternion group 239: 238: 65: 64: 54: 41: 30: 29: 21: 7558: 7557: 7553: 7552: 7551: 7549: 7548: 7547: 7528: 7527: 7460: 7457: 7431: 7205: 7125: 7107:Springer-Verlag 7093: 6861: 6804: 6704: 6699: 6694: 6693: 6685: 6681: 6673: 6669: 6661: 6657: 6649: 6645: 6637: 6633: 6625: 6621: 6613: 6609: 6601: 6597: 6589: 6585: 6577: 6573: 6565: 6561: 6553: 6549: 6543:Waterhouse 1980 6541: 6537: 6530: 6516: 6512: 6502: 6500: 6496: 6485: 6479: 6475: 6427: 6423: 6418: 6413: 6389: 6376:polynomial time 6317: 6279: 6274: 6264: 6260: 6259:| ≡ | 6256: 6254: 6248: 6231: 6216: 6197: 6179: 6169: 6166: 6159: 6157: 6140: 6137: 6135: 6130: 6125: 6123: 6109: 6094: 6090: 6086: 6084: 6077: 6072: 6067: 6064: 6045: 6041: 6037: 6026: 6016: 6011: 6003: 6000: 5998: 5994: 5989: 5974: 5965: 5960: 5958: 5949: 5943: 5925: 5922: 5915: 5895: 5894:| = | 5889: 5888:| = | 5880: 5878: 5845: 5841: 5838: 5823: 5816: 5811: 5807: 5805: 5789: 5783: 5779: 5774: 5766: 5763: 5762: 5728: 5725: 5724: 5714: 5713:| ≡ | 5711: 5707: 5705: 5693: 5678: 5662: 5654: 5641:), that is, if 5630: 5611: 5603: 5591: 5579: 5576: 5569: 5564: 5560: 5557: 5552: 5549: 5546: 5544: 5538: 5536: 5532: 5525: 5515: 5510: 5507: 5504: 5502: 5498: 5494: 5491: 5484: 5479: 5474: 5470: 5469:| ≡ | 5466: 5464: 5460: 5458: 5452: 5448: 5444: 5440: 5434: 5419: 5418: 5414: 5408: 5405: 5382: 5374: 5371: 5366: 5328: 5324: 5323: 5319: 5314: 5291: 5287: 5280: 5276: 5275: 5257: 5253: 5252: 5248: 5243: 5217: 5213: 5206: 5202: 5201: 5199: 5185: 5181: 5180: 5169: 5144: 5140: 5139: 5123: 5119: 5118: 5116: 5102: 5098: 5097: 5086: 5072: 5065: 5061: 5051: 5047: 5046: 5040: 5039: 5038: 5030: 5022: 5020: 5017: 5016: 4992: 4989: 4987: 4982:(since in base 4966: 4963: 4958: 4954: 4951: 4946: 4943: 4940: 4938: 4932: 4930: 4921: 4920: 4916: 4913: 4910: 4905: 4897: 4896: 4892: 4889: 4887: 4879: 4876: 4873: 4870: 4865: 4861: 4853: 4850: 4847: 4844: 4839: 4831: 4830: 4826: 4823: 4821: 4817: 4805: 4802: 4799: 4792: 4789: 4786: 4783: 4776: 4775: 4771: 4768: 4765: 4760: 4753: 4742: 4739: 4734: 4731: 4730:| = | 4728: 4725: 4722: 4719: 4718: 4714: 4711: 4709: 4699: 4694: 4691: 4690:| ≤ | 4686: 4685: 4684: 4680: 4677: 4676:| = | 4674: 4673: 4669: 4666: 4664: 4660: 4656: 4655: 4652: 4648: 4645: 4641: 4637: 4634: 4632: 4629: 4625: 4619: 4616: 4612: 4608: 4605: 4598: 4594: 4590: 4586: 4582: 4577: 4574: 4568: 4564: 4560: 4556: 4552: 4548: 4543: 4542: 4538: 4532: 4529: 4525: 4521: 4517: 4514: 4510: 4506: 4503: 4499: 4496: 4493: 4489: 4486: 4479: 4471: 4449: 4446: 4445: 4430: 4427: 4425: 4418: 4393: 4385: 4383: 4380: 4379: 4377: 4374:A finite group 4371: 4368: 4339: 4336: 4335: 4313: 4310: 4309: 4301: 4290: 4188: 4097: 4056:states that if 4047: 4030: 4018: 4010: 4002: 3994: 3991: 3977: 3974: 3971: 3970: 3968: 3965: 3954: 3916: 3887: 3884: 3883: 3873: 3858: 3851: 3844: 3826: 3819: 3812: 3802:Next, suppose | 3790: 3783: 3776: 3754: 3747: 3740: 3733: 3713: 3686: 3659: 3652: 3641: 3620: 3617: 3616: 3615: 3608: 3584: 3509:normal subgroup 3500: 3493: 3484: 3452: 3418: 3407: 3405: 3396: 3363: 3362: 3353: 3349: 3347: 3341: 3340: 3335: 3326: 3322: 3315: 3314: 3312: 3309: 3308: 3282: 3273: 3267: 3266:, the order of 3253: 3250: − 1) 3225: 3223: 3214: 3208:. The order of 3194: 3184: 3175: 3148: 3126: 3104: 3092: 3087: 3069: 3065: 3053: 3049: 3047: 3044: 3043: 3039: 3035: 3019: 2999: 2990: 2986: 2984: 2981: 2980: 2976: 2972: 2968: 2964: 2936: 2933: 2932: 2904: 2901: 2900: 2896: 2892: 2884: 2881: 2859: 2855: 2853: 2850: 2849: 2846:normal subgroup 2829: 2826: 2825: 2809: 2806: 2805: 2782: 2778: 2776: 2773: 2772: 2752: 2748: 2746: 2743: 2742: 2726: 2723: 2722: 2706: 2703: 2702: 2686: 2683: 2682: 2666: 2663: 2662: 2646: 2643: 2642: 2626: 2623: 2622: 2606: 2603: 2602: 2585: 2581: 2579: 2576: 2575: 2558: 2554: 2552: 2549: 2548: 2532: 2529: 2528: 2512: 2509: 2508: 2505: 2500: 2477: 2473: 2471: 2468: 2467: 2463: 2459: 2455: 2439: 2424: 2420: 2409: 2400: 2396: 2394: 2391: 2390: 2372: 2368: 2356: 2352: 2350: 2347: 2346: 2340: 2336: 2331:, which is the 2328: 2311: 2307: 2305: 2302: 2301: 2294: 2290: 2273: 2269: 2267: 2264: 2263: 2259: 2255: 2233: 2230: 2229: 2209: 2205: 2203: 2200: 2199: 2195: 2191: 2187: 2183: 2179: 2176: 2169: 2136: 2132: 2130: 2127: 2126: 2104: 2101: 2100: 2096: 2092: 2088: 2084: 2076: 2072: 2068: 2064: 2060: 2057: 2050: 2044: 2039: 2035: 2031: 2027: 2023: 2006: 1987: 1983: 1981: 1978: 1977: 1972: 1966: 1961: 1957: 1950: 1943: 1940: 1920: 1889: 1875: 1867: 1865: 1862: 1861: 1857: 1853: 1836: 1832: 1824: 1816: 1814: 1811: 1810: 1806: 1802: 1798: 1794: 1772: 1769: 1768: 1748: 1744: 1736: 1728: 1726: 1723: 1722: 1689: 1685: 1683: 1680: 1679: 1676: 1649: 1641: 1639: 1636: 1635: 1618: 1615: 1614: 1610: 1605: 1584: 1581: 1580: 1564: 1561: 1560: 1544: 1541: 1540: 1520: 1517: 1516: 1500: 1497: 1496: 1480: 1477: 1476: 1459: 1456: 1455: 1436: 1432: 1430: 1427: 1426: 1409: 1406: 1405: 1389: 1386: 1385: 1368: 1364: 1362: 1359: 1358: 1342: 1339: 1338: 1322: 1319: 1318: 1302: 1299: 1298: 1281: 1278: 1277: 1257: 1254: 1253: 1237: 1234: 1233: 1217: 1214: 1213: 1180: 1175: 1174: 1172: 1169: 1168: 1152: 1149: 1148: 1132: 1129: 1128: 1112: 1109: 1108: 1092: 1089: 1088: 1072: 1069: 1068: 1045: 1042: 1041: 1014: 1011: 1010: 994: 991: 990: 974: 971: 970: 954: 951: 950: 947:-Sylow subgroup 919: 916: 915: 870: 859: 853: 850: 840:Please help to 839: 823: 819: 806: 777: 776: 765:Abelian variety 758:Reductive group 746: 736: 735: 734: 733: 684: 676: 668: 660: 652: 625:Special unitary 536: 522: 521: 503: 502: 484: 482: 479: 478: 459: 457: 454: 453: 422: 420: 417: 416: 408: 407: 398:Discrete groups 387: 386: 342:Frobenius group 287: 274: 263: 256:Symmetric group 252: 236: 226: 225: 76:Normal subgroup 62: 42: 33: 28: 23: 22: 15: 12: 11: 5: 7556: 7546: 7545: 7540: 7526: 7525: 7506: 7487: 7476: 7456: 7455:External links 7453: 7452: 7451: 7429: 7412: 7378:(4): 523–563. 7365: 7318: 7282:(3): 359–394. 7262: 7225:10.1.1.74.3690 7218:(4): 478–514. 7198: 7166:SIAM-AMS Proc. 7153: 7123: 7092: 7089: 7088: 7087: 7045:(1): 401–402. 7029: 6987:(3): 279–290. 6971: 6928:Historia Math. 6918: 6882:(2): 196–221. 6876:Historia Math. 6866: 6864:on 2006-01-03. 6817:(3): 235–264. 6797: 6744: 6714:(in Italian). 6703: 6700: 6698: 6695: 6692: 6691: 6679: 6667: 6655: 6643: 6631: 6619: 6607: 6595: 6583: 6571: 6559: 6547: 6535: 6528: 6510: 6473: 6446:(4): 584–594. 6420: 6419: 6417: 6414: 6412: 6411: 6406: 6401: 6396: 6390: 6388: 6385: 6315: 6278: 6275: 6262: 6246: 6229: 6214: 6195: 6164: 6155: 6138: 6128: 6121: 6107: 6092: 6088: 6080: 6070: 6062: 6036:-subgroups of 6027: 6018:≡ 1 (mod  6014: 6001: 5992: 5972: 5963: 5956: 5955:-subgroups of 5947: 5941: 5916: 5858:and therefore 5843: 5839: 5821: 5809: 5792: 5786: 5782: 5777: 5773: 5770: 5750: 5747: 5744: 5741: 5738: 5735: 5732: 5709: 5679: 5653:-subgroups of 5629:-subgroups of 5570: 5550: 5547: 5543:as the sum of 5523: 5513: 5505: 5492: 5485: 5477: 5472: 5456: 5435: 5416: 5415: 5412: 5406: 5380: 5369: 5359: 5358: 5342: 5339: 5336: 5331: 5327: 5322: 5317: 5313: 5310: 5305: 5302: 5299: 5294: 5290: 5286: 5283: 5279: 5271: 5268: 5265: 5260: 5256: 5251: 5246: 5242: 5239: 5236: 5231: 5228: 5225: 5220: 5216: 5212: 5209: 5205: 5196: 5193: 5188: 5184: 5178: 5175: 5172: 5168: 5164: 5161: 5155: 5152: 5147: 5143: 5137: 5134: 5131: 5126: 5122: 5113: 5110: 5105: 5101: 5095: 5092: 5089: 5085: 5081: 5075: 5068: 5064: 5059: 5054: 5050: 5043: 5037: 5033: 5029: 5025: 4990: 4961: 4944: 4941: 4937:is the sum of 4918: 4917: 4914: 4908: 4894: 4893: 4890: 4877: 4874: 4868: 4851: 4848: 4842: 4828: 4827: 4824: 4803: 4797: 4790: 4787: 4781: 4773: 4772: 4769: 4763: 4751: 4740: 4732: 4726: 4723: 4716: 4715: 4712: 4697: 4692: 4682: 4681: 4678: 4671: 4670: 4667: 4651: 4643: 4639: 4635: 4628: 4615: 4606: 4596: 4592: 4588: 4584: 4575: 4572: 4566: 4562: 4558: 4554: 4550: 4540: 4539: 4536: 4530: 4523: 4519: 4515: 4512: 4508: 4504: 4497: 4491: 4487: 4459: 4456: 4453: 4428: 4419: 4396: 4392: 4388: 4375: 4362: 4349: 4346: 4343: 4323: 4320: 4317: 4289: 4286: 4186: 4095: 4076:normalized by 4046: 4045:Fusion results 4043: 4011:≡ 1 (mod  4006: 3989: 3963: 3952: 3943: 3942: 3930: 3927: 3923: 3920: 3915: 3912: 3909: 3906: 3903: 3900: 3897: 3894: 3891: 3872: 3869: 3856: 3849: 3842: 3824: 3817: 3810: 3788: 3781: 3774: 3752: 3745: 3738: 3731: 3685: 3682: 3680:isomorphism). 3657: 3650: 3639: 3624: 3613: 3606: 3583: 3580: 3579: 3578: 3563: 3560: 3542: 3539: 3516: 3499: 3496: 3489: 3482: 3478:-subgroups of 3411: − 1 3401: 3392: 3386:primitive root 3367: 3359: 3356: 3352: 3348: 3346: 3343: 3342: 3339: 3336: 3332: 3329: 3325: 3321: 3320: 3318: 3296:-subgroups is 3278: 3271: 3264: + 1 3219: 3212: 3180: 3173: 3146: 3121: 3111:dihedral group 3102: 3091: 3088: 3072: 3068: 3064: 3061: 3056: 3052: 3022: 3018: 3015: 3012: 3009: 3006: 3002: 2998: 2993: 2989: 2959: 2946: 2943: 2940: 2920: 2917: 2914: 2911: 2908: 2880: 2877: 2862: 2858: 2833: 2813: 2793: 2790: 2785: 2781: 2755: 2751: 2730: 2710: 2690: 2670: 2650: 2630: 2610: 2588: 2584: 2561: 2557: 2536: 2516: 2504: 2501: 2499: 2498: 2480: 2476: 2442: 2438: 2435: 2432: 2427: 2423: 2419: 2416: 2412: 2408: 2403: 2399: 2388: 2375: 2371: 2367: 2364: 2359: 2355: 2344: 2314: 2310: 2293:-subgroups of 2276: 2272: 2243: 2240: 2237: 2217: 2212: 2208: 2170: 2156: 2153: 2150: 2147: 2142: 2139: 2135: 2114: 2111: 2108: 2095:-subgroups of 2075:-subgroups of 2051: 2018: 1990: 1986: 1934: 1908: 1905: 1902: 1899: 1896: 1892: 1888: 1885: 1882: 1878: 1874: 1839: 1835: 1831: 1827: 1823: 1819: 1782: 1779: 1776: 1756: 1751: 1747: 1743: 1739: 1735: 1731: 1706: 1703: 1700: 1697: 1692: 1688: 1675: 1672: 1659: 1656: 1652: 1648: 1644: 1622: 1609: 1606: 1604: 1601: 1588: 1568: 1548: 1524: 1504: 1484: 1463: 1439: 1435: 1413: 1393: 1371: 1367: 1346: 1326: 1306: 1285: 1261: 1241: 1221: 1194: 1191: 1188: 1183: 1156: 1136: 1116: 1096: 1076: 1052: 1049: 1018: 998: 978: 958: 923: 882:Sylow theorems 872: 871: 826: 824: 817: 808: 807: 805: 804: 797: 790: 782: 779: 778: 775: 774: 772:Elliptic curve 768: 767: 761: 760: 754: 753: 747: 742: 741: 738: 737: 732: 731: 728: 725: 721: 717: 716: 715: 710: 708:Diffeomorphism 704: 703: 698: 693: 687: 686: 682: 678: 674: 670: 666: 662: 658: 654: 650: 645: 644: 633: 632: 621: 620: 609: 608: 597: 596: 585: 584: 573: 572: 565:Special linear 561: 560: 553:General linear 549: 548: 543: 537: 528: 527: 524: 523: 520: 519: 514: 509: 501: 500: 487: 475: 462: 449: 447:Modular groups 445: 444: 443: 438: 425: 409: 406: 405: 400: 394: 393: 392: 389: 388: 383: 382: 381: 380: 375: 370: 367: 361: 360: 354: 353: 352: 351: 345: 344: 338: 337: 332: 323: 322: 320:Hall's theorem 317: 315:Sylow theorems 311: 310: 305: 297: 296: 295: 294: 288: 283: 280:Dihedral group 276: 275: 270: 264: 259: 253: 248: 237: 232: 231: 228: 227: 222: 221: 220: 219: 214: 206: 205: 204: 203: 198: 193: 188: 183: 178: 173: 171:multiplicative 168: 163: 158: 153: 145: 144: 143: 142: 137: 129: 128: 120: 119: 118: 117: 115:Wreath product 112: 107: 102: 100:direct product 94: 92:Quotient group 86: 85: 84: 83: 78: 73: 63: 60: 59: 56: 55: 47: 46: 26: 18:Sylow subgroup 9: 6: 4: 3: 2: 7555: 7544: 7541: 7539: 7536: 7535: 7533: 7521: 7520: 7515: 7512: 7507: 7502: 7501: 7496: 7493: 7488: 7485: 7481: 7477: 7473: 7469: 7468: 7463: 7459: 7458: 7448: 7444: 7440: 7436: 7432: 7430:9780521661034 7426: 7422: 7418: 7413: 7409: 7405: 7401: 7397: 7393: 7389: 7385: 7381: 7377: 7373: 7371:J. Algorithms 7366: 7362: 7358: 7354: 7350: 7346: 7342: 7338: 7334: 7330: 7326: 7324:J. Algorithms 7319: 7315: 7311: 7307: 7303: 7299: 7295: 7290: 7285: 7281: 7277: 7271: 7267: 7263: 7259: 7255: 7251: 7247: 7243: 7239: 7235: 7231: 7226: 7221: 7217: 7213: 7211:J. Algorithms 7204: 7199: 7195: 7191: 7187: 7183: 7179: 7175: 7171: 7163: 7154: 7150: 7146: 7142: 7138: 7134: 7130: 7126: 7124:9783540549550 7120: 7116: 7112: 7108: 7104: 7100: 7095: 7094: 7084: 7080: 7076: 7072: 7068: 7064: 7060: 7056: 7052: 7048: 7044: 7041:(in German). 7040: 7034: 7030: 7026: 7022: 7018: 7014: 7010: 7006: 7002: 6998: 6994: 6990: 6986: 6982: 6976: 6972: 6968: 6964: 6960: 6956: 6952: 6948: 6943: 6938: 6934: 6931:(in German). 6930: 6929: 6924: 6919: 6915: 6911: 6907: 6903: 6899: 6895: 6890: 6885: 6881: 6878: 6877: 6872: 6867: 6860: 6856: 6852: 6848: 6844: 6840: 6836: 6832: 6828: 6824: 6820: 6816: 6812: 6803: 6798: 6794: 6790: 6786: 6782: 6778: 6774: 6769: 6764: 6761:(33): 55–63. 6760: 6756: 6750: 6745: 6741: 6737: 6733: 6729: 6725: 6721: 6717: 6713: 6706: 6705: 6688: 6683: 6676: 6671: 6664: 6659: 6652: 6647: 6640: 6635: 6628: 6623: 6617:, Chapter 16. 6616: 6611: 6604: 6603:Wielandt 1959 6599: 6592: 6587: 6580: 6575: 6568: 6563: 6556: 6555:Scharlau 1988 6551: 6544: 6539: 6531: 6529:9788178089973 6525: 6521: 6514: 6495: 6491: 6484: 6477: 6469: 6465: 6461: 6457: 6453: 6449: 6445: 6442:(in French). 6441: 6440: 6435: 6431: 6425: 6421: 6410: 6407: 6405: 6402: 6400: 6399:Hall subgroup 6397: 6395: 6392: 6391: 6384: 6382: 6377: 6373: 6369: 6364: 6362: 6358: 6354: 6350: 6346: 6342: 6338: 6334: 6330: 6326: 6322: 6318: 6311: 6307: 6303: 6300:-subgroup of 6299: 6295: 6291: 6286: 6284: 6273: 6269: 6252: 6244: 6240: 6236: 6232: 6226:is normal in 6225: 6221: 6217: 6210: 6206: 6202: 6198: 6191: 6186: 6182: 6176: 6172: 6162: 6153: 6148: 6145: 6131: 6119: 6113: 6106: 6102: 6098: 6083: 6073: 6065: 6058: 6054: 6048: 6035: 6025: 6021: 6017: 6008: 5995: 5987: 5983: 5979: 5975: 5966: 5954: 5950: 5939: 5935: 5931: 5914: 5912: 5908: 5905: 5898: 5892: 5886: 5883: 5876: 5872: 5868: 5864: 5861: 5857: 5853: 5850: 5836: 5832: 5828: 5819: 5784: 5771: 5768: 5745: 5742: 5739: 5733: 5730: 5720: 5703: 5699: 5691: 5687: 5677: 5675: 5671: 5668: 5660: 5652: 5648: 5644: 5640: 5636: 5628: 5624: 5620: 5617: 5609: 5602:-subgroup of 5601: 5597: 5590:-subgroup of 5589: 5585: 5568: 5530: 5526: 5516: 5509:|/| 5497:not fixed by 5483: 5433: 5431: 5427: 5423: 5403: 5399: 5394: 5391: 5387: 5383: 5372: 5364: 5337: 5329: 5325: 5320: 5315: 5311: 5308: 5300: 5292: 5288: 5284: 5281: 5277: 5266: 5258: 5254: 5249: 5244: 5240: 5237: 5234: 5226: 5218: 5214: 5210: 5207: 5203: 5194: 5191: 5186: 5182: 5176: 5173: 5170: 5166: 5162: 5159: 5153: 5150: 5145: 5141: 5135: 5132: 5129: 5124: 5120: 5111: 5108: 5103: 5099: 5093: 5090: 5087: 5083: 5079: 5066: 5062: 5057: 5052: 5048: 5035: 5015: 5014: 5013: 5011: 5007: 5003: 4999: 4985: 4981: 4977: 4972: 4964: 4926: 4923:|) < 4911: 4902: 4888:0 < | 4884: 4881:|) > 4871: 4858: 4845: 4836: 4814: 4810: 4800: 4784: 4766: 4758: 4754: 4748: 4721:| | 4707: 4702: 4663:; therefore, 4623: 4602: 4581: 4547: 4484: 4477: 4457: 4454: 4451: 4442: 4439: 4435: 4417: 4415: 4411: 4390: 4361: 4347: 4344: 4341: 4321: 4318: 4315: 4307: 4299: 4294: 4285: 4283: 4282:J. L. Alperin 4279: 4275: 4274:simple groups 4271: 4267: 4263: 4259: 4255: 4250: 4248: 4246: 4241: 4237: 4233: 4229: 4225: 4221: 4217: 4213: 4209: 4205: 4201: 4197: 4193: 4189: 4182: 4178: 4174: 4170: 4166: 4162: 4158: 4154: 4150: 4146: 4142: 4138: 4134: 4130: 4126: 4122: 4118: 4114: 4110: 4106: 4102: 4098: 4091: 4087: 4083: 4079: 4075: 4071: 4067: 4063: 4059: 4055: 4051: 4042: 4038: 4034: 4026: 4022: 4014: 4009: 4005: 3998: 3992: 3980: 3966: 3959: 3955: 3948: 3925: 3921: 3913: 3910: 3907: 3904: 3898: 3895: 3892: 3882: 3881: 3880: 3878: 3868: 3866: 3862: 3855: 3848: 3841: 3837: 3832: 3830: 3823: 3816: 3809: 3805: 3800: 3798: 3794: 3787: 3780: 3773: 3768: 3766: 3762: 3758: 3751: 3744: 3737: 3730: 3727:| = 30, then 3726: 3722: 3717: 3714:(= 2 · 3 · 5) 3711: 3708:, then it is 3707: 3703: 3701: 3695: 3691: 3681: 3679: 3675: 3671: 3667: 3663: 3656: 3649: 3645: 3638: 3622: 3612: 3605: 3601: 3597: 3593: 3589: 3576: 3572: 3568: 3564: 3561: 3558: 3554: 3550: 3547: 3543: 3540: 3537: 3533: 3529: 3525: 3521: 3517: 3514: 3513: 3512: 3510: 3506: 3495: 3492: 3488: 3481: 3477: 3473: 3469: 3465: 3462:. This means 3460: 3456: 3450: 3446: 3442: 3438: 3434: 3430: 3426: 3421: 3416: 3410: 3404: 3400: 3395: 3391: 3387: 3383: 3365: 3357: 3354: 3350: 3344: 3337: 3330: 3327: 3323: 3316: 3306: 3301: 3299: 3295: 3289: 3286: 3281: 3277: 3270: 3263: 3260: 3257: =  3256: 3249: 3245: 3241: 3237: 3234: −  3233: 3229: 3222: 3218: 3211: 3207: 3201: 3197: 3192: 3188: 3183: 3179: 3172: 3167: 3165: 3161: 3156: 3145: 3140: 3136: 3134: 3130: 3125: 3120: 3116: 3112: 3101: 3096: 3086: 3070: 3062: 3059: 3054: 3050: 3013: 3007: 3004: 2996: 2991: 2987: 2975:-subgroup of 2958: 2944: 2941: 2938: 2915: 2909: 2906: 2890: 2876: 2860: 2856: 2847: 2831: 2824:-subgroup of 2811: 2791: 2788: 2783: 2779: 2769: 2753: 2749: 2728: 2708: 2688: 2681:-subgroup of 2668: 2648: 2628: 2608: 2586: 2582: 2559: 2555: 2534: 2514: 2496: 2478: 2474: 2462:-subgroup of 2458:is any Sylow 2433: 2425: 2421: 2417: 2414: 2406: 2401: 2397: 2389: 2373: 2365: 2362: 2357: 2353: 2345: 2339:-subgroup in 2335:of the Sylow 2334: 2312: 2308: 2300: 2299: 2298: 2274: 2270: 2241: 2238: 2235: 2215: 2210: 2206: 2168: 2154: 2151: 2148: 2145: 2140: 2137: 2133: 2112: 2109: 2106: 2082: 2049: 2047: 2017: 2015: 2011: 2005: 2003: 1988: 1984: 1970: 1956: 1949: 1933: 1931: 1930: 1924: 1906: 1903: 1897: 1894: 1886: 1883: 1880: 1837: 1833: 1829: 1821: 1780: 1777: 1774: 1754: 1749: 1745: 1741: 1733: 1720: 1701: 1695: 1690: 1686: 1671: 1657: 1654: 1646: 1620: 1600: 1586: 1566: 1546: 1538: 1522: 1502: 1482: 1475:-subgroup of 1474: 1461: 1452: 1437: 1433: 1411: 1391: 1369: 1365: 1344: 1337:-subgroup of 1324: 1304: 1296: 1283: 1275: 1259: 1239: 1219: 1211: 1206: 1189: 1181: 1154: 1134: 1114: 1107:-subgroup of 1094: 1074: 1066: 1050: 1047: 1039: 1035: 1033: 1016: 996: 989:-subgroup of 976: 969:is a maximal 956: 949:) of a group 948: 946: 941: 939: 921: 914: 909: 907: 903: 900:that a given 899: 895: 891: 887: 883: 879: 868: 865: 857: 854:November 2018 847: 843: 837: 836: 830: 825: 816: 815: 812: 803: 798: 796: 791: 789: 784: 783: 781: 780: 773: 770: 769: 766: 763: 762: 759: 756: 755: 752: 749: 748: 745: 740: 739: 729: 726: 723: 722: 720: 714: 711: 709: 706: 705: 702: 699: 697: 694: 692: 689: 688: 685: 679: 677: 671: 669: 663: 661: 655: 653: 647: 646: 642: 638: 635: 634: 630: 626: 623: 622: 618: 614: 611: 610: 606: 602: 599: 598: 594: 590: 587: 586: 582: 578: 575: 574: 570: 566: 563: 562: 558: 554: 551: 550: 547: 544: 542: 539: 538: 535: 531: 526: 525: 518: 515: 513: 510: 508: 505: 504: 476: 451: 450: 448: 442: 439: 414: 411: 410: 404: 401: 399: 396: 395: 391: 390: 379: 376: 374: 371: 368: 365: 364: 363: 362: 359: 356: 355: 350: 347: 346: 343: 340: 339: 336: 333: 331: 329: 325: 324: 321: 318: 316: 313: 312: 309: 306: 304: 301: 300: 299: 298: 292: 289: 286: 281: 278: 277: 273: 268: 265: 262: 257: 254: 251: 246: 243: 242: 241: 240: 235: 234:Finite groups 230: 229: 218: 215: 213: 210: 209: 208: 207: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 148: 147: 146: 141: 138: 136: 133: 132: 131: 130: 127: 126: 122: 121: 116: 113: 111: 108: 106: 103: 101: 98: 95: 93: 90: 89: 88: 87: 82: 79: 77: 74: 72: 69: 68: 67: 66: 61:Basic notions 58: 57: 53: 49: 48: 45: 40: 36: 32: 31: 19: 7517: 7498: 7486:at Wikibooks 7465: 7416: 7375: 7369: 7328: 7322: 7279: 7273: 7215: 7209: 7157: 7098: 7042: 7036: 6984: 6978: 6935:(1): 40–52. 6932: 6926: 6879: 6874: 6859:the original 6814: 6808: 6758: 6752: 6718:(1): 29–75. 6715: 6709: 6682: 6670: 6658: 6651:Kantor 1985b 6646: 6639:Kantor 1985a 6634: 6622: 6610: 6598: 6586: 6574: 6562: 6550: 6538: 6519: 6513: 6501:. Retrieved 6489: 6476: 6443: 6437: 6424: 6371: 6365: 6356: 6352: 6348: 6344: 6340: 6336: 6332: 6328: 6324: 6320: 6313: 6309: 6305: 6301: 6297: 6293: 6289: 6287: 6280: 6267: 6250: 6242: 6238: 6234: 6227: 6223: 6219: 6212: 6208: 6204: 6200: 6193: 6189: 6184: 6180: 6174: 6170: 6160: 6151: 6149: 6143: 6126: 6117: 6111: 6104: 6100: 6096: 6085:is given by 6081: 6068: 6060: 6056: 6052: 6046: 6033: 6031: 6019: 6012: 6006: 5990: 5985: 5977: 5970: 5961: 5959:. Then (a) 5952: 5945: 5937: 5933: 5929: 5917: 5910: 5906: 5903: 5896: 5890: 5884: 5881: 5874: 5870: 5866: 5862: 5859: 5855: 5851: 5848: 5834: 5830: 5826: 5825:. With this 5817: 5718: 5701: 5697: 5689: 5683: 5673: 5669: 5666: 5658: 5650: 5646: 5642: 5626: 5622: 5618: 5615: 5607: 5599: 5595: 5587: 5583: 5571: 5527:denotes the 5521: 5511: 5490:Any element 5489: 5447:be a finite 5436: 5429: 5425: 5421: 5401: 5397: 5395: 5389: 5385: 5378: 5367: 5362: 5360: 5009: 5005: 5001: 4997: 4983: 4975: 4970: 4959: 4924: 4906: 4900: 4899:| < 4882: 4866: 4856: 4840: 4834: 4812: 4808: 4795: 4779: 4761: 4756: 4749: 4703: 4621: 4603: 4475: 4440: 4437: 4433: 4423: 4413: 4409: 4378:whose order 4363: 4305: 4298:group action 4295: 4291: 4257: 4251: 4244: 4239: 4235: 4231: 4227: 4223: 4219: 4215: 4211: 4207: 4203: 4199: 4191: 4184: 4180: 4176: 4172: 4168: 4164: 4160: 4156: 4152: 4148: 4144: 4140: 4136: 4132: 4128: 4124: 4120: 4116: 4112: 4108: 4104: 4100: 4093: 4089: 4085: 4081: 4077: 4073: 4069: 4065: 4061: 4057: 4053: 4048: 4036: 4032: 4024: 4020: 4012: 4007: 4003: 3996: 3987: 3978: 3961: 3957: 3950: 3946: 3944: 3879:states that 3874: 3853: 3846: 3839: 3835: 3833: 3828: 3821: 3814: 3807: 3803: 3801: 3796: 3792: 3785: 3778: 3771: 3769: 3764: 3760: 3756: 3749: 3742: 3735: 3728: 3724: 3720: 3718: 3706:prime powers 3699: 3692:that is not 3690:simple group 3687: 3674:cyclic group 3668:must be the 3665: 3654: 3647: 3636: 3610: 3603: 3599: 3595: 3591: 3587: 3585: 3574: 3570: 3566: 3556: 3552: 3548: 3545: 3535: 3531: 3530:primes with 3527: 3523: 3519: 3501: 3490: 3486: 3479: 3475: 3471: 3467: 3463: 3458: 3454: 3448: 3444: 3440: 3439:. There are 3436: 3432: 3428: 3424: 3419: 3414: 3408: 3402: 3398: 3393: 3389: 3381: 3304: 3302: 3297: 3293: 3287: 3284: 3279: 3275: 3268: 3261: 3258: 3254: 3247: 3243: 3239: 3235: 3231: 3227: 3220: 3216: 3209: 3199: 3195: 3190: 3186: 3181: 3177: 3170: 3168: 3163: 3154: 3152: 3143: 3132: 3128: 3123: 3118: 3114: 3108: 3099: 2960: 2888: 2882: 2770: 2527:every Sylow 2506: 2503:Consequences 2493:denotes the 2171: 2071:, all Sylow 2052: 2043: 2019: 2007: 1976: 1955:multiplicity 1948:prime factor 1935: 1927: 1925: 1677: 1611: 1454: 1425: 1276: 1274:prime factor 1207: 1031: 944: 943: 937: 935: 913:prime number 910: 902:finite group 881: 875: 860: 851: 832: 811: 640: 628: 616: 604: 592: 580: 568: 556: 327: 314: 284: 271: 260: 249: 245:Cyclic group 123: 110:Free product 81:Group action 44:Group theory 39:Group theory 38: 7331:(1): 1–17. 7038:Arch. Math. 6687:Seress 2003 6663:Kantor 1990 6627:Cannon 1971 6615:Butler 1991 6355:but not in 6237:), so then 6051:be a Sylow 5873:is a Sylow 5598:is a Sylow 5455:, and let Ω 4163:, and then 4151:normalizes 3956:of Sylow's 3777:= 6, since 3698:Burnside's 3466:is a Sylow 2971:is a Sylow 1975:, of order 1860:-group and 1852:. That is, 1453:is a Sylow 942:(sometimes 846:introducing 530:Topological 369:alternating 7532:Categories 7447:1028.20002 7408:0731.20005 7361:0642.20019 7314:0573.20022 7258:0604.20001 7194:0253.20027 7149:0785.20001 7091:Algorithms 7083:0092.02403 7025:0436.01006 6967:0637.01006 6914:1065.01009 6855:0943.68149 6793:0829.01011 6740:0721.01008 6697:References 6460:04.0056.02 6439:Math. Ann. 6343:-subgroup 6277:Algorithms 6010:, and (c) 5982:normalizer 5936:-subgroup 5829:, we have 5813:| ≠ 0 5649:are Sylow 5639:isomorphic 5614:such that 5529:stabilizer 5411:for which 5377:|) = 4969:|) = 4855:|) = 4807:|) = 4794:|) = 4778:|) + 4759:, one has 4611:for which 4444:such that 4247:-nilpotent 4206:-subgroup 4175:, so that 4064:-subgroup 3577:is simple. 2495:normalizer 2091:are Sylow 1946:For every 1809:has order 1805:-subgroup 1719:isomorphic 1608:Motivation 1029:that is a 829:references 637:Symplectic 577:Orthogonal 534:Lie groups 441:Free group 166:continuous 105:Direct sum 7519:MathWorld 7500:MathWorld 7472:EMS Press 7392:0196-6774 7345:0196-6774 7298:1090-2724 7268:(1985b). 7242:0196-6774 7220:CiteSeerX 7178:0160-7634 7075:119816392 7059:0003-9268 7017:123685226 7001:0003-9519 6951:0315-0860 6898:0315-0860 6831:0168-7433 6777:0791-5578 6724:0392-4432 6468:121928336 6430:Sylow, L. 6059:has size 5980:) is the 5781:Ω 5772:∤ 5734:∤ 5635:conjugate 5400:of order 5326:ν 5309:− 5289:ν 5285:− 5255:ν 5238:− 5215:ν 5211:− 5192:− 5167:∏ 5151:− 5133:− 5109:− 5084:∏ 5028:Ω 4833:| = 4738:for each 4696:| = 4455:∤ 4432:| = 4345:∤ 4319:∣ 4155:for some 4147:. Hence 4119:but also 4017:. Hence, 3911:− 3908:≡ 3896:− 3845:= 10 and 3770:As well, 3623:∣ 3562:Example-3 3541:Example-2 3515:Example-1 3457:| =  3451:, making 3283:) =  3185:), where 3060:≡ 3008:⁡ 2942:⊂ 2910:⁡ 2363:≡ 2138:− 2110:∈ 2081:conjugate 2021:Corollary 1969:-subgroup 1696:⁡ 1674:Statement 1537:conjugate 1357:of order 940:-subgroup 896:of fixed 894:subgroups 701:Conformal 589:Euclidean 196:nilpotent 7543:P-groups 6591:Meo 2004 6579:Gow 1994 6494:Archived 6432:(1872). 6387:See also 6188:so that 6178:for all 6150:Now let 6136:= | 6124:. Thus, 6040:and let 5997:divides 5902:so that 5837:for all 5696:and let 5463:. Then 4929:. Since 4904:implies 4864:one has 4708:we have 4578:for its 4544:for its 4535:, write 4474:of size 3875:Part of 3710:solvable 3252:. Since 3090:Examples 2454:, where 2327:divides 2228:, where 1603:Theorems 886:theorems 696:Poincaré 541:Solenoid 413:Integers 403:Lattices 378:sporadic 373:Lie type 201:solvable 191:dihedral 176:additive 161:infinite 71:Subgroup 7474:, 2001 7439:1970241 7400:1079450 7353:0925595 7306:0805654 7250:0813589 7186:0367027 7133:1225579 7067:0147529 7009:0575718 6959:0931678 6906:2055642 6847:1449341 6839:1721912 6785:1313412 6732:1096350 6409:p-group 6142:|/ 6095:| 6005:|/ 5988:), (b) 5969:(where 5919:Theorem 5723:. Now 5573:Theorem 5520:(where 5373:(| 4965:(| 4912:(| 4872:(| 4846:(| 4801:(| 4785:(| 4767:(| 4704:By the 4591:| 4557:| 4518:| 4365:Theorem 4123:(since 4080:, then 3984:⁠ 3969:⁠ 3702:theorem 3662:coprime 3384:is any 3290:′ 3206:abelian 3113:of the 2962:Theorem 2701:, then 2661:is any 2173:Theorem 2054:Theorem 1937:Theorem 842:improve 691:Lorentz 613:Unitary 512:Lattice 452:PSL(2, 186:abelian 97:(Semi-) 7445:  7437:  7427:  7406:  7398:  7390:  7359:  7351:  7343:  7312:  7304:  7296:  7256:  7248:  7240:  7222:  7192:  7184:  7176:  7147:  7141:395110 7139:  7131:  7121:  7081:  7073:  7065:  7057:  7023:  7015:  7007:  6999:  6965:  6957:  6949:  6912:  6904:  6896:  6853:  6845:  6837:  6829:  6791:  6783:  6775:  6738:  6730:  6722:  6702:Proofs 6526:  6466:  6458:  6255:| 5999:| 5944:. Let 5921:  5900:| 5879:| 5806:| 5706:| 5686:cosets 5575:  5554:| 5545:| 5541:| 5537:| 5518:| 5503:| 5465:| 4994:| 4988:| 4948:| 4939:| 4935:| 4931:| 4822:| 4736:| 4710:| 4665:| 4601:in Ω. 4426:| 4367:  4029:. So, 3993:, ie. 3859:, the 3694:cyclic 3644:normal 3635:5 and 3505:simple 3431:. So, 3127:. For 3117:-gon, 3042:, and 2979:, and 2262:. Let 2175:  2056:  1939:  1793:where 1535:) are 1034:-group 936:Sylow 911:For a 880:, the 831:, but 546:Circle 477:SL(2, 366:cyclic 330:-group 181:cyclic 156:finite 151:simple 135:kernel 7206:(PDF) 7137:S2CID 7071:S2CID 7013:S2CID 6862:(PDF) 6843:S2CID 6805:(PDF) 6503:8 May 6497:(PDF) 6486:(PDF) 6464:S2CID 6416:Notes 6323:) of 6296:is a 6103:} = 6029:Proof 5847:, so 5681:Proof 5665:with 5586:is a 5487:Proof 5438:Lemma 4820:with 4580:orbit 4421:Proof 4198:: if 3678:up to 3238:) = ( 3224:) is 2844:is a 2333:index 2125:with 1953:with 1856:is a 1767:with 1065:order 1038:power 898:order 730:Sp(∞) 727:SU(∞) 140:image 7425:ISBN 7388:ISSN 7341:ISSN 7294:ISSN 7238:ISSN 7174:ISSN 7119:ISBN 7055:ISSN 6997:ISSN 6947:ISSN 6894:ISSN 6827:ISSN 6773:ISSN 6759:0033 6720:ISSN 6524:ISBN 6505:2021 6207:and 5928:Let 5645:and 5633:are 5594:and 5443:Let 5388:) = 4886:(as 4620:has 4571:and 4511:= { 4495:and 4483:acts 4424:Let 4230:and 4183:are 4179:and 4135:and 4088:are 4084:and 4072:and 3555:and 3526:and 3447:and 3388:of 3189:and 2466:and 2254:and 2239:> 2182:Let 2087:and 2079:are 1778:> 934:, a 724:O(∞) 713:Loop 532:and 7443:Zbl 7404:Zbl 7380:doi 7357:Zbl 7333:doi 7310:Zbl 7284:doi 7254:Zbl 7230:doi 7190:Zbl 7170:AMS 7145:Zbl 7111:doi 7079:Zbl 7047:doi 7021:Zbl 6989:doi 6963:Zbl 6937:doi 6910:Zbl 6884:doi 6851:Zbl 6819:doi 6789:Zbl 6763:doi 6736:Zbl 6456:JFM 6448:doi 6366:In 6327:in 6249:= { 6175:xQx 6163:∈ Ω 6120:in 6097:gPg 6049:∈ Ω 5984:of 5923:(3) 5852:HgP 5831:hgP 5820:∈ Ω 5692:in 5688:of 5661:in 5610:in 5582:If 5577:(2) 5495:∈ Ω 5409:∈ Ω 4743:∈ Ω 4609:∈ Ω 4533:∈ Ω 4500:∈ Ω 4369:(1) 4242:is 3967:is 3922:mod 3719:If 3700:p q 3511:. 3423:or 3406:is 3142:In 3098:In 3067:mod 2967:If 2370:mod 2177:(3) 2058:(2) 2042:in 1971:of 1941:(1) 1869:gcd 1687:Syl 1599:). 1177:Syl 1040:of 639:Sp( 627:SU( 603:SO( 567:SL( 555:GL( 7534:: 7516:. 7497:. 7470:, 7464:, 7441:. 7435:MR 7433:. 7423:. 7402:. 7396:MR 7394:. 7386:. 7376:11 7374:. 7355:. 7349:MR 7347:. 7339:. 7327:. 7308:. 7302:MR 7300:. 7292:. 7280:30 7278:. 7272:. 7252:. 7246:MR 7244:. 7236:. 7228:. 7214:. 7208:. 7188:. 7182:MR 7180:. 7164:. 7143:. 7135:. 7129:MR 7127:. 7117:. 7109:. 7101:. 7077:. 7069:. 7063:MR 7061:. 7053:. 7043:10 7019:. 7011:. 7005:MR 7003:. 6995:. 6985:21 6983:. 6961:. 6955:MR 6953:. 6945:. 6933:15 6925:. 6908:. 6902:MR 6900:. 6892:. 6880:31 6873:. 6849:. 6841:. 6835:MR 6833:. 6825:. 6815:23 6813:. 6807:. 6787:. 6781:MR 6779:. 6771:. 6757:. 6751:. 6734:. 6728:MR 6726:. 6716:10 6492:. 6488:. 6462:. 6454:. 6436:. 6383:. 6363:. 6312:= 6285:. 6272:. 6241:= 6192:≤ 6183:∈ 6173:= 6147:. 6132:= 6099:= 6091:∈ 6074:= 6024:. 5967:= 5913:. 5909:= 5907:Hg 5885:Hg 5865:≤ 5863:Hg 5854:= 5842:∈ 5835:gP 5833:= 5827:gP 5818:gP 5676:. 5672:= 5670:Hg 5621:≤ 5619:Hg 5567:. 5482:. 5432:. 5430:Hg 5420:= 5000:+ 4811:+ 4701:. 4642:⊆ 4638:∈ 4595:∈ 4583:{ 4565:= 4553:∈ 4549:{ 4522:∈ 4502:, 4490:∈ 4478:. 4436:= 4434:pm 4416:. 4249:. 4228:PK 4226:= 4222:, 4171:= 4167:= 4149:gh 4041:. 3716:. 3696:. 3551:, 3522:, 3520:pq 3480:GL 3380:, 3300:. 3269:GL 3242:)( 3210:GL 3171:GL 3147:12 3085:. 3005:Cl 2957:. 2907:Cl 2875:. 2768:. 2167:. 2048:. 2016:. 2004:. 1932:. 1923:. 1670:. 1658:60 1205:. 908:. 615:U( 591:E( 579:O( 37:→ 7522:. 7503:. 7449:. 7410:. 7382:: 7363:. 7335:: 7329:9 7316:. 7286:: 7260:. 7232:: 7216:6 7196:. 7151:. 7113:: 7085:. 7049:: 7027:. 6991:: 6969:. 6939:: 6916:. 6886:: 6821:: 6795:. 6765:: 6742:. 6689:. 6677:. 6665:. 6653:. 6641:. 6629:. 6605:. 6593:. 6581:. 6569:. 6557:. 6545:. 6532:. 6507:. 6470:. 6450:: 6444:5 6372:p 6357:H 6353:H 6349:p 6345:H 6341:p 6337:p 6333:p 6329:G 6325:H 6321:H 6319:( 6316:G 6314:N 6310:N 6306:p 6302:G 6298:p 6294:H 6290:p 6270:) 6268:p 6263:0 6261:Ω 6257:Ω 6251:P 6247:0 6243:Q 6239:P 6235:Q 6233:( 6230:G 6228:N 6224:Q 6220:Q 6218:( 6215:G 6213:N 6209:Q 6205:P 6201:Q 6199:( 6196:G 6194:N 6190:P 6185:P 6181:x 6171:Q 6165:0 6161:Q 6156:0 6152:P 6144:q 6139:G 6129:p 6127:n 6122:G 6118:P 6114:) 6112:P 6110:( 6108:G 6105:N 6101:P 6093:G 6089:g 6087:{ 6082:P 6078:G 6071:p 6069:n 6063:p 6061:n 6057:P 6053:p 6047:P 6042:G 6038:G 6034:p 6022:) 6020:p 6015:p 6013:n 6007:q 6002:G 5993:p 5991:n 5986:P 5978:P 5976:( 5973:G 5971:N 5964:p 5962:n 5957:G 5953:p 5948:p 5946:n 5942:G 5938:P 5934:p 5930:q 5911:P 5904:g 5897:P 5891:H 5882:g 5875:p 5871:H 5867:P 5860:g 5856:P 5849:g 5844:H 5840:h 5822:0 5810:0 5808:Ω 5791:| 5785:0 5776:| 5769:p 5749:] 5746:P 5743:: 5740:G 5737:[ 5731:p 5721:) 5719:p 5715:Ω 5710:0 5708:Ω 5702:H 5698:H 5694:G 5690:P 5674:K 5667:g 5663:G 5659:g 5655:G 5651:p 5647:K 5643:H 5631:G 5627:p 5623:P 5616:g 5612:G 5608:g 5604:G 5600:p 5596:P 5592:G 5588:p 5584:H 5565:p 5561:x 5558:H 5551:x 5548:H 5539:Ω 5533:p 5524:x 5522:H 5514:x 5512:H 5506:H 5499:H 5493:x 5480:) 5478:p 5473:0 5471:Ω 5467:Ω 5461:H 5457:0 5453:H 5449:p 5445:H 5426:m 5422:H 5417:ω 5413:G 5407:ω 5402:p 5398:H 5390:r 5386:m 5384:( 5381:p 5379:ν 5375:Ω 5370:p 5368:ν 5363:p 5341:) 5338:j 5335:( 5330:p 5321:p 5316:/ 5312:j 5304:) 5301:j 5298:( 5293:p 5282:k 5278:p 5270:) 5267:j 5264:( 5259:p 5250:p 5245:/ 5241:j 5235:m 5230:) 5227:j 5224:( 5219:p 5208:k 5204:p 5195:1 5187:k 5183:p 5177:1 5174:= 5171:j 5163:m 5160:= 5154:j 5146:k 5142:p 5136:j 5130:m 5125:k 5121:p 5112:1 5104:k 5100:p 5094:0 5091:= 5088:j 5080:= 5074:) 5067:k 5063:p 5058:m 5053:k 5049:p 5042:( 5036:= 5032:| 5024:| 5010:r 5006:p 5002:r 4998:k 4991:G 4984:p 4976:r 4971:r 4967:Ω 4962:p 4960:ν 4955:ω 4952:G 4945:ω 4942:G 4933:Ω 4927:) 4925:k 4919:ω 4915:G 4909:p 4907:ν 4901:p 4895:ω 4891:G 4883:r 4878:ω 4875:G 4869:p 4867:ν 4862:ω 4857:r 4852:ω 4849:G 4843:p 4841:ν 4835:p 4829:ω 4825:G 4818:ω 4813:r 4809:k 4804:G 4798:p 4796:ν 4791:ω 4788:G 4782:p 4780:ν 4774:ω 4770:G 4764:p 4762:ν 4757:p 4752:p 4750:ν 4741:ω 4733:G 4727:ω 4724:G 4717:ω 4713:G 4698:p 4693:ω 4687:α 4683:ω 4679:G 4672:ω 4668:G 4661:ω 4657:α 4653:ω 4649:G 4644:G 4640:ω 4636:α 4630:ω 4626:G 4622:p 4617:ω 4613:G 4607:ω 4599:} 4597:G 4593:g 4589:ω 4587:⋅ 4585:g 4576:ω 4573:G 4569:} 4567:ω 4563:ω 4561:⋅ 4559:g 4555:G 4551:g 4541:ω 4537:G 4531:ω 4526:} 4524:ω 4520:x 4516:x 4513:g 4509:ω 4507:⋅ 4505:g 4498:ω 4492:G 4488:g 4480:G 4476:p 4472:G 4458:u 4452:p 4441:u 4438:p 4429:G 4414:p 4410:p 4395:| 4391:G 4387:| 4376:G 4348:b 4342:a 4322:b 4316:a 4306:p 4302:G 4258:p 4245:p 4240:G 4236:K 4234:∩ 4232:P 4224:G 4220:P 4216:K 4212:G 4208:P 4204:p 4200:G 4192:P 4190:( 4187:G 4185:N 4181:B 4177:A 4173:B 4169:B 4165:A 4161:B 4157:h 4153:P 4145:B 4141:G 4137:P 4133:P 4129:A 4125:P 4121:P 4117:P 4113:B 4109:A 4107:= 4105:B 4101:P 4099:( 4096:G 4094:N 4090:G 4086:B 4082:A 4078:P 4074:B 4070:A 4066:P 4062:p 4058:G 4039:) 4037:p 4033:p 4031:( 4027:) 4025:p 4021:p 4019:( 4015:) 4013:p 4008:p 4004:n 3997:p 3995:( 3990:p 3988:S 3979:p 3975:/ 3972:1 3964:p 3962:S 3958:p 3953:p 3951:n 3947:p 3929:) 3926:p 3919:( 3914:1 3905:! 3902:) 3899:1 3893:p 3890:( 3857:5 3854:A 3850:5 3847:n 3843:3 3840:n 3836:G 3829:G 3825:7 3822:n 3818:7 3815:n 3811:7 3808:n 3804:G 3797:G 3793:G 3789:5 3786:n 3782:5 3779:n 3775:5 3772:n 3765:G 3761:G 3757:G 3753:3 3750:n 3746:3 3743:n 3739:3 3736:n 3732:3 3729:n 3725:G 3721:G 3666:G 3658:5 3655:n 3651:5 3648:n 3640:3 3637:n 3614:3 3611:n 3607:3 3604:n 3600:G 3596:n 3592:n 3588:n 3575:G 3571:G 3567:G 3557:q 3553:p 3549:q 3546:p 3538:. 3536:q 3532:p 3528:q 3524:p 3491:q 3487:F 3485:( 3483:2 3476:p 3472:p 3468:p 3464:P 3459:p 3455:P 3453:| 3449:b 3445:a 3441:p 3437:p 3433:P 3429:p 3425:x 3420:x 3415:q 3409:q 3403:q 3399:F 3394:q 3390:F 3382:x 3366:] 3358:m 3355:j 3351:x 3345:0 3338:0 3331:m 3328:i 3324:x 3317:[ 3305:P 3298:p 3294:p 3288:m 3285:p 3280:q 3276:F 3274:( 3272:2 3262:m 3259:p 3255:q 3248:q 3244:q 3240:q 3236:q 3232:q 3228:q 3226:( 3221:q 3217:F 3215:( 3213:2 3202:) 3200:q 3196:p 3191:q 3187:p 3182:q 3178:F 3176:( 3174:2 3164:n 3155:n 3144:D 3133:n 3129:n 3124:n 3122:2 3119:D 3115:n 3103:6 3100:D 3071:p 3063:1 3055:p 3051:n 3040:K 3036:p 3021:| 3017:) 3014:K 3011:( 3001:| 2997:= 2992:p 2988:n 2977:G 2973:p 2969:K 2945:G 2939:K 2919:) 2916:K 2913:( 2897:p 2893:p 2889:p 2885:p 2861:4 2857:S 2832:G 2812:p 2792:1 2789:= 2784:p 2780:n 2754:n 2750:p 2729:p 2709:H 2689:G 2669:p 2649:H 2629:p 2609:p 2587:n 2583:p 2560:n 2556:p 2535:p 2515:p 2497:. 2479:G 2475:N 2464:G 2460:p 2456:P 2441:| 2437:) 2434:P 2431:( 2426:G 2422:N 2418:: 2415:G 2411:| 2407:= 2402:p 2398:n 2374:p 2366:1 2358:p 2354:n 2343:. 2341:G 2337:p 2329:m 2313:p 2309:n 2295:G 2291:p 2275:p 2271:n 2260:m 2256:p 2242:0 2236:n 2216:m 2211:n 2207:p 2196:G 2192:G 2188:n 2184:p 2155:K 2152:= 2149:g 2146:H 2141:1 2134:g 2113:G 2107:g 2097:G 2093:p 2089:K 2085:H 2077:G 2073:p 2069:p 2065:G 2045:G 2040:p 2036:G 2032:p 2028:G 1989:n 1985:p 1973:G 1967:p 1962:G 1958:n 1951:p 1921:G 1907:1 1904:= 1901:) 1898:p 1895:, 1891:| 1887:P 1884:: 1881:G 1877:| 1873:( 1858:p 1854:P 1838:n 1834:p 1830:= 1826:| 1822:P 1818:| 1807:P 1803:p 1799:m 1795:p 1781:0 1775:n 1755:m 1750:n 1746:p 1742:= 1738:| 1734:G 1730:| 1705:) 1702:G 1699:( 1691:p 1655:= 1651:| 1647:G 1643:| 1621:G 1587:p 1567:p 1547:p 1523:p 1503:p 1483:G 1462:p 1438:n 1434:p 1412:G 1392:p 1370:n 1366:p 1345:G 1325:p 1305:G 1284:p 1260:G 1240:G 1220:G 1193:) 1190:G 1187:( 1182:p 1155:p 1135:p 1115:G 1095:p 1075:p 1051:, 1048:p 1032:p 1017:G 997:G 977:p 957:G 945:p 938:p 922:p 867:) 861:( 856:) 852:( 838:. 801:e 794:t 787:v 683:8 681:E 675:7 673:E 667:6 665:E 659:4 657:F 651:2 649:G 643:) 641:n 631:) 629:n 619:) 617:n 607:) 605:n 595:) 593:n 583:) 581:n 571:) 569:n 559:) 557:n 499:) 486:Z 474:) 461:Z 437:) 424:Z 415:( 328:p 293:Q 285:n 282:D 272:n 269:A 261:n 258:S 250:n 247:Z 20:)

Index

Sylow subgroup
Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.