Knowledge

Radiative cooling

Source 📝

624:- In a building designed to optimize direct radiation cooling, the building roof acts as a heat sink to absorb the daily internal loads. The roof acts as the best heat sink because it is the greatest surface exposed to the night sky. Radiate heat transfer with the night sky will remove heat from the building roof, thus cooling the building structure. Roof ponds are an example of this strategy. The roof pond design became popular with the development of the Sky thermal system designed by Harold Hay in 1977. There are various designs and configurations for the roof pond system but the concept is the same for all designs. The roof uses water, either plastic bags filled with water or an open pond, as the heat sink while a system of movable insulation panels regulate the mode of heating or cooling. During daytime in the summer, the water on the roof is protected from the solar radiation and ambient air temperature by movable insulation, which allows it to serve as a heat sink and absorb the heat generated inside through the ceiling. At night, the panels are retracted to allow nocturnal radiation between the roof pond and the night sky, thus removing the stored heat. In winter, the process is reversed so that the roof pond is allowed to absorb solar radiation during the day and release it during the night into the space below. 370: 554: 455:, thereby simultaneously reducing heat gain from the sun and increasing heat removal through radiation. Radiative cooling thus offers potential for passive cooling for residential and commercial buildings. Traditional building surfaces, such as paint coatings, brick and concrete have high emittances of up to 0.96. They radiate heat into the sky to passively cool buildings at night. If made sufficiently reflective to sunlight, these materials can also achieve radiative cooling during the day. 566: 420: 32: 437: 630:- A heat transfer fluid removes heat from the building structure through radiate heat transfer with the night sky. A common design for this strategy involves a plenum between the building roof and the radiator surface. Air is drawn into the building through the plenum, cooled from the radiator, and cools the mass of the building structure. During the day, the building mass acts as a heat sink. 297:), the sheet of paper radiates more heat to the face than does the darkened cosmos. The effect is blunted by Earth's surrounding atmosphere, and particularly the water vapor it contains, so the apparent temperature of the sky is far warmer than outer space. The sheet does not block the cold, but instead reflects heat to the face and radiates the heat of the face that it just absorbed. 597:, which consisted of a reflection pool of water built on a bed of highly insulative material surrounded by high walls. The high walls provided protection against convective warming, the insulative material of the pool walls would protect against conductive heating from the ground, the large flat plane of water would then permit evaporative and radiative cooling to take place. 606: 2176: 470:
Other notable radiative cooling strategies include dielectric films on metal mirrors, and polymer or polymer composites on silver or aluminum films. Silvered polymer films with solar reflectances of 0.97 and thermal emittance of 0.96, which remain 11 Â°C cooler than commercial white paints under
466:
into space, and can achieve 5 Â°C sub-ambient cooling under direct sunlight. Later researchers developed paintable porous polymer coatings, whose pores scatter sunlight to give solar reflectance of 0.96-0.99 and thermal emittance of 0.97. In experiments under direct sunlight, the coatings achieve
230:
Convective transport of heat, and evaporative transport of latent heat are both important in removing heat from the surface and distributing it in the atmosphere. Pure radiative transport is more important higher up in the atmosphere. Diurnal and geographical variation further complicate the picture.
585:
In India, such apparatuses consisted of a shallow ceramic tray with a thin layer of water, placed outdoors with a clear exposure to the night sky. The bottom and sides were insulated with a thick layer of hay. On a clear night the water would lose heat by radiation upwards. Provided the air was calm
1266:
Accordingly, designing and fabricating efficient PDRC with sufficiently high solar reflectance (𝜌¯solar) (λ ~ 0.3–2.5 Όm) to minimize solar heat gain and simultaneously strong LWIR thermal emittance (Δ¯LWIR) to maximize radiative heat loss is highly desirable. When the incoming radiative heat from
520:
dictates that at higher temperatures the radiative emission peak shifts to lower wavelengths (higher frequencies), influencing material selection as a function of operating temperature. In addition to effective radiative cooling, radiative thermal protection systems should provide damage tolerance
346:
stars are no longer generating energy by fusion or gravitational contraction, and have no solar wind. So the only way their temperature changes is by radiative cooling. This makes their temperature as a function of age very predictable, so by observing the temperature, astronomers can deduce the
208:
Infrared radiation can pass through dry, clear air in the wavelength range of 8–13 ÎŒm. Materials that can absorb energy and radiate it in those wavelengths exhibit a strong cooling effect. Materials that can also reflect 95% or more of sunlight in the 200 nanometres to 2.5 ÎŒm range can
1317:
An alternative, third geoengineering approach would be enhanced cooling by thermal radiation from the Earth's surface into space." "With 100 W m as a demonstrated passive cooling effect, a surface coverage of 0.3% would then be needed, or 1% of Earth's land mass surface. If half of it would be
458:
The most common radiative coolers found on buildings are white cool-roof paint coatings, which have solar reflectances of up to 0.94, and thermal emittances of up to 0.96. The solar reflectance of the paints arises from optical scattering by the dielectric pigments embedded in the polymer paint
479:
particles embedded in polymers that are translucent in the solar wavelengths and emissive in the infrared. In 2017, an example of this design with resonant polar silica microspheres randomly embedded in a polymeric matrix, was reported. The material is translucent to sunlight and has infrared
533:
uses radiative cooling to reach its operation temperature of about 50 K. To do this, its large reflective sunshield blocks radiation from the Sun, Earth, and Moon. The telescope structure, kept permanently in shadow by the sunshield, then cools by radiation.
1213:
Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global
459:
resin, while the thermal emittance arises from the polymer resin. However, because typical white pigments like titanium dioxide and zinc oxide absorb ultraviolet radiation, the solar reflectances of paints based on such pigments do not exceed 0.95.
484:
of 0.93 in the infrared atmospheric transmission window. When backed with silver coating, the material achieved a midday radiative cooling power of 93 W/m under direct sunshine along with high-throughput, economical roll-to-roll manufacturing.
1713:
By covering the Earth with a small fraction of thermally emitting materials, the heat flow away from the Earth can be increased, and the net radiative flux can be reduced to zero (or even made negative), thus stabilizing (or cooling) the
254:
in the atmosphere. Thus the tropics radiate less to space than they would if there were no circulation, and the poles radiate more; however in absolute terms the tropics radiate more energy to space.
1772:...terrestrial radiative cooling has emerged as a promising solution for mitigating urban heat islands and for potentially fighting against global warming if it can be implemented at a large scale. 379:(PDRC) (also passive radiative cooling, daytime passive radiative cooling, radiative sky cooling, photonic radiative cooling, and terrestrial radiative cooling) is the use of unpowered, reflective/ 2239: 334:
to estimate the age of the Earth (although his estimate ignored the substantial heat released by radioisotope decay, not known at the time, and the effects of convection in the mantle).
373:
PDRC can lower temperatures with zero energy consumption or pollution by radiating heat into outer space. Widespread application has been proposed as a solution to global warming.
2367:
Raman, Aaswath P.; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui (November 2014). "Passive radiative cooling below ambient air temperature under direct sunlight".
1913:
Raman, Aaswath P.; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui (November 2014). "Passive radiative cooling below ambient air temperature under direct sunlight".
1318:
installed in urban, built areas which cover roughly 3% of the Earth's land mass, a 17% coverage would be needed there, with the remainder being installed in rural areas.
2013:
Granqvist, C. G.; Hjortsberg, A. (June 1981). "Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films".
2174:, Yu, Nanfang; Mandalal, Jyotirmoy; Overvig, Adam and Shi, Norman Nan, "Systems and methods for radiative cooling and heating", issued 2016-06-17 331: 2250: 640:: it will then absorb light at some wavelengths, but radiate the energy away again at other, selected wavelengths. By selectively radiating heat in the 281:
for several seconds, to that after placing a sheet of paper between the face and the sky. Since outer space radiates at about a temperature of 3 
1451:
Passive radiative cooling utilizes atmospheric transparency window (8–13 ÎŒm) to discharge heat into outer space and inhibits solar absorption.
831:
Shao, Gaofeng; et al. (2019). "Improved oxidation resistance of high emissivity coatings on fibrous ceramic for reusable space systems".
462:
In 2014, researchers developed the first daytime radiative cooler using a multi-layer thermal photonic structure that selectively emits
2445:
Berdahl, Paul; Chen, Sharon S.; Destaillats, Hugo; Kirchstetter, Thomas W.; Levinson, Ronnen M.; Zalich, Michael A. (December 2016).
1577:"The relative role of solar reflectance and thermal emittance for passive daytime radiative cooling technologies applied to rooftops" 2246: 1964:
Mandal, Jyotirmoy; Fu, Yanke; Overvig, Adam; Jia, Mingxin; Sun, Kerui; Shi, Norman Nan; Yu, Nanfang; Yang, Yuan (19 October 2018).
1552:
Khan, Ansar; Carlosena, Laura; Feng, Jie; Khorat, Samiran; Khatun, Rupali; Doan, Quang-Van; Santamouris, Mattheos (January 2022).
582:
Before the invention of artificial refrigeration technology, ice making by nocturnal cooling was common in both India and Iran.
96: 2128:
Gentle, A. R.; Smith, G. B. (2010-02-10). "Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles".
1554:"Optically Modulated Passive Broadband Daytime Radiative Cooling Materials Can Cool Cities in Summer and Heat Cities in Winter" 2332:
Sharifi, Ayyoob; Yamagata, Yoshiki (December 2015). "Roof ponds as passive heating and cooling systems: A systematic review".
2190:
Zhai, Yao; Ma, Yaoguang; David, Sabrina N.; Zhao, Dongliang; Lou, Runnan; Tan, Gang; Yang, Ronggui; Yin, Xiaobo (2017-03-10).
68: 2316: 1622:
Liang, Jun; Wu, Jiawei; Guo, Jun; Li, Huagen; Zhou, Xianjun; Liang, Sheng; Qiu, Cheng-Wei; Tao, Guangming (September 2022).
1513:
Benmoussa, Youssef; Ezziani, Maria; Djire, All-Fousseni; Amine, Zaynab; Khaldoun, Asmae; Limami, Houssame (September 2022).
330:
is generally used for local processes, though the same principles apply to cooling over geological time, which was first
75: 49: 242:, mostly because of geometrical factors. The atmospheric and oceanic circulation redistributes some of this energy as 1267:
the Sun is balanced by the outgoing radiative heat emission, the temperature of the Earth can reach its steady state.
376: 362: 192: 115: 20: 610: 444:, or the whiter a roof, the higher its solar reflectance and heat emittance, which can reduce energy use and costs. 82: 2268:"XXII. The process of making ice in the East Indies. By Sir Robert Barker, F. R. S. in a letter to Dr. Brocklesby" 238:
is driven by the difference in absorbed solar radiation per square meter, as the sun heats the Earth more in the
2497: 53: 803: 64: 1468:"Review on passive daytime radiative cooling: Fundamentals, recent researches, challenges and opportunities" 2171: 1788: 1576: 1467: 1414: 1280: 521:
and may incorporate self-healing functions through the formation of a viscous glass at high temperatures.
644:, a range of frequencies in which the atmosphere is unusually transparent, an object can effectively use 1865: 183:
made daytime radiative cooling possible. It has since been proposed as a strategy to mitigate local and
757:
Li, Wei; Fan, Shanhui (1 November 2019). "Radiative Cooling: Harvesting the Coldness of the Universe".
530: 1514: 277:
The effect can be experienced by comparing skin temperature from looking straight up into a cloudless
1728:"Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source" 1515:"Simulation of an energy-efficient cool roof with cellulose-based daytime radiative cooling material" 153: 1827: 1334: 937: 512:) is applied on a thermally insulating ceramic substrate. In such heat shields high levels of total 2170: 1281:"Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach" 679: 493: 412: 218: 188: 2192:"Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling" 1161: 714:
Fan, Shanhui; Li, Wei (March 2022). "Photonics and thermodynamics concepts in radiative cooling".
2492: 663: 176: 42: 342:
Radiative cooling is one of the few ways an object in space can give off energy. In particular,
1966:"Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling" 516:, typically in the range 0.8 - 0.9, need to be maintained across a range of high temperatures. 89: 505: 235: 227:) radiation which balances the absorption of short-wave (visible light) energy from the sun. 180: 369: 2458: 2376: 2341: 2203: 2137: 2022: 1977: 1922: 1800: 1739: 1727: 1686: 1588: 1479: 1426: 1385: 1374:"Global Radiative Sky Cooling Potential Adjusted for Population Density and Cooling Demand" 1292: 1133: 1043: 988: 850: 766: 723: 270:
from Earth's surface, or from the skin of a human observer. The effect is well-known among
159:
Radiative cooling has been applied in various contexts throughout human history, including
8: 2427: 2049: 694: 404: 309: 2462: 2380: 2345: 2207: 2141: 2026: 1981: 1926: 1804: 1743: 1690: 1624:"Radiative cooling for passive thermal management towards sustainable carbon neutrality" 1592: 1483: 1430: 1389: 1296: 1137: 1047: 992: 975:
Raman, Aaswath P.; Anoma, Marc Abou; Zhu, Linxiao; Raphaeli, Eden; Fan, Shanhui (2014).
854: 770: 727: 471:
the mid-summer sun, were reported in 2015. Researchers explored designs with dielectric
293:), and the sheet of paper radiates at about 300 K (27 Â°C; 80 Â°F) (around 2408: 2289: 2105: 2080: 2065: 1946: 1847: 1763: 1704: 1650: 1623: 1604: 1534: 1495: 1442: 1354: 1308: 1252: 1227: 1204: 1061: 1012: 957: 913: 888: 866: 840: 782: 739: 463: 224: 2400: 2392: 2312: 2221: 2153: 2110: 1995: 1938: 1851: 1767: 1755: 1708: 1655: 1608: 1538: 1499: 1446: 1358: 1312: 1257: 1208: 1183:"Passive daytime radiative cooling: Fundamentals, material designs, and applications" 1102: 1065: 1004: 961: 918: 870: 786: 743: 689: 674: 452: 394: 271: 141: 2466: 2412: 2384: 2353: 2349: 2279: 2211: 2145: 2100: 2092: 2061: 2030: 1985: 1950: 1930: 1839: 1808: 1747: 1694: 1645: 1635: 1596: 1526: 1487: 1438: 1434: 1393: 1346: 1300: 1247: 1239: 1194: 1141: 1092: 1051: 1016: 996: 949: 908: 900: 858: 774: 731: 398: 390: 386: 321: 294: 2471: 2446: 1819: 1812: 1304: 862: 669: 641: 517: 476: 472: 424: 145: 19:
This article is about the natural process. For the renewable cooling method, see
1787:
Ahmed, Salman; Li, Zhenpeng; Javed, Muhammad Shahzad; Ma, Tao (September 2021).
1699: 1674: 1530: 1056: 1031: 617:
The three basic types of radiant cooling are direct, indirect, and fluorescent:
1491: 1243: 1097: 1080: 977:"Passive Radiative Cooling Below Ambient air Temperature under Direct Sunlight" 735: 408: 184: 1789:"A review on the integration of radiative cooling and solar energy harvesting" 1600: 1328: 1326: 1146: 1121: 976: 2486: 2396: 1828:"Heat-shedding with photonic structures: radiative cooling and its potential" 1335:"Heat-shedding with photonic structures: radiative cooling and its potential" 1228:"A structural polymer for highly efficient all-day passive radiative cooling" 938:"Heat-shedding with photonic structures: radiative cooling and its potential" 778: 594: 553: 403:
PDRCs can aid systems that are more efficient at lower temperatures, such as
385:
It has been proposed as a method of reducing temperature increases caused by
243: 149: 129: 2216: 2191: 1990: 1965: 1751: 1272: 2404: 2284: 2267: 2225: 2157: 2114: 2096: 1999: 1942: 1759: 1659: 1553: 1323: 1261: 1122:"On the theory of white dwarf stars. I. The energy sources of white dwarfs" 1106: 1008: 922: 904: 1640: 1398: 1373: 658: 645: 637: 497: 419: 343: 267: 247: 172: 2388: 1934: 1782: 1780: 1181:
Chen, Meijie; Pang, Dan; Chen, Xingyu; Yan, Hongjie; Yang, Yuan (2022).
1000: 543: 427:
of 8–13 ÎŒm to radiate heat into outer space and impede solar absorption.
2447:"Fluorescent cooling of objects exposed to sunlight – The ruby example" 1843: 1461: 1459: 1350: 1226:
Wang, Tong; Wu, Yi; Shi, Lan; Hu, Xinhua; Chen, Min; Wu, Limin (2021).
1199: 1182: 1176: 1174: 953: 587: 513: 501: 481: 380: 290: 223:
The Earth-atmosphere system is radiatively cooled, emitting long-wave (
160: 2293: 2149: 1666: 1466:
Bijarniya, Jay Prakash; Sarkar, Jahar; Maiti, Pralay (November 2020).
1365: 586:
and not too far above freezing, heat gain from the surrounding air by
2034: 1777: 1726:
Yin, Xiaobo; Yang, Ronggui; Tan, Gang; Fan, Shanhui (November 2020).
1719: 1615: 1568: 1545: 1506: 1415:"A new study on passive radiative sky cooling resource maps of China" 448: 305: 278: 1575:
Anand, Jyothis; Sailor, David J.; Baniassadi, Amir (February 2021).
1456: 1406: 1219: 1171: 262:
Radiative cooling is commonly experienced on cloudless nights, when
31: 845: 565: 504:
aircraft. In such heat shields a high emissivity material, such as
2444: 1889: 383:
surfaces to lower the temperature of a building or other object.
308:
to form on surfaces exposed to the clear night sky, even when the
467:
6 Â°C sub-ambient temperatures and cooling powers of 96 W/m.
440:
Different roof materials absorb more or less heat. A higher roof
286: 251: 239: 684: 648:
as a heat sink, and cool to well below ambient air temperature.
572: 537: 441: 282: 436: 301: 164: 263: 168: 137: 2311:(1st ed.). New York, NY: John Wiley & Sons, Inc. 1512: 1372:
Aili, Ablimit; Yin, Xiaobo; Yang, Ronggui (October 2021).
2272:
Philosophical Transactions of the Royal Society of London
2081:"A Subambient Open Roof Surface under the Mid-Summer Sun" 804:"The Persian ice house, or how to make ice in the desert" 250:
partly via the mean flow and partly via eddies, known as
1826:
Heo, Se-Yeon; Ju Lee, Gil; Song, Young Min (June 2022).
1333:
Heo, Se-Yeon; Ju Lee, Gil; Song, Young Min (June 2022).
936:
Heo, Se-Yeon; Ju Lee, Gil; Song, Young Min (June 2022).
889:"Radiative cooling: Principles, progress and potentials" 1551: 605: 315: 2366: 1912: 1574: 974: 2079:
Gentle, Angus R.; Smith, Geoff B. (September 2015).
1465: 2232: 2012: 1675:"Tackling Climate Change through Radiative Cooling" 1032:"Tackling Climate Change through Radiative Cooling" 56:. Unsourced material may be challenged and removed. 2240:"Lesson 1: History Of Refrigeration, Version 1 ME" 1963: 1081:"The super-cool materials that send heat to space" 2050:"RĂ©frigĂ©ration radiative. Effet de serre inverse" 1413:Chen, Jianheng; Lu, Lin; Gong, Quan (June 2021). 1126:Monthly Notices of the Royal Astronomical Society 496:that facilitate radiative cooling may be used in 2484: 1890:"Find rated products – Cool Roof Rating Council" 198: 175:for spacecraft, and in architecture. In 2014, a 2331: 2189: 1278: 1180: 423:Passive radiative cooling technologies use the 300:The same radiative cooling mechanism can cause 1786: 613:intensity, from clouds, atmosphere and surface 1825: 1725: 1332: 935: 590:was low enough to allow the water to freeze. 524: 1621: 1279:Zevenhovena, Ron; FĂ€lt, Martin (June 2018). 887:Hossain, Md Muntasir; Gu, Min (2016-02-04). 538:Nocturnal ice making in early India and Iran 257: 2309:Passive and Low Energy Cooling of Buildings 2127: 2078: 1371: 1225: 1167:. Physics Department, University of Patras. 1412: 826: 824: 2470: 2283: 2215: 2104: 1989: 1698: 1649: 1639: 1397: 1251: 1198: 1145: 1096: 1055: 912: 886: 844: 593:In Iran, this involved making large flat 451:combine high solar reflectance with high 209:exhibit cooling even in direct sunlight. 116:Learn how and when to remove this message 2247:Indian Institute of Technology Kharagpur 1472:Renewable and Sustainable Energy Reviews 666:, used for thermal control of spacecraft 604: 435: 418: 368: 212: 2425: 2300: 2047: 1854:– via Royal Society of Chemistry. 1361:– via Royal Society of Chemistry. 964:– via Royal Society of Chemistry. 821: 2485: 2451:Solar Energy Materials and Solar Cells 2426:Burnett, Michael (November 25, 2015). 2306: 1672: 1119: 1029: 1449:– via Elsevier Science Direct. 1315:– via Elsevier Science Direct. 756: 713: 152:spontaneously and continuously emits 136:is the process by which a body loses 1815:– via Elsevier Science Direct. 1611:– via Elsevier Science Direct. 1541:– via Elsevier Science Direct. 1502:– via Elsevier Science Direct. 882: 880: 830: 798: 796: 316:Kelvin's estimate of the Earth's age 54:adding citations to reliable sources 25: 1866:"Emissivity Coefficients Materials" 1078: 498:reusable thermal protection systems 234:The large-scale circulation of the 13: 968: 929: 464:long wavelength infrared radiation 389:by reducing the energy needed for 14: 2509: 877: 793: 377:Passive daytime radiative cooling 363:Passive daytime radiative cooling 355: 193:passive daytime radiative cooling 21:passive daytime radiative cooling 16:Loss of heat by thermal radiation 2066:10.1051/rphysap:0197900140108700 1832:Journal of Materials Chemistry C 1419:Energy Conversion and Management 1339:Journal of Materials Chemistry C 942:Journal of Materials Chemistry C 564: 552: 361:This section is an excerpt from 30: 2438: 2419: 2360: 2325: 2260: 2183: 2164: 2121: 2072: 2041: 2006: 1957: 1906: 1882: 1858: 1154: 1113: 559:Radiative cooling energy budget 488: 431: 350: 41:needs additional citations for 2354:10.1016/j.apenergy.2015.09.061 1581:Sustainable Cities and Society 1439:10.1016/j.enconman.2021.114132 1072: 1023: 750: 707: 312:does not fall below freezing. 1: 2048:Grenier, Ph. (January 1979). 700: 199:Terrestrial radiative cooling 2472:10.1016/j.solmat.2016.05.058 1813:10.1016/j.mtener.2021.100776 1519:Materials Today: Proceedings 1305:10.1016/j.energy.2018.03.084 863:10.1016/j.corsci.2018.11.006 337: 203: 7: 2428:"Passive Radiative Cooling" 2054:Revue de Physique AppliquĂ©e 1700:10.1016/j.joule.2019.07.010 1531:10.1016/j.matpr.2022.08.411 1079:Lim, XiaoZhi (2019-12-31). 1057:10.1016/j.joule.2019.07.010 652: 642:infrared atmospheric window 634:Fluorescent radiant cooling 10: 2516: 2015:Journal of Applied Physics 1870:www.engineeringtoolbox.com 1492:10.1016/j.rser.2020.110263 1244:10.1038/s41467-020-20646-7 1098:10.1038/d41586-019-03911-8 736:10.1038/s41566-021-00921-9 541: 531:James Webb Space Telescope 525:James Webb Space Telescope 360: 319: 216: 18: 1601:10.1016/j.scs.2020.102612 759:Optics and Photonics News 685:Terrestrial albedo effect 609:Earth's longwave thermal 500:(RTPS) in spacecraft and 413:thermoelectric generators 258:Nocturnal surface cooling 154:electromagnetic radiation 808:Field Study of the World 779:10.1364/OPN.30.11.000032 636:- An object can be made 628:Indirect radiant cooling 600: 494:High emissivity coatings 395:urban heat island effect 189:greenhouse gas emissions 2307:Givoni, Baruch (1994). 2217:10.1126/science.aai7899 1991:10.1126/science.aat9513 1793:Materials Today: Energy 1752:10.1126/science.abb0971 1673:Munday, Jeremy (2019). 1628:National Science Review 1147:10.1093/mnras/112.6.583 1030:Munday, Jeremy (2019). 1019:– via nature.com. 664:Optical solar reflector 177:scientific breakthrough 2285:10.1098/rstl.1775.0023 2097:10.1002/advs.201500119 1162:"Cooling white dwarfs" 905:10.1002/advs.201500360 622:Direct radiant cooling 614: 445: 428: 374: 181:photonic metamaterials 2498:Atmospheric radiation 1399:10.3390/atmos12111379 1232:Nature Communications 608: 506:molybdenum disilicide 439: 422: 397:, and lowering human 372: 320:Further information: 219:Earth's energy budget 217:Further information: 213:Earth's energy budget 680:Stefan–Boltzmann law 571:Ice Pool beside the 405:photovoltaic systems 50:improve this article 2463:2016SEMSC.157..312B 2389:10.1038/nature13883 2381:2014Natur.515..540R 2346:2015ApEn..160..336S 2208:2017Sci...355.1062Z 2202:(6329): 1062–1066. 2142:2010NanoL..10..373G 2027:1981JAP....52.4205G 1982:2018Sci...362..315M 1935:10.1038/nature13883 1927:2014Natur.515..540R 1805:2021MTEne..2100776A 1744:2020Sci...370..786Y 1691:2019Joule...3.2057M 1641:10.1093/nsr/nwac208 1593:2021SusCS..6502612A 1484:2020RSERv.13310263B 1431:2021ECM...23714132C 1390:2021Atmos..12.1379A 1297:2018Ene...152...27Z 1138:1952MNRAS.112..583M 1120:Mestel, L. (1952). 1048:2019Joule...3.2057M 1001:10.1038/nature13883 993:2014Natur.515..540R 855:2019Corro.146..233S 771:2019OptPN..30...32L 728:2022NaPho..16..182F 695:Urban thermal plume 310:ambient temperature 272:amateur astronomers 65:"Radiative cooling" 2432:large.stanford.edu 1844:10.1039/D2TC00318J 1351:10.1039/D2TC00318J 1200:10.1002/eom2.12153 954:10.1039/D2TC00318J 615: 453:infrared emittance 446: 429: 381:thermally-emissive 375: 236:Earth's atmosphere 2375:(7528): 540–544. 2318:978-0-471-28473-4 2278:: 252–257. 1997. 2150:10.1021/nl903271d 1976:(6412): 315–319. 1921:(7528): 540–544. 1838:(27): 9915–9937. 1738:(6518): 786–791. 1564:– via MDPI. 1345:(27): 9915–9937. 987:(7528): 540–544. 948:(27): 9915–9937. 833:Corrosion Science 690:Urban heat island 675:Radiative forcing 399:body temperatures 347:age of the star. 328:radiative cooling 266:is radiated into 148:describes, every 142:thermal radiation 134:radiative cooling 126: 125: 118: 100: 2505: 2477: 2476: 2474: 2442: 2436: 2435: 2423: 2417: 2416: 2364: 2358: 2357: 2329: 2323: 2322: 2304: 2298: 2297: 2287: 2264: 2258: 2257: 2255: 2249:. Archived from 2244: 2236: 2230: 2229: 2219: 2187: 2181: 2180: 2179: 2175: 2168: 2162: 2161: 2125: 2119: 2118: 2108: 2085:Advanced Science 2076: 2070: 2069: 2045: 2039: 2038: 2035:10.1063/1.329270 2021:(6): 4205–4220. 2010: 2004: 2003: 1993: 1961: 1955: 1954: 1910: 1904: 1903: 1901: 1900: 1886: 1880: 1879: 1877: 1876: 1862: 1856: 1855: 1823: 1817: 1816: 1784: 1775: 1774: 1723: 1717: 1716: 1702: 1685:(9): 2057–2060. 1670: 1664: 1663: 1653: 1643: 1619: 1613: 1612: 1572: 1566: 1565: 1549: 1543: 1542: 1510: 1504: 1503: 1463: 1454: 1453: 1410: 1404: 1403: 1401: 1369: 1363: 1362: 1330: 1321: 1320: 1276: 1270: 1269: 1255: 1223: 1217: 1216: 1202: 1178: 1169: 1168: 1166: 1158: 1152: 1151: 1149: 1117: 1111: 1110: 1100: 1076: 1070: 1069: 1059: 1042:(9): 2057–2060. 1027: 1021: 1020: 972: 966: 965: 933: 927: 926: 916: 893:Advanced Science 884: 875: 874: 848: 828: 819: 818: 816: 815: 800: 791: 790: 754: 748: 747: 716:Nature Photonics 711: 575:yakhchāl in Iran 568: 556: 393:, lowering the 391:air conditioning 387:greenhouse gases 322:Age of the Earth 295:room temperature 128:In the study of 121: 114: 110: 107: 101: 99: 58: 34: 26: 2515: 2514: 2508: 2507: 2506: 2504: 2503: 2502: 2483: 2482: 2481: 2480: 2443: 2439: 2424: 2420: 2365: 2361: 2330: 2326: 2319: 2305: 2301: 2266: 2265: 2261: 2253: 2242: 2238: 2237: 2233: 2188: 2184: 2177: 2172:WO 2016205717A1 2169: 2165: 2126: 2122: 2077: 2073: 2046: 2042: 2011: 2007: 1962: 1958: 1911: 1907: 1898: 1896: 1888: 1887: 1883: 1874: 1872: 1864: 1863: 1859: 1824: 1820: 1785: 1778: 1724: 1720: 1671: 1667: 1620: 1616: 1573: 1569: 1550: 1546: 1511: 1507: 1464: 1457: 1411: 1407: 1370: 1366: 1331: 1324: 1277: 1273: 1224: 1220: 1179: 1172: 1164: 1160: 1159: 1155: 1118: 1114: 1091:(7788): 18–20. 1077: 1073: 1028: 1024: 973: 969: 934: 930: 885: 878: 829: 822: 813: 811: 802: 801: 794: 755: 751: 712: 708: 703: 670:Passive cooling 655: 603: 580: 579: 578: 577: 576: 569: 561: 560: 557: 546: 540: 527: 511: 491: 477:silicon carbide 473:silicon dioxide 434: 425:infrared window 417: 416: 366: 358: 353: 340: 324: 318: 289:; −454.27  260: 221: 215: 206: 201: 122: 111: 105: 102: 59: 57: 47: 35: 24: 17: 12: 11: 5: 2513: 2512: 2501: 2500: 2495: 2493:Thermodynamics 2479: 2478: 2437: 2418: 2359: 2334:Applied Energy 2324: 2317: 2299: 2259: 2256:on 2011-12-16. 2231: 2182: 2163: 2136:(2): 373–379. 2120: 2091:(9): 1500119. 2071: 2040: 2005: 1956: 1905: 1881: 1857: 1818: 1776: 1718: 1665: 1634:(1): nwac208. 1614: 1567: 1558:Sustainability 1544: 1505: 1455: 1405: 1364: 1322: 1271: 1218: 1170: 1153: 1132:(6): 583–597. 1112: 1071: 1022: 967: 928: 899:(7): 1500360. 876: 820: 792: 749: 722:(3): 182–190. 705: 704: 702: 699: 698: 697: 692: 687: 682: 677: 672: 667: 661: 654: 651: 650: 649: 631: 625: 602: 599: 570: 563: 562: 558: 551: 550: 549: 548: 547: 539: 536: 526: 523: 509: 490: 487: 433: 430: 409:dew collection 367: 359: 357: 356:Climate change 354: 352: 349: 339: 336: 332:used by Kelvin 317: 314: 285:(−270.15  259: 256: 214: 211: 205: 202: 200: 197: 185:global warming 179:in the use of 124: 123: 38: 36: 29: 15: 9: 6: 4: 3: 2: 2511: 2510: 2499: 2496: 2494: 2491: 2490: 2488: 2473: 2468: 2464: 2460: 2456: 2452: 2448: 2441: 2433: 2429: 2422: 2414: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2382: 2378: 2374: 2370: 2363: 2355: 2351: 2347: 2343: 2339: 2335: 2328: 2320: 2314: 2310: 2303: 2295: 2291: 2286: 2281: 2277: 2273: 2269: 2263: 2252: 2248: 2241: 2235: 2227: 2223: 2218: 2213: 2209: 2205: 2201: 2197: 2193: 2186: 2173: 2167: 2159: 2155: 2151: 2147: 2143: 2139: 2135: 2131: 2124: 2116: 2112: 2107: 2102: 2098: 2094: 2090: 2086: 2082: 2075: 2067: 2063: 2059: 2055: 2051: 2044: 2036: 2032: 2028: 2024: 2020: 2016: 2009: 2001: 1997: 1992: 1987: 1983: 1979: 1975: 1971: 1967: 1960: 1952: 1948: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1909: 1895: 1894:coolroofs.org 1891: 1885: 1871: 1867: 1861: 1853: 1849: 1845: 1841: 1837: 1833: 1829: 1822: 1814: 1810: 1806: 1802: 1798: 1794: 1790: 1783: 1781: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1729: 1722: 1715: 1710: 1706: 1701: 1696: 1692: 1688: 1684: 1680: 1676: 1669: 1661: 1657: 1652: 1647: 1642: 1637: 1633: 1629: 1625: 1618: 1610: 1606: 1602: 1598: 1594: 1590: 1586: 1582: 1578: 1571: 1563: 1559: 1555: 1548: 1540: 1536: 1532: 1528: 1525:: 3632–3637. 1524: 1520: 1516: 1509: 1501: 1497: 1493: 1489: 1485: 1481: 1477: 1473: 1469: 1462: 1460: 1452: 1448: 1444: 1440: 1436: 1432: 1428: 1424: 1420: 1416: 1409: 1400: 1395: 1391: 1387: 1383: 1379: 1375: 1368: 1360: 1356: 1352: 1348: 1344: 1340: 1336: 1329: 1327: 1319: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1275: 1268: 1263: 1259: 1254: 1249: 1245: 1241: 1237: 1233: 1229: 1222: 1215: 1210: 1206: 1201: 1196: 1192: 1188: 1184: 1177: 1175: 1163: 1157: 1148: 1143: 1139: 1135: 1131: 1127: 1123: 1116: 1108: 1104: 1099: 1094: 1090: 1086: 1082: 1075: 1067: 1063: 1058: 1053: 1049: 1045: 1041: 1037: 1033: 1026: 1018: 1014: 1010: 1006: 1002: 998: 994: 990: 986: 982: 978: 971: 963: 959: 955: 951: 947: 943: 939: 932: 924: 920: 915: 910: 906: 902: 898: 894: 890: 883: 881: 872: 868: 864: 860: 856: 852: 847: 842: 838: 834: 827: 825: 809: 805: 799: 797: 788: 784: 780: 776: 772: 768: 764: 760: 753: 745: 741: 737: 733: 729: 725: 721: 717: 710: 706: 696: 693: 691: 688: 686: 683: 681: 678: 676: 673: 671: 668: 665: 662: 660: 657: 656: 647: 643: 639: 635: 632: 629: 626: 623: 620: 619: 618: 612: 607: 598: 596: 591: 589: 583: 574: 567: 555: 545: 535: 532: 522: 519: 515: 507: 503: 499: 495: 486: 483: 478: 474: 468: 465: 460: 456: 454: 450: 443: 438: 426: 421: 414: 411:devices, and 410: 406: 402: 400: 396: 392: 388: 382: 378: 371: 364: 348: 345: 335: 333: 329: 323: 313: 311: 307: 303: 298: 296: 292: 288: 284: 280: 275: 273: 269: 265: 255: 253: 249: 245: 244:sensible heat 241: 237: 232: 228: 226: 220: 210: 196: 194: 190: 186: 182: 178: 174: 170: 166: 162: 157: 155: 151: 150:physical body 147: 143: 139: 135: 131: 130:heat transfer 120: 117: 109: 106:December 2009 98: 95: 91: 88: 84: 81: 77: 74: 70: 67: â€“  66: 62: 61:Find sources: 55: 51: 45: 44: 39:This article 37: 33: 28: 27: 22: 2454: 2450: 2440: 2431: 2421: 2372: 2368: 2362: 2337: 2333: 2327: 2308: 2302: 2275: 2271: 2262: 2251:the original 2234: 2199: 2195: 2185: 2166: 2133: 2130:Nano Letters 2129: 2123: 2088: 2084: 2074: 2060:(1): 87–90. 2057: 2053: 2043: 2018: 2014: 2008: 1973: 1969: 1959: 1918: 1914: 1908: 1897:. Retrieved 1893: 1884: 1873:. Retrieved 1869: 1860: 1835: 1831: 1821: 1796: 1792: 1771: 1735: 1731: 1721: 1712: 1682: 1678: 1668: 1631: 1627: 1617: 1584: 1580: 1570: 1561: 1557: 1547: 1522: 1518: 1508: 1475: 1471: 1450: 1422: 1418: 1408: 1384:(11): 1379. 1381: 1377: 1367: 1342: 1338: 1316: 1288: 1284: 1274: 1265: 1238:(365): 365. 1235: 1231: 1221: 1212: 1190: 1186: 1156: 1129: 1125: 1115: 1088: 1084: 1074: 1039: 1035: 1025: 984: 980: 970: 945: 941: 931: 896: 892: 836: 832: 812:. Retrieved 810:. 2016-04-04 807: 762: 758: 752: 719: 715: 709: 633: 627: 621: 616: 592: 584: 581: 528: 518:Planck's law 492: 489:Heat shields 469: 461: 457: 447: 432:Architecture 384: 351:Applications 341: 327: 325: 299: 276: 261: 233: 229: 222: 207: 173:heat shields 158: 146:Planck's law 133: 127: 112: 103: 93: 86: 79: 72: 60: 48:Please help 43:verification 40: 2457:: 312–317. 2340:: 336–357. 839:: 233–246. 659:Heat shield 646:outer space 638:fluorescent 344:white dwarf 268:outer space 248:latent heat 2487:Categories 1899:2019-02-23 1875:2019-02-23 1799:: 100776. 1587:: 102612. 1478:: 110263. 1425:: 114132. 1378:Atmosphere 846:1902.03943 814:2019-04-28 765:(11): 32. 701:References 588:convection 542:See also: 514:emissivity 502:hypersonic 482:emissivity 449:Cool roofs 187:caused by 161:ice making 76:newspapers 2397:1476-4687 1852:249695930 1768:226308213 1709:201590290 1609:229476136 1539:252136357 1500:224874019 1447:234839652 1359:249695930 1313:116318678 1209:240331557 1066:201590290 962:249695930 871:118927116 787:209957921 744:246668570 611:radiation 595:ice pools 338:Astronomy 326:The term 306:black ice 279:night sky 204:Mechanism 191:known as 2405:25428501 2226:28183998 2158:20055479 2115:27980975 2000:30262632 1943:25428501 1760:33184205 1660:36684522 1262:33446648 1214:warming. 1107:31892746 1009:25428501 923:27812478 653:See also 544:Yakhchāl 252:cyclones 225:infrared 2459:Bibcode 2413:4382732 2377:Bibcode 2342:Bibcode 2204:Bibcode 2196:Science 2138:Bibcode 2106:5115392 2023:Bibcode 1978:Bibcode 1970:Science 1951:4382732 1923:Bibcode 1801:Bibcode 1740:Bibcode 1732:Science 1687:Bibcode 1651:9843130 1589:Bibcode 1480:Bibcode 1427:Bibcode 1386:Bibcode 1293:Bibcode 1253:7809060 1134:Bibcode 1044:Bibcode 1017:4382732 989:Bibcode 914:5067572 851:Bibcode 767:Bibcode 724:Bibcode 240:Tropics 90:scholar 2411:  2403:  2395:  2369:Nature 2315:  2294:106193 2292:  2224:  2178:  2156:  2113:  2103:  1998:  1949:  1941:  1915:Nature 1850:  1766:  1758:  1714:Earth. 1707:  1658:  1648:  1607:  1537:  1498:  1445:  1357:  1311:  1291:: 27. 1285:Energy 1260:  1250:  1207:  1187:EcoMat 1105:  1085:Nature 1064:  1015:  1007:  981:Nature 960:  921:  911:  869:  785:  742:  573:Meybod 442:albedo 92:  85:  78:  71:  63:  2409:S2CID 2290:JSTOR 2254:(PDF) 2243:(PDF) 1947:S2CID 1848:S2CID 1764:S2CID 1705:S2CID 1679:Joule 1605:S2CID 1535:S2CID 1496:S2CID 1443:S2CID 1355:S2CID 1309:S2CID 1205:S2CID 1165:(PDF) 1062:S2CID 1036:Joule 1013:S2CID 958:S2CID 867:S2CID 841:arXiv 783:S2CID 740:S2CID 601:Types 508:(MoSi 302:frost 165:India 144:. As 97:JSTOR 83:books 2401:PMID 2393:ISSN 2313:ISBN 2222:PMID 2154:PMID 2111:PMID 1996:PMID 1939:PMID 1756:PMID 1656:PMID 1258:PMID 1103:PMID 1005:PMID 919:PMID 529:The 264:heat 246:and 169:Iran 167:and 138:heat 69:news 2467:doi 2455:157 2385:doi 2373:515 2350:doi 2338:160 2280:doi 2212:doi 2200:355 2146:doi 2101:PMC 2093:doi 2062:doi 2031:doi 1986:doi 1974:362 1931:doi 1919:515 1840:doi 1809:doi 1748:doi 1736:370 1695:doi 1646:PMC 1636:doi 1597:doi 1527:doi 1488:doi 1476:133 1435:doi 1423:237 1394:doi 1347:doi 1301:doi 1289:152 1248:PMC 1240:doi 1195:doi 1142:doi 1130:112 1093:doi 1089:577 1052:doi 997:doi 985:515 950:doi 909:PMC 901:doi 859:doi 837:146 775:doi 732:doi 475:or 304:or 163:in 140:by 52:by 2489:: 2465:. 2453:. 2449:. 2430:. 2407:. 2399:. 2391:. 2383:. 2371:. 2348:. 2336:. 2288:. 2276:65 2274:. 2270:. 2245:. 2220:. 2210:. 2198:. 2194:. 2152:. 2144:. 2134:10 2132:. 2109:. 2099:. 2087:. 2083:. 2058:14 2056:. 2052:. 2029:. 2019:52 2017:. 1994:. 1984:. 1972:. 1968:. 1945:. 1937:. 1929:. 1917:. 1892:. 1868:. 1846:. 1836:10 1834:. 1830:. 1807:. 1797:21 1795:. 1791:. 1779:^ 1770:. 1762:. 1754:. 1746:. 1734:. 1730:. 1711:. 1703:. 1693:. 1681:. 1677:. 1654:. 1644:. 1632:10 1630:. 1626:. 1603:. 1595:. 1585:65 1583:. 1579:. 1562:14 1560:. 1556:. 1533:. 1523:72 1521:. 1517:. 1494:. 1486:. 1474:. 1470:. 1458:^ 1441:. 1433:. 1421:. 1417:. 1392:. 1382:12 1380:. 1376:. 1353:. 1343:10 1341:. 1337:. 1325:^ 1307:. 1299:. 1287:. 1283:. 1264:. 1256:. 1246:. 1236:12 1234:. 1230:. 1211:. 1203:. 1193:. 1189:. 1185:. 1173:^ 1140:. 1128:. 1124:. 1101:. 1087:. 1083:. 1060:. 1050:. 1038:. 1034:. 1011:. 1003:. 995:. 983:. 979:. 956:. 946:10 944:. 940:. 917:. 907:. 895:. 891:. 879:^ 865:. 857:. 849:. 835:. 823:^ 806:. 795:^ 781:. 773:. 763:30 761:. 738:. 730:. 720:16 718:. 407:, 401:. 291:°F 287:°C 274:. 195:. 171:, 156:. 132:, 2475:. 2469:: 2461:: 2434:. 2415:. 2387:: 2379:: 2356:. 2352:: 2344:: 2321:. 2296:. 2282:: 2228:. 2214:: 2206:: 2160:. 2148:: 2140:: 2117:. 2095:: 2089:2 2068:. 2064:: 2037:. 2033:: 2025:: 2002:. 1988:: 1980:: 1953:. 1933:: 1925:: 1902:. 1878:. 1842:: 1811:: 1803:: 1750:: 1742:: 1697:: 1689:: 1683:3 1662:. 1638:: 1599:: 1591:: 1529:: 1490:: 1482:: 1437:: 1429:: 1402:. 1396:: 1388:: 1349:: 1303:: 1295:: 1242:: 1197:: 1191:4 1150:. 1144:: 1136:: 1109:. 1095:: 1068:. 1054:: 1046:: 1040:3 999:: 991:: 952:: 925:. 903:: 897:3 873:. 861:: 853:: 843:: 817:. 789:. 777:: 769:: 746:. 734:: 726:: 510:2 415:. 365:. 283:K 119:) 113:( 108:) 104:( 94:· 87:· 80:· 73:· 46:. 23:.

Index

passive daytime radiative cooling

verification
improve this article
adding citations to reliable sources
"Radiative cooling"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
heat transfer
heat
thermal radiation
Planck's law
physical body
electromagnetic radiation
ice making
India
Iran
heat shields
scientific breakthrough
photonic metamaterials
global warming
greenhouse gas emissions
passive daytime radiative cooling
Earth's energy budget
infrared
Earth's atmosphere

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑