Knowledge

Preferential attachment

Source 📝

1314:.) The preferential attachment process does not incorporate the taking away part. This point may be moot, however, since the scientific insight behind the Matthew effect is in any case entirely different. Qualitatively it is intended to describe not a mechanical multiplicative effect like preferential attachment but a specific human behavior in which people are more likely to give credit to the famous than to the little known. The classic example of the Matthew effect is a scientific discovery made simultaneously by two different people, one well known and the other little known. It is claimed that under these circumstances people tend more often to credit the discovery to the well-known scientist. Thus the real-world phenomenon the Matthew effect is intended to describe is quite distinct from (though certainly related to) preferential attachment. 741:, meaning a process in which discrete units of wealth, usually called "balls", are added in a random or partly random fashion to a set of objects or containers, usually called "urns". A preferential attachment process is an urn process in which additional balls are added continuously to the system and are distributed among the urns as an increasing function of the number of balls the urns already have. In the most commonly studied examples, the number of urns also increases continuously, although this is not a necessary condition for preferential attachment and examples have been studied with constant or even decreasing numbers of urns. 27: 60: 761:(i.e., split in two) and, assuming that new species belong to the same genus as their parent (except for those that start new genera), the probability that a new species is added to a genus will be proportional to the number of species the genus already has. This process, first studied by British statistician 1364:
in 1999. Barabási and Albert also coined the name "preferential attachment" by which the process is best known today and suggested that the process might apply to the growth of other networks as well. For growing networks, the precise functional form of preferential attachment can be estimated by
1326:
in 1925, who used it to explain the power-law distribution of the number of species per genus of flowering plants. The process is sometimes called a "Yule process" in his honor. Yule was able to show that the process gave rise to a distribution with a power-law tail, but the details of his proof
700:
is any of a class of processes in which some quantity, typically some form of wealth or credit, is distributed among a number of individuals or objects according to how much they already have, so that those who are already wealthy receive more than those who are not. "Preferential attachment" is
1205:
in its tail. This is the primary reason for the historical interest in preferential attachment: the species distribution and many other phenomena are observed empirically to follow power laws and the preferential attachment process is a leading candidate mechanism to explain this behavior.
1206:
Preferential attachment is considered a possible candidate for, among other things, the distribution of the sizes of cities, the wealth of extremely wealthy individuals, the number of citations received by learned publications, and the number of links to pages on the World Wide Web.
756:
of biotic organisms. New genera ("urns") are added to a taxon whenever a newly appearing species is considered sufficiently different from its predecessors that it does not belong in any of the current genera. New species ("balls") are added as old ones
924: 1044: 1349:. It is in the context of network growth that the process is most frequently studied today. Price also promoted preferential attachment as a possible explanation for power laws in many other phenomena, including 725:
distributions. If preferential attachment is non-linear, measured distributions may deviate from a power law. These mechanisms may generate distributions which are approximately power law over transient periods.
1345:
in 1976. (He referred to the process as a "cumulative advantage" process.) His was also the first application of the process to the growth of a network, producing what would now be called a
1113: 1189: 1209:
The general model described here includes many other specific models as special cases. In the species/genus example above, for instance, each genus starts out with a single species (
1327:
are, by today's standards, contorted and difficult, since the modern tools of stochastic process theory did not yet exist and he was forced to use more cumbersome methods of proof.
30:
Graph generated using preferential attachment. A small number of nodes have a large number of incoming edges, whereas a large number of nodes have a small number of incoming edges.
821: 1384: 956: 774:
Linear preferential attachment processes in which the number of urns increases are known to produce a distribution of balls over the urns following the so-called
1648:
Falkenberg, Max; Lee, Jong-Hyeok; Amano, Shun-ichi; Ogawa, Ken-ichiro; Yano, Kazuo; Miyake, Yoshihiro; Evans, Tim S.; Christensen, Kim (18 June 2020).
576: 1700: 1307: 1303:: "For everyone who has will be given more, and he will have an abundance. Whoever does not have, even what he has will be taken from him." ( 1595:
Krapivsky, Paul; Krioukov, Dmitri (21 August 2008). "Scale-free networks as preasymptotic regimes of superlinear preferential attachment".
1843: 710: 683: 1061: 721:. The principal reason for scientific interest in preferential attachment is that it can, under suitable circumstances, generate 1146: 771:
preferential attachment process, since the rate at which genera accrue new species is linear in the number they already have.
1414: 566: 295: 701:
only the most recent of many names that have been given to such processes. They are also referred to under the names
640: 223: 536: 526: 521: 1366: 676: 635: 152: 481: 325: 272: 87: 516: 1542:
Krapivsky, P. L.; Redner, S.; Leyvraz, F. (20 November 2000). "Connectivity of Growing Random Networks".
1449: 1439: 1404: 1394: 714: 645: 551: 546: 511: 310: 208: 147: 1985: 1311: 233: 1990: 669: 571: 531: 38: 1267: 429: 1342: 652: 471: 238: 127: 1923:"PAFit: A Statistical Method for Measuring Preferential Attachment in Temporal Complex Networks" 778:. In the most general form of the process, balls are added to the system at an overall rate of 1419: 1360:
The application of preferential attachment to the growth of the World Wide Web was proposed by
556: 541: 456: 1820: 657: 476: 446: 335: 290: 1934: 1879: 1748: 1500: 1389: 424: 305: 20: 8: 1696:"A Mathematical Theory of Evolution, based on the Conclusions of Dr. J. C. Willis, F.R.S" 1444: 1216: = 1) and gains new species in direct proportion to the number it already has ( 1198: 461: 330: 320: 315: 167: 112: 102: 1938: 1883: 1752: 1504: 1957: 1922: 1903: 1764: 1738: 1661: 1630: 1604: 1577: 1551: 1524: 1490: 1379: 1346: 919:{\displaystyle P(k)={\mathrm {B} (k+a,\gamma ) \over \mathrm {B} (k_{0}+a,\gamma -1)},} 735: 300: 253: 228: 117: 107: 744:
A classic example of a preferential attachment process is the growth in the number of
1962: 1895: 1768: 1676: 1649: 1622: 1569: 1516: 1354: 1304: 1300: 775: 597: 263: 213: 122: 97: 26: 1634: 1581: 1292:, but the two are not precisely equivalent. The Matthew effect, first discussed by 1952: 1942: 1907: 1887: 1867: 1835: 1796: 1756: 1709: 1671: 1614: 1561: 1508: 1424: 1341:
The first application of preferential attachment to learned citations was given by
1335: 1293: 356: 345: 243: 203: 187: 1528: 1947: 1512: 1399: 1331: 718: 592: 373: 248: 157: 92: 46: 1891: 1800: 1565: 1322:
The first rigorous consideration of preferential attachment seems to be that of
1618: 1429: 1350: 1289: 1053: 789:
balls and further balls are added to urns at a rate proportional to the number
602: 408: 383: 378: 352: 341: 218: 182: 177: 137: 75: 1760: 1481:
Barabási, A.-L.; R. Albert (1999). "Emergence of scaling in random networks".
1255:. Similarly the Price model for scientific citations corresponds to the case 1979: 1338:
in 1955, in work on the distribution of sizes of cities and other phenomena.
948: 561: 466: 451: 393: 142: 132: 1729:
Newman, M. E. J. (2005). "Power laws, Pareto distributions and Zipf's law".
1039:{\displaystyle \mathrm {B} (x,y)={\Gamma (x)\Gamma (y) \over \Gamma (x+y)},} 1966: 1899: 1839: 1821:"A general theory of bibliometric and other cumulative advantage processes" 1714: 1695: 1626: 1573: 1520: 1409: 506: 403: 258: 1921:
Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi (September 17, 2015).
1743: 1556: 1495: 1434: 738: 1454: 758: 441: 398: 388: 1323: 1202: 1194: 762: 722: 606: 162: 782:
new balls for each new urn. Each newly created urn starts out with
59: 1666: 1361: 1787:
Simon, H. A. (1955). "On a class of skew distribution functions".
1609: 1330:
Most modern treatments of preferential attachment make use of the
19:"Yule process" redirects here. For the type of birth process, see 1193:
In other words, the preferential attachment process generates a "
745: 767: 1297: 753: 749: 1288:
Preferential attachment is sometimes referred to as the
1647: 1920: 1541: 1385:
Bose–Einstein condensation: a network theory approach
1149: 1064: 959: 824: 1334:method, whose use in this context was pioneered by 16:
Stochastic process formalizing cumulative advantage
1183: 1107: 1038: 918: 1701:Philosophical Transactions of the Royal Society B 1594: 1480: 1977: 1689: 1687: 1650:"Identifying time dependence in network growth" 1117:The beta function behaves asymptotically as B( 1782: 1780: 1778: 677: 1814: 1812: 1810: 1684: 1108:{\displaystyle \gamma =2+{k_{0}+a \over m}.} 816:balls in the limit of long time is given by 1476: 1474: 1472: 1470: 1775: 684: 670: 1956: 1946: 1870:(1968). "The Matthew effect in science". 1807: 1742: 1713: 1675: 1665: 1608: 1555: 1494: 1184:{\displaystyle P(k)\propto k^{-\gamma }.} 1137:, which implies that for large values of 1467: 804:. With these definitions, the fraction 25: 793:that they already have plus a constant 734:A preferential attachment process is a 1978: 1866: 1728: 1266: = 1 and the widely studied 1818: 1786: 1693: 1415:Link-centric preferential attachment 13: 1012: 998: 986: 961: 872: 844: 14: 2002: 1677:10.1103/PhysRevResearch.2.023352 1296:, is named for a passage in the 58: 1914: 1849:from the original on 2020-12-01 1353:of scientific productivity and 698:preferential attachment process 1860: 1722: 1641: 1588: 1535: 1159: 1153: 1027: 1015: 1007: 1001: 995: 989: 977: 965: 939:(and zero otherwise), where B( 907: 876: 866: 848: 834: 828: 1: 1461: 1367:maximum likelihood estimation 729: 1948:10.1371/journal.pone.0137796 1513:10.1126/science.286.5439.509 7: 1892:10.1126/science.159.3810.56 1819:Price, D. J. de S. (1976). 1566:10.1103/PhysRevLett.85.4629 1405:Double jeopardy (marketing) 1372: 1220: = 0), and hence 1197:" distribution following a 717:. They are also related to 10: 2007: 1619:10.1103/PhysRevE.78.026114 1395:Chinese restaurant process 1317: 18: 1828:J. Amer. Soc. Inform. Sci 1801:10.1093/biomet/42.3-4.425 1761:10.1080/00107510500052444 1440:Success to the successful 1312:New International Version 537:Exponential random (ERGM) 204:Informational (computing) 1654:Physical Review Research 224:Scientific collaboration 1544:Physical Review Letters 1450:Yule–Simon distribution 653:Category:Network theory 173:Preferential attachment 1840:10.1002/asi.4630270505 1715:10.1098/rstb.1925.0002 1185: 1109: 1040: 920: 542:Random geometric (RGG) 31: 1268:Barabási-Albert model 1247: − 1) with 1186: 1110: 1052:) being the standard 1041: 921: 658:Category:Graph theory 29: 1731:Contemporary Physics 1694:Yule, G. U. (1925). 1390:Capital accumulation 1147: 1062: 957: 822: 707:cumulative advantage 21:Simple birth process 1939:2015PLoSO..1037796P 1884:1968Sci...159...56M 1753:2005ConPh..46..323N 1505:1999Sci...286..509B 1445:Wealth condensation 1362:Barabási and Albert 1199:Pareto distribution 711:the rich get richer 462:Degree distribution 113:Community structure 1708:(402–410): 21–87. 1420:Pitman–Yor process 1380:Assortative mixing 1347:scale-free network 1181: 1105: 1036: 916: 646:Network scientists 572:Soft configuration 32: 1868:Merton, Robert K. 1597:Physical Review E 1550:(21): 4629–4632. 1489:(5439): 509–512. 1301:Gospel of Matthew 1251:=2 + 1/ 1100: 1031: 911: 812:) of urns having 797: > − 776:Yule distribution 694: 693: 614: 613: 522:Bianconi–Barabási 416: 415: 234:Artificial neural 209:Telecommunication 1998: 1986:Social phenomena 1971: 1970: 1960: 1950: 1918: 1912: 1911: 1864: 1858: 1857: 1855: 1854: 1848: 1825: 1816: 1805: 1804: 1795:(3–4): 425–440. 1784: 1773: 1772: 1746: 1744:cond-mat/0412004 1726: 1720: 1719: 1717: 1691: 1682: 1681: 1679: 1669: 1645: 1639: 1638: 1612: 1592: 1586: 1585: 1559: 1557:cond-mat/0005139 1539: 1533: 1532: 1498: 1496:cond-mat/9910332 1478: 1357:of journal use. 1294:Robert K. Merton 1285: = 0. 1262: = 0, 1228:) = B( 1190: 1188: 1187: 1182: 1177: 1176: 1114: 1112: 1111: 1106: 1101: 1096: 1089: 1088: 1078: 1045: 1043: 1042: 1037: 1032: 1030: 1010: 984: 964: 925: 923: 922: 917: 912: 910: 888: 887: 875: 869: 847: 841: 686: 679: 672: 557:Stochastic block 547:Hyperbolic (HGN) 496: 495: 359: 348: 280: 279: 188:Social influence 62: 34: 33: 2006: 2005: 2001: 2000: 1999: 1997: 1996: 1995: 1991:Network science 1976: 1975: 1974: 1933:(9): e0137796. 1919: 1915: 1878:(3810): 56–63. 1865: 1861: 1852: 1850: 1846: 1823: 1817: 1808: 1785: 1776: 1727: 1723: 1692: 1685: 1646: 1642: 1593: 1589: 1540: 1536: 1479: 1468: 1464: 1459: 1400:Complex network 1375: 1332:master equation 1320: 1276: 1270:corresponds to 1261: 1242: 1215: 1169: 1165: 1148: 1145: 1144: 1084: 1080: 1079: 1077: 1063: 1060: 1059: 1011: 985: 983: 960: 958: 955: 954: 947:) is the Euler 938: 883: 879: 871: 870: 843: 842: 840: 823: 820: 819: 803: 788: 752:in some higher 732: 690: 628: 593:Boolean network 567:Maximum entropy 517:Barabási–Albert 434: 351: 340: 128:Controllability 93:Complex network 80: 67: 66: 65: 64: 63: 47:Network science 24: 17: 12: 11: 5: 2004: 1994: 1993: 1988: 1973: 1972: 1913: 1859: 1834:(5): 292–306. 1806: 1774: 1737:(5): 323–351. 1721: 1683: 1640: 1587: 1534: 1465: 1463: 1460: 1458: 1457: 1452: 1447: 1442: 1437: 1432: 1430:Proof of stake 1427: 1422: 1417: 1412: 1407: 1402: 1397: 1392: 1387: 1382: 1376: 1374: 1371: 1355:Bradford's law 1319: 1316: 1290:Matthew effect 1274: 1259: 1240: 1213: 1180: 1175: 1172: 1168: 1164: 1161: 1158: 1155: 1152: 1125:) ~  1104: 1099: 1095: 1092: 1087: 1083: 1076: 1073: 1070: 1067: 1054:gamma function 1035: 1029: 1026: 1023: 1020: 1017: 1014: 1009: 1006: 1003: 1000: 997: 994: 991: 988: 982: 979: 976: 973: 970: 967: 963: 936: 915: 909: 906: 903: 900: 897: 894: 891: 886: 882: 878: 874: 868: 865: 862: 859: 856: 853: 850: 846: 839: 836: 833: 830: 827: 801: 786: 731: 728: 715:Matthew effect 692: 691: 689: 688: 681: 674: 666: 663: 662: 661: 660: 655: 649: 648: 643: 638: 630: 629: 627: 626: 623: 619: 616: 615: 612: 611: 610: 609: 600: 595: 587: 586: 582: 581: 580: 579: 574: 569: 564: 559: 554: 549: 544: 539: 534: 532:Watts–Strogatz 529: 524: 519: 514: 509: 501: 500: 492: 491: 487: 486: 485: 484: 479: 474: 469: 464: 459: 454: 449: 444: 436: 435: 433: 432: 427: 421: 418: 417: 414: 413: 412: 411: 406: 401: 396: 391: 386: 381: 376: 368: 367: 363: 362: 361: 360: 353:Incidence list 349: 342:Adjacency list 338: 333: 328: 323: 318: 313: 311:Data structure 308: 303: 298: 293: 285: 284: 276: 275: 269: 268: 267: 266: 261: 256: 251: 246: 241: 239:Interdependent 236: 231: 226: 221: 216: 211: 206: 198: 197: 193: 192: 191: 190: 185: 183:Network effect 180: 178:Balance theory 175: 170: 165: 160: 155: 150: 145: 140: 138:Social capital 135: 130: 125: 120: 115: 110: 105: 100: 95: 90: 82: 81: 79: 78: 72: 69: 68: 57: 56: 55: 54: 53: 50: 49: 43: 42: 15: 9: 6: 4: 3: 2: 2003: 1992: 1989: 1987: 1984: 1983: 1981: 1968: 1964: 1959: 1954: 1949: 1944: 1940: 1936: 1932: 1928: 1924: 1917: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1869: 1863: 1845: 1841: 1837: 1833: 1829: 1822: 1815: 1813: 1811: 1802: 1798: 1794: 1790: 1783: 1781: 1779: 1770: 1766: 1762: 1758: 1754: 1750: 1745: 1740: 1736: 1732: 1725: 1716: 1711: 1707: 1703: 1702: 1697: 1690: 1688: 1678: 1673: 1668: 1663: 1660:(2): 023352. 1659: 1655: 1651: 1644: 1636: 1632: 1628: 1624: 1620: 1616: 1611: 1606: 1603:(2): 026114. 1602: 1598: 1591: 1583: 1579: 1575: 1571: 1567: 1563: 1558: 1553: 1549: 1545: 1538: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1497: 1492: 1488: 1484: 1477: 1475: 1473: 1471: 1466: 1456: 1453: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1431: 1428: 1426: 1425:Price's model 1423: 1421: 1418: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1377: 1370: 1368: 1363: 1358: 1356: 1352: 1348: 1344: 1339: 1337: 1333: 1328: 1325: 1315: 1313: 1309: 1306: 1302: 1299: 1295: 1291: 1286: 1284: 1280: 1277: =  1273: 1269: 1265: 1258: 1254: 1250: 1246: 1239: 1235: 1231: 1227: 1223: 1219: 1212: 1207: 1204: 1200: 1196: 1191: 1178: 1173: 1170: 1166: 1162: 1156: 1150: 1142: 1140: 1136: 1132: 1128: 1124: 1120: 1115: 1102: 1097: 1093: 1090: 1085: 1081: 1074: 1071: 1068: 1065: 1057: 1055: 1051: 1046: 1033: 1024: 1021: 1018: 1004: 992: 980: 974: 971: 968: 952: 950: 949:beta function 946: 942: 935: 932: ≥  931: 926: 913: 904: 901: 898: 895: 892: 889: 884: 880: 863: 860: 857: 854: 851: 837: 831: 825: 817: 815: 811: 807: 800: 796: 792: 785: 781: 777: 772: 770: 769: 764: 760: 755: 751: 747: 742: 740: 737: 727: 724: 720: 716: 712: 708: 704: 699: 687: 682: 680: 675: 673: 668: 667: 665: 664: 659: 656: 654: 651: 650: 647: 644: 642: 639: 637: 634: 633: 632: 631: 624: 621: 620: 618: 617: 608: 604: 601: 599: 596: 594: 591: 590: 589: 588: 584: 583: 578: 577:LFR Benchmark 575: 573: 570: 568: 565: 563: 562:Blockmodeling 560: 558: 555: 553: 550: 548: 545: 543: 540: 538: 535: 533: 530: 528: 527:Fitness model 525: 523: 520: 518: 515: 513: 510: 508: 505: 504: 503: 502: 498: 497: 494: 493: 489: 488: 483: 480: 478: 475: 473: 470: 468: 467:Assortativity 465: 463: 460: 458: 455: 453: 450: 448: 445: 443: 440: 439: 438: 437: 431: 428: 426: 423: 422: 420: 419: 410: 407: 405: 402: 400: 397: 395: 392: 390: 387: 385: 382: 380: 377: 375: 372: 371: 370: 369: 365: 364: 358: 354: 350: 347: 343: 339: 337: 334: 332: 329: 327: 324: 322: 319: 317: 314: 312: 309: 307: 304: 302: 299: 297: 294: 292: 289: 288: 287: 286: 282: 281: 278: 277: 274: 271: 270: 265: 262: 260: 257: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 225: 222: 220: 217: 215: 212: 210: 207: 205: 202: 201: 200: 199: 196:Network types 195: 194: 189: 186: 184: 181: 179: 176: 174: 171: 169: 166: 164: 161: 159: 156: 154: 151: 149: 146: 144: 143:Link analysis 141: 139: 136: 134: 133:Graph drawing 131: 129: 126: 124: 121: 119: 116: 114: 111: 109: 106: 104: 101: 99: 96: 94: 91: 89: 86: 85: 84: 83: 77: 74: 73: 71: 70: 61: 52: 51: 48: 45: 44: 40: 36: 35: 28: 22: 1930: 1926: 1916: 1875: 1871: 1862: 1851:. Retrieved 1831: 1827: 1792: 1788: 1734: 1730: 1724: 1705: 1699: 1657: 1653: 1643: 1600: 1596: 1590: 1547: 1543: 1537: 1486: 1482: 1410:Lindy effect 1359: 1340: 1329: 1321: 1287: 1282: 1278: 1271: 1263: 1256: 1252: 1248: 1244: 1237: 1233: 1229: 1225: 1221: 1217: 1210: 1208: 1192: 1143: 1138: 1134: 1130: 1126: 1122: 1118: 1116: 1058: 1049: 1047: 953: 944: 940: 933: 929: 927: 818: 813: 809: 805: 798: 794: 790: 783: 779: 773: 766: 743: 733: 719:Gibrat's law 706: 703:Yule process 702: 697: 695: 552:Hierarchical 507:Random graph 355: / 344: / 326:Neighborhood 172: 168:Transitivity 148:Optimization 1435:Simon model 1351:Lotka's law 1195:long-tailed 739:urn process 598:agent based 512:Erdős–Rényi 153:Reciprocity 118:Percolation 103:Small-world 1980:Categories 1853:2008-07-19 1789:Biometrika 1667:2001.09118 1462:References 1455:Bibliogram 1133:and fixed 1129:for large 736:stochastic 730:Definition 713:, and the 625:Categories 482:Efficiency 477:Modularity 457:Clustering 442:Centrality 430:Algorithms 254:Dependency 229:Biological 108:Scale-free 1769:202719165 1610:0804.1366 1324:Udny Yule 1203:power law 1174:γ 1171:− 1163:∝ 1066:γ 1013:Γ 999:Γ 987:Γ 902:− 899:γ 864:γ 763:Udny Yule 723:power law 374:Bipartite 296:Component 214:Transport 163:Homophily 123:Evolution 98:Contagion 1967:26378457 1927:PLOS ONE 1900:17737466 1844:Archived 1635:14292535 1627:18850904 1582:16251662 1574:11082613 1521:10521342 1373:See also 1298:biblical 1141:we have 759:speciate 641:Software 603:Epidemic 585:Dynamics 499:Topology 472:Distance 409:Weighted 384:Directed 379:Complete 283:Features 244:Semantic 39:a series 37:Part of 1958:4574777 1935:Bibcode 1908:3526819 1880:Bibcode 1872:Science 1749:Bibcode 1501:Bibcode 1483:Science 1318:History 1305:Matthew 1243:,  1232:,  1121:,  1048:with Γ( 943:,  765:, is a 746:species 425:Metrics 394:Labeled 264:on-Chip 249:Spatial 158:Closure 1965:  1955:  1906:  1898:  1767:  1633:  1625:  1580:  1572:  1529:524106 1527:  1519:  1056:, and 768:linear 636:Topics 490:Models 447:Degree 404:Random 357:matrix 346:matrix 336:Vertex 291:Clique 273:Graphs 219:Social 76:Theory 1904:S2CID 1847:(PDF) 1824:(PDF) 1765:S2CID 1739:arXiv 1662:arXiv 1631:S2CID 1605:arXiv 1578:S2CID 1552:arXiv 1525:S2CID 1491:arXiv 1343:Price 1336:Simon 1308:25:29 754:taxon 750:genus 622:Lists 452:Motif 399:Multi 389:Hyper 366:Types 306:Cycle 88:Graph 1963:PMID 1896:PMID 1623:PMID 1570:PMID 1517:PMID 1236:)/B( 928:for 748:per 331:Path 321:Loop 316:Edge 259:Flow 1953:PMC 1943:doi 1888:doi 1876:159 1836:doi 1797:doi 1757:doi 1710:doi 1706:213 1672:doi 1615:doi 1562:doi 1509:doi 1487:286 1201:or 607:SIR 301:Cut 1982:: 1961:. 1951:. 1941:. 1931:10 1929:. 1925:. 1902:. 1894:. 1886:. 1874:. 1842:. 1832:27 1830:. 1826:. 1809:^ 1793:42 1791:. 1777:^ 1763:. 1755:. 1747:. 1735:46 1733:. 1704:. 1698:. 1686:^ 1670:. 1656:. 1652:. 1629:. 1621:. 1613:. 1601:78 1599:. 1576:. 1568:. 1560:. 1548:85 1546:. 1523:. 1515:. 1507:. 1499:. 1485:. 1469:^ 1369:. 1310:, 1281:, 951:: 709:, 705:, 696:A 41:on 1969:. 1945:: 1937:: 1910:. 1890:: 1882:: 1856:. 1838:: 1803:. 1799:: 1771:. 1759:: 1751:: 1741:: 1718:. 1712:: 1680:. 1674:: 1664:: 1658:2 1637:. 1617:: 1607:: 1584:. 1564:: 1554:: 1531:. 1511:: 1503:: 1493:: 1283:a 1279:m 1275:0 1272:k 1264:a 1260:0 1257:k 1253:m 1249:γ 1245:γ 1241:0 1238:k 1234:γ 1230:k 1226:k 1224:( 1222:P 1218:a 1214:0 1211:k 1179:. 1167:k 1160:) 1157:k 1154:( 1151:P 1139:k 1135:y 1131:x 1127:x 1123:y 1119:x 1103:. 1098:m 1094:a 1091:+ 1086:0 1082:k 1075:+ 1072:2 1069:= 1050:x 1034:, 1028:) 1025:y 1022:+ 1019:x 1016:( 1008:) 1005:y 1002:( 996:) 993:x 990:( 981:= 978:) 975:y 972:, 969:x 966:( 962:B 945:y 941:x 937:0 934:k 930:k 914:, 908:) 905:1 896:, 893:a 890:+ 885:0 881:k 877:( 873:B 867:) 861:, 858:a 855:+ 852:k 849:( 845:B 838:= 835:) 832:k 829:( 826:P 814:k 810:k 808:( 806:P 802:0 799:k 795:a 791:k 787:0 784:k 780:m 685:e 678:t 671:v 605:/ 23:.

Index

Simple birth process

a series
Network science
Internet_map_1024.jpg
Theory
Graph
Complex network
Contagion
Small-world
Scale-free
Community structure
Percolation
Evolution
Controllability
Graph drawing
Social capital
Link analysis
Optimization
Reciprocity
Closure
Homophily
Transitivity
Preferential attachment
Balance theory
Network effect
Social influence
Informational (computing)
Telecommunication
Transport

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.