Knowledge

Particle-in-cell

Source đź“ť

20: 1250:(FFT), transform the PDEs into an eigenvalue problem, but this time the basis functions are high order and defined globally over the whole domain. The domain itself is not discretized in this case, it remains continuous. Again, a trial solution is found by inserting the basis functions into the eigenvalue equation and then optimized to determine the best values of the initial trial parameters. 1190:
The global bound on energy error typically associated with symplectic algorithms still holds for the Boris algorithm, making it an effective algorithm for the multi-scale dynamics of plasmas. It has also been shown that one can improve on the relativistic Boris push to make it both volume preserving and have a constant-velocity solution in crossed E and B fields.
538: 1696:
which can be derived considering the harmonic oscillations of a one-dimensional unmagnetized plasma. The latter conditions is strictly required but practical considerations related to energy conservation suggest to use a much stricter constraint where the factor 2 is replaced by a number one order of
1490:
labels the grid point. To ensure that the forces acting on particles are self-consistently obtained, the way of calculating macro-quantities from particle positions on the grid points and interpolating fields from grid points to particle positions has to be consistent, too, since they both appear in
88:
For many types of problems, the classical PIC method invented by Buneman, Dawson, Hockney, Birdsall, Morse and others is relatively intuitive and straightforward to implement. This probably accounts for much of its success, particularly for plasma simulation, for which the method typically includes
1189:
Because of its excellent long term accuracy, the Boris algorithm is the de facto standard for advancing a charged particle. It was realized that the excellent long term accuracy of nonrelativistic Boris algorithm is due to the fact it conserves phase space volume, even though it is not symplectic.
205:
The number of real particles corresponding to a super-particle must be chosen such that sufficient statistics can be collected on the particle motion. If there is a significant difference between the density of different species in the system (between ions and neutrals, for instance), separate real
1527:
In a real plasma, many other reactions may play a role, ranging from elastic collisions, such as collisions between charged and neutral particles, over inelastic collisions, such as electron-neutral ionization collision, to chemical reactions; each of them requiring separate treatment. Most of the
218:
The schemes used for the particle mover can be split into two categories, implicit and explicit solvers. While implicit solvers (e.g. implicit Euler scheme) calculate the particle velocity from the already updated fields, explicit solvers use only the old force from the previous time step, and are
214:
Even with super-particles, the number of simulated particles is usually very large (> 10), and often the particle mover is the most time consuming part of PIC, since it has to be done for each particle separately. Thus, the pusher is required to be of high accuracy and speed and much effort is
144:
to guarantee gauge invariant and conservation of charge, energy-momentum, and more importantly the infinitely dimensional symplectic structure of the particle-field system. These desired features are attributed to the fact that geometric PIC algorithms are built on the more fundamental
198:) is a computational particle that represents many real particles; it may be millions of electrons or ions in the case of a plasma simulation, or, for instance, a vortex element in a fluid simulation. It is allowed to rescale the number of particles, because the acceleration from the 1544:
As in every simulation method, also in PIC, the time step and the grid size must be well chosen, so that the time and length scale phenomena of interest are properly resolved in the problem. In addition, time step and grid size affect the speed and accuracy of the code.
1511:
As the field solver is required to be free of self-forces, inside a cell the field generated by a particle must decrease with decreasing distance from the particle, and hence inter-particle forces inside the cells are underestimated. This can be balanced with the aid of
337: 1270:). Particles can be situated anywhere on the continuous domain, but macro-quantities are calculated only on the mesh points, just as the fields are. To obtain the macro-quantities, one assumes that the particles have a given "shape" determined by the shape function 936: 1366:(CIC) scheme, which is a first order (linear) weighting scheme. Whatever the scheme is, the shape function has to satisfy the following conditions: space isotropy, charge conservation, and increasing accuracy (convergence) for higher-order terms. 1465: 331: 765: 848: 1014: 153:
Inside the plasma research community, systems of different species (electrons, ions, neutrals, molecules, dust particles, etc.) are investigated. The set of equations associated with PIC codes are therefore the
1369:
The fields obtained from the field solver are determined only on the grid points and can't be used directly in the particle mover to calculate the force acting on particles, but have to be interpolated via the
533:{\displaystyle {\frac {\mathbf {v} _{k+1/2}-\mathbf {v} _{k-1/2}}{\Delta t}}={\frac {q}{m}}\left(\mathbf {E} _{k}+{\frac {\mathbf {v} _{k+1/2}+\mathbf {v} _{k-1/2}}{2}}\times \mathbf {B} _{k}\right),} 140:
Modern geometric PIC algorithms are based on a very different theoretical framework. These algorithms use tools of discrete manifold, interpolating differential forms, and canonical or non-canonical
1063: 1124: 1748: 1691: 1313: 1184: 1637: 1911: 1872: 859: 642: 1789: 1548:
For an electrostatic plasma simulation using an explicit time integration scheme (e.g. leapfrog, which is most commonly used), two important conditions regarding the grid size
1499:. This can be achieved by choosing the same weighting scheme for particles and fields and by ensuring the appropriate space symmetry (i.e. no self-force and fulfilling the 80:
applications, the method amounts to following the trajectories of charged particles in self-consistent electromagnetic (or electrostatic) fields computed on a fixed mesh.
1819: 1380: 1360: 1338: 190:
The real systems studied are often extremely large in terms of the number of particles they contain. In order to make simulations efficient or at all possible, so-called
1592: 1569: 669: 2594:
Qin, H.; Liu, J.; Xiao, J.; et al. (2016). "Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov-Maxwell system".
1232:
fields are calculated. Derivatives are then approximated with differences between neighboring grid-point values and thus PDEs are turned into algebraic equations.
240: 587: 2785:
Higuera, Adam V.; John R. Cary (2017). "Structure-preserving second-order integration of relativistic charged particle trajectories in electromagnetic fields".
1931: 1488: 561: 4187: 1941:
Within plasma physics, PIC simulation has been used successfully to study laser-plasma interactions, electron acceleration and ion heating in the auroral
680: 2647:
Xiao, J.; Qin, H.; Liu, J.; et al. (2015). "Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems".
3522: 3112: 2862: 771: 942: 2510:(1955). A Machine Calculation Method for Hydrodynamic Problems (Report). Los Alamos Scientific Laboratory of the University of California. 1524:, in which particles are grouped according to their cell, then these particles are paired randomly, and finally the pairs are collided. 1516:
between charged particles. Simulating the interaction for every pair of a big system would be computationally too expensive, so several
4652: 4278: 1825: 54: 4228: 130: 129:. This error is statistical in nature, and today it remains less-well understood than for traditional fixed-grid methods, such as 4667: 4204: 4178: 2911:
Birdsall, C.K. (1991). "Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC".
1243:
that are localized in each element. The final solution is then obtained by optimization until the required accuracy is reached.
1236: 4657: 4502: 4272: 2846: 3126:
Shalaby, Mohamad; Broderick, Avery E.; Chang, Philip; Pfrommer, Christoph; Lamberts, Astrid; Puchwein, Ewald (23 May 2017).
4572: 4429: 4284: 1536:
scheme, which does not analyze all particles but uses the maximum collision probability for each charged species instead.
1069: 46: 1700: 202:
depends only on the charge-to-mass ratio, so a super-particle will follow the same trajectory as a real particle would.
2487: 1969: 2744: 1643: 1020: 4104: 4079: 3053: 2709: 145:
field-theoretical framework and are directly linked to the perfect form, i.e., the variational principle of physics.
4480: 3649:
Markidis, Stefano; Lapenta, Giovanni; Rizwan-uddin (17 Oct 2009). "Multi-scale simulations of plasma with iPIC3D".
1276: 4497: 1600: 68:
compilers were available. The method gained popularity for plasma simulation in the late 1950s and early 1960s by
4631: 4417: 2876:
Takizuka, Tomonor; Abe, Hirotada (1977). "A binary collision model for plasma simulation with a particle code".
4662: 4398: 4387: 4364: 4131:
Open source 3D Particle-In-Cell code for spacecraft plasma interactions (mandatory user registration required).
1880: 931:{\displaystyle \mathbf {u} '=\mathbf {u} +(\mathbf {u} +(\mathbf {u} \times \mathbf {h} ))\times \mathbf {s} ,} 42: 3069:
Byrne, F. N.; Ellison, M. A.; Reid, J. H. (1964). "The particle-in-cell computing method for fluid dynamics".
1968:
Hybrid models may use the PIC method for the kinetic treatment of some species, while other species (that are
1132: 4370: 1834: 1199: 4140: 2956:"A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges" 592: 4487: 4452: 3548:"PIConGPU - Particle-in-Cell Simulations for the Exascale Era - Helmholtz-Zentrum Dresden-Rossendorf, HZDR" 4492: 4171: 3796: 1235:
Using FEM, the continuous domain is divided into a discrete mesh of elements. The PDEs are treated as an
1362:
the observation point. Perhaps the easiest and most used choice for the shape function is the so-called
125:
Since the early days, it has been recognized that the PIC method is susceptible to error from so-called
4609: 4594: 4470: 4156: 2559:
Hideo Okuda (1972). "Nonphysical noises and instabilities in plasma simulation due to a spatial grid".
1756: 1500: 3772: 4256: 4236: 4218: 1460:{\displaystyle \mathbf {E} (\mathbf {x} )=\sum _{i}\mathbf {E} _{i}S(\mathbf {x} _{i}-\mathbf {x} ),} 53:, whereas moments of the distribution such as densities and currents are computed simultaneously on 4579: 4465: 4195: 3703: 1206: 58: 3463:"piccante: a spicy massively parallel fully-relativistic electromagnetic 3D particle-in-cell code" 1797: 1343: 1321: 4621: 4599: 4584: 4567: 4475: 4460: 4376: 4241: 4146: 4541: 4312: 4164: 4135: 3001:
Tskhakaya, D.; Matyash, K.; Schneider, R.; Taccogna, F. (2007). "The Particle-In-Cell Method".
1492: 1247: 167: 134: 1574: 1551: 4589: 4435: 4351: 3106: 2725:
Boris, J.P. (November 1970). "Relativistic plasma simulation-optimization of a hybrid code".
1950: 1224:
With the FDM, the continuous domain is replaced with a discrete grid of points, on which the
1212: 326:{\displaystyle {\frac {\mathbf {x} _{k+1}-\mathbf {x} _{k}}{\Delta t}}=\mathbf {v} _{k+1/2},} 141: 3816: 3572: 4626: 4299: 3149: 3078: 3010: 2967: 2920: 2885: 2794: 2759: 2666: 2613: 2568: 2533: 1946: 1750:
is typical. Not surprisingly, the natural time scale in the plasma is given by the inverse
1532:
scheme, in which all particles carry information about their collision probability, or the
647: 4016: 106:
Models which include interactions of particles only through the average fields are called
8: 4393: 4307: 2069: 566: 3153: 3082: 3014: 2971: 2924: 2889: 2798: 2763: 2670: 2625: 2617: 2572: 2537: 4616: 4557: 4093: 3167: 3139: 3094: 3026: 2856: 2682: 2656: 2629: 2603: 1916: 1824:
For an explicit electromagnetic plasma simulation, the time step must also satisfy the
1751: 1517: 1473: 546: 2113: 16:
Mathematical technique used to solve a certain class of partial differential equations
4246: 4100: 4075: 3752: 3171: 3098: 3049: 3030: 2983: 2979: 2936: 2897: 2842: 2705: 2580: 2507: 2135: 1513: 219:
therefore simpler and faster, but require a smaller time step. In PIC simulation the
3728: 2686: 2633: 4562: 4552: 4409: 3658: 3157: 3086: 3018: 2975: 2928: 2893: 2834: 2802: 2767: 2674: 2621: 2576: 2541: 2434: 2412: 2390: 2368: 2331: 2309: 2287: 2265: 2243: 2205: 2197: 2175: 2153: 2131: 2109: 2087: 2065: 2043: 2021: 1198:
The most commonly used methods for solving Maxwell's equations (or more generally,
760:{\displaystyle \mathbf {x} _{k+1}=\mathbf {x} _{k}+{\Delta t}\mathbf {v} _{k+1/2},} 674:
The equations of the Boris scheme which are substitute in the above equations are:
77: 4604: 4547: 4536: 3662: 2482: 2291: 1980: 1976: 1263: 1218: 231: 220: 4130: 1975:
PIC simulations have also been applied outside of plasma physics to problems in
1258:
The name "particle-in-cell" originates in the way that plasma macro-quantities (
4382: 4329: 3162: 3127: 2521: 2438: 2201: 2025: 1259: 1240: 1229: 1225: 175: 171: 73: 30: 2838: 2806: 2545: 2394: 2313: 2269: 2091: 1986: 4646: 4251: 3598: 3502: 2987: 2940: 2157: 199: 155: 69: 2833:. Lecture Notes in Physics 739. Vol. 739. Springer, Berlin Heidelberg. 2247: 227:
is used which cancel out the magnetic field in the Newton-Lorentz equation.
19: 4423: 4340: 4317: 3022: 2335: 1962: 1792: 4041: 3261: 4334: 4212: 3941: 3412: 2179: 2047: 50: 4186: 64:
PIC methods were already in use as early as 1955, even before the first
4126:
Particle-In-Cell and Kinetic Simulation Software Center (PICKSC), UCLA.
3090: 2328:
Open source, but also has a private version with QED/radiative modules
1958: 1942: 114:(particle-particle). Models with both types of interactions are called 3623: 2932: 2771: 2678: 2372: 2209: 1953:, as well as ion-temperature-gradient and other microinstabilities in 1594:
should be fulfilled in order to ensure the stability of the solution:
843:{\displaystyle \mathbf {v} _{k+1/2}=\mathbf {u} '+q'\mathbf {E} _{k},} 4151: 3991: 3462: 3437: 3128:"SHARP: A Spatially Higher-order, Relativistic Particle-in-Cell Code" 3068: 2826: 2416: 1009:{\displaystyle \mathbf {u} =\mathbf {v} _{k-1/2}+q'\mathbf {E} _{k},} 2955: 1528:
collision models handling charged-neutral collisions use either the
110:(particle-mesh). Those which include direct binary interactions are 102:
Interpolation of the fields from the mesh to the particle locations.
4152:
open-pic - 3D Hybrid Particle-In-Cell simulation of plasma dynamics
3211:"ALaDyn: A High-Accuracy PIC Code for the Maxwell-Vlasov Equations" 3210: 3185: 3144: 2661: 2608: 1496: 96:
Interpolation of charge and current source terms to the field mesh.
3312:"fbpic: Spectral, quasi-3D Particle-In-Cell code, for CPU and GPU" 2468:
Commercially available from Plasma Taiwan Innovation Corporation.
4520: 3676: 3488: 3387: 3311: 3000: 1954: 644:), and velocities are calculated in-between the usual time steps 65: 45:. In this method, individual particles (or fluid elements) in a 148: 41:) method refers to a technique used to solve a certain class of 4359: 3866: 3841: 3801: 3757: 3507: 2829:. In Fehske, Holger; Schneider, Ralf; WeiĂźe, Alexander (eds.). 4125: 3966: 3362: 3236: 3125: 3337: 2784: 1495:. Above all, the field interpolation scheme should conserve 4514: 4508: 4323: 3648: 3547: 3286: 3046:
Smoothed Particle Hydrodynamics: A Meshfree Particle Method
1987:
Electromagnetic particle-in-cell computational applications
3891: 4121:
Beam, Plasma & Accelerator Simulation Toolkit (BLAST)
1520:
have been developed instead. A widely used method is the
4120: 4090: 4069: 3599:"Smilei — A Particle-In-Cell code for plasma simulation" 2699: 1266:, etc.) are assigned to simulation particles (i.e., the 1202:(PDE)) belong to one of the following three categories: 563:
refers to "old" quantities from the previous time step,
3916: 2646: 2593: 1919: 1883: 1837: 1800: 1759: 1703: 1646: 1603: 1577: 1554: 1476: 1383: 1346: 1324: 1279: 1135: 1072: 1023: 945: 862: 774: 683: 650: 595: 569: 549: 340: 243: 4188:
Numerical methods for partial differential equations
2350:
Commercially available from Esgee Technologies Inc.
1539: 1119:{\displaystyle \mathbf {s} =2\mathbf {h} /(1+h^{2})} 589:
to updated quantities from the next time step (i.e.
3573:"ComputationalRadiationPhysics / PIConGPU — GitHub" 1239:and initially a trial solution is calculated using 223:is used, a second-order explicit method. Also the 158:as the equation of motion, solved in the so-called 4092: 3413:"osiris-code/osiris: OSIRIS Particle-In-Cell code" 2732:. Naval Res. Lab., Washington, D.C. pp. 3–67. 1925: 1905: 1866: 1813: 1783: 1743:{\displaystyle \Delta t\leq 0.1\omega _{pe}^{-1},} 1742: 1685: 1631: 1586: 1563: 1482: 1459: 1354: 1332: 1307: 1178: 1118: 1057: 1008: 930: 842: 759: 663: 636: 581: 555: 532: 325: 3287:"FBPIC documentation — FBPIC 0.6.0 documentation" 2729:4th Conference on Numerical Simulation of Plasmas 4644: 1686:{\displaystyle \Delta t\leq 2\omega _{pe}^{-1},} 1058:{\displaystyle \mathbf {h} =q'\mathbf {B} _{k},} 4070:Birdsall, Charles K.; A. Bruce Langdon (1985). 2700:Birdsall, Charles K.; A. Bruce Langdon (1985). 1253: 206:to super-particle ratios can be used for them. 2953: 2910: 4172: 4141:Plasma Theory and Simulation Group (Berkeley) 4091:Hockney, Roger W.; James W. Eastwood (1988). 1308:{\displaystyle S(\mathbf {x} -\mathbf {X} ),} 149:Basics of the PIC plasma simulation technique 4143:Contains links to freely available software. 2520: 1632:{\displaystyle \Delta x<3.4\lambda _{D},} 3111:: CS1 maint: DOI inactive as of May 2024 ( 3043: 2875: 2861:: CS1 maint: DOI inactive as of May 2024 ( 2558: 215:spent on optimizing the different schemes. 4179: 4165: 4147:Introduction to PIC codes (Univ. of Texas) 2524:(1983). "Particle simulation of plasmas". 76:, Hockney, Birdsall, Morse and others. In 4017:"Educational Particle-In-Cell code suite" 3161: 3143: 2824: 2820: 2818: 2816: 2660: 2607: 1906:{\displaystyle \Delta x\sim \lambda _{D}} 99:Computation of the fields on mesh points. 2827:"Chapter 6: The Particle-in-Cell Method" 1179:{\displaystyle q'=\Delta t\times (q/2m)} 18: 3651:Mathematics and Computers in Simulation 2742: 1867:{\displaystyle \Delta t<\Delta x/c,} 1503:) of the field solver at the same time 93:Integration of the equations of motion. 4645: 4136:Simple Particle-In-Cell code in MATLAB 4072:Plasma Physics via Computer Simulation 2813: 2702:Plasma Physics via Computer Simulation 2506: 1340:is the coordinate of the particle and 637:{\displaystyle t_{k+1}=t_{k}+\Delta t} 4160: 2724: 209: 4430:Moving particle semi-implicit method 4341:Weighted essentially non-oscillatory 2298:The Virtual Laser Plasma Lab (VLPL) 1972:) are simulated with a fluid model. 83: 4095:Computer Simulation Using Particles 2913:IEEE Transactions on Plasma Science 2831:Computational Many-Particle Physics 1246:Also spectral methods, such as the 1193: 13: 4279:Finite-difference frequency-domain 3701: 3119: 2488:Multiphase particle-in-cell method 2387:Available from Tech-X Corporation 1884: 1847: 1838: 1704: 1647: 1604: 1578: 1555: 1147: 721: 628: 401: 282: 185: 14: 4679: 4114: 4042:"ricardo-fonseca / ZPIC — GitHub" 2954:Vahedi, V.; Surendra, M. (1995). 2745:"Why is Boris algorithm so good?" 1784:{\displaystyle \omega _{pe}^{-1}} 1540:Accuracy and stability conditions 4653:Numerical differential equations 3942:"berkeleylab / Warp — Bitbucket" 3523:"Fraunhofer IST Team Simulation" 2878:Journal of Computational Physics 2561:Journal of Computational Physics 1447: 1433: 1415: 1393: 1385: 1348: 1326: 1295: 1287: 1085: 1074: 1042: 1025: 993: 956: 947: 921: 907: 899: 888: 877: 865: 827: 806: 777: 730: 707: 686: 512: 477: 448: 430: 375: 346: 296: 270: 249: 49:frame are tracked in continuous 4632:Method of fundamental solutions 4418:Smoothed-particle hydrodynamics 4063: 4034: 4009: 3984: 3959: 3934: 3909: 3884: 3859: 3834: 3809: 3789: 3765: 3753:"Tristan v2 public github page" 3745: 3721: 3695: 3669: 3642: 3616: 3591: 3565: 3540: 3515: 3495: 3481: 3455: 3430: 3405: 3380: 3355: 3330: 3304: 3279: 3254: 3229: 3203: 3178: 3062: 3037: 3003:Contributions to Plasma Physics 2994: 2960:Computer Physics Communications 2947: 2904: 2869: 1936: 194:are used. A super-particle (or 4668:Computational electromagnetics 4273:Alternating direction-implicit 3729:"Tristan v2 wiki | Tristan v2" 2778: 2736: 2718: 2693: 2640: 2587: 2552: 2514: 2500: 2225:Available from Fraunhofer IST 2070:10.1088/0741-3335/57/11/113001 1697:magnitude smaller. The use of 1451: 1428: 1397: 1389: 1299: 1283: 1200:partial differential equations 1173: 1156: 1113: 1094: 914: 911: 895: 884: 43:partial differential equations 1: 4285:Finite-difference time-domain 3777:princetonuniversity.github.io 3733:princetonuniversity.github.io 3624:"SmileiPIC / Smilei — GitHub" 3388:"OSIRIS open-source - OSIRIS" 2743:Qin, H.; et al. (2013). 2626:10.1088/0029-5515/56/1/014001 2493: 2114:10.1016/S0168-9002(01)00024-9 1506: 230:For plasma applications, the 4658:Computational fluid dynamics 4324:Advection upstream-splitting 3992:"ECP-WarpX / WarpX — GitHub" 3663:10.1016/j.matcom.2009.08.038 3044:Liu, G.R.; M.B. Liu (2003). 2980:10.1016/0010-4655(94)00171-W 2898:10.1016/0021-9991(77)90099-7 2581:10.1016/0021-9991(72)90048-4 2292:10.1016/j.matcom.2009.08.038 2136:10.1016/0010-4655(95)00010-D 1814:{\displaystyle \lambda _{D}} 1355:{\displaystyle \mathbf {X} } 1333:{\displaystyle \mathbf {x} } 1254:Particle and field weighting 7: 4335:Essentially non-oscillatory 4318:Monotonic upstream-centered 3704:"Relativistic Laser Plasma" 2476: 10: 4684: 4595:Infinite difference method 4213:Forward-time central-space 2439:10.1016/j.nima.2018.01.035 2202:10.1016/j.crme.2014.07.005 1994:Computational application 234:takes the following form: 178:fields, calculated in the 89:the following procedures: 4529: 4498:Poincaré–Steklov operator 4451: 4408: 4350: 4298: 4265: 4257:Method of characteristics 4227: 4203: 4194: 3797:"Tristan v2: Citation.md" 3773:"QED Module | Tristan v2" 3503:"piclas-framework/piclas" 3132:The Astrophysical Journal 2839:10.1007/978-3-540-74686-7 2825:Tskhakaya, David (2008). 2807:10.1016/j.jcp.2003.11.004 2546:10.1103/RevModPhys.55.403 2526:Reviews of Modern Physics 2395:10.1016/j.jcp.2003.11.004 2314:10.1017/S0022377899007515 2270:10.1016/j.cpc.2017.09.024 2092:10.1016/j.cpc.2016.02.007 1207:Finite difference methods 4515:Tearing and interconnect 4509:Balancing by constraints 3163:10.3847/1538-4357/aa6d13 2158:10.1007/3-540-47789-6_36 2026:10.3847/1538-4357/aa6d13 1791:and length scale by the 1587:{\displaystyle \Delta t} 1564:{\displaystyle \Delta x} 4622:Computer-assisted proof 4600:Infinite element method 4388:Gradient discretisation 3603:Maisondelasimulation.fr 3093:(inactive 2024-05-03). 2841:(inactive 2024-05-03). 2248:10.1145/2503210.2504564 1933:is the speed of light. 127:discrete particle noise 4610:Petrov–Galerkin method 4371:Discontinuous Galerkin 3867:"LANL / VPIC — GitHub" 3023:10.1002/ctpp.200710072 2336:10.5281/zenodo.7566725 1927: 1907: 1868: 1815: 1785: 1744: 1687: 1633: 1588: 1565: 1522:binary collision model 1484: 1461: 1356: 1334: 1309: 1248:fast Fourier transform 1213:Finite element methods 1180: 1120: 1059: 1010: 932: 844: 761: 665: 638: 583: 557: 534: 327: 142:symplectic integrators 26: 4663:Mathematical modeling 4590:Isogeometric analysis 4436:Material point method 3967:"WarpX Documentation" 3392:osiris-code.github.io 1951:magnetic reconnection 1928: 1908: 1869: 1816: 1786: 1745: 1688: 1634: 1589: 1566: 1485: 1462: 1357: 1335: 1310: 1181: 1121: 1060: 1011: 933: 845: 762: 666: 664:{\displaystyle t_{k}} 639: 584: 558: 535: 328: 24:Ebola Virus Particles 22: 4627:Integrable algorithm 4453:Domain decomposition 4021:picksc.idre.ucla.edu 3071:Methods Comput. Phys 3048:. World Scientific. 2180:10.5281/zenodo.48703 2048:10.5281/zenodo.49553 2006:Canonical Reference 1947:magnetohydrodynamics 1917: 1881: 1835: 1798: 1757: 1701: 1644: 1601: 1575: 1552: 1474: 1470:where the subscript 1381: 1344: 1322: 1277: 1133: 1070: 1021: 943: 860: 772: 681: 648: 593: 567: 547: 543:where the subscript 338: 241: 4471:Schwarz alternating 4394:Loubignac iteration 3971:ecp-warpx.github.io 3154:2017ApJ...841...52S 3083:1964SSRv....3..319B 3015:2007CoPP...47..563T 2972:1995CoPhC..87..179V 2925:1991ITPS...19...65B 2890:1977JCoPh..25..205T 2799:2004JCoPh.196..448N 2764:2013PhPl...20h4503Q 2727:Proceedings of the 2671:2015PhPl...22k2504X 2618:2016NucFu..56a4001Q 2573:1972JCoPh..10..475O 2538:1983RvMP...55..403D 2281:Apache License 2.0 2128:Available from ATK 2106:Available from ATK 1780: 1736: 1679: 1518:Monte Carlo methods 1501:action-reaction law 1493:Maxwell's equations 582:{\displaystyle k+1} 168:Maxwell's equations 4617:Validated numerics 3702:Dreher, Matthias. 3579:. 28 November 2017 3469:. 14 November 2017 3217:. 18 November 2017 3091:10.1007/BF00230516 2787:Physics of Plasmas 2752:Physics of Plasmas 2649:Physics of Plasmas 2508:Harlow, Francis H. 2428:3-Clause-BSD-LBNL 2406:3-Clause-BSD-LBNL 2081:3-Clause-BSD-LBNL 1923: 1903: 1864: 1811: 1781: 1760: 1740: 1716: 1683: 1659: 1629: 1584: 1571:and the time step 1561: 1530:direct Monte-Carlo 1514:Coulomb collisions 1480: 1457: 1412: 1352: 1330: 1305: 1268:particle weighting 1237:eigenvalue problem 1176: 1116: 1055: 1006: 928: 840: 757: 661: 634: 579: 553: 530: 323: 210:The particle mover 27: 4640: 4639: 4580:Immersed boundary 4573:Method of moments 4488:Neumann–Dirichlet 4481:abstract additive 4466:Fictitious domain 4410:Meshless/Meshfree 4294: 4293: 4196:Finite difference 3683:. 31 January 2020 3677:"iPic3D — GitHub" 3630:. 29 October 2019 3527:ist.fraunhofer.de 3318:. 8 November 2017 2933:10.1109/27.106800 2848:978-3-540-74685-0 2772:10.1063/1.4818428 2679:10.1063/1.4935904 2474: 2473: 2373:10.1063/1.2840133 2210:10.1063/1.5097638 1959:vacuum discharges 1926:{\displaystyle c} 1483:{\displaystyle i} 1403: 556:{\displaystyle k} 505: 421: 408: 289: 166:of the code, and 84:Technical aspects 4675: 4585:Analytic element 4568:Boundary element 4461:Schur complement 4442:Particle-in-cell 4377:Spectral element 4201: 4200: 4181: 4174: 4167: 4158: 4157: 4110: 4098: 4085: 4057: 4056: 4054: 4052: 4038: 4032: 4031: 4029: 4027: 4013: 4007: 4006: 4004: 4002: 3988: 3982: 3981: 3979: 3977: 3963: 3957: 3956: 3954: 3952: 3938: 3932: 3931: 3929: 3927: 3913: 3907: 3906: 3904: 3902: 3888: 3882: 3881: 3879: 3877: 3863: 3857: 3856: 3854: 3852: 3838: 3832: 3831: 3829: 3827: 3813: 3807: 3806: 3793: 3787: 3786: 3784: 3783: 3769: 3763: 3762: 3749: 3743: 3742: 3740: 3739: 3725: 3719: 3718: 3716: 3714: 3699: 3693: 3692: 3690: 3688: 3673: 3667: 3666: 3646: 3640: 3639: 3637: 3635: 3620: 3614: 3613: 3611: 3609: 3595: 3589: 3588: 3586: 3584: 3569: 3563: 3562: 3560: 3558: 3552:picongpu.hzdr.de 3544: 3538: 3537: 3535: 3533: 3519: 3513: 3512: 3499: 3493: 3492: 3485: 3479: 3478: 3476: 3474: 3459: 3453: 3452: 3450: 3448: 3442:Aladyn.github.io 3434: 3428: 3427: 3425: 3423: 3409: 3403: 3402: 3400: 3398: 3384: 3378: 3377: 3375: 3373: 3359: 3353: 3352: 3350: 3348: 3334: 3328: 3327: 3325: 3323: 3308: 3302: 3301: 3299: 3297: 3283: 3277: 3276: 3274: 3272: 3258: 3252: 3251: 3249: 3247: 3233: 3227: 3226: 3224: 3222: 3207: 3201: 3200: 3198: 3196: 3182: 3176: 3175: 3165: 3147: 3123: 3117: 3116: 3110: 3102: 3066: 3060: 3059: 3041: 3035: 3034: 3009:(8–9): 563–594. 2998: 2992: 2991: 2966:(1–2): 179–198. 2951: 2945: 2944: 2908: 2902: 2901: 2873: 2867: 2866: 2860: 2852: 2822: 2811: 2810: 2782: 2776: 2775: 2749: 2740: 2734: 2733: 2722: 2716: 2715: 2697: 2691: 2690: 2664: 2644: 2638: 2637: 2611: 2591: 2585: 2584: 2556: 2550: 2549: 2518: 2512: 2511: 2504: 2417:10.1063/1.860024 1991: 1990: 1932: 1930: 1929: 1924: 1912: 1910: 1909: 1904: 1902: 1901: 1873: 1871: 1870: 1865: 1857: 1820: 1818: 1817: 1812: 1810: 1809: 1790: 1788: 1787: 1782: 1779: 1771: 1752:plasma frequency 1749: 1747: 1746: 1741: 1735: 1727: 1692: 1690: 1689: 1684: 1678: 1670: 1638: 1636: 1635: 1630: 1625: 1624: 1593: 1591: 1590: 1585: 1570: 1568: 1567: 1562: 1489: 1487: 1486: 1481: 1466: 1464: 1463: 1458: 1450: 1442: 1441: 1436: 1424: 1423: 1418: 1411: 1396: 1388: 1361: 1359: 1358: 1353: 1351: 1339: 1337: 1336: 1331: 1329: 1314: 1312: 1311: 1306: 1298: 1290: 1219:Spectral methods 1194:The field solver 1185: 1183: 1182: 1177: 1166: 1143: 1125: 1123: 1122: 1117: 1112: 1111: 1093: 1088: 1077: 1064: 1062: 1061: 1056: 1051: 1050: 1045: 1039: 1028: 1015: 1013: 1012: 1007: 1002: 1001: 996: 990: 979: 978: 974: 959: 950: 937: 935: 934: 929: 924: 910: 902: 891: 880: 872: 868: 849: 847: 846: 841: 836: 835: 830: 824: 813: 809: 800: 799: 795: 780: 766: 764: 763: 758: 753: 752: 748: 733: 727: 716: 715: 710: 701: 700: 689: 670: 668: 667: 662: 660: 659: 643: 641: 640: 635: 624: 623: 611: 610: 588: 586: 585: 580: 562: 560: 559: 554: 539: 537: 536: 531: 526: 522: 521: 520: 515: 506: 501: 500: 499: 495: 480: 471: 470: 466: 451: 444: 439: 438: 433: 422: 414: 409: 407: 399: 398: 397: 393: 378: 369: 368: 364: 349: 342: 332: 330: 329: 324: 319: 318: 314: 299: 290: 288: 280: 279: 278: 273: 264: 263: 252: 245: 170:determining the 35:particle-in-cell 4683: 4682: 4678: 4677: 4676: 4674: 4673: 4672: 4643: 4642: 4641: 4636: 4605:Galerkin method 4548:Method of lines 4525: 4493:Neumann–Neumann 4447: 4404: 4346: 4313:High-resolution 4290: 4261: 4223: 4190: 4185: 4117: 4107: 4082: 4074:. McGraw-Hill. 4066: 4061: 4060: 4050: 4048: 4040: 4039: 4035: 4025: 4023: 4015: 4014: 4010: 4000: 3998: 3990: 3989: 3985: 3975: 3973: 3965: 3964: 3960: 3950: 3948: 3940: 3939: 3935: 3925: 3923: 3915: 3914: 3910: 3900: 3898: 3892:"Tech-X - VSim" 3890: 3889: 3885: 3875: 3873: 3865: 3864: 3860: 3850: 3848: 3840: 3839: 3835: 3825: 3823: 3815: 3814: 3810: 3795: 3794: 3790: 3781: 3779: 3771: 3770: 3766: 3751: 3750: 3746: 3737: 3735: 3727: 3726: 3722: 3712: 3710: 3700: 3696: 3686: 3684: 3675: 3674: 3670: 3647: 3643: 3633: 3631: 3622: 3621: 3617: 3607: 3605: 3597: 3596: 3592: 3582: 3580: 3571: 3570: 3566: 3556: 3554: 3546: 3545: 3541: 3531: 3529: 3521: 3520: 3516: 3501: 3500: 3496: 3487: 3486: 3482: 3472: 3470: 3461: 3460: 3456: 3446: 3444: 3436: 3435: 3431: 3421: 3419: 3411: 3410: 3406: 3396: 3394: 3386: 3385: 3381: 3371: 3369: 3361: 3360: 3356: 3346: 3344: 3336: 3335: 3331: 3321: 3319: 3310: 3309: 3305: 3295: 3293: 3291:fbpic.github.io 3285: 3284: 3280: 3270: 3268: 3260: 3259: 3255: 3245: 3243: 3235: 3234: 3230: 3220: 3218: 3209: 3208: 3204: 3194: 3192: 3184: 3183: 3179: 3124: 3120: 3104: 3103: 3067: 3063: 3056: 3042: 3038: 2999: 2995: 2952: 2948: 2909: 2905: 2874: 2870: 2854: 2853: 2849: 2823: 2814: 2783: 2779: 2747: 2741: 2737: 2723: 2719: 2712: 2704:. McGraw-Hill. 2698: 2694: 2645: 2641: 2592: 2588: 2557: 2553: 2519: 2515: 2505: 2501: 2496: 2483:Plasma modeling 2479: 1989: 1981:fluid mechanics 1939: 1918: 1915: 1914: 1897: 1893: 1882: 1879: 1878: 1853: 1836: 1833: 1832: 1805: 1801: 1799: 1796: 1795: 1772: 1764: 1758: 1755: 1754: 1728: 1720: 1702: 1699: 1698: 1671: 1663: 1645: 1642: 1641: 1620: 1616: 1602: 1599: 1598: 1576: 1573: 1572: 1553: 1550: 1549: 1542: 1509: 1475: 1472: 1471: 1446: 1437: 1432: 1431: 1419: 1414: 1413: 1407: 1392: 1384: 1382: 1379: 1378: 1372:field weighting 1347: 1345: 1342: 1341: 1325: 1323: 1320: 1319: 1294: 1286: 1278: 1275: 1274: 1264:current density 1256: 1241:basis functions 1196: 1162: 1136: 1134: 1131: 1130: 1107: 1103: 1089: 1084: 1073: 1071: 1068: 1067: 1046: 1041: 1040: 1032: 1024: 1022: 1019: 1018: 997: 992: 991: 983: 970: 960: 955: 954: 946: 944: 941: 940: 920: 906: 898: 887: 876: 864: 863: 861: 858: 857: 831: 826: 825: 817: 805: 804: 791: 781: 776: 775: 773: 770: 769: 744: 734: 729: 728: 720: 711: 706: 705: 690: 685: 684: 682: 679: 678: 655: 651: 649: 646: 645: 619: 615: 600: 596: 594: 591: 590: 568: 565: 564: 548: 545: 544: 516: 511: 510: 491: 481: 476: 475: 462: 452: 447: 446: 445: 443: 434: 429: 428: 427: 423: 413: 400: 389: 379: 374: 373: 360: 350: 345: 344: 343: 341: 339: 336: 335: 310: 300: 295: 294: 281: 274: 269: 268: 253: 248: 247: 246: 244: 242: 239: 238: 232:leapfrog method 225:Boris algorithm 221:leapfrog method 212: 192:super-particles 188: 186:Super-particles 151: 135:semi-Lagrangian 86: 17: 12: 11: 5: 4681: 4671: 4670: 4665: 4660: 4655: 4638: 4637: 4635: 4634: 4629: 4624: 4619: 4614: 4613: 4612: 4602: 4597: 4592: 4587: 4582: 4577: 4576: 4575: 4565: 4560: 4555: 4550: 4545: 4542:Pseudospectral 4539: 4533: 4531: 4527: 4526: 4524: 4523: 4518: 4512: 4506: 4500: 4495: 4490: 4485: 4484: 4483: 4478: 4468: 4463: 4457: 4455: 4449: 4448: 4446: 4445: 4439: 4433: 4427: 4421: 4414: 4412: 4406: 4405: 4403: 4402: 4396: 4391: 4385: 4380: 4374: 4368: 4362: 4356: 4354: 4352:Finite element 4348: 4347: 4345: 4344: 4338: 4332: 4330:Riemann solver 4327: 4321: 4315: 4310: 4304: 4302: 4296: 4295: 4292: 4291: 4289: 4288: 4282: 4276: 4269: 4267: 4263: 4262: 4260: 4259: 4254: 4249: 4244: 4239: 4237:Lax–Friedrichs 4233: 4231: 4225: 4224: 4222: 4221: 4219:Crank–Nicolson 4216: 4209: 4207: 4198: 4192: 4191: 4184: 4183: 4176: 4169: 4161: 4155: 4154: 4149: 4144: 4138: 4133: 4128: 4123: 4116: 4115:External links 4113: 4112: 4111: 4105: 4087: 4086: 4080: 4065: 4062: 4059: 4058: 4033: 4008: 3983: 3958: 3933: 3908: 3883: 3858: 3833: 3808: 3788: 3764: 3744: 3720: 3694: 3668: 3641: 3615: 3590: 3564: 3539: 3514: 3494: 3480: 3454: 3429: 3404: 3379: 3354: 3329: 3303: 3278: 3253: 3228: 3202: 3177: 3118: 3077:(3): 319–343. 3061: 3054: 3036: 2993: 2946: 2903: 2884:(3): 205–219. 2868: 2847: 2812: 2777: 2735: 2717: 2710: 2692: 2639: 2596:Nuclear Fusion 2586: 2567:(3): 475–486. 2551: 2532:(2): 403–447. 2513: 2498: 2497: 2495: 2492: 2491: 2490: 2485: 2478: 2475: 2472: 2471: 2469: 2466: 2463: 2461: 2457: 2456: 2454: 2451: 2448: 2446: 2442: 2441: 2432: 2429: 2426: 2424: 2420: 2419: 2410: 2407: 2404: 2402: 2398: 2397: 2388: 2385: 2382: 2380: 2379:VSim (Vorpal) 2376: 2375: 2366: 2363: 2360: 2358: 2354: 2353: 2351: 2348: 2345: 2343: 2339: 2338: 2329: 2326: 2323: 2321: 2317: 2316: 2307: 2304: 2301: 2299: 2295: 2294: 2285: 2282: 2279: 2277: 2273: 2272: 2263: 2260: 2257: 2255: 2251: 2250: 2241: 2238: 2235: 2233: 2229: 2228: 2226: 2223: 2220: 2218: 2214: 2213: 2195: 2192: 2189: 2187: 2183: 2182: 2173: 2170: 2167: 2165: 2161: 2160: 2151: 2148: 2145: 2143: 2139: 2138: 2129: 2126: 2123: 2121: 2117: 2116: 2107: 2104: 2101: 2099: 2095: 2094: 2085: 2082: 2079: 2077: 2073: 2072: 2063: 2060: 2057: 2055: 2051: 2050: 2041: 2038: 2035: 2033: 2029: 2028: 2019: 2017: 2014: 2012: 2008: 2007: 2004: 2001: 1998: 1995: 1988: 1985: 1957:, furthermore 1938: 1935: 1922: 1900: 1896: 1892: 1889: 1886: 1875: 1874: 1863: 1860: 1856: 1852: 1849: 1846: 1843: 1840: 1808: 1804: 1778: 1775: 1770: 1767: 1763: 1739: 1734: 1731: 1726: 1723: 1719: 1715: 1712: 1709: 1706: 1694: 1693: 1682: 1677: 1674: 1669: 1666: 1662: 1658: 1655: 1652: 1649: 1639: 1628: 1623: 1619: 1615: 1612: 1609: 1606: 1583: 1580: 1560: 1557: 1541: 1538: 1534:null-collision 1508: 1505: 1479: 1468: 1467: 1456: 1453: 1449: 1445: 1440: 1435: 1430: 1427: 1422: 1417: 1410: 1406: 1402: 1399: 1395: 1391: 1387: 1350: 1328: 1316: 1315: 1304: 1301: 1297: 1293: 1289: 1285: 1282: 1260:number density 1255: 1252: 1222: 1221: 1216: 1210: 1195: 1192: 1175: 1172: 1169: 1165: 1161: 1158: 1155: 1152: 1149: 1146: 1142: 1139: 1127: 1126: 1115: 1110: 1106: 1102: 1099: 1096: 1092: 1087: 1083: 1080: 1076: 1065: 1054: 1049: 1044: 1038: 1035: 1031: 1027: 1016: 1005: 1000: 995: 989: 986: 982: 977: 973: 969: 966: 963: 958: 953: 949: 938: 927: 923: 919: 916: 913: 909: 905: 901: 897: 894: 890: 886: 883: 879: 875: 871: 867: 851: 850: 839: 834: 829: 823: 820: 816: 812: 808: 803: 798: 794: 790: 787: 784: 779: 767: 756: 751: 747: 743: 740: 737: 732: 726: 723: 719: 714: 709: 704: 699: 696: 693: 688: 658: 654: 633: 630: 627: 622: 618: 614: 609: 606: 603: 599: 578: 575: 572: 552: 541: 540: 529: 525: 519: 514: 509: 504: 498: 494: 490: 487: 484: 479: 474: 469: 465: 461: 458: 455: 450: 442: 437: 432: 426: 420: 417: 412: 406: 403: 396: 392: 388: 385: 382: 377: 372: 367: 363: 359: 356: 353: 348: 333: 322: 317: 313: 309: 306: 303: 298: 293: 287: 284: 277: 272: 267: 262: 259: 256: 251: 211: 208: 187: 184: 180:(field) solver 164:particle mover 150: 147: 104: 103: 100: 97: 94: 85: 82: 78:plasma physics 31:plasma physics 15: 9: 6: 4: 3: 2: 4680: 4669: 4666: 4664: 4661: 4659: 4656: 4654: 4651: 4650: 4648: 4633: 4630: 4628: 4625: 4623: 4620: 4618: 4615: 4611: 4608: 4607: 4606: 4603: 4601: 4598: 4596: 4593: 4591: 4588: 4586: 4583: 4581: 4578: 4574: 4571: 4570: 4569: 4566: 4564: 4561: 4559: 4556: 4554: 4551: 4549: 4546: 4543: 4540: 4538: 4535: 4534: 4532: 4528: 4522: 4519: 4516: 4513: 4510: 4507: 4504: 4501: 4499: 4496: 4494: 4491: 4489: 4486: 4482: 4479: 4477: 4474: 4473: 4472: 4469: 4467: 4464: 4462: 4459: 4458: 4456: 4454: 4450: 4443: 4440: 4437: 4434: 4431: 4428: 4425: 4422: 4419: 4416: 4415: 4413: 4411: 4407: 4400: 4397: 4395: 4392: 4389: 4386: 4384: 4381: 4378: 4375: 4372: 4369: 4366: 4363: 4361: 4358: 4357: 4355: 4353: 4349: 4342: 4339: 4336: 4333: 4331: 4328: 4325: 4322: 4319: 4316: 4314: 4311: 4309: 4306: 4305: 4303: 4301: 4300:Finite volume 4297: 4286: 4283: 4280: 4277: 4274: 4271: 4270: 4268: 4264: 4258: 4255: 4253: 4250: 4248: 4245: 4243: 4240: 4238: 4235: 4234: 4232: 4230: 4226: 4220: 4217: 4214: 4211: 4210: 4208: 4206: 4202: 4199: 4197: 4193: 4189: 4182: 4177: 4175: 4170: 4168: 4163: 4162: 4159: 4153: 4150: 4148: 4145: 4142: 4139: 4137: 4134: 4132: 4129: 4127: 4124: 4122: 4119: 4118: 4108: 4106:0-85274-392-0 4102: 4099:. CRC Press. 4097: 4096: 4089: 4088: 4083: 4081:0-07-005371-5 4077: 4073: 4068: 4067: 4047: 4043: 4037: 4022: 4018: 4012: 3997: 3993: 3987: 3972: 3968: 3962: 3947: 3946:bitbucket.org 3943: 3937: 3922: 3918: 3912: 3897: 3893: 3887: 3872: 3868: 3862: 3847: 3843: 3837: 3822: 3821:esgeetech.com 3818: 3812: 3804: 3803: 3798: 3792: 3778: 3774: 3768: 3760: 3759: 3754: 3748: 3734: 3730: 3724: 3709: 3705: 3698: 3682: 3678: 3672: 3664: 3660: 3656: 3652: 3645: 3629: 3625: 3619: 3604: 3600: 3594: 3578: 3574: 3568: 3553: 3549: 3543: 3528: 3524: 3518: 3510: 3509: 3504: 3498: 3490: 3484: 3468: 3464: 3458: 3443: 3439: 3433: 3418: 3414: 3408: 3393: 3389: 3383: 3368: 3364: 3363:"Orbital ATK" 3358: 3343: 3339: 3338:"Orbital ATK" 3333: 3317: 3313: 3307: 3292: 3288: 3282: 3267: 3263: 3257: 3242: 3238: 3232: 3216: 3212: 3206: 3191: 3187: 3181: 3173: 3169: 3164: 3159: 3155: 3151: 3146: 3141: 3137: 3133: 3129: 3122: 3114: 3108: 3100: 3096: 3092: 3088: 3084: 3080: 3076: 3072: 3065: 3057: 3055:981-238-456-1 3051: 3047: 3040: 3032: 3028: 3024: 3020: 3016: 3012: 3008: 3004: 2997: 2989: 2985: 2981: 2977: 2973: 2969: 2965: 2961: 2957: 2950: 2942: 2938: 2934: 2930: 2926: 2922: 2918: 2914: 2907: 2899: 2895: 2891: 2887: 2883: 2879: 2872: 2864: 2858: 2850: 2844: 2840: 2836: 2832: 2828: 2821: 2819: 2817: 2808: 2804: 2800: 2796: 2793:(5): 052104. 2792: 2788: 2781: 2773: 2769: 2765: 2761: 2758:(5): 084503. 2757: 2753: 2746: 2739: 2731: 2728: 2721: 2713: 2711:0-07-005371-5 2707: 2703: 2696: 2688: 2684: 2680: 2676: 2672: 2668: 2663: 2658: 2655:(11): 12504. 2654: 2650: 2643: 2635: 2631: 2627: 2623: 2619: 2615: 2610: 2605: 2602:(1): 014001. 2601: 2597: 2590: 2582: 2578: 2574: 2570: 2566: 2562: 2555: 2547: 2543: 2539: 2535: 2531: 2527: 2523: 2517: 2509: 2503: 2499: 2489: 2486: 2484: 2481: 2480: 2470: 2467: 2464: 2462: 2459: 2458: 2455: 2452: 2449: 2447: 2444: 2443: 2440: 2436: 2433: 2430: 2427: 2425: 2422: 2421: 2418: 2414: 2411: 2408: 2405: 2403: 2400: 2399: 2396: 2392: 2389: 2386: 2383: 2381: 2378: 2377: 2374: 2370: 2367: 2364: 2362:3-Clause-BSD 2361: 2359: 2356: 2355: 2352: 2349: 2346: 2344: 2341: 2340: 2337: 2333: 2330: 2327: 2325:3-Clause-BSD 2324: 2322: 2319: 2318: 2315: 2311: 2308: 2305: 2302: 2300: 2297: 2296: 2293: 2289: 2286: 2283: 2280: 2278: 2275: 2274: 2271: 2267: 2264: 2261: 2258: 2256: 2253: 2252: 2249: 2245: 2242: 2239: 2236: 2234: 2231: 2230: 2227: 2224: 2221: 2219: 2216: 2215: 2212: 2211: 2207: 2203: 2199: 2196: 2193: 2190: 2188: 2185: 2184: 2181: 2177: 2174: 2171: 2168: 2166: 2163: 2162: 2159: 2155: 2152: 2149: 2146: 2144: 2141: 2140: 2137: 2133: 2130: 2127: 2124: 2122: 2119: 2118: 2115: 2111: 2108: 2105: 2102: 2100: 2097: 2096: 2093: 2089: 2086: 2083: 2080: 2078: 2075: 2074: 2071: 2067: 2064: 2061: 2058: 2056: 2053: 2052: 2049: 2045: 2042: 2039: 2036: 2034: 2031: 2030: 2027: 2023: 2020: 2018: 2015: 2013: 2010: 2009: 2005: 2003:Availability 2002: 1999: 1996: 1993: 1992: 1984: 1982: 1978: 1973: 1971: 1966: 1964: 1963:dusty plasmas 1960: 1956: 1952: 1948: 1944: 1934: 1920: 1898: 1894: 1890: 1887: 1861: 1858: 1854: 1850: 1844: 1841: 1831: 1830: 1829: 1827: 1826:CFL condition 1822: 1806: 1802: 1794: 1776: 1773: 1768: 1765: 1761: 1753: 1737: 1732: 1729: 1724: 1721: 1717: 1713: 1710: 1707: 1680: 1675: 1672: 1667: 1664: 1660: 1656: 1653: 1650: 1640: 1626: 1621: 1617: 1613: 1610: 1607: 1597: 1596: 1595: 1581: 1558: 1546: 1537: 1535: 1531: 1525: 1523: 1519: 1515: 1504: 1502: 1498: 1494: 1477: 1454: 1443: 1438: 1425: 1420: 1408: 1404: 1400: 1377: 1376: 1375: 1373: 1367: 1365: 1364:cloud-in-cell 1302: 1291: 1280: 1273: 1272: 1271: 1269: 1265: 1261: 1251: 1249: 1244: 1242: 1238: 1233: 1231: 1227: 1220: 1217: 1214: 1211: 1208: 1205: 1204: 1203: 1201: 1191: 1187: 1170: 1167: 1163: 1159: 1153: 1150: 1144: 1140: 1137: 1108: 1104: 1100: 1097: 1090: 1081: 1078: 1066: 1052: 1047: 1036: 1033: 1029: 1017: 1003: 998: 987: 984: 980: 975: 971: 967: 964: 961: 951: 939: 925: 917: 903: 892: 881: 873: 869: 856: 855: 854: 837: 832: 821: 818: 814: 810: 801: 796: 792: 788: 785: 782: 768: 754: 749: 745: 741: 738: 735: 724: 717: 712: 702: 697: 694: 691: 677: 676: 675: 672: 656: 652: 631: 625: 620: 616: 612: 607: 604: 601: 597: 576: 573: 570: 550: 527: 523: 517: 507: 502: 496: 492: 488: 485: 482: 472: 467: 463: 459: 456: 453: 440: 435: 424: 418: 415: 410: 404: 394: 390: 386: 383: 380: 370: 365: 361: 357: 354: 351: 334: 320: 315: 311: 307: 304: 301: 291: 285: 275: 265: 260: 257: 254: 237: 236: 235: 233: 228: 226: 222: 216: 207: 203: 201: 200:Lorentz force 197: 196:macroparticle 193: 183: 181: 177: 173: 169: 165: 161: 157: 156:Lorentz force 146: 143: 138: 136: 132: 128: 123: 121: 117: 113: 109: 101: 98: 95: 92: 91: 90: 81: 79: 75: 71: 67: 62: 60: 57:(stationary) 56: 52: 48: 44: 40: 36: 32: 25: 21: 4441: 4424:Peridynamics 4242:Lax–Wendroff 4094: 4071: 4064:Bibliography 4049:. Retrieved 4045: 4036: 4024:. Retrieved 4020: 4011: 3999:. Retrieved 3995: 3986: 3974:. Retrieved 3970: 3961: 3949:. Retrieved 3945: 3936: 3924:. Retrieved 3921:warp.lbl.gov 3920: 3911: 3899:. Retrieved 3895: 3886: 3874:. Retrieved 3870: 3861: 3849:. Retrieved 3845: 3836: 3824:. Retrieved 3820: 3811: 3800: 3791: 3780:. Retrieved 3776: 3767: 3756: 3747: 3736:. Retrieved 3732: 3723: 3711:. Retrieved 3708:2.mpq.mpg.de 3707: 3697: 3685:. Retrieved 3680: 3671: 3654: 3650: 3644: 3632:. Retrieved 3627: 3618: 3606:. Retrieved 3602: 3593: 3581:. Retrieved 3576: 3567: 3555:. Retrieved 3551: 3542: 3530:. Retrieved 3526: 3517: 3506: 3497: 3483: 3471:. Retrieved 3466: 3457: 3445:. Retrieved 3441: 3432: 3420:. Retrieved 3416: 3407: 3395:. Retrieved 3391: 3382: 3370:. Retrieved 3366: 3357: 3345:. Retrieved 3341: 3332: 3320:. Retrieved 3315: 3306: 3294:. Retrieved 3290: 3281: 3269:. Retrieved 3265: 3256: 3244:. Retrieved 3240: 3231: 3219:. Retrieved 3214: 3205: 3193:. Retrieved 3189: 3180: 3135: 3131: 3121: 3107:cite journal 3074: 3070: 3064: 3045: 3039: 3006: 3002: 2996: 2963: 2959: 2949: 2919:(2): 65–85. 2916: 2912: 2906: 2881: 2877: 2871: 2830: 2790: 2786: 2780: 2755: 2751: 2738: 2730: 2726: 2720: 2701: 2695: 2652: 2648: 2642: 2599: 2595: 2589: 2564: 2560: 2554: 2529: 2525: 2522:Dawson, J.M. 2516: 2502: 2465:Proprietary 2384:Proprietary 2347:Proprietary 2303:Proprietary 2222:Proprietary 2204: 2125:Proprietary 2103:Proprietary 2016:Proprietary 1974: 1967: 1940: 1937:Applications 1876: 1823: 1793:Debye length 1695: 1547: 1543: 1533: 1529: 1526: 1521: 1510: 1469: 1371: 1368: 1363: 1317: 1267: 1257: 1245: 1234: 1223: 1197: 1188: 1128: 852: 673: 542: 229: 224: 217: 213: 204: 195: 191: 189: 179: 163: 159: 152: 139: 126: 124: 119: 115: 111: 107: 105: 87: 63: 38: 34: 28: 23: 4558:Collocation 3657:(7): 1509. 3422:13 December 3397:13 December 2453:Open Repo: 2431:Open Repo: 2409:Open Repo: 2365:Open Repo: 2320:Tristan v2 2284:Open Repo: 2262:Open Repo: 2240:Open Repo: 2194:Open Repo: 2172:Open Repo: 2150:Open Repo 2084:Open Repo: 2062:Open Repo: 2040:Open Repo: 51:phase space 4647:Categories 4247:MacCormack 4229:Hyperbolic 4051:29 October 4046:GitHub.org 4026:29 October 4001:29 October 3996:GitHub.org 3976:29 October 3951:1 December 3926:1 December 3901:1 December 3896:Txcorp.com 3876:29 October 3871:github.com 3846:github.com 3826:1 December 3817:"VizGrain" 3782:2022-12-15 3738:2022-12-15 3713:1 December 3687:31 January 3681:GitHub.com 3634:29 October 3628:GitHub.com 3608:1 December 3583:1 December 3577:GitHub.com 3557:1 December 3473:1 December 3467:GitHub.com 3447:1 December 3438:"Piccante" 3417:GitHub.com 3372:1 December 3367:Mrcwdc.com 3347:1 December 3342:Mrcwdc.com 3322:1 December 3316:GitHub.com 3296:1 December 3266:GitHub.com 3221:1 December 3215:GitHub.com 3195:1 December 3145:1702.04732 2662:1510.06972 2609:1503.08334 2494:References 2460:ultraPICA 1970:Maxwellian 1943:ionosphere 1507:Collisions 47:Lagrangian 4563:Level-set 4553:Multigrid 4503:Balancing 4205:Parabolic 3172:119073489 3138:(1): 52. 3099:121512234 3031:221030792 2988:0010-4655 2941:0093-3813 2857:cite book 2342:VizGrain 2259:CeCILL-B 2232:PIConGPU 2164:PICCANTE 2147:GNU AGPL 1997:Web site 1895:λ 1891:∼ 1885:Δ 1848:Δ 1839:Δ 1803:λ 1774:− 1762:ω 1730:− 1718:ω 1711:≤ 1705:Δ 1673:− 1661:ω 1654:≤ 1648:Δ 1618:λ 1605:Δ 1579:Δ 1556:Δ 1444:− 1405:∑ 1292:− 1154:× 1148:Δ 965:− 918:× 904:× 722:Δ 629:Δ 508:× 486:− 402:Δ 384:− 371:− 283:Δ 266:− 137:schemes. 4537:Spectral 4476:additive 4399:Smoothed 4365:Extended 3532:7 August 3489:"PICLas" 3271:14 March 3246:14 March 3241:epochpic 3186:"ALaDyn" 2687:12893515 2634:29190330 2477:See also 2450:AGPLv3+ 2306:Unknown 2000:License 1955:tokamaks 1497:momentum 1230:magnetic 1226:electric 1141:′ 1037:′ 988:′ 870:′ 822:′ 811:′ 176:magnetic 172:electric 131:Eulerian 61:points. 55:Eulerian 4521:FETI-DP 4401:(S-FEM) 4320:(MUSCL) 4308:Godunov 3262:"EPOCH" 3237:"EPOCH" 3150:Bibcode 3079:Bibcode 3011:Bibcode 2968:Bibcode 2921:Bibcode 2886:Bibcode 2795:Bibcode 2760:Bibcode 2667:Bibcode 2614:Bibcode 2569:Bibcode 2534:Bibcode 2276:iPIC3D 2254:SMILEI 2237:GPLv3+ 2191:GPLv3+ 2186:PICLas 2169:GPLv3+ 2142:OSIRIS 2037:GPLv3+ 2032:ALaDyn 70:Buneman 66:Fortran 4530:Others 4517:(FETI) 4511:(BDDC) 4383:Mortar 4367:(XFEM) 4360:hp-FEM 4343:(WENO) 4326:(AUSM) 4287:(FDTD) 4281:(FDFD) 4266:Others 4252:Upwind 4215:(FTCS) 4103:  4078:  3917:"Warp" 3851:1 July 3842:"VPIC" 3802:GitHub 3758:GitHub 3508:GitHub 3190:ALaDyn 3170:  3097:  3052:  3029:  2986:  2939:  2845:  2708:  2685:  2632:  2423:WarpX 2217:PICMC 2120:MAGIC 2076:FBPIC 2059:GPLv3 2054:EPOCH 2011:SHARP 1961:, and 1913:, and 1877:where 1318:where 853:with 160:pusher 74:Dawson 33:, the 4544:(DVR) 4505:(BDD) 4444:(PIC) 4438:(MPM) 4432:(MPS) 4420:(SPH) 4390:(GDM) 4379:(SEM) 4337:(ENO) 4275:(ADI) 3168:S2CID 3140:arXiv 3095:S2CID 3027:S2CID 2748:(PDF) 2683:S2CID 2657:arXiv 2630:S2CID 2604:arXiv 2445:ZPIC 2401:Warp 2357:VPIC 1977:solid 1215:(FEM) 1209:(FDM) 116:PP-PM 4426:(PD) 4373:(DG) 4101:ISBN 4076:ISBN 4053:2019 4028:2019 4003:2019 3978:2019 3953:2017 3928:2017 3903:2017 3878:2019 3853:2019 3828:2017 3715:2017 3689:2020 3636:2019 3610:2017 3585:2017 3559:2017 3534:2024 3475:2017 3449:2017 3424:2023 3399:2023 3374:2017 3349:2017 3324:2017 3298:2017 3273:2024 3248:2024 3223:2017 3197:2017 3113:link 3050:ISBN 2984:ISSN 2937:ISSN 2863:link 2843:ISBN 2706:ISBN 2098:LSP 1979:and 1845:< 1611:< 1228:and 1129:and 174:and 59:mesh 3659:doi 3158:doi 3136:841 3087:doi 3019:doi 2976:doi 2929:doi 2894:doi 2835:doi 2803:doi 2768:doi 2675:doi 2622:doi 2577:doi 2542:doi 2435:doi 2413:doi 2391:doi 2369:doi 2332:doi 2310:doi 2288:doi 2266:doi 2244:doi 2206:doi 2198:doi 2176:doi 2154:doi 2132:doi 2110:doi 2088:doi 2066:doi 2044:doi 2022:doi 1714:0.1 1614:3.4 162:or 133:or 118:or 39:PIC 29:In 4649:: 4044:. 4019:. 3994:. 3969:. 3944:. 3919:. 3894:. 3869:. 3844:. 3819:. 3799:. 3775:. 3755:. 3731:. 3706:. 3679:. 3655:80 3653:. 3626:. 3601:. 3575:. 3550:. 3525:. 3505:. 3465:. 3440:. 3415:. 3390:. 3365:. 3340:. 3314:. 3289:. 3264:. 3239:. 3213:. 3188:. 3166:. 3156:. 3148:. 3134:. 3130:. 3109:}} 3105:{{ 3085:. 3073:. 3025:. 3017:. 3007:47 3005:. 2982:. 2974:. 2964:87 2962:. 2958:. 2935:. 2927:. 2917:19 2915:. 2892:. 2882:25 2880:. 2859:}} 2855:{{ 2815:^ 2801:. 2791:24 2789:. 2766:. 2756:20 2754:. 2750:. 2681:. 2673:. 2665:. 2653:22 2651:. 2628:. 2620:. 2612:. 2600:56 2598:. 2575:. 2565:10 2563:. 2540:. 2530:55 2528:. 1983:. 1965:. 1949:, 1945:, 1828:: 1821:. 1374:: 1262:, 1186:. 671:. 182:. 122:. 120:PM 112:PP 108:PM 72:, 4180:e 4173:t 4166:v 4109:. 4084:. 4055:. 4030:. 4005:. 3980:. 3955:. 3930:. 3905:. 3880:. 3855:. 3830:. 3805:. 3785:. 3761:. 3741:. 3717:. 3691:. 3665:. 3661:: 3638:. 3612:. 3587:. 3561:. 3536:. 3511:. 3491:. 3477:. 3451:. 3426:. 3401:. 3376:. 3351:. 3326:. 3300:. 3275:. 3250:. 3225:. 3199:. 3174:. 3160:: 3152:: 3142:: 3115:) 3101:. 3089:: 3081:: 3075:3 3058:. 3033:. 3021:: 3013:: 2990:. 2978:: 2970:: 2943:. 2931:: 2923:: 2900:. 2896:: 2888:: 2865:) 2851:. 2837:: 2809:. 2805:: 2797:: 2774:. 2770:: 2762:: 2714:. 2689:. 2677:: 2669:: 2659:: 2636:. 2624:: 2616:: 2606:: 2583:. 2579:: 2571:: 2548:. 2544:: 2536:: 2437:: 2415:: 2393:: 2371:: 2334:: 2312:: 2290:: 2268:: 2246:: 2208:: 2200:: 2178:: 2156:: 2134:: 2112:: 2090:: 2068:: 2046:: 2024:: 1921:c 1899:D 1888:x 1862:, 1859:c 1855:/ 1851:x 1842:t 1807:D 1777:1 1769:e 1766:p 1738:, 1733:1 1725:e 1722:p 1708:t 1681:, 1676:1 1668:e 1665:p 1657:2 1651:t 1627:, 1622:D 1608:x 1582:t 1559:x 1478:i 1455:, 1452:) 1448:x 1439:i 1434:x 1429:( 1426:S 1421:i 1416:E 1409:i 1401:= 1398:) 1394:x 1390:( 1386:E 1349:X 1327:x 1303:, 1300:) 1296:X 1288:x 1284:( 1281:S 1174:) 1171:m 1168:2 1164:/ 1160:q 1157:( 1151:t 1145:= 1138:q 1114:) 1109:2 1105:h 1101:+ 1098:1 1095:( 1091:/ 1086:h 1082:2 1079:= 1075:s 1053:, 1048:k 1043:B 1034:q 1030:= 1026:h 1004:, 999:k 994:E 985:q 981:+ 976:2 972:/ 968:1 962:k 957:v 952:= 948:u 926:, 922:s 915:) 912:) 908:h 900:u 896:( 893:+ 889:u 885:( 882:+ 878:u 874:= 866:u 838:, 833:k 828:E 819:q 815:+ 807:u 802:= 797:2 793:/ 789:1 786:+ 783:k 778:v 755:, 750:2 746:/ 742:1 739:+ 736:k 731:v 725:t 718:+ 713:k 708:x 703:= 698:1 695:+ 692:k 687:x 657:k 653:t 632:t 626:+ 621:k 617:t 613:= 608:1 605:+ 602:k 598:t 577:1 574:+ 571:k 551:k 528:, 524:) 518:k 513:B 503:2 497:2 493:/ 489:1 483:k 478:v 473:+ 468:2 464:/ 460:1 457:+ 454:k 449:v 441:+ 436:k 431:E 425:( 419:m 416:q 411:= 405:t 395:2 391:/ 387:1 381:k 376:v 366:2 362:/ 358:1 355:+ 352:k 347:v 321:, 316:2 312:/ 308:1 305:+ 302:k 297:v 292:= 286:t 276:k 271:x 261:1 258:+ 255:k 250:x 37:(

Index


plasma physics
partial differential equations
Lagrangian
phase space
Eulerian
mesh
Fortran
Buneman
Dawson
plasma physics
Eulerian
semi-Lagrangian
symplectic integrators
Lorentz force
Maxwell's equations
electric
magnetic
Lorentz force
leapfrog method
leapfrog method
partial differential equations
Finite difference methods
Finite element methods
Spectral methods
electric
magnetic
eigenvalue problem
basis functions
fast Fourier transform

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑