Knowledge

Numerical methods for partial differential equations

Source đź“ť

158:) to minimize an error function and produce a stable solution. Analogous to the idea that connecting many tiny straight lines can approximate a larger circle, FEM encompasses all the methods for connecting many simple element equations over many small subdomains, named finite elements, to approximate a more complex equation over a larger 287:
are closely related and built on the same ideas; the main difference between them is that spectral methods use basis functions that are nonzero over the whole domain, while finite element methods use basis functions that are nonzero only on small subdomains. In other words, spectral methods take on a
184:
that encompasses a few standard or recent methods. It is based on the separate approximation of a function and of its gradient. Core properties allow the convergence of the method for a series of linear and nonlinear problems, and therefore all the methods that enter the GDM framework (conforming and
430:
are discretization methods for partial differential equations, which use separate discretization on nonoverlapping subdomains. The meshes on the subdomains do not match on the interface, and the equality of the solution is enforced by Lagrange multipliers, judiciously chosen to preserve the accuracy
119:
The method of lines most often refers to the construction or analysis of numerical methods for partial differential equations that proceeds by first discretizing the spatial derivatives only and leaving the time variable continuous. This leads to a system of ordinary differential equations to which
438:
Finite element simulations of moderate size models require solving linear systems with millions of unknowns. Several hours per time step is an average sequential run time, therefore, parallel computing is a necessity. Domain decomposition methods embody large potential for a parallelization of the
2450: 219:, values are calculated at discrete places on a meshed geometry. "Finite volume" refers to the small volume surrounding each node point on a mesh. In the finite volume method, volume integrals in a partial differential equation that contain a 522:
may be recast as a multigrid method. In these cases, multigrid methods are among the fastest solution techniques known today. In contrast to other methods, multigrid methods are general in that they can treat arbitrary regions and
329:
do not require a mesh connecting the data points of the simulation domain. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort.
355:
with one or few unknowns per subdomain is used to further coordinate the solution between the subdomains globally. The problems on the subdomains are independent, which makes domain decomposition methods suitable for
231:. These terms are then evaluated as fluxes at the surfaces of each finite volume. Because the flux entering a given volume is identical to that leaving the adjacent volume, these methods are 405:, the continuity of the solution across subdomain interface is enforced by representing the value of the solution on all neighboring subdomains by the same unknown. In dual methods, such as 2395: 2440: 981:
E. N. Sarmin, L. A. Chudov (1963), On the stability of the numerical integration of systems of ordinary differential equations arising in the use of the straight line method,
1156: 296:. Partially for this reason, spectral methods have excellent error properties, with the so-called "exponential convergence" being the fastest possible, when the solution is 703: 2445: 1686: 568: 432: 112:(DAEs), to be used. A large number of integration routines have been developed over the years in many different programming languages, and some have been published as 559:, and are well suited to problems in complicated geometries. Spectral methods are generally the most accurate, provided that the solutions are sufficiently smooth. 17: 104:(PDEs) in which all dimensions except one are discretized. MOL allows standard, general-purpose methods and software, developed for the numerical integration of 531:
or other special properties of the equation. They have also been widely used for more-complicated non-symmetric and nonlinear systems of equations, like the
2064: 573: 2433: 31: 551:
The finite difference method is often regarded as the simplest method to learn and use. The finite element and finite volume methods are widely used in
625:. Series in computational and physical processes in mechanics and thermal sciences (3rd. ed.). Boca Raton: CRC Press, Taylor & Francis Group. 82:
In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
431:
of the solution. In the engineering practice in the finite element method, continuity of solutions between non-matching subdomains is implemented by
382:
In overlapping domain decomposition methods, the subdomains overlap by more than the interface. Overlapping domain decomposition methods include the
120:
a numerical method for initial value ordinary equations can be applied. The method of lines in this context dates back to at least the early 1960s.
488:
exhibit different rates of convergence for short- and long-wavelength components, suggesting these different scales be treated differently, as in a
1679: 532: 1793: 2428: 688: 1166: 235:. Another advantage of the finite volume method is that it is easily formulated to allow for unstructured meshes. The method is used in many 2246: 351:
by splitting it into smaller boundary value problems on subdomains and iterating to coordinate the solution between adjacent subdomains. A
1672: 2291: 2499: 1300: 304:
results. In the finite element community, a method where the degree of the elements is very high or increases as the grid parameter
1798: 1250: 52: 2504: 2207: 1226: 1200: 528: 56: 1001:: evolution to complex geometries and applications to fluid dynamics, By Canuto, Hussaini, Quarteroni and Zang, Springer, 2007. 512: 60: 1808: 1524: 1294: 941: 862: 744: 723: 664: 656:
Numerical methods for solving partial differential equations : a comprehensive introduction for scientists and engineers
768: 2374: 1594: 1451: 1306: 792: 272:. The idea is to write the solution of the differential equation as a sum of certain "basis functions" (for example, as a 1828: 1823: 185:
nonconforming finite element, mixed finite element, mimetic finite difference...) inherit these convergence properties.
1115: 1084: 1057: 966: 899: 827: 630: 605: 2241: 1925: 1502: 518:
Multigrid methods can be applied in combination with any of the common discretization techniques. For example, the
391: 1519: 1988: 1748: 1653: 1439: 109: 1915: 1420: 1409: 1386: 398: 171: 105: 101: 45: 1013:"Data assimilation for real-time subsurface flow modeling with dynamically adaptive meshless node adjustments" 1920: 1813: 1392: 208: 2474: 1818: 1509: 1474: 556: 236: 1860: 1514: 1193: 540: 397:
In non-overlapping methods, the subdomains intersect only on their interface. In primal methods, such as
339: 2478: 1942: 1631: 1616: 1492: 1178: 511:
between coarser and finer grids. The typical application for multigrid is in the numerical solution of
383: 232: 2338: 2271: 2266: 2229: 1760: 1733: 1703: 1278: 1258: 1240: 372: 2195: 2190: 2099: 2059: 1775: 1601: 1487: 1217: 477: 212: 77: 2384: 1643: 1621: 1606: 1589: 1497: 1482: 1398: 1263: 387: 309: 2020: 1074: 2389: 2379: 2353: 2175: 2170: 2165: 2160: 2118: 2081: 2027: 1753: 1743: 1721: 1563: 1334: 1186: 465: 348: 269: 155: 147: 143: 1101: 959:
Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java, Maple and Matlab
280:) and then to choose the coefficients in the sum that best satisfy the differential equation. 2306: 2286: 2224: 2153: 1932: 1910: 1885: 1785: 1611: 1457: 1373: 1047: 519: 284: 265: 216: 129: 2464: 2358: 2343: 2258: 2185: 2148: 2143: 2133: 1893: 1847: 1648: 1321: 1136: 745:"Hyperbolic partial differential equation, numerical methods - Encyclopedia of Mathematics" 536: 499:
The main idea of multigrid is to accelerate the convergence of a basic iterative method by
261: 194: 159: 934:
A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab
769:"Parabolic partial differential equation, numerical methods - Encyclopedia of Mathematics" 8: 2333: 2202: 2113: 2000: 1971: 1695: 1415: 1329: 793:"Elliptic partial differential equation, numerical methods - Encyclopedia of Mathematics" 481: 410: 390:. Many domain decomposition methods can be written and analyzed as a special case of the 257: 151: 1140: 2470: 2123: 2109: 2091: 2074: 2054: 2037: 1947: 1770: 1638: 1579: 1160: 888: 682: 524: 457: 357: 228: 204: 181: 139: 41: 915: 569:
List of numerical analysis topics#Numerical methods for partial differential equations
2296: 2032: 2010: 1937: 1898: 1875: 1664: 1268: 1172: 1111: 1080: 1053: 1028: 962: 937: 895: 868: 858: 833: 823: 719: 670: 660: 626: 601: 587: 485: 2214: 2005: 1993: 1976: 1954: 1903: 1855: 1716: 1584: 1574: 1463: 1431: 1020: 711: 593: 489: 448: 368: 321: 224: 439:
finite element methods, and serve a basis for distributed, parallel computations.
2320: 2276: 2103: 2047: 2042: 1981: 1803: 1728: 1626: 1569: 1558: 998: 715: 301: 297: 248: 91: 1964: 1404: 1351: 1024: 504: 493: 473: 409:, the continuity of the solution across the subdomain interface is enforced by 361: 352: 273: 674: 597: 2493: 2281: 2236: 2219: 1865: 1738: 1273: 1032: 1012: 872: 508: 427: 837: 2301: 2180: 1959: 1870: 1765: 1445: 1362: 1339: 654: 365: 852: 2412: 2328: 1356: 1234: 817: 552: 113: 1208: 1072: 2348: 300:. However, there are no known three-dimensional single domain spectral 220: 2396:
The Unreasonable Effectiveness of Mathematics in the Natural Sciences
1711: 469: 461: 277: 621:
Anderson, Dale A.; Pletcher, Richard H.; Tannehill, John C. (2013).
492:
approach to multigrid. MG methods can be used as solvers as well as
1103:
Multigrid finite element methods for electromagnetic field modeling
1542: 414: 2451:
European Community on Computational Methods in Applied Sciences
2015: 1833: 1381: 1045: 420:
Non-overlapping domain decomposition methods are also called
376: 2446:
International Council for Industrial and Applied Mathematics
1099: 1011:
Chen, Shang-Ying; Wei, Jian-Yu; Hsu, Kuo-Chin (2023-10-01).
1536: 1530: 1345: 710:, Cambridge: Cambridge University Press, pp. 309–336, 406: 402: 480:, very useful in (but not limited to) problems exhibiting 620: 503:
correction from time to time, accomplished by solving a
983:
USSR Computational Mathematics and Mathematical Physics
914:
Hamdi, S., W. E. Schiesser and G. W. Griffiths (2007),
1694: 476:. They are an example of a class of techniques called 211:
in the form of algebraic equations . Similar to the
2065:
Numerical methods for ordinary differential equations
1173:
Numerical PDE Techniques for Scientists and Engineers
1073:
U. Trottenberg; C. W. Oosterlee; A. SchĂĽller (2001).
854:
Numerical treatment of partial differential equations
574:
Numerical methods for ordinary differential equations
417:
method is hybrid between a dual and a primal method.
360:. Domain decomposition methods are typically used as 2441:
Société de Mathématiques Appliquées et Industrielles
2434:
Japan Society for Industrial and Applied Mathematics
2070:
Numerical methods for partial differential equations
1784: 1210:
Numerical methods for partial differential equations
1169:, the Open Source IMTEK Mathematica Supplement (IMS) 1157:
Numerical Methods for Partial Differential Equations
819:
Numerical methods for partial differential equations
38:
Numerical methods for partial differential equations
32:
Numerical Methods for Partial Differential Equations
2257: 1175:, open access Lectures and Codes for Numerical PDEs 702:Rubinstein, Jacob; Pinchover, Yehuda, eds. (2005), 701: 931: 887: 822:. J. M. Blackledge, P. Yardley. London: Springer. 708:An Introduction to Partial Differential Equations 165: 2491: 1049:Practical Fourier analysis for multigrid methods 857:. Hans-Görg Roos, M. Stynes. Berlin: Springer. 623:Computational fluid mechanics and heat transfer 333: 2429:Society for Industrial and Applied Mathematics 100:(MOL, NMOL, NUMOL) is a technique for solving 1680: 1194: 925: 2247:Supersymmetric theory of stochastic dynamics 956: 879: 932:Schiesser, W. E.; Griffiths, G. W. (2009). 71: 1687: 1673: 1201: 1187: 1010: 975: 687:: CS1 maint: location missing publisher ( 1046:Roman Wienands; Wolfgang Joppich (2005). 885: 850: 908: 308:decreases to zero is sometimes called a 123: 18:Numerical partial differential equations 1100:Yu Zhu; Andreas C. Cangellaris (2006). 950: 589:Numerical Methods for Conservation Laws 585: 513:elliptic partial differential equations 188: 61:elliptic partial differential equations 44:that studies the numerical solution of 14: 2492: 652: 66: 51:In principle, specialized methods for 1668: 1182: 957:Lee, H. J.; Schiesser, W. E. (2004). 815: 484:of behavior. For example, many basic 142:for finding approximate solutions to 1452:Moving particle semi-implicit method 1363:Weighted essentially non-oscillatory 1130: 992: 442: 178:gradient discretization method (GDM) 315: 292:while finite element methods use a 24: 1696:Industrial and applied mathematics 1301:Finite-difference frequency-domain 579: 242: 85: 25: 2516: 1926:Stochastic differential equations 1150: 268:, often involving the use of the 2500:Numerical differential equations 2242:Supersymmetric quantum mechanics 1133:Analysis of the multigrid method 422:iterative substructuring methods 392:abstract additive Schwarz method 207:for representing and evaluating 110:differential algebraic equations 2124:Stochastic variational calculus 1916:Ordinary differential equations 1654:Method of fundamental solutions 1440:Smoothed-particle hydrodynamics 1131:Shah, Tasneem Mohammad (1989). 1124: 1093: 1066: 1039: 1004: 507:. This principle is similar to 106:ordinary differential equations 2505:Partial differential equations 1921:Partial differential equations 1794:Arbitrary-precision arithmetic 1295:Alternating direction-implicit 936:. Cambridge University Press. 844: 809: 785: 761: 737: 695: 646: 399:Balancing domain decomposition 209:partial differential equations 172:Gradient discretization method 166:Gradient discretization method 102:partial differential equations 46:partial differential equations 30:For the academic journal, see 13: 1: 1809:Interactive geometry software 1307:Finite-difference time-domain 1135:(Thesis). Oxford University. 890:The Numerical Method of Lines 851:Grossmann, Christian (2007). 640: 546: 529:separability of the equations 264:to numerically solve certain 1346:Advection upstream-splitting 716:10.1017/cbo9780511801228.012 586:LeVeque, Randall J. (1992). 557:computational fluid dynamics 527:. They do not depend on the 345:Domain decomposition methods 334:Domain decomposition methods 237:computational fluid dynamics 27:Branch of numerical analysis 7: 1861:Computational number theory 1824:Numerical-analysis software 1357:Essentially non-oscillatory 1340:Monotonic upstream-centered 592:. Basel: Birkhäuser Basel. 562: 515:in two or more dimensions. 340:Domain decomposition method 136:finite element method (FEM) 10: 2521: 1617:Infinite difference method 1235:Forward-time central-space 1025:10.1007/s00366-023-01897-6 1017:Engineering with Computers 653:Pinder, George F. (2018). 446: 433:multiple-point constraints 384:Schwarz alternating method 337: 319: 246: 192: 169: 127: 89: 75: 29: 2459: 2421: 2405: 2367: 2319: 2267:Algebra of physical space 2132: 2090: 1884: 1846: 1734:Automated theorem proving 1702: 1551: 1520:Poincaré–Steklov operator 1473: 1430: 1372: 1320: 1287: 1279:Method of characteristics 1249: 1225: 1216: 1052:. CRC Press. p. 17. 886:Schiesser, W. E. (1991). 598:10.1007/978-3-0348-8629-1 373:conjugate gradient method 2060:Numerical linear algebra 1537:Tearing and interconnect 1531:Balancing by constraints 999:pp 235, Spectral Methods 213:finite difference method 78:Finite difference method 72:Finite difference method 1799:Finite element analysis 1749:Constraint satisfaction 1644:Computer-assisted proof 1622:Infinite element method 1410:Gradient discretisation 541:Navier–Stokes equations 478:multiresolution methods 388:additive Schwarz method 310:spectral element method 256:are techniques used in 144:boundary value problems 2354:Mathematical economics 2028:Multivariable calculus 1911:Differential equations 1754:Constraint programming 1744:Computational geometry 1632:Petrov–Galerkin method 1393:Discontinuous Galerkin 816:Evans, Gwynne (2000). 797:encyclopediaofmath.org 773:encyclopediaofmath.org 749:encyclopediaofmath.org 466:differential equations 454:Multigrid (MG) methods 349:boundary value problem 285:finite element methods 270:fast Fourier transform 266:differential equations 223:term are converted to 156:calculus of variations 148:differential equations 2307:Supersymmetry algebra 2292:Representation theory 2287:Renormalization group 1933:Differential geometry 1814:Optimization software 1786:Mathematical software 1612:Isogeometric analysis 1458:Material point method 1106:. Wiley. p. 132 520:finite element method 283:Spectral methods and 217:finite element method 130:Finite element method 124:Finite element method 2359:Mathematical finance 2344:Social choice theory 2259:Algebraic structures 2208:in quantum mechanics 2144:Analytical mechanics 2110:Stochastic processes 2082:Variational calculus 1894:Approximation theory 1819:Statistical software 1649:Integrable algorithm 1475:Domain decomposition 411:Lagrange multipliers 276:, which is a sum of 262:scientific computing 201:finite-volume method 195:Finite volume method 189:Finite volume method 2334:Operations research 2203:Perturbation theory 2001:Multilinear algebra 1972:Functional analysis 1829:Numerical libraries 1761:Computational logic 1493:Schwarz alternating 1416:Loubignac iteration 1141:1989STIN...9123418S 704:"Numerical methods" 525:boundary conditions 258:applied mathematics 205:numerical technique 182:numerical technique 152:variational methods 140:numerical technique 67:Overview of methods 2471:Mathematics portal 2368:Other applications 2092:Probability theory 2075:Validated numerics 2055:Numerical analysis 1948:Geometric analysis 1938:Differential forms 1771:Information theory 1639:Validated numerics 1161:MIT OpenCourseWare 1079:. Academic Press. 894:. Academic Press. 486:relaxation methods 458:numerical analysis 358:parallel computing 229:divergence theorem 42:numerical analysis 2487: 2486: 2321:Decision sciences 2315: 2314: 2297:Spacetime algebra 1989:Harmonic analysis 1955:Dynamical systems 1899:Clifford analysis 1876:Discrete geometry 1842: 1841: 1662: 1661: 1602:Immersed boundary 1595:Method of moments 1510:Neumann–Dirichlet 1503:abstract additive 1488:Fictitious domain 1432:Meshless/Meshfree 1316: 1315: 1218:Finite difference 989:(6), (1537–1543). 943:978-0-521-51986-1 864:978-3-540-71584-9 725:978-0-511-80122-8 666:978-1-119-31636-7 443:Multigrid methods 369:iterative methods 225:surface integrals 40:is the branch of 16:(Redirected from 2512: 2272:Feynman integral 2255: 2254: 2215:Potential theory 2104:random variables 1994:Fourier analysis 1977:Operator algebra 1904:Clifford algebra 1856:Computer algebra 1782: 1781: 1689: 1682: 1675: 1666: 1665: 1607:Analytic element 1590:Boundary element 1483:Schur complement 1464:Particle-in-cell 1399:Spectral element 1223: 1222: 1203: 1196: 1189: 1180: 1179: 1145: 1144: 1128: 1122: 1121: 1097: 1091: 1090: 1070: 1064: 1063: 1043: 1037: 1036: 1008: 1002: 996: 990: 979: 973: 972: 954: 948: 947: 929: 923: 912: 906: 905: 893: 883: 877: 876: 848: 842: 841: 813: 807: 806: 804: 803: 789: 783: 782: 780: 779: 765: 759: 758: 756: 755: 741: 735: 734: 733: 732: 699: 693: 692: 686: 678: 650: 636: 617: 615: 614: 490:Fourier analysis 449:Multigrid method 327:Meshfree methods 322:Meshfree methods 316:Meshfree methods 254:Spectral methods 21: 2520: 2519: 2515: 2514: 2513: 2511: 2510: 2509: 2490: 2489: 2488: 2483: 2455: 2417: 2401: 2363: 2311: 2277:Poisson algebra 2253: 2135: 2128: 2086: 1982:Operator theory 1880: 1838: 1804:Tensor software 1780: 1729:Automata theory 1698: 1693: 1663: 1658: 1627:Galerkin method 1570:Method of lines 1547: 1515:Neumann–Neumann 1469: 1426: 1368: 1335:High-resolution 1312: 1283: 1245: 1212: 1207: 1153: 1148: 1129: 1125: 1118: 1098: 1094: 1087: 1071: 1067: 1060: 1044: 1040: 1009: 1005: 997: 993: 980: 976: 969: 955: 951: 944: 930: 926: 916:Method of lines 913: 909: 902: 884: 880: 865: 849: 845: 830: 814: 810: 801: 799: 791: 790: 786: 777: 775: 767: 766: 762: 753: 751: 743: 742: 738: 730: 728: 726: 700: 696: 680: 679: 667: 659:. Hoboken, NJ. 651: 647: 643: 633: 612: 610: 608: 582: 580:Further reading 565: 549: 494:preconditioners 482:multiple scales 474:discretizations 460:are a group of 451: 445: 362:preconditioners 342: 336: 324: 318: 302:shock capturing 290:global approach 251: 249:Spectral method 245: 243:Spectral method 197: 191: 174: 168: 132: 126: 98:method of lines 94: 92:Method of lines 88: 86:Method of lines 80: 74: 69: 35: 28: 23: 22: 15: 12: 11: 5: 2518: 2508: 2507: 2502: 2485: 2484: 2482: 2481: 2468: 2460: 2457: 2456: 2454: 2453: 2448: 2443: 2438: 2437: 2436: 2425: 2423: 2419: 2418: 2416: 2415: 2409: 2407: 2403: 2402: 2400: 2399: 2392: 2387: 2382: 2377: 2371: 2369: 2365: 2364: 2362: 2361: 2356: 2351: 2346: 2341: 2336: 2331: 2325: 2323: 2317: 2316: 2313: 2312: 2310: 2309: 2304: 2299: 2294: 2289: 2284: 2279: 2274: 2269: 2263: 2261: 2252: 2251: 2250: 2249: 2244: 2234: 2233: 2232: 2227: 2217: 2212: 2211: 2210: 2200: 2199: 2198: 2193: 2188: 2183: 2178: 2173: 2168: 2158: 2157: 2156: 2151: 2140: 2138: 2130: 2129: 2127: 2126: 2121: 2116: 2107: 2096: 2094: 2088: 2087: 2085: 2084: 2079: 2078: 2077: 2072: 2067: 2062: 2052: 2051: 2050: 2045: 2040: 2035: 2025: 2024: 2023: 2018: 2013: 2008: 1998: 1997: 1996: 1986: 1985: 1984: 1979: 1969: 1968: 1967: 1965:Control theory 1962: 1952: 1951: 1950: 1945: 1940: 1930: 1929: 1928: 1923: 1918: 1908: 1907: 1906: 1896: 1890: 1888: 1882: 1881: 1879: 1878: 1873: 1868: 1863: 1858: 1852: 1850: 1844: 1843: 1840: 1839: 1837: 1836: 1831: 1826: 1821: 1816: 1811: 1806: 1801: 1796: 1790: 1788: 1779: 1778: 1773: 1768: 1763: 1758: 1757: 1756: 1746: 1741: 1736: 1731: 1726: 1725: 1724: 1719: 1708: 1706: 1700: 1699: 1692: 1691: 1684: 1677: 1669: 1660: 1659: 1657: 1656: 1651: 1646: 1641: 1636: 1635: 1634: 1624: 1619: 1614: 1609: 1604: 1599: 1598: 1597: 1587: 1582: 1577: 1572: 1567: 1564:Pseudospectral 1561: 1555: 1553: 1549: 1548: 1546: 1545: 1540: 1534: 1528: 1522: 1517: 1512: 1507: 1506: 1505: 1500: 1490: 1485: 1479: 1477: 1471: 1470: 1468: 1467: 1461: 1455: 1449: 1443: 1436: 1434: 1428: 1427: 1425: 1424: 1418: 1413: 1407: 1402: 1396: 1390: 1384: 1378: 1376: 1374:Finite element 1370: 1369: 1367: 1366: 1360: 1354: 1352:Riemann solver 1349: 1343: 1337: 1332: 1326: 1324: 1318: 1317: 1314: 1313: 1311: 1310: 1304: 1298: 1291: 1289: 1285: 1284: 1282: 1281: 1276: 1271: 1266: 1261: 1259:Lax–Friedrichs 1255: 1253: 1247: 1246: 1244: 1243: 1241:Crank–Nicolson 1238: 1231: 1229: 1220: 1214: 1213: 1206: 1205: 1198: 1191: 1183: 1177: 1176: 1170: 1164: 1152: 1151:External links 1149: 1147: 1146: 1123: 1116: 1092: 1085: 1065: 1058: 1038: 1003: 991: 974: 967: 949: 942: 924: 907: 900: 878: 863: 843: 828: 808: 784: 760: 736: 724: 694: 665: 644: 642: 639: 638: 637: 631: 618: 606: 581: 578: 577: 576: 571: 564: 561: 548: 545: 505:coarse problem 447:Main article: 444: 441: 428:Mortar methods 371:, such as the 353:coarse problem 338:Main article: 335: 332: 320:Main article: 317: 314: 294:local approach 274:Fourier series 247:Main article: 244: 241: 193:Main article: 190: 187: 170:Main article: 167: 164: 128:Main article: 125: 122: 90:Main article: 87: 84: 76:Main article: 73: 70: 68: 65: 26: 9: 6: 4: 3: 2: 2517: 2506: 2503: 2501: 2498: 2497: 2495: 2480: 2476: 2472: 2469: 2467: 2466: 2462: 2461: 2458: 2452: 2449: 2447: 2444: 2442: 2439: 2435: 2432: 2431: 2430: 2427: 2426: 2424: 2422:Organizations 2420: 2414: 2411: 2410: 2408: 2404: 2397: 2393: 2391: 2388: 2386: 2383: 2381: 2378: 2376: 2373: 2372: 2370: 2366: 2360: 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2332: 2330: 2327: 2326: 2324: 2322: 2318: 2308: 2305: 2303: 2300: 2298: 2295: 2293: 2290: 2288: 2285: 2283: 2282:Quantum group 2280: 2278: 2275: 2273: 2270: 2268: 2265: 2264: 2262: 2260: 2256: 2248: 2245: 2243: 2240: 2239: 2238: 2237:Supersymmetry 2235: 2231: 2228: 2226: 2223: 2222: 2221: 2220:String theory 2218: 2216: 2213: 2209: 2206: 2205: 2204: 2201: 2197: 2194: 2192: 2189: 2187: 2184: 2182: 2179: 2177: 2174: 2172: 2169: 2167: 2164: 2163: 2162: 2159: 2155: 2152: 2150: 2147: 2146: 2145: 2142: 2141: 2139: 2137: 2131: 2125: 2122: 2120: 2119:Path integral 2117: 2115: 2111: 2108: 2105: 2101: 2100:Distributions 2098: 2097: 2095: 2093: 2089: 2083: 2080: 2076: 2073: 2071: 2068: 2066: 2063: 2061: 2058: 2057: 2056: 2053: 2049: 2046: 2044: 2041: 2039: 2036: 2034: 2031: 2030: 2029: 2026: 2022: 2019: 2017: 2014: 2012: 2009: 2007: 2004: 2003: 2002: 1999: 1995: 1992: 1991: 1990: 1987: 1983: 1980: 1978: 1975: 1974: 1973: 1970: 1966: 1963: 1961: 1958: 1957: 1956: 1953: 1949: 1946: 1944: 1941: 1939: 1936: 1935: 1934: 1931: 1927: 1924: 1922: 1919: 1917: 1914: 1913: 1912: 1909: 1905: 1902: 1901: 1900: 1897: 1895: 1892: 1891: 1889: 1887: 1883: 1877: 1874: 1872: 1869: 1867: 1866:Combinatorics 1864: 1862: 1859: 1857: 1854: 1853: 1851: 1849: 1845: 1835: 1832: 1830: 1827: 1825: 1822: 1820: 1817: 1815: 1812: 1810: 1807: 1805: 1802: 1800: 1797: 1795: 1792: 1791: 1789: 1787: 1783: 1777: 1774: 1772: 1769: 1767: 1764: 1762: 1759: 1755: 1752: 1751: 1750: 1747: 1745: 1742: 1740: 1739:Coding theory 1737: 1735: 1732: 1730: 1727: 1723: 1720: 1718: 1715: 1714: 1713: 1710: 1709: 1707: 1705: 1704:Computational 1701: 1697: 1690: 1685: 1683: 1678: 1676: 1671: 1670: 1667: 1655: 1652: 1650: 1647: 1645: 1642: 1640: 1637: 1633: 1630: 1629: 1628: 1625: 1623: 1620: 1618: 1615: 1613: 1610: 1608: 1605: 1603: 1600: 1596: 1593: 1592: 1591: 1588: 1586: 1583: 1581: 1578: 1576: 1573: 1571: 1568: 1565: 1562: 1560: 1557: 1556: 1554: 1550: 1544: 1541: 1538: 1535: 1532: 1529: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1504: 1501: 1499: 1496: 1495: 1494: 1491: 1489: 1486: 1484: 1481: 1480: 1478: 1476: 1472: 1465: 1462: 1459: 1456: 1453: 1450: 1447: 1444: 1441: 1438: 1437: 1435: 1433: 1429: 1422: 1419: 1417: 1414: 1411: 1408: 1406: 1403: 1400: 1397: 1394: 1391: 1388: 1385: 1383: 1380: 1379: 1377: 1375: 1371: 1364: 1361: 1358: 1355: 1353: 1350: 1347: 1344: 1341: 1338: 1336: 1333: 1331: 1328: 1327: 1325: 1323: 1322:Finite volume 1319: 1308: 1305: 1302: 1299: 1296: 1293: 1292: 1290: 1286: 1280: 1277: 1275: 1272: 1270: 1267: 1265: 1262: 1260: 1257: 1256: 1254: 1252: 1248: 1242: 1239: 1236: 1233: 1232: 1230: 1228: 1224: 1221: 1219: 1215: 1211: 1204: 1199: 1197: 1192: 1190: 1185: 1184: 1181: 1174: 1171: 1168: 1165: 1162: 1158: 1155: 1154: 1142: 1138: 1134: 1127: 1119: 1117:0-471-74110-8 1113: 1109: 1105: 1104: 1096: 1088: 1086:0-12-701070-X 1082: 1078: 1077: 1069: 1061: 1059:1-58488-492-4 1055: 1051: 1050: 1042: 1034: 1030: 1026: 1022: 1018: 1014: 1007: 1000: 995: 988: 984: 978: 970: 968:1-58488-423-1 964: 961:. CRC Press. 960: 953: 945: 939: 935: 928: 921: 917: 911: 903: 901:0-12-624130-9 897: 892: 891: 882: 874: 870: 866: 860: 856: 855: 847: 839: 835: 831: 829:3-540-76125-X 825: 821: 820: 812: 798: 794: 788: 774: 770: 764: 750: 746: 740: 727: 721: 717: 713: 709: 705: 698: 690: 684: 676: 672: 668: 662: 658: 657: 649: 645: 634: 632:9781591690375 628: 624: 619: 609: 607:9783764327231 603: 599: 595: 591: 590: 584: 583: 575: 572: 570: 567: 566: 560: 558: 554: 544: 542: 538: 534: 530: 526: 521: 516: 514: 510: 509:interpolation 506: 502: 497: 495: 491: 487: 483: 479: 475: 471: 467: 463: 459: 455: 450: 440: 436: 434: 429: 425: 423: 418: 416: 412: 408: 404: 400: 395: 393: 389: 385: 380: 378: 374: 370: 367: 363: 359: 354: 350: 346: 341: 331: 328: 323: 313: 311: 307: 303: 299: 295: 291: 286: 281: 279: 275: 271: 267: 263: 259: 255: 250: 240: 238: 234: 230: 226: 222: 218: 214: 210: 206: 202: 196: 186: 183: 179: 173: 163: 161: 157: 153: 149: 145: 141: 137: 131: 121: 117: 115: 111: 107: 103: 99: 93: 83: 79: 64: 62: 58: 54: 49: 47: 43: 39: 33: 19: 2477: / 2473: / 2463: 2339:Optimization 2302:Superalgebra 2161:Field theory 2134:Mathematical 2112: / 2069: 1960:Chaos theory 1943:Gauge theory 1871:Graph theory 1766:Cryptography 1446:Peridynamics 1264:Lax–Wendroff 1209: 1132: 1126: 1107: 1102: 1095: 1075: 1068: 1048: 1041: 1016: 1006: 994: 986: 982: 977: 958: 952: 933: 927: 922:, 2(7):2859. 920:Scholarpedia 919: 910: 889: 881: 853: 846: 818: 811: 800:. Retrieved 796: 787: 776:. Retrieved 772: 763: 752:. Retrieved 748: 739: 729:, retrieved 707: 697: 655: 648: 622: 611:. Retrieved 588: 550: 517: 500: 498: 464:for solving 453: 452: 437: 426: 421: 419: 396: 381: 366:Krylov space 344: 343: 326: 325: 305: 293: 289: 282: 253: 252: 233:conservative 227:, using the 200: 198: 177: 175: 135: 133: 118: 97: 95: 81: 50: 37: 36: 2479:topics list 2413:Mathematics 2329:Game theory 2230:Topological 2196:Topological 2191:Statistical 2154:Hamiltonian 1580:Collocation 553:engineering 533:LamĂ© system 116:resources. 114:open source 108:(ODEs) and 2494:Categories 2385:Psychology 2349:Statistics 2149:Lagrangian 1776:Statistics 1712:Algorithms 1269:MacCormack 1251:Hyperbolic 1159:course at 802:2021-11-15 778:2021-11-15 754:2021-11-15 731:2021-11-15 675:1015215158 641:References 613:2021-11-15 547:Comparison 537:elasticity 462:algorithms 239:packages. 221:divergence 150:. It uses 53:hyperbolic 2390:Sociology 2380:Chemistry 2176:Effective 2171:Conformal 2166:Classical 2038:Geometric 2011:Geometric 1585:Level-set 1575:Multigrid 1525:Balancing 1227:Parabolic 1076:Multigrid 1033:1435-5663 873:191468303 683:cite book 470:hierarchy 278:sinusoids 57:parabolic 2465:Category 2114:analysis 2033:Exterior 2006:Exterior 1886:Analysis 1848:Discrete 1722:analysis 1559:Spectral 1498:additive 1421:Smoothed 1387:Extended 838:41572731 563:See also 468:using a 386:and the 347:solve a 48:(PDEs). 2475:outline 2406:Related 2375:Biology 2225:Bosonic 2186:Quantum 2136:physics 2102: ( 1834:Solvers 1543:FETI-DP 1423:(S-FEM) 1342:(MUSCL) 1330:Godunov 1137:Bibcode 555:and in 539:or the 415:FETI-DP 63:exist. 2048:Vector 2043:Tensor 2021:Vector 2016:Tensor 1717:design 1552:Others 1539:(FETI) 1533:(BDDC) 1405:Mortar 1389:(XFEM) 1382:hp-FEM 1365:(WENO) 1348:(AUSM) 1309:(FDTD) 1303:(FDFD) 1288:Others 1274:Upwind 1237:(FTCS) 1114:  1083:  1056:  1031:  965:  940:  898:  871:  861:  836:  826:  722:  673:  663:  629:  604:  501:global 413:. The 298:smooth 160:domain 2181:Gauge 1566:(DVR) 1527:(BDD) 1466:(PIC) 1460:(MPM) 1454:(MPS) 1442:(SPH) 1412:(GDM) 1401:(SEM) 1359:(ENO) 1297:(ADI) 377:GMRES 203:is a 180:is a 154:(the 138:is a 1448:(PD) 1395:(DG) 1112:ISBN 1081:ISBN 1054:ISBN 1029:ISSN 963:ISBN 938:ISBN 896:ISBN 869:OCLC 859:ISBN 834:OCLC 824:ISBN 720:ISBN 689:link 671:OCLC 661:ISBN 627:ISBN 602:ISBN 407:FETI 403:BDDC 401:and 364:for 260:and 199:The 176:The 146:for 134:The 96:The 1167:IMS 1021:doi 712:doi 594:doi 535:of 472:of 456:in 375:or 215:or 59:or 2496:: 1110:. 1108:ff 1027:. 1019:. 1015:. 985:, 918:, 867:. 832:. 795:. 771:. 747:. 718:, 706:, 685:}} 681:{{ 669:. 600:. 543:. 496:. 435:. 424:. 394:. 379:. 312:. 162:. 55:, 2398:" 2394:" 2106:) 1688:e 1681:t 1674:v 1202:e 1195:t 1188:v 1163:. 1143:. 1139:: 1120:. 1089:. 1062:. 1035:. 1023:: 987:3 971:. 946:. 904:. 875:. 840:. 805:. 781:. 757:. 714:: 691:) 677:. 635:. 616:. 596:: 306:h 34:. 20:)

Index

Numerical partial differential equations
Numerical Methods for Partial Differential Equations
numerical analysis
partial differential equations
hyperbolic
parabolic
elliptic partial differential equations
Finite difference method
Method of lines
partial differential equations
ordinary differential equations
differential algebraic equations
open source
Finite element method
numerical technique
boundary value problems
differential equations
variational methods
calculus of variations
domain
Gradient discretization method
numerical technique
Finite volume method
numerical technique
partial differential equations
finite difference method
finite element method
divergence
surface integrals
divergence theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑