Knowledge

Klein paradox

Source đź“ť

195:
particles approaching the barrier have less kinetic energy than the step: the particles are reflected. If the particles have more energy than the step, some are transmitted past the step, while some are reflected. The ratio of reflection to transmission depends on the energy difference. Relativity adds a third solution: very steep potential steps appear to create particles and antiparticles that then change the calculated ratio of transmission and reflection. The theoretical tools called quantum mechanics cannot handle the creation of particles, making any analysis of the relativistic case suspect. Before antiparticles where discovered and quantum field theory developed, this third solution was not understood. The puzzle came to be called the Klein paradox.
1758: 25: 487:. Planck showed that the blackbody oscillators must be restricted to quantum transitions. In 1927, Dirac published his first work on quantum electrodynamics by using quantum field theory. With this foundation, Heisenberg, Jordan, and Pauli incorporated relativistic invariance in quantized Maxwell's equations in 1928 and 1929. 445:, the only elementary particle other than the electron known at the time. Dirac pointed out Klein's negative electrons could not convert themselves to positive protons and suggested that the extra states were all filled with electrons already. Then a proton would amount to a missing electron in these lower states. 1736:
One interpretation of the paradox is that a potential step cannot reverse the direction of the group velocity of a massless relativistic particle. This explanation best suits the single particle solution cited above. Other, more complex interpretations are suggested in literature, in the context of
1053: 286:
published the paper describing what later came to be called the Klein paradox in 1929, just as physicists were grappling with two problems: how to combine the theories of relativity and quantum mechanics and how to understand the coupling of matter and light known as electrodynamics. The paradox
194:
The Klein paradox is an unexpected consequence of relativity on the interaction of quantum particles with electrostatic potentials. The quantum mechanical problem of free particles striking an electrostatic step potential has two solutions when relativity is ignored. One solution applies when the
494:
showed that, under the conditions of the paradox, two currents of opposite charge are spontaneously generated at the step. In modern terminology pairs of electrons and positrons are spontaneously created the step potential. These results were confirmed in 1981 by Hansen and Ravndal using a more
335:
Klein found that these extra states caused absurd results from models for electrons striking a large, sharp change in electrostatic potential: a negative current appeared beyond the barrier. Significantly Dirac's theory only predicted single-particle states. Creation or annihilation of particles
182:. The paradox presented a quantum mechanical objection to the notion of an electron confined within a nucleus. This clear and precise paradox suggested that an electron could not be confined within a nucleus by any potential well. The meaning of this paradox was intensely debated by 880: 1585: 765: 1171: 1190:
are complex numbers. Both the incoming and transmitted wave functions are associated with positive group velocity (Blue lines in Fig.1), whereas the reflected wave function is associated with negative group velocity. (Green lines in Fig.1)
1788:
For the massive case, the calculations are similar to the above. The results are as surprising as in the massless case. The transmission coefficient is always larger than zero, and approaches 1 as the potential step goes to infinity.
872: 903: 1320: 1456: 309:
of the atom published in 1913 assumed electrons in motion around a compact positive nucleus. An atomic electron obeying classical mechanics in the presence of a positive charged nucleus experiences a
1678: 1471: 635: 320:
developed a new mechanics for the electron, a quantum mechanics that reproduced Bohr's results. Schrodinger and other physicists knew this mechanics was incomplete: it did not include effects of
1878:
These results were expanded to higher dimensions, and to other types of potentials, such as a linear step, a square barrier, a smooth potential, etc. Many experiments in electron transport in
313:: they should radiate energy and accelerate in to the atomic core. The success of the Bohr model in predicting atomic spectra suggested that the classical mechanics could not be correct. 1726: 198:
For massive particles, the electric field strength required to observe the effect is enormous. The electric potential energy change similar to the rest energy of the incoming particle,
1059: 1856: 475:
Resolution of the paradox would require quantum field theory which developed alongside quantum mechanics but at a slower pace due its many complexities. The concept goes back to
391: 291:
developed for electrodynamics to resolve the paradox. Thus the background of the paradox has two threads: the development of quantum mechanics and of quantum electrodynamics.
137: 571: 432: 598: 797: 261: 226: 621: 528: 1221: 1616: 895:
Assuming the particle is propagating from the left, we obtain two solutions â€” one before the step, in region (1) and one under the potential, in region (2):
591: 811: 453:
showed that this would make atoms unstable. Finally in 1931 Dirac concluded that these states must correspond to a new "anti-electron" particle. In 1932
1048:{\displaystyle \psi _{1}=Ae^{ipx}\left({\begin{matrix}1\\1\end{matrix}}\right)+A'e^{-ipx}\left({\begin{matrix}-1\\1\end{matrix}}\right),\quad p=E_{0}\,} 171:), the barrier is nearly transparent. Moreover, as the potential approaches infinity, the reflection diminishes and the electron is always transmitted. 328:
solved the first issue in 1928 with his relativistic quantum theory of the electron. The combination was more accurate and also predicted electron
1238: 287:
raised questions about how relativity was added to quantum mechanics in Dirac's first attempt. It would take the development of the new
2301:
Hund, Fritz. "Materieerzeugung im anschaulichen und im gequantelten Wellenbild der Materie." Zeitschrift fĂĽr Physik 117.1 (1941): 1-17.
1335: 1580:{\displaystyle R={\frac {\left|A'\right|^{2}}{\left|A\right|^{2}}},\quad T={\frac {\left|B\right|^{2}}{\left|A\right|^{2}}}\,} 760:{\displaystyle \left(\sigma _{x}p+V\right)\psi =E_{0}\psi ,\quad V={\begin{cases}0,&x<0\\V_{0},&x>0\end{cases}}} 351:
to investigate sloped steps. Sauter was able to confirm Bohr's conjecture: the paradoxical result only appeared for a step of
332:. However, it also included twice as many states as expected, all with lower energy than the ones involved in atomic physics. 2226: 1626: 73:) is a quantum phenomenon related to particles encountering high-energy potential barriers. It is named after physicist 1914:
Klein, O. (1929). "Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac".
437:
Throughout 1929 and 1930, a series of papers by different physicists attempted to understand Dirac's extra states.
1166:{\displaystyle \psi _{2}=Be^{ikx}\left({\begin{matrix}1\\1\end{matrix}}\right),\quad \left|k\right|=V_{0}-E_{0}\,} 490:
However it took another 10 years before the theory could be applied to the problem of the Klein paradox. In 1941
470: 1979: 62: 1800: 1684: 41: 300: 2516: 354: 263:, which works out to 10 V/cm for electrons. For electrons, such extreme fields might only be relevant in 103: 533: 1996: 1769: 702: 400: 775: 2315: 2409: 235: 1971: 1962: 2246: 2043: 1224: 480: 201: 2487: 2458: 2421: 2327: 2268: 2184: 2127: 2065: 2008: 1923: 1867: 1738: 606: 506: 288: 1197: 8: 1866:
The traditional resolution uses particle–anti-particle pair production in the context of
1595: 454: 82: 2491: 2462: 2425: 2331: 2272: 2188: 2131: 2069: 2012: 1927: 77:
who discovered in 1929. Originally, Klein obtained a paradoxical result by applying the
2386: 2258: 2174: 2117: 2055: 1939: 576: 484: 446: 394: 321: 229: 144: 97:. However, Klein's result showed that if the potential is at least of the order of the 90: 2470: 2437: 2390: 2378: 2343: 2339: 2284: 2222: 2162: 2143: 2081: 2024: 1975: 1943: 1891: 867:{\displaystyle \sigma _{x}=\left({\begin{matrix}0&1\\1&0\end{matrix}}\right)} 344: 317: 175: 152: 86: 2495: 2466: 2429: 2370: 2335: 2276: 2192: 2135: 2073: 2016: 1931: 1230:
The definition of the probability current associated with the Dirac equation is:
503:
Consider a massless relativistic particle approaching a potential step of height
624: 491: 329: 272: 168: 78: 2449:
Dombey, N; Calogeracos, A. (July 1999). "Seventy years of the Klein paradox".
2433: 2196: 2510: 2441: 2347: 2288: 2147: 2085: 2028: 1742: 310: 160: 98: 94: 2374: 2280: 2077: 1741:
where the unrestrained tunnelling is shown to occur due to the existence of
178:
model for neutral particles within the nucleus, before the discovery of the
2382: 2105: 800: 438: 348: 2161:
Das Sarma, S.; Adam, Shaffique; Hwang, E. H.; Rossi, Enrico (2011-05-16).
2263: 2122: 2060: 283: 268: 74: 2410:"Introductory review on quantum field theory with space–time resolution" 1757: 1315:{\displaystyle J_{i}=\psi _{i}^{\dagger }\sigma _{x}\psi _{i},\ i=1,2\,} 339:
The Klein result was widely discussed immediately after it publication.
1935: 1194:
We now want to calculate the transmission and reflection coefficients,
476: 340: 325: 306: 183: 2499: 2361:
Pendry, J. B. (2007). "PHYSICS: Negative Refraction for Electrons?".
2139: 1733:
And so the transmission coefficient is 1 and there is no reflection.
458: 450: 2020: 1858:, then partial reflection rather than total reflection will result. 275:
at graphene p-n junctions the effect can be studied experimentally.
2104:
Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K. (September 2006).
1879: 343:
thought the result was related to the abrupt step and as a result
2179: 442: 179: 38:
The diagrams and interpretation presented here need confirmation.
336:
could not be correctly analyzed in the single particle theory.
1451:{\displaystyle J_{1}=2\left,\quad J_{2}=2\left|B\right|^{2}\,} 879: 174:
The immediate application of the paradox was to Rutherford's
753: 2478:
Robinson, T. R. (2012). "On Klein tunneling in graphene".
483:
so successful in many applications, fails to predict the
2219:
Inward bound: of matter and forces in the physical world
597: 2240: 2238: 2160: 2103: 1673:{\displaystyle \left|A\right|^{2}=\left|B\right|^{2}\,} 1100: 1000: 944: 833: 267:>170 nuclei or evaporation at the event horizon of 2106:"Chiral tunnelling and the Klein paradox in graphene" 1803: 1687: 1629: 1598: 1474: 1338: 1241: 1200: 1062: 906: 814: 778: 638: 609: 579: 536: 509: 403: 357: 238: 204: 106: 2235: 1861: 883:Fig. 1 A depiction of the dispersion relation, the 441:suggested they corresponded to recently discovered 2163:"Electronic transport in two-dimensional graphene" 1961: 1882:rely on the Klein paradox for massless particles. 1850: 1720: 1672: 1610: 1579: 1463:The transmission and reflection coefficients are: 1450: 1314: 1215: 1165: 1047: 866: 791: 759: 615: 585: 565: 522: 426: 385: 255: 220: 131: 2448: 2244: 2212: 2210: 2208: 2206: 2154: 2041: 457:experimentally observed these particles, renamed 2508: 2309: 2307: 2099: 2097: 2095: 2245:Calogeracos, A.; Dombey, N. (September 1999). 2203: 2042:Calogeracos, A.; Dombey, N. (September 1999). 1797:If the energy of the particle is in the range 324:nor the interaction of matter and radiation. 2313: 2304: 2221:(Reprint ed.). Oxford: Clarendon Press 2092: 464: 93:into a barrier is observed, with exponential 2407: 1988: 1966:. In French, A. P.; Kennedy, P. J. (eds.). 1909: 1907: 294: 2408:Cheng, T.; Su, Q.; Grobe, R. (July 2010). 2314:Hansen, Alex; Ravndal, Finn (1981-06-01). 2247:"History and physics of the Klein paradox" 2044:"History and physics of the Klein paradox" 2262: 2178: 2121: 2059: 1955: 1953: 1717: 1669: 1576: 1447: 1311: 1162: 1044: 393:over a distance similar to the electrons 34:needs attention from an expert in physics 2477: 1994: 1904: 1851:{\displaystyle mc^{2}<E<Ve-mc^{2}} 878: 89:. In nonrelativistic quantum mechanics, 1959: 1721:{\displaystyle \left|A'\right|^{2}=0\,} 2509: 2360: 1950: 44:may be able to help recruit an expert. 1970:. Harvard University Press. pp.  1913: 498: 2316:"Klein's Paradox and Its Resolution" 2216: 1752: 887:-axis represents momentum while the 18: 1592:Continuity of the wave function at 481:Maxwell's classical electrodynamics 386:{\displaystyle \Delta V>2mc^{2}} 189: 13: 2401: 358: 14: 2528: 1995:Holstein, Barry R. (1998-06-01). 1792: 1963:"Niels Bohr and Nuclear Physics" 1862:Resolutions for the massive case 1756: 596: 132:{\displaystyle Ve\approx mc^{2}} 23: 2354: 1748: 1529: 1412: 1124: 1027: 690: 623:, follows the time-independent 566:{\displaystyle E_{0}<V_{0}e} 471:History of quantum field theory 228:, would need to occur over the 2295: 2035: 1968:Niels Bohr: A Centenary Volume 1873: 603:The particle's wave function, 63:relativistic quantum mechanics 1: 2471:10.1016/S0370-1573(99)00023-X 1897: 427:{\displaystyle \lambda =h/mc} 301:History of quantum mechanics 7: 2480:American Journal of Physics 2001:American Journal of Physics 1885: 1743:particle–antiparticle pairs 792:{\displaystyle \sigma _{x}} 81:to the familiar problem of 36:. The specific problem is: 10: 2533: 2340:10.1088/0031-8949/23/6/002 1960:Stuewer, Roger H. (1985). 1223:They are derived from the 468: 465:Positron-electron creation 298: 278: 2434:10.1080/00107510903450559 2197:10.1103/RevModPhys.83.407 2167:Reviews of Modern Physics 256:{\displaystyle \hbar m/c} 891:-axis represents energy. 295:Dirac equation mysteries 186:and others at the time. 2375:10.1126/science.1140178 2281:10.1080/001075199181387 2078:10.1080/001075199181387 1178:where the coefficients 2217:Pais, Abraham (2002). 1916:Zeitschrift fĂĽr Physik 1852: 1722: 1674: 1612: 1581: 1452: 1316: 1217: 1167: 1049: 892: 868: 793: 761: 617: 587: 567: 524: 479:'s demonstration that 428: 387: 257: 222: 221:{\displaystyle mc^{2}} 133: 1853: 1723: 1675: 1613: 1582: 1453: 1317: 1225:probability amplitude 1218: 1168: 1050: 882: 869: 794: 762: 618: 616:{\displaystyle \psi } 588: 568: 525: 523:{\displaystyle V_{0}} 429: 388: 258: 223: 134: 2414:Contemporary Physics 2251:Contemporary Physics 2048:Contemporary Physics 1868:quantum field theory 1801: 1739:quantum field theory 1685: 1627: 1596: 1472: 1336: 1239: 1216:{\displaystyle T,R.} 1198: 1060: 904: 812: 776: 636: 607: 577: 534: 507: 401: 355: 289:quantum field theory 236: 202: 104: 2492:2012AmJPh..80..141R 2463:1999PhR...315...41D 2426:2010ConPh..51..315C 2332:1981PhyS...23.1036H 2273:1999ConPh..40..313C 2189:2011RvMP...83..407D 2132:2006NatPh...2..620K 2070:1999ConPh..40..313C 2013:1998AmJPh..66..507H 1928:1929ZPhy...53..157K 1611:{\displaystyle x=0} 1269: 495:general treatment. 83:electron scattering 42:WikiProject Physics 2517:Physical paradoxes 1936:10.1007/BF01339716 1848: 1768:. You can help by 1745:at the potential. 1718: 1670: 1608: 1577: 1448: 1312: 1255: 1213: 1163: 1115: 1045: 1018: 959: 893: 864: 858: 789: 757: 752: 613: 583: 573:and momentum  563: 520: 499:Massless particles 485:blackbody spectrum 447:Robert Oppenheimer 424: 395:Compton wavelength 383: 322:special relativity 253: 230:Compton wavelength 218: 145:electric potential 129: 91:electron tunneling 2500:10.1119/1.3658629 2228:978-0-19-851997-3 1997:"Klein's paradox" 1892:List of paradoxes 1786: 1785: 1574: 1524: 1295: 586:{\displaystyle p} 530:with energy  434:, about 2 x 10m. 345:Arnold Sommerfeld 318:Edwin Schrodinger 232:of the particle, 153:elementary charge 87:potential barrier 59: 58: 16:Quantum phenomena 2524: 2503: 2474: 2445: 2395: 2394: 2369:(5816): 1226–7. 2358: 2352: 2351: 2326:(6): 1036–1042. 2311: 2302: 2299: 2293: 2292: 2266: 2264:quant-ph/9905076 2242: 2233: 2232: 2214: 2201: 2200: 2182: 2158: 2152: 2151: 2140:10.1038/nphys384 2125: 2123:cond-mat/0604323 2101: 2090: 2089: 2063: 2061:quant-ph/9905076 2039: 2033: 2032: 1992: 1986: 1985: 1965: 1957: 1948: 1947: 1922:(3–4): 157–165. 1911: 1857: 1855: 1854: 1849: 1847: 1846: 1816: 1815: 1781: 1778: 1760: 1753: 1727: 1725: 1724: 1719: 1710: 1709: 1704: 1700: 1679: 1677: 1676: 1671: 1668: 1667: 1662: 1647: 1646: 1641: 1617: 1615: 1614: 1609: 1586: 1584: 1583: 1578: 1575: 1573: 1572: 1567: 1555: 1554: 1549: 1537: 1525: 1523: 1522: 1517: 1505: 1504: 1499: 1495: 1482: 1457: 1455: 1454: 1449: 1446: 1445: 1440: 1422: 1421: 1408: 1404: 1403: 1402: 1397: 1393: 1377: 1376: 1371: 1348: 1347: 1321: 1319: 1318: 1313: 1293: 1289: 1288: 1279: 1278: 1268: 1263: 1251: 1250: 1222: 1220: 1219: 1214: 1189: 1185: 1181: 1172: 1170: 1169: 1164: 1161: 1160: 1148: 1147: 1135: 1120: 1116: 1094: 1093: 1072: 1071: 1054: 1052: 1051: 1046: 1043: 1042: 1023: 1019: 994: 993: 975: 964: 960: 938: 937: 916: 915: 873: 871: 870: 865: 863: 859: 824: 823: 798: 796: 795: 790: 788: 787: 766: 764: 763: 758: 756: 755: 735: 734: 683: 682: 667: 663: 653: 652: 622: 620: 619: 614: 600: 592: 590: 589: 584: 572: 570: 569: 564: 559: 558: 546: 545: 529: 527: 526: 521: 519: 518: 433: 431: 430: 425: 417: 392: 390: 389: 384: 382: 381: 262: 260: 259: 254: 249: 227: 225: 224: 219: 217: 216: 190:Physics overview 138: 136: 135: 130: 128: 127: 54: 51: 45: 27: 26: 19: 2532: 2531: 2527: 2526: 2525: 2523: 2522: 2521: 2507: 2506: 2451:Physics Reports 2404: 2402:Further reading 2399: 2398: 2359: 2355: 2320:Physica Scripta 2312: 2305: 2300: 2296: 2243: 2236: 2229: 2215: 2204: 2159: 2155: 2102: 2093: 2040: 2036: 2021:10.1119/1.18891 1993: 1989: 1982: 1958: 1951: 1912: 1905: 1900: 1888: 1876: 1864: 1842: 1838: 1811: 1807: 1802: 1799: 1798: 1795: 1782: 1776: 1773: 1766:needs expansion 1751: 1705: 1693: 1689: 1688: 1686: 1683: 1682: 1663: 1652: 1651: 1642: 1631: 1630: 1628: 1625: 1624: 1597: 1594: 1593: 1568: 1557: 1556: 1550: 1539: 1538: 1536: 1518: 1507: 1506: 1500: 1488: 1484: 1483: 1481: 1473: 1470: 1469: 1441: 1430: 1429: 1417: 1413: 1398: 1386: 1382: 1381: 1372: 1361: 1360: 1359: 1355: 1343: 1339: 1337: 1334: 1333: 1284: 1280: 1274: 1270: 1264: 1259: 1246: 1242: 1240: 1237: 1236: 1199: 1196: 1195: 1187: 1183: 1179: 1156: 1152: 1143: 1139: 1125: 1114: 1113: 1107: 1106: 1099: 1095: 1083: 1079: 1067: 1063: 1061: 1058: 1057: 1038: 1034: 1017: 1016: 1010: 1009: 999: 995: 980: 976: 968: 958: 957: 951: 950: 943: 939: 927: 923: 911: 907: 905: 902: 901: 857: 856: 851: 845: 844: 839: 832: 828: 819: 815: 813: 810: 809: 783: 779: 777: 774: 773: 751: 750: 739: 730: 726: 723: 722: 711: 698: 697: 678: 674: 648: 644: 643: 639: 637: 634: 633: 608: 605: 604: 578: 575: 574: 554: 550: 541: 537: 535: 532: 531: 514: 510: 508: 505: 504: 501: 473: 467: 449:and separately 413: 402: 399: 398: 377: 373: 356: 353: 352: 303: 297: 281: 245: 237: 234: 233: 212: 208: 203: 200: 199: 192: 176:proton–electron 123: 119: 105: 102: 101: 71:Klein tunneling 69:(also known as 55: 49: 46: 40: 28: 24: 17: 12: 11: 5: 2530: 2520: 2519: 2505: 2504: 2486:(2): 141–147. 2475: 2457:(1–3): 41–58. 2446: 2420:(4): 315–330. 2403: 2400: 2397: 2396: 2353: 2303: 2294: 2257:(5): 313–321. 2234: 2227: 2202: 2173:(2): 407–470. 2153: 2116:(9): 620–625. 2110:Nature Physics 2091: 2054:(5): 313–321. 2034: 2007:(6): 507–512. 1987: 1980: 1949: 1902: 1901: 1899: 1896: 1895: 1894: 1887: 1884: 1875: 1872: 1863: 1860: 1845: 1841: 1837: 1834: 1831: 1828: 1825: 1822: 1819: 1814: 1810: 1806: 1794: 1793:The Klein zone 1791: 1784: 1783: 1763: 1761: 1750: 1747: 1731: 1730: 1729: 1728: 1716: 1713: 1708: 1703: 1699: 1696: 1692: 1680: 1666: 1661: 1658: 1655: 1650: 1645: 1640: 1637: 1634: 1607: 1604: 1601: 1590: 1589: 1588: 1587: 1571: 1566: 1563: 1560: 1553: 1548: 1545: 1542: 1535: 1532: 1528: 1521: 1516: 1513: 1510: 1503: 1498: 1494: 1491: 1487: 1480: 1477: 1461: 1460: 1459: 1458: 1444: 1439: 1436: 1433: 1428: 1425: 1420: 1416: 1411: 1407: 1401: 1396: 1392: 1389: 1385: 1380: 1375: 1370: 1367: 1364: 1358: 1354: 1351: 1346: 1342: 1327:In this case: 1325: 1324: 1323: 1322: 1310: 1307: 1304: 1301: 1298: 1292: 1287: 1283: 1277: 1273: 1267: 1262: 1258: 1254: 1249: 1245: 1212: 1209: 1206: 1203: 1176: 1175: 1174: 1173: 1159: 1155: 1151: 1146: 1142: 1138: 1134: 1131: 1128: 1123: 1119: 1112: 1109: 1108: 1105: 1102: 1101: 1098: 1092: 1089: 1086: 1082: 1078: 1075: 1070: 1066: 1055: 1041: 1037: 1033: 1030: 1026: 1022: 1015: 1012: 1011: 1008: 1005: 1002: 1001: 998: 992: 989: 986: 983: 979: 974: 971: 967: 963: 956: 953: 952: 949: 946: 945: 942: 936: 933: 930: 926: 922: 919: 914: 910: 877: 876: 875: 874: 862: 855: 852: 850: 847: 846: 843: 840: 838: 835: 834: 831: 827: 822: 818: 786: 782: 770: 769: 768: 767: 754: 749: 746: 743: 740: 738: 733: 729: 725: 724: 721: 718: 715: 712: 710: 707: 704: 703: 701: 696: 693: 689: 686: 681: 677: 673: 670: 666: 662: 659: 656: 651: 647: 642: 625:Dirac equation 612: 582: 562: 557: 553: 549: 544: 540: 517: 513: 500: 497: 492:Friedrich Hund 469:Main article: 466: 463: 423: 420: 416: 412: 409: 406: 380: 376: 372: 369: 366: 363: 360: 299:Main article: 296: 293: 280: 277: 273:quasiparticles 271:, but for 2-D 252: 248: 244: 241: 215: 211: 207: 191: 188: 169:speed of light 126: 122: 118: 115: 112: 109: 79:Dirac equation 57: 56: 31: 29: 22: 15: 9: 6: 4: 3: 2: 2529: 2518: 2515: 2514: 2512: 2501: 2497: 2493: 2489: 2485: 2481: 2476: 2472: 2468: 2464: 2460: 2456: 2452: 2447: 2443: 2439: 2435: 2431: 2427: 2423: 2419: 2415: 2411: 2406: 2405: 2392: 2388: 2384: 2380: 2376: 2372: 2368: 2364: 2357: 2349: 2345: 2341: 2337: 2333: 2329: 2325: 2321: 2317: 2310: 2308: 2298: 2290: 2286: 2282: 2278: 2274: 2270: 2265: 2260: 2256: 2252: 2248: 2241: 2239: 2230: 2224: 2220: 2213: 2211: 2209: 2207: 2198: 2194: 2190: 2186: 2181: 2176: 2172: 2168: 2164: 2157: 2149: 2145: 2141: 2137: 2133: 2129: 2124: 2119: 2115: 2111: 2107: 2100: 2098: 2096: 2087: 2083: 2079: 2075: 2071: 2067: 2062: 2057: 2053: 2049: 2045: 2038: 2030: 2026: 2022: 2018: 2014: 2010: 2006: 2002: 1998: 1991: 1983: 1977: 1973: 1969: 1964: 1956: 1954: 1945: 1941: 1937: 1933: 1929: 1925: 1921: 1917: 1910: 1908: 1903: 1893: 1890: 1889: 1883: 1881: 1871: 1869: 1859: 1843: 1839: 1835: 1832: 1829: 1826: 1823: 1820: 1817: 1812: 1808: 1804: 1790: 1780: 1771: 1767: 1764:This section 1762: 1759: 1755: 1754: 1746: 1744: 1740: 1734: 1714: 1711: 1706: 1701: 1697: 1694: 1690: 1681: 1664: 1659: 1656: 1653: 1648: 1643: 1638: 1635: 1632: 1623: 1622: 1621: 1620: 1619: 1605: 1602: 1599: 1569: 1564: 1561: 1558: 1551: 1546: 1543: 1540: 1533: 1530: 1526: 1519: 1514: 1511: 1508: 1501: 1496: 1492: 1489: 1485: 1478: 1475: 1468: 1467: 1466: 1465: 1464: 1442: 1437: 1434: 1431: 1426: 1423: 1418: 1414: 1409: 1405: 1399: 1394: 1390: 1387: 1383: 1378: 1373: 1368: 1365: 1362: 1356: 1352: 1349: 1344: 1340: 1332: 1331: 1330: 1329: 1328: 1308: 1305: 1302: 1299: 1296: 1290: 1285: 1281: 1275: 1271: 1265: 1260: 1256: 1252: 1247: 1243: 1235: 1234: 1233: 1232: 1231: 1228: 1226: 1210: 1207: 1204: 1201: 1192: 1157: 1153: 1149: 1144: 1140: 1136: 1132: 1129: 1126: 1121: 1117: 1110: 1103: 1096: 1090: 1087: 1084: 1080: 1076: 1073: 1068: 1064: 1056: 1039: 1035: 1031: 1028: 1024: 1020: 1013: 1006: 1003: 996: 990: 987: 984: 981: 977: 972: 969: 965: 961: 954: 947: 940: 934: 931: 928: 924: 920: 917: 912: 908: 900: 899: 898: 897: 896: 890: 886: 881: 860: 853: 848: 841: 836: 829: 825: 820: 816: 808: 807: 806: 805: 804: 802: 784: 780: 747: 744: 741: 736: 731: 727: 719: 716: 713: 708: 705: 699: 694: 691: 687: 684: 679: 675: 671: 668: 664: 660: 657: 654: 649: 645: 640: 632: 631: 630: 629: 628: 626: 610: 601: 599: 594: 580: 560: 555: 551: 547: 542: 538: 515: 511: 496: 493: 488: 486: 482: 478: 472: 462: 460: 456: 455:Carl Anderson 452: 448: 444: 440: 435: 421: 418: 414: 410: 407: 404: 396: 378: 374: 370: 367: 364: 361: 350: 346: 342: 337: 333: 331: 327: 323: 319: 314: 312: 311:Lorentz force 308: 302: 292: 290: 285: 276: 274: 270: 266: 250: 246: 242: 239: 231: 213: 209: 205: 196: 187: 185: 181: 177: 172: 170: 166: 162: 161:electron mass 158: 154: 150: 146: 142: 124: 120: 116: 113: 110: 107: 100: 99:electron mass 96: 92: 88: 84: 80: 76: 72: 68: 67:Klein paradox 64: 53: 43: 39: 35: 32:This article 30: 21: 20: 2483: 2479: 2454: 2450: 2417: 2413: 2366: 2362: 2356: 2323: 2319: 2297: 2254: 2250: 2218: 2170: 2166: 2156: 2113: 2109: 2051: 2047: 2037: 2004: 2000: 1990: 1967: 1919: 1915: 1877: 1865: 1796: 1787: 1774: 1770:adding to it 1765: 1749:Massive case 1735: 1732: 1591: 1462: 1326: 1229: 1193: 1177: 894: 888: 884: 801:Pauli matrix 771: 602: 595: 502: 489: 474: 439:Hermann Weyl 436: 349:Fritz Sauter 338: 334: 315: 304: 282: 264: 197: 193: 173: 164: 156: 148: 140: 70: 66: 60: 50:October 2019 47: 37: 33: 1874:Other cases 284:Oscar Klein 269:black holes 75:Oskar Klein 1981:0674624165 1898:References 1618:, yields: 1227:currents. 477:Max Planck 341:Niels Bohr 326:Paul Dirac 307:Bohr model 184:Niels Bohr 2442:0010-7514 2391:122548440 2348:0031-8949 2289:0010-7514 2180:1003.4731 2148:1745-2481 2086:0010-7514 2029:0002-9505 1944:121771000 1833:− 1379:− 1282:ψ 1272:σ 1266:† 1257:ψ 1150:− 1065:ψ 1004:− 982:− 909:ψ 817:σ 781:σ 685:ψ 669:ψ 646:σ 611:ψ 459:positrons 451:Igor Tamm 405:λ 359:Δ 240:ℏ 114:≈ 2511:Category 2383:17332397 1886:See also 1880:graphene 1777:May 2018 1698:′ 1493:′ 1391:′ 973:′ 316:In 1926 2488:Bibcode 2459:Bibcode 2422:Bibcode 2363:Science 2328:Bibcode 2269:Bibcode 2185:Bibcode 2128:Bibcode 2066:Bibcode 2009:Bibcode 1972:197–220 1924:Bibcode 799:is the 443:protons 279:History 180:neutron 167:is the 159:is the 151:is the 143:is the 139:(where 95:damping 85:from a 2440:  2389:  2381:  2346:  2287:  2225:  2146:  2084:  2027:  1978:  1942:  1294:  347:asked 65:, the 2387:S2CID 2259:arXiv 2175:arXiv 2118:arXiv 2056:arXiv 1940:S2CID 2438:ISSN 2379:PMID 2344:ISSN 2285:ISSN 2223:ISBN 2144:ISSN 2082:ISSN 2025:ISSN 1976:ISBN 1824:< 1818:< 1186:and 772:And 745:> 717:< 548:< 365:> 330:spin 305:The 163:and 2496:doi 2467:doi 2455:315 2430:doi 2371:doi 2367:315 2336:doi 2277:doi 2193:doi 2136:doi 2074:doi 2017:doi 1932:doi 1772:. 61:In 2513:: 2494:. 2484:80 2482:. 2465:. 2453:. 2436:. 2428:. 2418:51 2416:. 2412:. 2385:. 2377:. 2365:. 2342:. 2334:. 2324:23 2322:. 2318:. 2306:^ 2283:. 2275:. 2267:. 2255:40 2253:. 2249:. 2237:^ 2205:^ 2191:. 2183:. 2171:83 2169:. 2165:. 2142:. 2134:. 2126:. 2112:. 2108:. 2094:^ 2080:. 2072:. 2064:. 2052:40 2050:. 2046:. 2023:. 2015:. 2005:66 2003:. 1999:. 1974:. 1952:^ 1938:. 1930:. 1920:53 1918:. 1906:^ 1870:. 1184:A′ 1182:, 803:: 627:: 593:. 461:. 397:, 155:, 147:, 2502:. 2498:: 2490:: 2473:. 2469:: 2461:: 2444:. 2432:: 2424:: 2393:. 2373:: 2350:. 2338:: 2330:: 2291:. 2279:: 2271:: 2261:: 2231:. 2199:. 2195:: 2187:: 2177:: 2150:. 2138:: 2130:: 2120:: 2114:2 2088:. 2076:: 2068:: 2058:: 2031:. 2019:: 2011:: 1984:. 1946:. 1934:: 1926:: 1844:2 1840:c 1836:m 1830:e 1827:V 1821:E 1813:2 1809:c 1805:m 1779:) 1775:( 1715:0 1712:= 1707:2 1702:| 1695:A 1691:| 1665:2 1660:| 1657:B 1654:| 1649:= 1644:2 1639:| 1636:A 1633:| 1606:0 1603:= 1600:x 1570:2 1565:| 1562:A 1559:| 1552:2 1547:| 1544:B 1541:| 1534:= 1531:T 1527:, 1520:2 1515:| 1512:A 1509:| 1502:2 1497:| 1490:A 1486:| 1479:= 1476:R 1443:2 1438:| 1435:B 1432:| 1427:2 1424:= 1419:2 1415:J 1410:, 1406:] 1400:2 1395:| 1388:A 1384:| 1374:2 1369:| 1366:A 1363:| 1357:[ 1353:2 1350:= 1345:1 1341:J 1309:2 1306:, 1303:1 1300:= 1297:i 1291:, 1286:i 1276:x 1261:i 1253:= 1248:i 1244:J 1211:. 1208:R 1205:, 1202:T 1188:B 1180:A 1158:0 1154:E 1145:0 1141:V 1137:= 1133:| 1130:k 1127:| 1122:, 1118:) 1111:1 1104:1 1097:( 1091:x 1088:k 1085:i 1081:e 1077:B 1074:= 1069:2 1040:0 1036:E 1032:= 1029:p 1025:, 1021:) 1014:1 1007:1 997:( 991:x 988:p 985:i 978:e 970:A 966:+ 962:) 955:1 948:1 941:( 935:x 932:p 929:i 925:e 921:A 918:= 913:1 889:y 885:x 861:) 854:0 849:1 842:1 837:0 830:( 826:= 821:x 785:x 748:0 742:x 737:, 732:0 728:V 720:0 714:x 709:, 706:0 700:{ 695:= 692:V 688:, 680:0 676:E 672:= 665:) 661:V 658:+ 655:p 650:x 641:( 581:p 561:e 556:0 552:V 543:0 539:E 516:0 512:V 422:c 419:m 415:/ 411:h 408:= 379:2 375:c 371:m 368:2 362:V 265:Z 251:c 247:/ 243:m 214:2 210:c 206:m 165:c 157:m 149:e 141:V 125:2 121:c 117:m 111:e 108:V 52:) 48:(

Index

WikiProject Physics
relativistic quantum mechanics
Oskar Klein
Dirac equation
electron scattering
potential barrier
electron tunneling
damping
electron mass
electric potential
elementary charge
electron mass
speed of light
proton–electron
neutron
Niels Bohr
Compton wavelength
black holes
quasiparticles
Oscar Klein
quantum field theory
History of quantum mechanics
Bohr model
Lorentz force
Edwin Schrodinger
special relativity
Paul Dirac
spin
Niels Bohr
Arnold Sommerfeld

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑