Knowledge

Hahn series

Source đź“ť

3771: 4546: 3299: 739: 4054: 4441: 1158: 3047: 3616: 3499: 400: 3950: 4609: 3104: 2001: 1060: 619: 3380: 5158: 1358: 529: 470: 301: 791: 4705: 3627: 1753: 2668: 3176: 2003:
for example, the absolute values of the terms tend to 1 (because their valuations tend to 0), so the series is not convergent (such series are sometimes known as "pseudo-convergent").
3870: 951: 909: 833: 2946: 4446: 5084: 4253: 4121: 4090: 3184: 871: 4792: 2992: 2887: 2193: 2220: 1837: 4325: 1225: 4968: 4299: 3820: 2821: 2722: 2617: 2552: 2418: 2345: 2103: 1883: 1725: 179: 5049: 5027: 4345: 4202: 3955: 3130: 1387: 109: 87: 1420: 337: 4350: 2762: 2506: 2053: 1655: 1509: 239: 4836: 2299: 2142: 1607: 4999: 4732: 1071: 1296: 1254: 4904: 1482: 4860: 4222: 4180: 4157: 2841: 2742: 2482: 2458: 2438: 2368: 2260: 2240: 2029: 1773: 1675: 1635: 1553: 1529: 1440: 219: 199: 2997: 3507: 5590: 4971: 5501: 630: 3385: 5385: 342: 3875: 4551: 3052: 1900: 959: 540: 5343:
Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Wien, Mathematisch – Naturwissenschaftliche Klasse (Wien. Ber.)
3307: 5089: 3766:{\displaystyle \sum _{(i,j)\in I\times I}f_{i}g_{j}=\left(\sum _{i\in I}f_{i}\right)\left(\sum _{i\in I}g_{i}\right).} 1304: 475: 416: 247: 5453: 5476: 4657: 1730: 2622: 5563: 4742:) which are multiplied and added in the same way as in the case of ordinary Witt vectors (which is obtained when 3138: 4913:
can be regarded as a field of Hahn series with real coefficients and value group the surreal numbers themselves.
3825: 3776:
This notion of summable family does not correspond to the notion of convergence in the valuation topology on
4735: 4541:{\displaystyle f(a+\varepsilon ):=\sum \limits _{n\in \mathbb {N} }{\frac {f^{(n)}(a)}{n!}}\varepsilon ^{n}} 2892: 5626: 5621: 3294:{\displaystyle \sum _{i\in I}f_{i}:=\sum \limits _{e\in \Gamma }\left(\sum _{i\in I}f_{i}(e)\right)T^{e}.} 4758:
elements, this construction gives a (ultra)metrically complete algebraically closed field containing the
2678:: it turns out that this is also a field, with much the same algebraic closedness properties as the full 120: 5054: 5029:
is a directed union of Hahn fields (and is an extension of the Levi-Civita field). The construction of
4227: 4095: 4136: 4067: 2032: 1485: 4768: 2951: 2846: 2147: 747: 5424: 5360: 5338: 4049:{\displaystyle {\big (}\sum \limits _{k\leq n}T^{\frac {k}{k+1}}+T^{k+1}{\big )}_{n\in \mathbb {N} }} 2198: 1782: 44: 4304: 1181: 5528: 4927: 4258: 3779: 2780: 2681: 2576: 2511: 2377: 2304: 2062: 1842: 1684: 1172: 876: 138: 56: 5032: 5010: 4330: 4185: 3109: 1366: 838: 92: 70: 1392: 4436:{\displaystyle {\bigg (}{\frac {f^{(n)}(a)}{n!}}\varepsilon ^{n}{\bigg )}_{\!n\in \mathbb {N} }} 2266:): in fact, it is possible to give a somewhat analogous description of the algebraic closure of 309: 4128: 116: 1153:{\displaystyle \left\{-{\frac {1}{p}},-{\frac {1}{p^{2}}},-{\frac {1}{p^{3}}},\ldots \right\}} 914: 796: 4839: 2747: 2491: 2038: 1890: 1886: 1640: 1494: 224: 4806: 2269: 2112: 1558: 5558: 4977: 4710: 5489: 5463: 5408: 5354: 1272: 1230: 8: 2554:
is itself real-closed. This fact can be used to analyse (or even construct) the field of
2461: 1488: 132: 64: 40: 4865: 1445: 5537: 4845: 4207: 4165: 4142: 4124: 2826: 2727: 2467: 2443: 2423: 2353: 2245: 2225: 2014: 1758: 1660: 1620: 1538: 1514: 1425: 204: 184: 112: 5604: 5499:(2001), "The algebraic closure of the power series field in positive characteristic", 953:
is finite because a well-ordered set cannot contain an infinite decreasing sequence).
5449: 5376: 4917: 4132: 2485: 2106: 1776: 1678: 5399: 5599: 5585: 5572: 5547: 5510: 5485: 5459: 5433: 5415: 5404: 5394: 5350: 2570: 52: 5515: 5437: 5380: 3042:{\displaystyle \bigcup \limits _{i\in I}\operatorname {supp} f_{i}\subset \Gamma } 5419: 5368: 5170: 4921: 3611:{\displaystyle \sum _{i\in I}f_{i}+g_{i}=\sum _{i\in I}f_{i}+\sum _{i\in I}g_{i}} 2056: 1893:
or Puiseux series, the formal sums used in defining the elements of the field do
1063: 48: 1167:
because the denominators in the exponents are unbounded. (And if the base field
4910: 2555: 2263: 1164: 36: 5615: 5577: 5523: 5496: 4759: 4646:(or their algebraic closure), the field of Hahn–Witt series with value group 4624: 2371: 32: 2558:(which is isomorphic, as an ordered field, to the field of Hahn series with 5551: 5471: 4636: 5005: 4620: 2671: 2559: 1614: 734:{\displaystyle fg=\sum _{e\in \Gamma }\sum _{e'+e''=e}c_{e'}d_{e''}T^{e}} 55:
to a non-commutative setting). They allow for arbitrary exponents of the
20: 3494:{\displaystyle (f_{i}+g_{i})_{i\in I},(f_{i}g_{j})_{(i,j)\in I\times I}} 407: 60: 111:). Hahn series were first introduced, as groups, in the course of the 5542: 2440:
infinitesimal (greater than 0 but less than any positive element of
395:{\displaystyle \operatorname {supp} f:=\{e\in \Gamma :c_{e}\neq 0\}} 4651: 3945:{\displaystyle (T^{\frac {n}{n+1}}+T^{n+1})_{n\in \mathbb {N} }} 241:(an ordered group) is the set of formal expressions of the form 4604:{\displaystyle {\mathcal {A}}_{a}\longrightarrow K\left\right]} 3099:{\displaystyle \{i\in I\mid e\in \operatorname {supp} f_{i}\}} 2562:
coefficients and value group the surreal numbers themselves).
1617:
the only spherically complete valued field with residue field
1610: 4970:, with the additional imposition that the coefficients be a 1996:{\displaystyle T^{-1/p}+T^{-1/p^{2}}+T^{-1/p^{3}}+\cdots } 1055:{\displaystyle T^{-1/p}+T^{-1/p^{2}}+T^{-1/p^{3}}+\cdots } 614:{\displaystyle f+g=\sum _{e\in \Gamma }(c_{e}+d_{e})T^{e}} 4765:, hence a more or less explicit description of the field 4974:: the set of coefficients less than a given coefficient 1422:(in other words, the smallest element of the support of 5526:(2001), "Power series and 𝑝-adic algebraic closures", 2724:: e.g., it is algebraically closed or real closed when 5341:(1907), "Über die nichtarchimedischen Größensysteme", 2262:
is of characteristic zero, it is exactly the field of
5448:. Mathematics Studies. Vol. 141. North-Holland. 5092: 5057: 5035: 5013: 4980: 4930: 4868: 4848: 4809: 4771: 4713: 4660: 4619:
The construction of Hahn series can be combined with
4554: 4449: 4353: 4333: 4307: 4261: 4230: 4210: 4188: 4168: 4145: 4098: 4070: 3958: 3878: 3828: 3782: 3630: 3510: 3388: 3310: 3187: 3141: 3112: 3055: 3000: 2954: 2895: 2849: 2829: 2783: 2750: 2730: 2684: 2625: 2579: 2514: 2494: 2470: 2446: 2426: 2380: 2356: 2307: 2272: 2248: 2228: 2201: 2150: 2115: 2065: 2041: 2017: 1903: 1845: 1785: 1761: 1733: 1687: 1663: 1643: 1623: 1561: 1541: 1517: 1497: 1448: 1428: 1395: 1369: 1307: 1275: 1233: 1184: 1074: 1062:
is a Hahn series (over any field) because the set of
962: 917: 879: 841: 799: 750: 633: 543: 478: 419: 345: 312: 250: 227: 207: 187: 141: 95: 73: 5276:
Alling (1987, §6.23, (3) and (4) (pp. 218–219))
5446:Foundations of Analysis over Surreal Number Fields 5152: 5078: 5043: 5021: 4993: 4962: 4898: 4854: 4830: 4786: 4754:is the algebraic closure of the finite field with 4726: 4699: 4603: 4540: 4435: 4339: 4319: 4293: 4247: 4216: 4196: 4174: 4151: 4115: 4084: 4048: 3944: 3864: 3814: 3765: 3610: 3493: 3374: 3293: 3170: 3124: 3098: 3041: 2986: 2940: 2881: 2835: 2815: 2756: 2736: 2716: 2662: 2611: 2546: 2500: 2476: 2452: 2432: 2412: 2362: 2339: 2293: 2254: 2234: 2214: 2187: 2136: 2097: 2047: 2023: 1995: 1877: 1831: 1767: 1747: 1719: 1669: 1649: 1629: 1601: 1547: 1523: 1503: 1476: 1434: 1414: 1381: 1352: 1290: 1248: 1219: 1152: 1054: 945: 903: 865: 827: 785: 733: 613: 523: 464: 394: 331: 295: 233: 213: 193: 173: 103: 81: 5591:Transactions of the American Mathematical Society 5561:(2001), "Operators on generalized power series", 4419: 4413: 4356: 3375:{\displaystyle (f_{i})_{i\in I},(g_{i})_{i\in I}} 2035:(but not necessarily of characteristic zero) and 1264: 5613: 5502:Proceedings of the American Mathematical Society 5381:"The universality of formal power series fields" 5153:{\displaystyle T_{n+1}=\mathbb {R} \left\right]} 4059: 2777:One can define a notion of summable families in 1353:{\displaystyle f=\sum _{e\in \Gamma }c_{e}T^{e}} 524:{\displaystyle g=\sum _{e\in \Gamma }d_{e}T^{e}} 465:{\displaystyle f=\sum _{e\in \Gamma }c_{e}T^{e}} 296:{\displaystyle f=\sum _{e\in \Gamma }c_{e}T^{e}} 5557: 5210:, Duke Mathematical Journal, vol. 1, n°2, 1942. 2420:is totally ordered by making the indeterminate 1178:, then this Hahn series satisfies the equation 4700:{\displaystyle \sum _{e\in \Gamma }c_{e}p^{e}} 5386:Bulletin of the American Mathematical Society 5267:Alling (1987, theorem of §6.55 (p. 246)) 4027: 3961: 1748:{\displaystyle \Gamma \subseteq \mathbb {R} } 3093: 3056: 2663:{\displaystyle \{e\in \Gamma :c_{e}\neq 0\}} 2657: 2626: 389: 358: 3171:{\displaystyle \sum \limits _{i\in I}f_{i}} 59:so long as the set supporting them forms a 4347:is strictly positive. Indeed, the family 2301:in positive characteristic as a subset of 5603: 5576: 5541: 5514: 5414: 5398: 5113: 5072: 5037: 5015: 4948: 4932: 4884: 4774: 4483: 4427: 4190: 4078: 4040: 3936: 3848: 3830: 2173: 1741: 97: 75: 47:in 1907 (and then further generalized by 3865:{\displaystyle \mathbb {Q} \left\right]} 5584: 5522: 5495: 5375: 5258:Alling (1987, §6.23, (2) (p. 218)) 4750:is the group of rationals or reals and 3382:are summable, then so are the families 2619:consisting of series whose support set 2006: 119:and then studied by him in relation to 5614: 5470: 5443: 5197:Neumann (1949), Lemmas (3.2) and (3.3) 2941:{\displaystyle f_{i}\in K\left\right]} 2772: 2464:on the coefficients of the series. If 5588:(1949), "On ordered division rings", 5474:(1993), "Maximally complete fields", 4443:is always summable, so we can define 4204:, then we can evaluate every element 5359: 5337: 2767: 4614: 4548:. This defines a ring homomorphism 4472: 3967: 3218: 3143: 3002: 2105:is algebraically closed. Thus, the 16:Mathematical formal infinite series 13: 5420:"Maximal fields with valuations I" 5079:{\displaystyle T_{0}=\mathbb {R} } 4672: 4654:) would be the set of formal sums 4588: 4558: 4278: 4248:{\displaystyle {\mathcal {A}}_{a}} 4234: 4116:{\displaystyle {\mathcal {A}}_{a}} 4102: 3799: 3228: 3119: 3036: 2925: 2800: 2751: 2701: 2635: 2596: 2531: 2495: 2397: 2324: 2082: 2042: 1862: 1734: 1704: 1644: 1579: 1498: 1463: 1376: 1325: 654: 567: 496: 437: 367: 268: 228: 158: 14: 5638: 5605:10.1090/S0002-9947-1949-0032593-5 5051:resembles (but is not literally) 4085:{\displaystyle a\in \mathbb {R} } 2573:, one can consider the subset of 2460:) or, equivalently, by using the 1889:. However, unlike in the case of 4787:{\displaystyle \mathbb {C} _{p}} 4746:is the group of integers). When 2987:{\displaystyle (f_{i})_{i\in I}} 2882:{\displaystyle (f_{i})_{i\in I}} 2188:{\displaystyle {\overline {K}}]} 786:{\displaystyle \sum _{e'+e''=e}} 39:(themselves a generalization of 5564:Illinois Journal of Mathematics 5400:10.1090/s0002-9904-1939-07110-3 5319: 5310: 5297: 5288: 5279: 2215:{\displaystyle {\overline {K}}} 1832:{\displaystyle |f|=\exp(-v(f))} 43:) and were first introduced by 35:. They are a generalization of 5270: 5261: 5252: 5239: 5226: 5213: 5200: 5191: 5182: 4957: 4954: 4939: 4936: 4893: 4890: 4875: 4872: 4825: 4822: 4816: 4813: 4569: 4514: 4508: 4503: 4497: 4465: 4453: 4386: 4380: 4375: 4369: 4320:{\displaystyle a+\varepsilon } 3925: 3879: 3648: 3636: 3474: 3462: 3458: 3434: 3416: 3389: 3357: 3343: 3325: 3311: 3270: 3264: 3049:is well-ordered, and each set 2969: 2955: 2864: 2850: 2288: 2285: 2279: 2276: 2182: 2179: 2164: 2161: 2131: 2128: 2122: 2119: 1826: 1823: 1817: 1808: 1795: 1787: 1596: 1587: 1584: 1571: 1568: 1562: 1555:has characteristic zero, then 1535:the terminology). In fact, if 1471: 1468: 1455: 1452: 1285: 1279: 1265:Properties of the valued field 1243: 1237: 1220:{\displaystyle X^{p}-X=T^{-1}} 822: 800: 598: 572: 126: 1: 5516:10.1090/S0002-9939-01-06001-4 5438:10.1215/s0012-7094-42-00922-0 5331: 5208:Maximal fields with valuation 4963:{\displaystyle \mathbb {R} ]} 4794:or its spherical completion. 4294:{\displaystyle K\left\right]} 4060:Evaluating analytic functions 3952:is summable but the sequence 3815:{\displaystyle K\left\right]} 2816:{\displaystyle K\left\right]} 2717:{\displaystyle K\left\right]} 2612:{\displaystyle K\left\right]} 2547:{\displaystyle K\left\right]} 2413:{\displaystyle K\left\right]} 2340:{\displaystyle K\left\right]} 2098:{\displaystyle K\left\right]} 1878:{\displaystyle K\left\right]} 1720:{\displaystyle K\left\right]} 1259: 1163:is well-ordered; it is not a 904:{\displaystyle d_{e''}\neq 0} 174:{\displaystyle K\left\right]} 5223:, definition on p. 303) 5044:{\displaystyle \mathbb {T} } 5022:{\displaystyle \mathbb {T} } 4340:{\displaystyle \varepsilon } 4197:{\displaystyle \mathbb {R} } 3125:{\displaystyle e\in \Gamma } 2222:is the algebraic closure of 2207: 2156: 1382:{\displaystyle e\in \Gamma } 866:{\displaystyle c_{e'}\neq 0} 104:{\displaystyle \mathbb {R} } 82:{\displaystyle \mathbb {Q} } 7: 5477:L'Enseignement mathĂ©matique 5164: 4797: 4736:TeichmĂĽller representatives 3135:We may then define the sum 2889:is a family of Hahn series 1415:{\displaystyle c_{e}\neq 0} 1363:is defined as the smallest 29:Hahn–Mal'cev–Neumann series 10: 5643: 5444:Alling, Norman L. (1987). 5236:, theorem 1 (p. 889)) 1298:of a non-zero Hahn series 332:{\displaystyle c_{e}\in K} 5586:Neumann, Bernhard Hermann 5425:Duke Mathematical Journal 5365:Gesammelte Abhandlungen I 4327:, where the valuation of 1897:converge: in the case of 410:. The sum and product of 27:(sometimes also known as 5529:Journal of Number Theory 5176: 1839:, with respect to which 1227:so it is algebraic over 946:{\displaystyle e'+e''=e} 828:{\displaystyle (e',e'')} 744:(in the latter, the sum 121:Hilbert's second problem 5524:Kedlaya, Kiran Sridhara 5497:Kedlaya, Kiran Sridhara 2994:is summable if the set 2757:{\displaystyle \Gamma } 2501:{\displaystyle \Gamma } 2048:{\displaystyle \Gamma } 1650:{\displaystyle \Gamma } 1504:{\displaystyle \Gamma } 234:{\displaystyle \Gamma } 5578:10.1215/ijm/1258138061 5559:Hoeven, van der, Joris 5552:10.1006/jnth.2000.2630 5247:Proc. Amer. Math. Soc. 5234:Bull. Amer. Math. Soc. 5154: 5080: 5045: 5023: 4995: 4964: 4900: 4856: 4832: 4831:{\displaystyle K((T))} 4788: 4728: 4701: 4635:: for example, over a 4605: 4542: 4437: 4341: 4321: 4295: 4249: 4218: 4198: 4176: 4153: 4117: 4086: 4050: 3946: 3866: 3816: 3767: 3612: 3495: 3376: 3295: 3172: 3126: 3100: 3043: 2988: 2942: 2883: 2837: 2817: 2758: 2738: 2718: 2664: 2613: 2548: 2502: 2478: 2454: 2434: 2414: 2364: 2341: 2295: 2294:{\displaystyle K((T))} 2256: 2236: 2216: 2189: 2138: 2137:{\displaystyle K((T))} 2099: 2049: 2025: 1997: 1879: 1833: 1769: 1749: 1721: 1671: 1651: 1631: 1603: 1602:{\displaystyle (K],v)} 1549: 1525: 1505: 1478: 1436: 1416: 1383: 1354: 1292: 1250: 1221: 1154: 1056: 947: 905: 867: 829: 787: 735: 615: 525: 466: 396: 339:such that the support 333: 297: 235: 215: 195: 181:(in the indeterminate 175: 117:Hahn embedding theorem 105: 83: 33:formal infinite series 5155: 5081: 5046: 5024: 4996: 4994:{\displaystyle c_{q}} 4965: 4920:can be regarded as a 4901: 4857: 4840:formal Laurent series 4833: 4789: 4729: 4727:{\displaystyle c_{e}} 4702: 4606: 4543: 4438: 4342: 4322: 4296: 4250: 4219: 4199: 4177: 4154: 4118: 4087: 4051: 3947: 3867: 3817: 3768: 3613: 3496: 3377: 3296: 3173: 3127: 3101: 3044: 2989: 2943: 2884: 2838: 2818: 2759: 2739: 2719: 2674:(strictly) less than 2665: 2614: 2549: 2503: 2479: 2455: 2435: 2415: 2365: 2342: 2296: 2257: 2237: 2217: 2190: 2139: 2100: 2050: 2026: 1998: 1891:formal Laurent series 1887:complete metric space 1880: 1834: 1770: 1750: 1722: 1672: 1652: 1632: 1604: 1550: 1526: 1506: 1479: 1437: 1417: 1384: 1355: 1293: 1251: 1222: 1155: 1057: 948: 906: 868: 830: 788: 736: 616: 526: 467: 397: 334: 298: 236: 221:and with value group 216: 196: 176: 106: 84: 5285:Joris van der Hoeven 5090: 5055: 5033: 5011: 4978: 4928: 4866: 4862:can be described as 4846: 4807: 4769: 4738:(of the elements of 4711: 4658: 4552: 4447: 4351: 4331: 4305: 4259: 4255:at every element of 4228: 4208: 4186: 4166: 4143: 4096: 4068: 3956: 3876: 3826: 3780: 3628: 3508: 3386: 3308: 3185: 3139: 3110: 3053: 2998: 2952: 2893: 2847: 2827: 2781: 2748: 2728: 2682: 2623: 2577: 2512: 2492: 2468: 2444: 2424: 2378: 2354: 2305: 2270: 2246: 2226: 2199: 2148: 2113: 2063: 2039: 2033:algebraically closed 2015: 2007:Algebraic properties 1901: 1843: 1783: 1759: 1731: 1685: 1661: 1641: 1621: 1559: 1539: 1515: 1495: 1486:spherically complete 1446: 1426: 1393: 1367: 1305: 1291:{\displaystyle v(f)} 1273: 1249:{\displaystyle K(T)} 1231: 1182: 1072: 960: 915: 877: 839: 797: 748: 631: 541: 476: 417: 343: 310: 248: 225: 205: 185: 139: 93: 71: 5627:Mathematical series 5622:Commutative algebra 5206:Kaplansky, Irving, 4629:twisted Hahn series 4056:does not converge. 3822:. For instance, in 3178:as the Hahn series 2948:, then we say that 2462:lexicographic order 41:formal power series 5150: 5076: 5041: 5019: 4991: 4960: 4899:{\displaystyle K]} 4896: 4852: 4828: 4784: 4724: 4697: 4676: 4642:of characteristic 4601: 4538: 4488: 4433: 4337: 4317: 4291: 4245: 4214: 4194: 4172: 4149: 4113: 4082: 4046: 3981: 3942: 3862: 3812: 3763: 3744: 3708: 3664: 3608: 3597: 3568: 3526: 3491: 3372: 3291: 3253: 3232: 3203: 3168: 3157: 3122: 3096: 3039: 3016: 2984: 2938: 2879: 2833: 2813: 2754: 2734: 2714: 2660: 2609: 2544: 2508:is divisible then 2498: 2474: 2450: 2430: 2410: 2360: 2337: 2291: 2252: 2232: 2212: 2185: 2134: 2095: 2045: 2021: 1993: 1875: 1829: 1775:corresponds to an 1765: 1745: 1717: 1667: 1647: 1627: 1599: 1545: 1521: 1511:and residue field 1501: 1477:{\displaystyle K]} 1474: 1432: 1412: 1379: 1350: 1329: 1288: 1246: 1217: 1150: 1052: 943: 901: 863: 825: 783: 782: 731: 690: 658: 611: 571: 521: 500: 462: 441: 392: 329: 293: 272: 231: 211: 191: 171: 101: 79: 5509:(12): 3461–3470, 5416:Kaplansky, Irving 5377:MacLane, Saunders 5219:Kaplansky (1942, 4918:Levi-Civita field 4855:{\displaystyle K} 4661: 4623:(at least over a 4526: 4471: 4398: 4217:{\displaystyle f} 4175:{\displaystyle K} 4152:{\displaystyle a} 4002: 3966: 3902: 3729: 3693: 3631: 3582: 3553: 3511: 3238: 3217: 3188: 3142: 3001: 2836:{\displaystyle I} 2773:Summable families 2768:Summable families 2737:{\displaystyle K} 2477:{\displaystyle K} 2453:{\displaystyle K} 2433:{\displaystyle T} 2363:{\displaystyle K} 2255:{\displaystyle K} 2235:{\displaystyle K} 2210: 2159: 2107:algebraic closure 2024:{\displaystyle K} 1768:{\displaystyle v} 1670:{\displaystyle v} 1630:{\displaystyle K} 1548:{\displaystyle K} 1524:{\displaystyle K} 1491:with value group 1435:{\displaystyle f} 1314: 1137: 1114: 1091: 751: 659: 643: 556: 485: 426: 257: 214:{\displaystyle K} 194:{\displaystyle T} 5634: 5608: 5607: 5581: 5580: 5554: 5545: 5519: 5518: 5492: 5467: 5440: 5411: 5402: 5371: 5357: 5326: 5323: 5317: 5314: 5308: 5305:J. Number Theory 5301: 5295: 5292: 5286: 5283: 5277: 5274: 5268: 5265: 5259: 5256: 5250: 5243: 5237: 5230: 5224: 5217: 5211: 5204: 5198: 5195: 5189: 5186: 5159: 5157: 5156: 5151: 5149: 5145: 5141: 5140: 5139: 5138: 5116: 5108: 5107: 5085: 5083: 5082: 5077: 5075: 5067: 5066: 5050: 5048: 5047: 5042: 5040: 5028: 5026: 5025: 5020: 5018: 5000: 4998: 4997: 4992: 4990: 4989: 4969: 4967: 4966: 4961: 4953: 4952: 4951: 4935: 4905: 4903: 4902: 4897: 4889: 4888: 4887: 4861: 4859: 4858: 4853: 4837: 4835: 4834: 4829: 4793: 4791: 4790: 4785: 4783: 4782: 4777: 4733: 4731: 4730: 4725: 4723: 4722: 4706: 4704: 4703: 4698: 4696: 4695: 4686: 4685: 4675: 4650:(containing the 4633:Hahn–Witt series 4615:Hahn–Witt series 4610: 4608: 4607: 4602: 4600: 4596: 4592: 4591: 4568: 4567: 4562: 4561: 4547: 4545: 4544: 4539: 4537: 4536: 4527: 4525: 4517: 4507: 4506: 4490: 4487: 4486: 4442: 4440: 4439: 4434: 4432: 4431: 4430: 4417: 4416: 4409: 4408: 4399: 4397: 4389: 4379: 4378: 4362: 4360: 4359: 4346: 4344: 4343: 4338: 4326: 4324: 4323: 4318: 4300: 4298: 4297: 4292: 4290: 4286: 4282: 4281: 4254: 4252: 4251: 4246: 4244: 4243: 4238: 4237: 4223: 4221: 4220: 4215: 4203: 4201: 4200: 4195: 4193: 4181: 4179: 4178: 4173: 4158: 4156: 4155: 4150: 4122: 4120: 4119: 4114: 4112: 4111: 4106: 4105: 4091: 4089: 4088: 4083: 4081: 4055: 4053: 4052: 4047: 4045: 4044: 4043: 4031: 4030: 4023: 4022: 4004: 4003: 4001: 3987: 3980: 3965: 3964: 3951: 3949: 3948: 3943: 3941: 3940: 3939: 3923: 3922: 3904: 3903: 3901: 3887: 3871: 3869: 3868: 3863: 3861: 3857: 3853: 3852: 3851: 3833: 3821: 3819: 3818: 3813: 3811: 3807: 3803: 3802: 3772: 3770: 3769: 3764: 3759: 3755: 3754: 3753: 3743: 3723: 3719: 3718: 3717: 3707: 3684: 3683: 3674: 3673: 3663: 3617: 3615: 3614: 3609: 3607: 3606: 3596: 3578: 3577: 3567: 3549: 3548: 3536: 3535: 3525: 3500: 3498: 3497: 3492: 3490: 3489: 3456: 3455: 3446: 3445: 3430: 3429: 3414: 3413: 3401: 3400: 3381: 3379: 3378: 3373: 3371: 3370: 3355: 3354: 3339: 3338: 3323: 3322: 3300: 3298: 3297: 3292: 3287: 3286: 3277: 3273: 3263: 3262: 3252: 3231: 3213: 3212: 3202: 3177: 3175: 3174: 3169: 3167: 3166: 3156: 3131: 3129: 3128: 3123: 3105: 3103: 3102: 3097: 3092: 3091: 3048: 3046: 3045: 3040: 3032: 3031: 3015: 2993: 2991: 2990: 2985: 2983: 2982: 2967: 2966: 2947: 2945: 2944: 2939: 2937: 2933: 2929: 2928: 2905: 2904: 2888: 2886: 2885: 2880: 2878: 2877: 2862: 2861: 2842: 2840: 2839: 2834: 2822: 2820: 2819: 2814: 2812: 2808: 2804: 2803: 2763: 2761: 2760: 2755: 2743: 2741: 2740: 2735: 2723: 2721: 2720: 2715: 2713: 2709: 2705: 2704: 2669: 2667: 2666: 2661: 2650: 2649: 2618: 2616: 2615: 2610: 2608: 2604: 2600: 2599: 2571:regular cardinal 2553: 2551: 2550: 2545: 2543: 2539: 2535: 2534: 2507: 2505: 2504: 2499: 2483: 2481: 2480: 2475: 2459: 2457: 2456: 2451: 2439: 2437: 2436: 2431: 2419: 2417: 2416: 2411: 2409: 2405: 2401: 2400: 2369: 2367: 2366: 2361: 2346: 2344: 2343: 2338: 2336: 2332: 2328: 2327: 2300: 2298: 2297: 2292: 2261: 2259: 2258: 2253: 2241: 2239: 2238: 2233: 2221: 2219: 2218: 2213: 2211: 2203: 2194: 2192: 2191: 2186: 2178: 2177: 2176: 2160: 2152: 2144:is contained in 2143: 2141: 2140: 2135: 2104: 2102: 2101: 2096: 2094: 2090: 2086: 2085: 2054: 2052: 2051: 2046: 2030: 2028: 2027: 2022: 2002: 2000: 1999: 1994: 1986: 1985: 1984: 1983: 1974: 1955: 1954: 1953: 1952: 1943: 1924: 1923: 1919: 1884: 1882: 1881: 1876: 1874: 1870: 1866: 1865: 1838: 1836: 1835: 1830: 1798: 1790: 1774: 1772: 1771: 1766: 1754: 1752: 1751: 1746: 1744: 1726: 1724: 1723: 1718: 1716: 1712: 1708: 1707: 1676: 1674: 1673: 1668: 1657:. The valuation 1656: 1654: 1653: 1648: 1637:and value group 1636: 1634: 1633: 1628: 1608: 1606: 1605: 1600: 1583: 1582: 1554: 1552: 1551: 1546: 1530: 1528: 1527: 1522: 1510: 1508: 1507: 1502: 1483: 1481: 1480: 1475: 1467: 1466: 1441: 1439: 1438: 1433: 1421: 1419: 1418: 1413: 1405: 1404: 1388: 1386: 1385: 1380: 1359: 1357: 1356: 1351: 1349: 1348: 1339: 1338: 1328: 1297: 1295: 1294: 1289: 1255: 1253: 1252: 1247: 1226: 1224: 1223: 1218: 1216: 1215: 1194: 1193: 1159: 1157: 1156: 1151: 1149: 1145: 1138: 1136: 1135: 1123: 1115: 1113: 1112: 1100: 1092: 1084: 1061: 1059: 1058: 1053: 1045: 1044: 1043: 1042: 1033: 1014: 1013: 1012: 1011: 1002: 983: 982: 978: 952: 950: 949: 944: 936: 925: 910: 908: 907: 902: 894: 893: 892: 872: 870: 869: 864: 856: 855: 854: 834: 832: 831: 826: 821: 810: 792: 790: 789: 784: 781: 774: 763: 740: 738: 737: 732: 730: 729: 720: 719: 718: 705: 704: 703: 689: 682: 671: 657: 620: 618: 617: 612: 610: 609: 597: 596: 584: 583: 570: 530: 528: 527: 522: 520: 519: 510: 509: 499: 471: 469: 468: 463: 461: 460: 451: 450: 440: 401: 399: 398: 393: 382: 381: 338: 336: 335: 330: 322: 321: 302: 300: 299: 294: 292: 291: 282: 281: 271: 240: 238: 237: 232: 220: 218: 217: 212: 200: 198: 197: 192: 180: 178: 177: 172: 170: 166: 162: 161: 110: 108: 107: 102: 100: 88: 86: 85: 80: 78: 53:Bernhard Neumann 31:) are a type of 5642: 5641: 5637: 5636: 5635: 5633: 5632: 5631: 5612: 5611: 5456: 5393:(12): 888–890, 5369:Springer-Verlag 5358:(reprinted in: 5334: 5329: 5324: 5320: 5315: 5311: 5303:Kedlaya (2001, 5302: 5298: 5293: 5289: 5284: 5280: 5275: 5271: 5266: 5262: 5257: 5253: 5245:Kedlaya (2001, 5244: 5240: 5232:MacLane (1939, 5231: 5227: 5218: 5214: 5205: 5201: 5196: 5192: 5187: 5183: 5179: 5171:Rational series 5167: 5134: 5130: 5129: 5125: 5121: 5117: 5112: 5097: 5093: 5091: 5088: 5087: 5071: 5062: 5058: 5056: 5053: 5052: 5036: 5034: 5031: 5030: 5014: 5012: 5009: 5008: 4985: 4981: 4979: 4976: 4975: 4972:left-finite set 4947: 4946: 4942: 4931: 4929: 4926: 4925: 4911:surreal numbers 4883: 4882: 4878: 4867: 4864: 4863: 4847: 4844: 4843: 4808: 4805: 4804: 4800: 4778: 4773: 4772: 4770: 4767: 4766: 4718: 4714: 4712: 4709: 4708: 4691: 4687: 4681: 4677: 4665: 4659: 4656: 4655: 4617: 4587: 4583: 4579: 4575: 4563: 4557: 4556: 4555: 4553: 4550: 4549: 4532: 4528: 4518: 4496: 4492: 4491: 4489: 4482: 4475: 4448: 4445: 4444: 4426: 4418: 4412: 4411: 4410: 4404: 4400: 4390: 4368: 4364: 4363: 4361: 4355: 4354: 4352: 4349: 4348: 4332: 4329: 4328: 4306: 4303: 4302: 4277: 4273: 4269: 4265: 4260: 4257: 4256: 4239: 4233: 4232: 4231: 4229: 4226: 4225: 4209: 4206: 4205: 4189: 4187: 4184: 4183: 4167: 4164: 4163: 4144: 4141: 4140: 4127:of real-valued 4107: 4101: 4100: 4099: 4097: 4094: 4093: 4077: 4069: 4066: 4065: 4062: 4039: 4032: 4026: 4025: 4024: 4012: 4008: 3991: 3986: 3982: 3970: 3960: 3959: 3957: 3954: 3953: 3935: 3928: 3924: 3912: 3908: 3891: 3886: 3882: 3877: 3874: 3873: 3847: 3846: 3842: 3838: 3834: 3829: 3827: 3824: 3823: 3798: 3794: 3790: 3786: 3781: 3778: 3777: 3749: 3745: 3733: 3728: 3724: 3713: 3709: 3697: 3692: 3688: 3679: 3675: 3669: 3665: 3635: 3629: 3626: 3625: 3602: 3598: 3586: 3573: 3569: 3557: 3544: 3540: 3531: 3527: 3515: 3509: 3506: 3505: 3461: 3457: 3451: 3447: 3441: 3437: 3419: 3415: 3409: 3405: 3396: 3392: 3387: 3384: 3383: 3360: 3356: 3350: 3346: 3328: 3324: 3318: 3314: 3309: 3306: 3305: 3282: 3278: 3258: 3254: 3242: 3237: 3233: 3221: 3208: 3204: 3192: 3186: 3183: 3182: 3162: 3158: 3146: 3140: 3137: 3136: 3111: 3108: 3107: 3087: 3083: 3054: 3051: 3050: 3027: 3023: 3005: 2999: 2996: 2995: 2972: 2968: 2962: 2958: 2953: 2950: 2949: 2924: 2920: 2916: 2912: 2900: 2896: 2894: 2891: 2890: 2867: 2863: 2857: 2853: 2848: 2845: 2844: 2828: 2825: 2824: 2799: 2795: 2791: 2787: 2782: 2779: 2778: 2775: 2770: 2749: 2746: 2745: 2729: 2726: 2725: 2700: 2696: 2692: 2688: 2683: 2680: 2679: 2645: 2641: 2624: 2621: 2620: 2595: 2591: 2587: 2583: 2578: 2575: 2574: 2569:is an infinite 2556:surreal numbers 2530: 2526: 2522: 2518: 2513: 2510: 2509: 2493: 2490: 2489: 2469: 2466: 2465: 2445: 2442: 2441: 2425: 2422: 2421: 2396: 2392: 2388: 2384: 2379: 2376: 2375: 2355: 2352: 2351: 2323: 2319: 2315: 2311: 2306: 2303: 2302: 2271: 2268: 2267: 2247: 2244: 2243: 2227: 2224: 2223: 2202: 2200: 2197: 2196: 2172: 2171: 2167: 2151: 2149: 2146: 2145: 2114: 2111: 2110: 2081: 2077: 2073: 2069: 2064: 2061: 2060: 2040: 2037: 2036: 2016: 2013: 2012: 2009: 1979: 1975: 1970: 1963: 1959: 1948: 1944: 1939: 1932: 1928: 1915: 1908: 1904: 1902: 1899: 1898: 1861: 1857: 1853: 1849: 1844: 1841: 1840: 1794: 1786: 1784: 1781: 1780: 1779:absolute value 1760: 1757: 1756: 1740: 1732: 1729: 1728: 1703: 1699: 1695: 1691: 1686: 1683: 1682: 1662: 1659: 1658: 1642: 1639: 1638: 1622: 1619: 1618: 1578: 1574: 1560: 1557: 1556: 1540: 1537: 1536: 1516: 1513: 1512: 1496: 1493: 1492: 1462: 1458: 1447: 1444: 1443: 1427: 1424: 1423: 1400: 1396: 1394: 1391: 1390: 1368: 1365: 1364: 1344: 1340: 1334: 1330: 1318: 1306: 1303: 1302: 1274: 1271: 1270: 1267: 1262: 1232: 1229: 1228: 1208: 1204: 1189: 1185: 1183: 1180: 1179: 1131: 1127: 1122: 1108: 1104: 1099: 1083: 1079: 1075: 1073: 1070: 1069: 1038: 1034: 1029: 1022: 1018: 1007: 1003: 998: 991: 987: 974: 967: 963: 961: 958: 957: 929: 918: 916: 913: 912: 885: 884: 880: 878: 875: 874: 847: 846: 842: 840: 837: 836: 814: 803: 798: 795: 794: 767: 756: 755: 749: 746: 745: 725: 721: 711: 710: 706: 696: 695: 691: 675: 664: 663: 647: 632: 629: 628: 605: 601: 592: 588: 579: 575: 560: 542: 539: 538: 515: 511: 505: 501: 489: 477: 474: 473: 456: 452: 446: 442: 430: 418: 415: 414: 377: 373: 344: 341: 340: 317: 313: 311: 308: 307: 287: 283: 277: 273: 261: 249: 246: 245: 226: 223: 222: 206: 203: 202: 201:) over a field 186: 183: 182: 157: 153: 149: 145: 140: 137: 136: 135:of Hahn series 129: 96: 94: 91: 90: 74: 72: 69: 68: 49:Anatoly Maltsev 17: 12: 11: 5: 5640: 5630: 5629: 5624: 5610: 5609: 5582: 5555: 5520: 5493: 5468: 5454: 5441: 5432:(2): 303–321, 5412: 5373: 5333: 5330: 5328: 5327: 5318: 5309: 5296: 5287: 5278: 5269: 5260: 5251: 5238: 5225: 5212: 5199: 5190: 5180: 5178: 5175: 5174: 5173: 5166: 5163: 5162: 5161: 5148: 5144: 5137: 5133: 5128: 5124: 5120: 5115: 5111: 5106: 5103: 5100: 5096: 5074: 5070: 5065: 5061: 5039: 5017: 5002: 4988: 4984: 4959: 4956: 4950: 4945: 4941: 4938: 4934: 4914: 4907: 4895: 4892: 4886: 4881: 4877: 4874: 4871: 4851: 4827: 4824: 4821: 4818: 4815: 4812: 4799: 4796: 4781: 4776: 4721: 4717: 4694: 4690: 4684: 4680: 4674: 4671: 4668: 4664: 4616: 4613: 4599: 4595: 4590: 4586: 4582: 4578: 4574: 4571: 4566: 4560: 4535: 4531: 4524: 4521: 4516: 4513: 4510: 4505: 4502: 4499: 4495: 4485: 4481: 4478: 4474: 4470: 4467: 4464: 4461: 4458: 4455: 4452: 4429: 4425: 4422: 4415: 4407: 4403: 4396: 4393: 4388: 4385: 4382: 4377: 4374: 4371: 4367: 4358: 4336: 4316: 4313: 4310: 4289: 4285: 4280: 4276: 4272: 4268: 4264: 4242: 4236: 4213: 4192: 4171: 4148: 4110: 4104: 4080: 4076: 4073: 4061: 4058: 4042: 4038: 4035: 4029: 4021: 4018: 4015: 4011: 4007: 4000: 3997: 3994: 3990: 3985: 3979: 3976: 3973: 3969: 3963: 3938: 3934: 3931: 3927: 3921: 3918: 3915: 3911: 3907: 3900: 3897: 3894: 3890: 3885: 3881: 3860: 3856: 3850: 3845: 3841: 3837: 3832: 3810: 3806: 3801: 3797: 3793: 3789: 3785: 3774: 3773: 3762: 3758: 3752: 3748: 3742: 3739: 3736: 3732: 3727: 3722: 3716: 3712: 3706: 3703: 3700: 3696: 3691: 3687: 3682: 3678: 3672: 3668: 3662: 3659: 3656: 3653: 3650: 3647: 3644: 3641: 3638: 3634: 3619: 3618: 3605: 3601: 3595: 3592: 3589: 3585: 3581: 3576: 3572: 3566: 3563: 3560: 3556: 3552: 3547: 3543: 3539: 3534: 3530: 3524: 3521: 3518: 3514: 3501:, and we have 3488: 3485: 3482: 3479: 3476: 3473: 3470: 3467: 3464: 3460: 3454: 3450: 3444: 3440: 3436: 3433: 3428: 3425: 3422: 3418: 3412: 3408: 3404: 3399: 3395: 3391: 3369: 3366: 3363: 3359: 3353: 3349: 3345: 3342: 3337: 3334: 3331: 3327: 3321: 3317: 3313: 3302: 3301: 3290: 3285: 3281: 3276: 3272: 3269: 3266: 3261: 3257: 3251: 3248: 3245: 3241: 3236: 3230: 3227: 3224: 3220: 3216: 3211: 3207: 3201: 3198: 3195: 3191: 3165: 3161: 3155: 3152: 3149: 3145: 3121: 3118: 3115: 3095: 3090: 3086: 3082: 3079: 3076: 3073: 3070: 3067: 3064: 3061: 3058: 3038: 3035: 3030: 3026: 3022: 3019: 3014: 3011: 3008: 3004: 2981: 2978: 2975: 2971: 2965: 2961: 2957: 2936: 2932: 2927: 2923: 2919: 2915: 2911: 2908: 2903: 2899: 2876: 2873: 2870: 2866: 2860: 2856: 2852: 2832: 2811: 2807: 2802: 2798: 2794: 2790: 2786: 2774: 2771: 2769: 2766: 2764:is divisible. 2753: 2733: 2712: 2708: 2703: 2699: 2695: 2691: 2687: 2659: 2656: 2653: 2648: 2644: 2640: 2637: 2634: 2631: 2628: 2607: 2603: 2598: 2594: 2590: 2586: 2582: 2542: 2538: 2533: 2529: 2525: 2521: 2517: 2497: 2473: 2449: 2429: 2408: 2404: 2399: 2395: 2391: 2387: 2383: 2359: 2335: 2331: 2326: 2322: 2318: 2314: 2310: 2290: 2287: 2284: 2281: 2278: 2275: 2264:Puiseux series 2251: 2231: 2209: 2206: 2184: 2181: 2175: 2170: 2166: 2163: 2158: 2155: 2133: 2130: 2127: 2124: 2121: 2118: 2093: 2089: 2084: 2080: 2076: 2072: 2068: 2044: 2020: 2008: 2005: 1992: 1989: 1982: 1978: 1973: 1969: 1966: 1962: 1958: 1951: 1947: 1942: 1938: 1935: 1931: 1927: 1922: 1918: 1914: 1911: 1907: 1873: 1869: 1864: 1860: 1856: 1852: 1848: 1828: 1825: 1822: 1819: 1816: 1813: 1810: 1807: 1804: 1801: 1797: 1793: 1789: 1764: 1743: 1739: 1736: 1715: 1711: 1706: 1702: 1698: 1694: 1690: 1666: 1646: 1626: 1598: 1595: 1592: 1589: 1586: 1581: 1577: 1573: 1570: 1567: 1564: 1544: 1520: 1500: 1473: 1470: 1465: 1461: 1457: 1454: 1451: 1442:): this makes 1431: 1411: 1408: 1403: 1399: 1378: 1375: 1372: 1361: 1360: 1347: 1343: 1337: 1333: 1327: 1324: 1321: 1317: 1313: 1310: 1287: 1284: 1281: 1278: 1269:The valuation 1266: 1263: 1261: 1258: 1245: 1242: 1239: 1236: 1214: 1211: 1207: 1203: 1200: 1197: 1192: 1188: 1173:characteristic 1165:Puiseux series 1161: 1160: 1148: 1144: 1141: 1134: 1130: 1126: 1121: 1118: 1111: 1107: 1103: 1098: 1095: 1090: 1087: 1082: 1078: 1051: 1048: 1041: 1037: 1032: 1028: 1025: 1021: 1017: 1010: 1006: 1001: 997: 994: 990: 986: 981: 977: 973: 970: 966: 942: 939: 935: 932: 928: 924: 921: 900: 897: 891: 888: 883: 862: 859: 853: 850: 845: 824: 820: 817: 813: 809: 806: 802: 780: 777: 773: 770: 766: 762: 759: 754: 742: 741: 728: 724: 717: 714: 709: 702: 699: 694: 688: 685: 681: 678: 674: 670: 667: 662: 656: 653: 650: 646: 642: 639: 636: 622: 621: 608: 604: 600: 595: 591: 587: 582: 578: 574: 569: 566: 563: 559: 555: 552: 549: 546: 532: 531: 518: 514: 508: 504: 498: 495: 492: 488: 484: 481: 459: 455: 449: 445: 439: 436: 433: 429: 425: 422: 391: 388: 385: 380: 376: 372: 369: 366: 363: 360: 357: 354: 351: 348: 328: 325: 320: 316: 304: 303: 290: 286: 280: 276: 270: 267: 264: 260: 256: 253: 230: 210: 190: 169: 165: 160: 156: 152: 148: 144: 128: 125: 99: 77: 63:subset of the 37:Puiseux series 15: 9: 6: 4: 3: 2: 5639: 5628: 5625: 5623: 5620: 5619: 5617: 5606: 5601: 5597: 5593: 5592: 5587: 5583: 5579: 5574: 5570: 5566: 5565: 5560: 5556: 5553: 5549: 5544: 5539: 5535: 5531: 5530: 5525: 5521: 5517: 5512: 5508: 5504: 5503: 5498: 5494: 5491: 5487: 5483: 5479: 5478: 5473: 5472:Poonen, Bjorn 5469: 5465: 5461: 5457: 5455:0-444-70226-1 5451: 5447: 5442: 5439: 5435: 5431: 5427: 5426: 5421: 5417: 5413: 5410: 5406: 5401: 5396: 5392: 5388: 5387: 5382: 5378: 5374: 5370: 5366: 5362: 5356: 5352: 5348: 5344: 5340: 5336: 5335: 5325:Alling (1987) 5322: 5316:Poonen (1993) 5313: 5306: 5300: 5291: 5282: 5273: 5264: 5255: 5248: 5242: 5235: 5229: 5222: 5221:Duke Math. J. 5216: 5209: 5203: 5194: 5185: 5181: 5172: 5169: 5168: 5146: 5142: 5135: 5131: 5126: 5122: 5118: 5109: 5104: 5101: 5098: 5094: 5068: 5063: 5059: 5007: 5004:The field of 5003: 4986: 4982: 4973: 4943: 4923: 4919: 4915: 4912: 4909:The field of 4908: 4879: 4869: 4849: 4841: 4819: 4810: 4802: 4801: 4795: 4779: 4764: 4762: 4757: 4753: 4749: 4745: 4741: 4737: 4719: 4715: 4692: 4688: 4682: 4678: 4669: 4666: 4662: 4653: 4649: 4645: 4641: 4638: 4634: 4630: 4626: 4625:perfect field 4622: 4612: 4597: 4593: 4584: 4580: 4576: 4572: 4564: 4533: 4529: 4522: 4519: 4511: 4500: 4493: 4479: 4476: 4468: 4462: 4459: 4456: 4450: 4423: 4420: 4405: 4401: 4394: 4391: 4383: 4372: 4365: 4334: 4314: 4311: 4308: 4287: 4283: 4274: 4270: 4266: 4262: 4240: 4211: 4169: 4160: 4146: 4138: 4134: 4130: 4126: 4108: 4074: 4071: 4057: 4036: 4033: 4019: 4016: 4013: 4009: 4005: 3998: 3995: 3992: 3988: 3983: 3977: 3974: 3971: 3932: 3929: 3919: 3916: 3913: 3909: 3905: 3898: 3895: 3892: 3888: 3883: 3872:, the family 3858: 3854: 3843: 3839: 3835: 3808: 3804: 3795: 3791: 3787: 3783: 3760: 3756: 3750: 3746: 3740: 3737: 3734: 3730: 3725: 3720: 3714: 3710: 3704: 3701: 3698: 3694: 3689: 3685: 3680: 3676: 3670: 3666: 3660: 3657: 3654: 3651: 3645: 3642: 3639: 3632: 3624: 3623: 3622: 3603: 3599: 3593: 3590: 3587: 3583: 3579: 3574: 3570: 3564: 3561: 3558: 3554: 3550: 3545: 3541: 3537: 3532: 3528: 3522: 3519: 3516: 3512: 3504: 3503: 3502: 3486: 3483: 3480: 3477: 3471: 3468: 3465: 3452: 3448: 3442: 3438: 3431: 3426: 3423: 3420: 3410: 3406: 3402: 3397: 3393: 3367: 3364: 3361: 3351: 3347: 3340: 3335: 3332: 3329: 3319: 3315: 3288: 3283: 3279: 3274: 3267: 3259: 3255: 3249: 3246: 3243: 3239: 3234: 3225: 3222: 3214: 3209: 3205: 3199: 3196: 3193: 3189: 3181: 3180: 3179: 3163: 3159: 3153: 3150: 3147: 3133: 3116: 3113: 3088: 3084: 3080: 3077: 3074: 3071: 3068: 3065: 3062: 3059: 3033: 3028: 3024: 3020: 3017: 3012: 3009: 3006: 2979: 2976: 2973: 2963: 2959: 2934: 2930: 2921: 2917: 2913: 2909: 2906: 2901: 2897: 2874: 2871: 2868: 2858: 2854: 2843:is a set and 2830: 2809: 2805: 2796: 2792: 2788: 2784: 2765: 2731: 2710: 2706: 2697: 2693: 2689: 2685: 2677: 2673: 2654: 2651: 2646: 2642: 2638: 2632: 2629: 2605: 2601: 2592: 2588: 2584: 2580: 2572: 2568: 2563: 2561: 2557: 2540: 2536: 2527: 2523: 2519: 2515: 2487: 2471: 2463: 2447: 2427: 2406: 2402: 2393: 2389: 2385: 2381: 2373: 2372:ordered field 2357: 2348: 2333: 2329: 2320: 2316: 2312: 2308: 2282: 2273: 2265: 2249: 2229: 2204: 2168: 2153: 2125: 2116: 2108: 2091: 2087: 2078: 2074: 2070: 2066: 2058: 2034: 2018: 2004: 1990: 1987: 1980: 1976: 1971: 1967: 1964: 1960: 1956: 1949: 1945: 1940: 1936: 1933: 1929: 1925: 1920: 1916: 1912: 1909: 1905: 1896: 1892: 1888: 1871: 1867: 1858: 1854: 1850: 1846: 1820: 1814: 1811: 1805: 1802: 1799: 1791: 1778: 1762: 1737: 1713: 1709: 1700: 1696: 1692: 1688: 1680: 1664: 1624: 1616: 1613:(non-unique) 1612: 1593: 1590: 1575: 1565: 1542: 1534: 1518: 1490: 1487: 1459: 1449: 1429: 1409: 1406: 1401: 1397: 1373: 1370: 1345: 1341: 1335: 1331: 1322: 1319: 1315: 1311: 1308: 1301: 1300: 1299: 1282: 1276: 1257: 1240: 1234: 1212: 1209: 1205: 1201: 1198: 1195: 1190: 1186: 1177: 1174: 1170: 1166: 1146: 1142: 1139: 1132: 1128: 1124: 1119: 1116: 1109: 1105: 1101: 1096: 1093: 1088: 1085: 1080: 1076: 1068: 1067: 1066: 1065: 1049: 1046: 1039: 1035: 1030: 1026: 1023: 1019: 1015: 1008: 1004: 999: 995: 992: 988: 984: 979: 975: 971: 968: 964: 956:For example, 954: 940: 937: 933: 930: 926: 922: 919: 898: 895: 889: 886: 881: 860: 857: 851: 848: 843: 818: 815: 811: 807: 804: 778: 775: 771: 768: 764: 760: 757: 752: 726: 722: 715: 712: 707: 700: 697: 692: 686: 683: 679: 676: 672: 668: 665: 660: 651: 648: 644: 640: 637: 634: 627: 626: 625: 606: 602: 593: 589: 585: 580: 576: 564: 561: 557: 553: 550: 547: 544: 537: 536: 535: 534:are given by 516: 512: 506: 502: 493: 490: 486: 482: 479: 457: 453: 447: 443: 434: 431: 427: 423: 420: 413: 412: 411: 409: 405: 386: 383: 378: 374: 370: 364: 361: 355: 352: 349: 346: 326: 323: 318: 314: 288: 284: 278: 274: 265: 262: 258: 254: 251: 244: 243: 242: 208: 188: 167: 163: 154: 150: 146: 142: 134: 124: 122: 118: 114: 66: 62: 58: 57:indeterminate 54: 50: 46: 42: 38: 34: 30: 26: 22: 5595: 5589: 5568: 5562: 5543:math/9906030 5533: 5527: 5506: 5500: 5481: 5475: 5445: 5429: 5423: 5390: 5384: 5364: 5346: 5342: 5321: 5312: 5304: 5299: 5290: 5281: 5272: 5263: 5254: 5246: 5241: 5233: 5228: 5220: 5215: 5207: 5202: 5193: 5184: 4760: 4755: 4751: 4747: 4743: 4739: 4647: 4643: 4639: 4637:finite field 4632: 4628: 4621:Witt vectors 4618: 4301:of the form 4161: 4137:neighborhood 4063: 3775: 3620: 3303: 3134: 2776: 2675: 2566: 2564: 2349: 2010: 1894: 1533:a posteriori 1532: 1531:(justifying 1489:valued field 1362: 1268: 1175: 1168: 1162: 955: 793:over values 743: 623: 533: 408:well-ordered 403: 305: 130: 61:well-ordered 28: 24: 18: 5598:: 202–252, 5536:: 324–339, 5349:: 601–655, 5188:Hahn (1907) 5006:transseries 4123:denote the 3132:is finite. 2672:cardinality 2486:real-closed 1777:ultrametric 1615:isomorphism 127:Formulation 67:(typically 65:value group 25:Hahn series 21:mathematics 5616:Categories 5490:0807.12006 5484:: 87–106, 5464:0621.12001 5409:0022.30401 5361:Hahn, Hans 5355:38.0501.01 5339:Hahn, Hans 5332:References 5001:is finite. 4803:The field 4707:where now 4627:) to form 4131:which are 2744:is so and 1677:defines a 1389:such that 1260:Properties 835:such that 5127:ε 4673:Γ 4670:∈ 4663:∑ 4589:Γ 4570:⟶ 4530:ε 4480:∈ 4473:∑ 4463:ε 4424:∈ 4402:ε 4335:ε 4315:ε 4279:Γ 4182:contains 4129:functions 4075:∈ 4037:∈ 3975:≤ 3968:∑ 3933:∈ 3800:Γ 3738:∈ 3731:∑ 3702:∈ 3695:∑ 3658:× 3652:∈ 3633:∑ 3591:∈ 3584:∑ 3562:∈ 3555:∑ 3520:∈ 3513:∑ 3484:× 3478:∈ 3424:∈ 3365:∈ 3333:∈ 3247:∈ 3240:∑ 3229:Γ 3226:∈ 3219:∑ 3197:∈ 3190:∑ 3151:∈ 3144:∑ 3120:Γ 3117:∈ 3081:⁡ 3075:∈ 3069:∣ 3063:∈ 3037:Γ 3034:⊂ 3021:⁡ 3010:∈ 3003:⋃ 2977:∈ 2926:Γ 2907:∈ 2872:∈ 2801:Γ 2752:Γ 2702:Γ 2652:≠ 2636:Γ 2633:∈ 2597:Γ 2532:Γ 2496:Γ 2398:Γ 2325:Γ 2208:¯ 2157:¯ 2083:Γ 2057:divisible 2043:Γ 1991:⋯ 1965:− 1934:− 1910:− 1863:Γ 1812:− 1806:⁡ 1738:⊆ 1735:Γ 1705:Γ 1645:Γ 1580:Γ 1499:Γ 1464:Γ 1407:≠ 1377:Γ 1374:∈ 1326:Γ 1323:∈ 1316:∑ 1210:− 1196:− 1143:… 1120:− 1097:− 1081:− 1064:rationals 1050:⋯ 1024:− 993:− 969:− 896:≠ 858:≠ 753:∑ 661:∑ 655:Γ 652:∈ 645:∑ 568:Γ 565:∈ 558:∑ 497:Γ 494:∈ 487:∑ 438:Γ 435:∈ 428:∑ 384:≠ 368:Γ 365:∈ 350:⁡ 324:∈ 269:Γ 266:∈ 259:∑ 229:Γ 159:Γ 45:Hans Hahn 5418:(1942), 5379:(1939), 5363:(1995), 5165:See also 4922:subfield 4798:Examples 4652:integers 4133:analytic 4092:and let 2195:, where 1679:topology 934:″ 923:′ 890:″ 852:′ 819:″ 808:′ 772:″ 761:′ 716:″ 701:′ 680:″ 669:′ 5294:Neumann 2059:, then 1755:, then 1484:into a 115:of the 5488:  5462:  5452:  5407:  5353:  4763:-adics 2370:is an 2242:(when 5571:(4), 5538:arXiv 5177:Notes 4842:over 4135:on a 2823:. If 2374:then 1885:is a 1727:. If 1611:up to 306:with 133:field 113:proof 5450:ISBN 4916:The 4734:are 4125:ring 4064:Let 3621:and 3106:for 3078:supp 3018:supp 2670:has 2560:real 2488:and 1171:has 911:and 624:and 472:and 347:supp 131:The 51:and 5600:doi 5573:doi 5548:doi 5511:doi 5507:129 5486:Zbl 5460:Zbl 5434:doi 5405:Zbl 5395:doi 5351:JFM 5347:116 4924:of 4838:of 4631:or 4224:of 4162:If 4139:of 3304:If 2565:If 2484:is 2350:If 2109:of 2055:is 2031:is 2011:If 1895:not 1803:exp 1681:on 1609:is 1256:.) 406:is 402:of 89:or 19:In 5618:: 5596:66 5594:, 5569:45 5567:, 5546:, 5534:89 5532:, 5505:, 5482:39 5480:, 5458:. 5428:, 5422:, 5403:, 5391:45 5389:, 5383:, 5367:, 5345:, 5086:, 4611:. 4469::= 4159:. 3215::= 2347:. 873:, 356::= 123:. 23:, 5602:: 5575:: 5550:: 5540:: 5513:: 5466:. 5436:: 5430:9 5397:: 5372:) 5307:) 5249:) 5160:. 5147:] 5143:] 5136:n 5132:T 5123:[ 5119:[ 5114:R 5110:= 5105:1 5102:+ 5099:n 5095:T 5073:R 5069:= 5064:0 5060:T 5038:T 5016:T 4987:q 4983:c 4958:] 4955:] 4949:Q 4944:T 4940:[ 4937:[ 4933:R 4906:. 4894:] 4891:] 4885:Z 4880:T 4876:[ 4873:[ 4870:K 4850:K 4826:) 4823:) 4820:T 4817:( 4814:( 4811:K 4780:p 4775:C 4761:p 4756:p 4752:K 4748:Γ 4744:Γ 4740:K 4720:e 4716:c 4693:e 4689:p 4683:e 4679:c 4667:e 4648:Γ 4644:p 4640:K 4598:] 4594:] 4585:T 4581:[ 4577:[ 4573:K 4565:a 4559:A 4534:n 4523:! 4520:n 4515:) 4512:a 4509:( 4504:) 4501:n 4498:( 4494:f 4484:N 4477:n 4466:) 4460:+ 4457:a 4454:( 4451:f 4428:N 4421:n 4414:) 4406:n 4395:! 4392:n 4387:) 4384:a 4381:( 4376:) 4373:n 4370:( 4366:f 4357:( 4312:+ 4309:a 4288:] 4284:] 4275:T 4271:[ 4267:[ 4263:K 4241:a 4235:A 4212:f 4191:R 4170:K 4147:a 4109:a 4103:A 4079:R 4072:a 4041:N 4034:n 4028:) 4020:1 4017:+ 4014:k 4010:T 4006:+ 3999:1 3996:+ 3993:k 3989:k 3984:T 3978:n 3972:k 3962:( 3937:N 3930:n 3926:) 3920:1 3917:+ 3914:n 3910:T 3906:+ 3899:1 3896:+ 3893:n 3889:n 3884:T 3880:( 3859:] 3855:] 3849:Q 3844:T 3840:[ 3836:[ 3831:Q 3809:] 3805:] 3796:T 3792:[ 3788:[ 3784:K 3761:. 3757:) 3751:i 3747:g 3741:I 3735:i 3726:( 3721:) 3715:i 3711:f 3705:I 3699:i 3690:( 3686:= 3681:j 3677:g 3671:i 3667:f 3661:I 3655:I 3649:) 3646:j 3643:, 3640:i 3637:( 3604:i 3600:g 3594:I 3588:i 3580:+ 3575:i 3571:f 3565:I 3559:i 3551:= 3546:i 3542:g 3538:+ 3533:i 3529:f 3523:I 3517:i 3487:I 3481:I 3475:) 3472:j 3469:, 3466:i 3463:( 3459:) 3453:j 3449:g 3443:i 3439:f 3435:( 3432:, 3427:I 3421:i 3417:) 3411:i 3407:g 3403:+ 3398:i 3394:f 3390:( 3368:I 3362:i 3358:) 3352:i 3348:g 3344:( 3341:, 3336:I 3330:i 3326:) 3320:i 3316:f 3312:( 3289:. 3284:e 3280:T 3275:) 3271:) 3268:e 3265:( 3260:i 3256:f 3250:I 3244:i 3235:( 3223:e 3210:i 3206:f 3200:I 3194:i 3164:i 3160:f 3154:I 3148:i 3114:e 3094:} 3089:i 3085:f 3072:e 3066:I 3060:i 3057:{ 3029:i 3025:f 3013:I 3007:i 2980:I 2974:i 2970:) 2964:i 2960:f 2956:( 2935:] 2931:] 2922:T 2918:[ 2914:[ 2910:K 2902:i 2898:f 2875:I 2869:i 2865:) 2859:i 2855:f 2851:( 2831:I 2810:] 2806:] 2797:T 2793:[ 2789:[ 2785:K 2732:K 2711:] 2707:] 2698:T 2694:[ 2690:[ 2686:K 2676:Îş 2658:} 2655:0 2647:e 2643:c 2639:: 2630:e 2627:{ 2606:] 2602:] 2593:T 2589:[ 2585:[ 2581:K 2567:Îş 2541:] 2537:] 2528:T 2524:[ 2520:[ 2516:K 2472:K 2448:K 2428:T 2407:] 2403:] 2394:T 2390:[ 2386:[ 2382:K 2358:K 2334:] 2330:] 2321:T 2317:[ 2313:[ 2309:K 2289:) 2286:) 2283:T 2280:( 2277:( 2274:K 2250:K 2230:K 2205:K 2183:] 2180:] 2174:Q 2169:T 2165:[ 2162:[ 2154:K 2132:) 2129:) 2126:T 2123:( 2120:( 2117:K 2092:] 2088:] 2079:T 2075:[ 2071:[ 2067:K 2019:K 1988:+ 1981:3 1977:p 1972:/ 1968:1 1961:T 1957:+ 1950:2 1946:p 1941:/ 1937:1 1930:T 1926:+ 1921:p 1917:/ 1913:1 1906:T 1872:] 1868:] 1859:T 1855:[ 1851:[ 1847:K 1827:) 1824:) 1821:f 1818:( 1815:v 1809:( 1800:= 1796:| 1792:f 1788:| 1763:v 1742:R 1714:] 1710:] 1701:T 1697:[ 1693:[ 1689:K 1665:v 1625:K 1597:) 1594:v 1591:, 1588:] 1585:] 1576:T 1572:[ 1569:[ 1566:K 1563:( 1543:K 1519:K 1472:] 1469:] 1460:T 1456:[ 1453:[ 1450:K 1430:f 1410:0 1402:e 1398:c 1371:e 1346:e 1342:T 1336:e 1332:c 1320:e 1312:= 1309:f 1286:) 1283:f 1280:( 1277:v 1244:) 1241:T 1238:( 1235:K 1213:1 1206:T 1202:= 1199:X 1191:p 1187:X 1176:p 1169:K 1147:} 1140:, 1133:3 1129:p 1125:1 1117:, 1110:2 1106:p 1102:1 1094:, 1089:p 1086:1 1077:{ 1047:+ 1040:3 1036:p 1031:/ 1027:1 1020:T 1016:+ 1009:2 1005:p 1000:/ 996:1 989:T 985:+ 980:p 976:/ 972:1 965:T 941:e 938:= 931:e 927:+ 920:e 899:0 887:e 882:d 861:0 849:e 844:c 823:) 816:e 812:, 805:e 801:( 779:e 776:= 769:e 765:+ 758:e 727:e 723:T 713:e 708:d 698:e 693:c 687:e 684:= 677:e 673:+ 666:e 649:e 641:= 638:g 635:f 607:e 603:T 599:) 594:e 590:d 586:+ 581:e 577:c 573:( 562:e 554:= 551:g 548:+ 545:f 517:e 513:T 507:e 503:d 491:e 483:= 480:g 458:e 454:T 448:e 444:c 432:e 424:= 421:f 404:f 390:} 387:0 379:e 375:c 371:: 362:e 359:{ 353:f 327:K 319:e 315:c 289:e 285:T 279:e 275:c 263:e 255:= 252:f 209:K 189:T 168:] 164:] 155:T 151:[ 147:[ 143:K 98:R 76:Q

Index

mathematics
formal infinite series
Puiseux series
formal power series
Hans Hahn
Anatoly Maltsev
Bernhard Neumann
indeterminate
well-ordered
value group
proof
Hahn embedding theorem
Hilbert's second problem
field
well-ordered
rationals
Puiseux series
characteristic
spherically complete
valued field
up to
isomorphism
topology
ultrametric
complete metric space
formal Laurent series
algebraically closed
divisible
algebraic closure
Puiseux series

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑