Knowledge

Hyperthermophile

Source 📝

183:.The most common wall is a paracrystalline surface layer formed by proteins or glycoproteins of hexagonal symmetry. With the exception of the genus Thermoplasma which lacks a wall, a deficiency that is filled by the development of a cell membrane with a unique chemical structure. It contains a lipid tetraether with and glucose in a very high proportion to the total lipids. In addition, it is accompanied by glycoproteins that together with lipids give the membrane of Thermoplasma spp stability against the acidic and thermophilic conditions in which it lives. 257:. It grows on many different sugars such as starch, maltose, and cellobiose, that once in the cell they are transformed in glucose, but they can use even others organic substrate as carbon and energy source. Some evidences showed that glucose is catabolysed by a modified Embden-Meyerhof pathway, that is the canonical version of well-known glycolysis, present in both eukaryotes and bacteria. 145: 260:
Some differences discovered concerned the sugar kinase of starting reactions of this pathway: instead of conventional glucokinase and phosphofructokinase, two novel sugar kinase have been discovered. These enzymes are ADP-dependent glucokinase (ADP-GK) and ADP-dependent phosphofructokinase (ADP-PFK),
602:
In June 1965, Thomas Brock, a microbiologist at Indiana University, discovered a new form of bacteria in the thermal vents of Yellowstone National Park. They can survive at near-boiling temperatures. At that time the upper temperature for life was thought to be 73 °C. He found that one particular
205:
denature at elevated temperatures and so also must adapt. Protein complexes known as heat shock proteins assist with proper folding. Their function is to bind or engulf the protein during synthesis, creating an environment conducive to its correct tertiary conformation. In addition, heat shock
168:. They grow-similar to mesophiles-within a temperature range of about 25–30 °C between the minimal and maximal temperature. The fastest growth is obtained at their optimal growth temperature which may be up to 106 °C. The main characteristics they present in their morphology are: 198:
units. At certain points of the membrane, side chains linked by covalent bonds and a monolayer are found at these points. Thus, the membrane is much more stable and resistant to temperature alterations than the acidic bilayers present in eukaryotic organisms and
23:
is an organism that thrives in extremely hot environments—from 60 °C (140 °F) upwards. An optimal temperature for the existence of hyperthermophiles is often above 80 °C (176 °F). Hyperthermophiles are often within the domain
243:
Hyperthermophiles have a great diversity in metabolism including chemolithoautotrophs and chemoorganoheterotrophs, while there are not phototrophic hyperthermophiles known. Sugar catabolism involves non-phosphorylated versions of the
126:
to their functional analogs in organisms that thrive at lower temperatures but have evolved to exhibit optimal function at much greater temperatures. Most of the low-temperature homologs of the hyperthermostable proteins would be
189:
is the main adaptation to temperature. This membrane is radically different from that known from and to eukaryotes. The membrane of Archaeabacteria is built on a tetraether unit, thus establishing ether bonds between
885:
Saiki, R. K.; Gelfand, d. h.; Stoffel, S; Scharf, S. J.; Higuchi, R; Horn, G. T.; Mullis, K. B.; Erlich, H. A. (1988). "Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase".
36:
increase the boiling point of water. Many hyperthermophiles are also able to withstand other environmental extremes, such as high acidity or high radiation levels. Hyperthermophiles are a subset of
285:. Thermophiles-hyperthermophiles employ different mechanisms to adapt their cells to heat, especially to the cell wall, plasma membrane and its biomolecules (DNA, proteins, etc.): 111:; however, recent studies show that "there is no obvious correlation between the GC content of the genome and the optimal environmental growth temperature of the organism." 269:
As a rule, hyperthermophiles do not propagate at 50 °C or below, some not even below 80 or 90º. Although unable to grow at ambient temperatures, they are able to
91:
Although no hyperthermophile has shown to thrive at temperatures >122 °C, their existence is possible. Strain 121 survives 130 °C for two hours, but was
226:
is an enzyme found in all hyperthermophiles. It is responsible for the introduction of positive spins which confer greater stability against high temperatures.
248:
some modified versions of the Embden-Meyerhof pathway, the canonical Embden-Meyerhof pathway is present only in hyperthermophilic Bacteria but not Archaea.
781:"Gene-centric association analysis for the correlation between the guanine-cytosine content levels and temperature range conditions of prokaryotic species" 32:
are also able to tolerate extreme temperatures. Some of these bacteria are able to live at temperatures greater than 100 °C, deep in the ocean where
577: 965:
Vázquez Bringas FJ, Santiago I, Gil L, Ribera T, Gracia-Salinas MJ, Román LS, Blas ID, Prades M, Alonso de Diego M, Ardanaz N, Muniesa A (2014).
513: 293:" bonds (diether or tetraether) in archaea. In some archaea the membrane has a monolayer structure which further increases its heat resistance. 131:
above 60 °C. Such hyperthermostable proteins are often commercially important, as chemical reactions proceed faster at high temperatures.
1147:
Bar-Even, Arren; Flamholz, Avi; Noor, Elad; Milo, Ron (2012-05-17). "Rethinking glycolysis: on the biochemical logic of metabolic pathways".
1104:
Sakuraba, Haruhiko; Goda, Shuichiro; Ohshima, Toshihisa (2004). "Unique sugar metabolism and novel enzymes of hyperthermophilic archaea".
348:
that distinguish these organisms from other organisms. These strategies include an essential requirement for key proteins employed in
230:
this protein has been found in the genus and characterized by an increase, up to 40 °C, in the melting temperature of DNA. The
1356: 689: 595: 194:
molecules and hydrophobic side chains that do not consist of fatty acids. These side chains are mainly composed of repeating
705: 307:
that help the correct folding of proteins in situations of cellular stress such as the temperature in which they grow.
1675: 732:"High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes" 345: 175:
the outermost part of archaea, it is arranged around the cell and protects the cell contents. It does not contain
122:—that is, they can maintain structural stability (and therefore function) at high temperatures. Such proteins are 72:, requiring temperatures of at least 90 °C for survival. An extraordinary heat-tolerant hyperthermophile is 1002:
Brock, Christina M.; Bañó-Polo, Manuel; Garcia-Murria, Maria J.; Mingarro, Ismael; Esteve-Gasent, Maria (2017).
64:
in 1965. Since then, more than 70 species have been established. The most extreme hyperthermophiles live on the
1246:"Understanding DNA Repair in Hyperthermophilic Archaea: Persistent Gaps and Other Reasons to Focus on the Fork" 245: 152:
Due to their extreme environments, hyperthermophiles can be adapted to several variety of factors such as
1349: 328:
Presence of a DNA reverse DNA gyrase that produces positive supercoiling and stabilizes DNA against heat.
128: 1660: 1593: 967:"Desarrollo de una aplicación informática para aprender clínica y producción equina jugando al Trivial" 357: 582:. Cellular Origin, Life in Extreme Habitats and Astrobiology. Vol. 27. Springer. pp. xviii. 273:
there for many years. Based on their simple growth requirements, hyperthermophiles could grow on any
57: 1511: 603:
spring, Octopus Spring, had large amounts of pink, filamentous bacteria at temperatures of 82–88 °C.
421: 349: 1328: 1192:"Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperatures" 1634: 1627: 1613: 1518: 669: 261:
they catalyse the same reactions but use ADP as phosphoryl donor, instead of ATP, producing AMP.
966: 1342: 289:
The presence in their plasma membrane of long-chain and saturated fatty acids in bacteria and "
95:
until it had been transferred into a fresh growth medium, at a relatively cooler 103 °C.
1790: 1620: 1549: 41: 836:
genome and proteome composition: indications for hyperthermophilic and parasitic adaptation"
1542: 895: 452: 92: 82:
at 121 °C (hence its name). The current record growth temperature is 122 °C, for
8: 1741: 1718: 1665: 1640: 1574: 1409: 485: 401: 361: 304: 253: 1300:
Stetter, Karl (Feb 2013). "A brief history of the discovery of hyperthermophilic life".
899: 1272: 1245: 1218: 1191: 1086: 1030: 1003: 862: 831: 807: 780: 756: 731: 645: 616: 558: 206:
proteins can collaborate in transporting newly folded proteins to their site of action.
123: 985: 1746: 1724: 1586: 1535: 1317: 1277: 1223: 1172: 1164: 1129: 1121: 1078: 1070: 1035: 911: 867: 812: 761: 685: 650: 591: 550: 389: 69: 1090: 562: 1795: 1680: 1478: 1449: 1309: 1267: 1257: 1213: 1203: 1156: 1113: 1062: 1025: 1015: 981: 903: 857: 847: 802: 792: 751: 743: 677: 640: 632: 583: 542: 466: 428: 636: 1764: 1700: 1670: 1464: 1429: 1004:"Characterization of the inner membrane protein BB0173 from Borrelia burgdorferi" 907: 681: 119: 61: 797: 709: 344:
The hyperthermophilic archaea appear to have special strategies for coping with
222:
is characterized by the fact that it prevents DNA damage at these temperatures.
1756: 1695: 1414: 935: 1053:
Schönheit, P.; Schäfer, T. (January 1995). "Metabolism of hyperthermophiles".
1020: 587: 546: 1784: 1711: 1168: 1125: 1074: 413: 282: 223: 212:
is also adapted to elevated temperatures by several mechanisms. The first is
176: 852: 1769: 1730: 1705: 1685: 1524: 1459: 1365: 1321: 1281: 1227: 1176: 1133: 1082: 1039: 871: 816: 765: 747: 554: 533:
Stetter, K. (2006). "History of discovery of the first hyperthermophiles".
503: 442: 218: 84: 65: 37: 33: 1262: 1208: 915: 654: 1736: 1690: 1469: 1454: 1384: 1160: 508: 475:, which thrives in 65–100 °C in Obsidian Pool, Yellowstone National Park. 234:
with which these proteins are associated collaborate in its supercoiling.
1313: 409:
which thrives at 100 °C, first discovered in Italy near a volcanic vent.
1751: 1580: 1444: 1434: 1424: 1419: 1389: 1379: 1066: 479: 435: 378: 353: 318: 314:
that prevent chemical damage (depurination or depyrimidination) to DNA.
108: 74: 1117: 148:
Different morphologies and classes of hyperthermophilic microorganisms
1604: 1483: 1439: 1399: 498: 251:
Most of informations about sugar catabolism came from observation on
79: 78:, which has been able to double its population during 24 hours in an 16:
Organism that thrives in extremely hot environments from 60°C upwards
1529: 1502: 1404: 1394: 1001: 448: 406: 394: 382: 322: 195: 191: 180: 29: 1565: 576:
Seckbach, Joseph; Oren, Aharon; Stan-Lotter, Helga, eds. (2013).
231: 115: 25: 1334: 964: 1555: 104: 216:, which has been isolated in only a few species of the genus. 301: 297: 290: 103:
Early research into hyperthermophiles speculated that their
278: 45: 144: 884: 1146: 356:
process), an apparent lack of the DNA repair process of
706:"Microbe from depths takes life to hottest known limit" 579:
Polyextremophiles — Life under multiple forms of stress
575: 936:"Archaeabacterias hipertermófilas: vida en ebullición" 1103: 1055:World Journal of Microbiology & Biotechnology 40:. Their existence may support the possibility of 1782: 1052: 397:living at 113 °C in Atlantic hydrothermal vents. 829: 778: 56:Hyperthermophiles isolated from hot springs in 514:Unique properties of hyperthermophilic archaea 1350: 1239: 1237: 1190:Schwartz, Michael H.; Pan, Tao (2015-12-10). 933: 729: 672:. In Horneck, G.; Baumstark-Khan, C. (eds.). 367: 974:Revista complutense de ciencias veterinarias 943:Revista Complutense de Ciencias Veterinarias 830:Das S, Paul S, Bag SK, Dutta C (July 2006). 331:Presence of proteins with higher content in 1189: 617:"The value of basic research: discovery of 532: 118:molecules in the hyperthermophiles exhibit 1357: 1343: 1234: 179:, which makes them naturally resistant to 1271: 1261: 1217: 1207: 1029: 1019: 929: 927: 925: 861: 851: 806: 796: 755: 644: 459: 960: 958: 956: 143: 1299: 667: 277:, even on other planets and moons like 214:cyclic potassium 2,3-diphosphoglycerate 1783: 1329:How hot is too Hot? T-Limit Expedition 1243: 922: 723: 385:living at 121 °C in the Pacific Ocean. 360:and a lack of the MutS/MutL homologs ( 48:can thrive in environmental extremes. 1338: 997: 995: 953: 614: 139: 934:Fernández, P.G.; Ruiz, M.P. (2007). 730:Hurst LD, Merchant AR (March 2001). 779:Zheng H, Wu H; Wu (December 2010). 13: 1292: 992: 698: 670:"Hyperthermophilic Microorganisms" 310:Accumulation of compounds such as 14: 1807: 1676:Acidophiles in acid mine drainage 1364: 986:10.5209/rev_RCCV.2014.v8.n1.44301 1302:Biochemical Society Transactions 473:Geothermobacterium ferrireducens 1183: 1140: 1097: 1046: 621:and other extreme thermophiles" 107:could be characterized by high 878: 823: 772: 676:. Springer. pp. 169–184. 661: 608: 569: 526: 264: 1: 519: 339: 321:that stabilizes DNA, RNA and 238: 134: 908:10.1126/science.239.4839.487 682:10.1007/978-3-642-59381-9_12 312:potassium diphosphoglycerate 7: 798:10.1186/1471-2105-11-S11-S7 637:10.1093/genetics/146.4.1207 492: 98: 10: 1812: 1661:Abiogenic petroleum origin 1594:Thermococcus gammatolerans 372: 368:Specific hyperthermophiles 358:nucleotide excision repair 51: 1653: 1603: 1564: 1501: 1492: 1372: 1021:10.1186/s12866-017-1127-y 588:10.1007/978-94-007-6488-0 547:10.1007/s00792-006-0012-7 335:, more resistant to heat. 275:hot water-containing site 58:Yellowstone National Park 1512:Chloroflexus aurantiacus 615:Brock TD (August 1997). 422:Methanococcus jannaschii 350:homologous recombination 246:Entner-Doudoroff pathway 109:guanine-cytosine content 1635:Halicephalobus mephisto 1628:Paralvinella sulfincola 1614:Cyanidioschyzon merolae 1519:Deinococcus radiodurans 1149:Nature Chemical Biology 853:10.1186/1471-2164-7-186 60:were first reported by 1196:Nucleic Acids Research 748:10.1098/rspb.2000.1397 668:Stetter, K.O. (2002). 460:Gram-negative Bacteria 149: 1621:Galdieria sulphuraria 1550:Spirochaeta americana 834:Nanoarchaeum equitans 187:Cytoplasmic membrane: 147: 93:not able to reproduce 85:Methanopyrus kandleri 42:extraterrestrial life 1543:Thermus thermophilus 1161:10.1038/nchembio.971 453:Central Indian Ridge 120:hyperthermostability 1742:Radiotrophic fungus 1719:Helaeomyia petrolei 1666:Acidithiobacillales 1575:Pyrococcus furiosus 1314:10.1042/BST20120284 1263:10.1155/2015/942605 1209:10.1093/nar/gkv1379 1106:The Chemical Record 900:1988Sci...239..487S 486:Thermotoga maritima 402:Pyrococcus furiosus 362:DNA mismatch repair 254:Pyrococcus furiosus 1244:Grogan DW (2015). 1067:10.1007/bf00339135 785:BMC Bioinformatics 451:in 80–122 °C in a 296:Overexpression of 150: 140:General physiology 70:hydrothermal vents 68:walls of deep-sea 1778: 1777: 1725:Hydrothermal vent 1649: 1648: 1587:Pyrolobus fumarii 1536:Thermus aquaticus 1118:10.1002/tcr.10066 691:978-3-642-59381-9 619:Thermus aquaticus 597:978-94-007-6487-3 390:Pyrolobus fumarii 1803: 1681:Archaeoglobaceae 1654:Related articles 1499: 1498: 1479:Thermoacidophile 1474:Hyperthermophile 1450:Polyextremophile 1359: 1352: 1345: 1336: 1335: 1325: 1286: 1285: 1275: 1265: 1241: 1232: 1231: 1221: 1211: 1187: 1181: 1180: 1144: 1138: 1137: 1101: 1095: 1094: 1050: 1044: 1043: 1033: 1023: 1008:BMC Microbiology 999: 990: 989: 971: 962: 951: 950: 940: 931: 920: 919: 894:(4839): 487–91. 882: 876: 875: 865: 855: 827: 821: 820: 810: 800: 791:(Suppl 11): S7. 776: 770: 769: 759: 727: 721: 720: 718: 717: 708:. Archived from 702: 696: 695: 665: 659: 658: 648: 612: 606: 605: 573: 567: 566: 530: 467:Aquifex aeolicus 429:Aeropyrum pernix 28:, although some 21:hyperthermophile 1811: 1810: 1806: 1805: 1804: 1802: 1801: 1800: 1781: 1780: 1779: 1774: 1765:Thermostability 1701:Grylloblattidae 1671:Acidobacteriota 1645: 1599: 1560: 1494: 1488: 1430:Metallotolerant 1368: 1363: 1333: 1295: 1293:Further reading 1290: 1289: 1242: 1235: 1188: 1184: 1145: 1141: 1102: 1098: 1051: 1047: 1000: 993: 969: 963: 954: 938: 932: 923: 883: 879: 828: 824: 777: 773: 742:(1466): 493–7. 728: 724: 715: 713: 704: 703: 699: 692: 666: 662: 613: 609: 598: 574: 570: 531: 527: 522: 495: 462: 447:strain 116, an 375: 370: 342: 333:α-helix regions 267: 241: 158:redox potential 142: 137: 101: 62:Thomas D. Brock 54: 44:, showing that 17: 12: 11: 5: 1809: 1799: 1798: 1793: 1776: 1775: 1773: 1772: 1767: 1762: 1754: 1749: 1744: 1739: 1734: 1727: 1722: 1715: 1708: 1703: 1698: 1696:Thermoproteota 1693: 1688: 1683: 1678: 1673: 1668: 1663: 1657: 1655: 1651: 1650: 1647: 1646: 1644: 1643: 1638: 1631: 1624: 1617: 1609: 1607: 1601: 1600: 1598: 1597: 1590: 1583: 1578: 1570: 1568: 1562: 1561: 1559: 1558: 1553: 1546: 1539: 1532: 1527: 1522: 1515: 1507: 1505: 1496: 1490: 1489: 1487: 1486: 1481: 1476: 1467: 1465:Radioresistant 1462: 1457: 1452: 1447: 1442: 1437: 1432: 1427: 1422: 1417: 1415:Lithoautotroph 1412: 1407: 1402: 1397: 1392: 1387: 1382: 1376: 1374: 1370: 1369: 1362: 1361: 1354: 1347: 1339: 1332: 1331: 1326: 1308:(1): 416–420. 1296: 1294: 1291: 1288: 1287: 1233: 1202:(1): 294–303. 1182: 1155:(6): 509–517. 1139: 1096: 1045: 991: 952: 921: 877: 822: 771: 722: 697: 690: 660: 631:(4): 1207–10. 607: 596: 568: 541:(5): 357–362. 524: 523: 521: 518: 517: 516: 511: 506: 501: 494: 491: 490: 489: 476: 470: 461: 458: 457: 456: 439: 432: 425: 418: 410: 398: 386: 374: 371: 369: 366: 341: 338: 337: 336: 329: 326: 317:Production of 315: 308: 294: 266: 263: 240: 237: 236: 235: 207: 200: 184: 141: 138: 136: 133: 100: 97: 53: 50: 34:high pressures 15: 9: 6: 4: 3: 2: 1808: 1797: 1794: 1792: 1789: 1788: 1786: 1771: 1768: 1766: 1763: 1761: 1759: 1755: 1753: 1750: 1748: 1745: 1743: 1740: 1738: 1735: 1733: 1732: 1728: 1726: 1723: 1721: 1720: 1716: 1714: 1713: 1712:Halobacterium 1709: 1707: 1704: 1702: 1699: 1697: 1694: 1692: 1689: 1687: 1684: 1682: 1679: 1677: 1674: 1672: 1669: 1667: 1664: 1662: 1659: 1658: 1656: 1652: 1642: 1639: 1637: 1636: 1632: 1630: 1629: 1625: 1623: 1622: 1618: 1616: 1615: 1611: 1610: 1608: 1606: 1602: 1596: 1595: 1591: 1589: 1588: 1584: 1582: 1579: 1577: 1576: 1572: 1571: 1569: 1567: 1563: 1557: 1554: 1552: 1551: 1547: 1545: 1544: 1540: 1538: 1537: 1533: 1531: 1528: 1526: 1523: 1521: 1520: 1516: 1514: 1513: 1509: 1508: 1506: 1504: 1500: 1497: 1495:extremophiles 1491: 1485: 1482: 1480: 1477: 1475: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1453: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1431: 1428: 1426: 1423: 1421: 1418: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1377: 1375: 1371: 1367: 1366:Extremophiles 1360: 1355: 1353: 1348: 1346: 1341: 1340: 1337: 1330: 1327: 1323: 1319: 1315: 1311: 1307: 1303: 1298: 1297: 1283: 1279: 1274: 1269: 1264: 1259: 1255: 1251: 1247: 1240: 1238: 1229: 1225: 1220: 1215: 1210: 1205: 1201: 1197: 1193: 1186: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1150: 1143: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1100: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1060: 1056: 1049: 1041: 1037: 1032: 1027: 1022: 1017: 1013: 1009: 1005: 998: 996: 987: 983: 979: 975: 968: 961: 959: 957: 948: 944: 937: 930: 928: 926: 917: 913: 909: 905: 901: 897: 893: 889: 881: 873: 869: 864: 859: 854: 849: 845: 841: 837: 835: 832:"Analysis of 826: 818: 814: 809: 804: 799: 794: 790: 786: 782: 775: 767: 763: 758: 753: 749: 745: 741: 737: 736:Proc Biol Sci 733: 726: 712:on 2023-10-04 711: 707: 701: 693: 687: 683: 679: 675: 671: 664: 656: 652: 647: 642: 638: 634: 630: 626: 622: 620: 611: 604: 599: 593: 589: 585: 581: 580: 572: 564: 560: 556: 552: 548: 544: 540: 536: 535:Extremophiles 529: 525: 515: 512: 510: 507: 505: 502: 500: 497: 496: 488: 487: 483:, especially 482: 481: 477: 474: 471: 469: 468: 464: 463: 454: 450: 446: 444: 440: 438: 437: 433: 431: 430: 426: 424: 423: 419: 417: 415: 414:Archaeoglobus 411: 408: 404: 403: 399: 396: 392: 391: 387: 384: 380: 377: 376: 365: 363: 359: 355: 351: 347: 334: 330: 327: 324: 320: 316: 313: 309: 306: 303: 299: 295: 292: 288: 287: 286: 284: 280: 276: 272: 262: 258: 256: 255: 249: 247: 233: 229: 225: 224:Topoisomerase 221: 220: 215: 211: 208: 204: 201: 197: 193: 188: 185: 182: 178: 177:peptidoglycan 174: 171: 170: 169: 167: 163: 159: 155: 146: 132: 130: 125: 121: 117: 112: 110: 106: 96: 94: 89: 87: 86: 81: 77: 76: 71: 67: 63: 59: 49: 47: 43: 39: 38:extremophiles 35: 31: 27: 22: 1791:Thermophiles 1770:Thermotogota 1757: 1731:Methanopyrus 1729: 1717: 1710: 1706:Halobacteria 1686:Berkeley Pit 1641:Pompeii worm 1633: 1626: 1619: 1612: 1592: 1585: 1573: 1548: 1541: 1534: 1525:Deinococcota 1517: 1510: 1473: 1472: / 1460:Psychrophile 1305: 1301: 1253: 1249: 1199: 1195: 1185: 1152: 1148: 1142: 1112:(5): 281–7. 1109: 1105: 1099: 1061:(1): 26–57. 1058: 1054: 1048: 1011: 1007: 977: 973: 946: 942: 891: 887: 880: 843: 840:BMC Genomics 839: 833: 825: 788: 784: 774: 739: 735: 725: 714:. Retrieved 710:the original 700: 674:Astrobiology 673: 663: 628: 624: 618: 610: 601: 578: 571: 538: 534: 528: 504:Psychrophile 484: 478: 472: 465: 443:Methanopyrus 441: 434: 427: 420: 412: 400: 388: 343: 332: 311: 274: 270: 268: 259: 252: 250: 242: 227: 219:Methanopyrus 217: 213: 209: 202: 186: 172: 165: 161: 157: 153: 151: 113: 102: 90: 83: 73: 55: 20: 18: 1737:Movile Cave 1691:Blood Falls 1470:Thermophile 1455:Psammophile 1385:Alkaliphile 509:Thermophile 364:proteins). 265:Adaptations 166:temperature 160:, level of 66:superheated 1785:Categories 1760:polymerase 1752:Tardigrade 1581:Strain 121 1445:Piezophile 1435:Oligotroph 1425:Methanogen 1420:Lithophile 1390:Capnophile 1380:Acidophile 1256:: 942605. 1014:(1): 219. 949:(2)): 560. 716:2018-04-06 520:References 480:Thermotoga 436:Sulfolobus 379:Strain 121 354:DNA repair 346:DNA damage 340:DNA repair 319:spermidine 305:chaperones 239:Metabolism 173:Cell wall: 135:Physiology 124:homologous 75:Strain 121 1747:Rio Tinto 1605:Eukaryota 1484:Xerophile 1440:Osmophile 1410:Lipophile 1400:Halophile 1169:1552-4450 1126:1527-8999 1075:0959-3993 980:(1): 45. 499:Mesophile 323:ribosomes 203:Proteins: 199:bacteria. 162:salinity, 129:denatured 80:autoclave 1530:Snottite 1503:Bacteria 1405:Hypolith 1395:Endolith 1322:23356321 1282:26146487 1228:26657639 1177:22596202 1134:14762828 1091:21904448 1083:24414410 1040:29166863 872:16869956 817:21172057 766:11296861 625:Genetics 563:36345694 555:16941067 493:See also 449:archaeon 445:kandleri 416:fulgidus 407:archaeon 395:archaeon 383:archaeon 232:histones 196:isoprene 192:glycerol 181:lysozyme 99:Research 30:bacteria 1796:Geysers 1566:Archaea 1493:Notable 1273:4471258 1250:Archaea 1219:4705672 1031:5700661 916:2448875 896:Bibcode 888:Science 863:1574309 846:: 186. 808:3024870 757:1088632 655:9258667 646:1208068 373:Archaea 271:survive 116:protein 52:History 26:Archaea 1556:GFAJ-1 1320:  1280:  1270:  1226:  1216:  1175:  1167:  1132:  1124:  1089:  1081:  1073:  1038:  1028:  914:  870:  860:  815:  805:  764:  754:  688:  653:  643:  594:  561:  553:  283:Europa 105:genome 1373:Types 1087:S2CID 970:(PDF) 939:(PDF) 559:S2CID 405:, an 393:, an 381:, an 302:GroEL 298:GroES 291:ether 228:Sac7d 1318:PMID 1278:PMID 1254:2015 1224:PMID 1173:PMID 1165:ISSN 1130:PMID 1122:ISSN 1079:PMID 1071:ISSN 1036:PMID 912:PMID 868:PMID 813:PMID 762:PMID 686:ISBN 651:PMID 592:ISBN 551:PMID 300:and 281:and 279:Mars 210:DNA: 164:and 114:The 46:life 1758:Taq 1310:doi 1268:PMC 1258:doi 1214:PMC 1204:doi 1157:doi 1114:doi 1063:doi 1026:PMC 1016:doi 982:doi 904:doi 892:239 858:PMC 848:doi 803:PMC 793:doi 752:PMC 744:doi 740:268 678:doi 641:PMC 633:doi 629:146 584:doi 543:doi 352:(a 1787:: 1316:. 1306:41 1304:. 1276:. 1266:. 1252:. 1248:. 1236:^ 1222:. 1212:. 1200:44 1198:. 1194:. 1171:. 1163:. 1151:. 1128:. 1120:. 1108:. 1085:. 1077:. 1069:. 1059:11 1057:. 1034:. 1024:. 1012:17 1010:. 1006:. 994:^ 976:. 972:. 955:^ 945:. 941:. 924:^ 910:. 902:. 890:. 866:. 856:. 842:. 838:. 811:. 801:. 789:11 787:. 783:. 760:. 750:. 738:. 734:. 684:. 649:. 639:. 627:. 623:. 600:. 590:. 557:. 549:. 539:10 537:. 156:, 154:pH 88:. 19:A 1358:e 1351:t 1344:v 1324:. 1312:: 1284:. 1260:: 1230:. 1206:: 1179:. 1159:: 1153:8 1136:. 1116:: 1110:3 1093:. 1065:: 1042:. 1018:: 988:. 984:: 978:8 947:1 918:. 906:: 898:: 874:. 850:: 844:7 819:. 795:: 768:. 746:: 719:. 694:. 680:: 657:. 635:: 586:: 565:. 545:: 455:. 325:.

Index

Archaea
bacteria
high pressures
extremophiles
extraterrestrial life
life
Yellowstone National Park
Thomas D. Brock
superheated
hydrothermal vents
Strain 121
autoclave
Methanopyrus kandleri
not able to reproduce
genome
guanine-cytosine content
protein
hyperthermostability
homologous
denatured

peptidoglycan
lysozyme
glycerol
isoprene
Methanopyrus
Topoisomerase
histones
Entner-Doudoroff pathway
Pyrococcus furiosus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.