Knowledge

Pyrococcus furiosus

Source 📝

408: 2067: 581: 53: 310:. Aside from potentially using them for swimming, these flagella were observed under lab conditions in use for unique applications such as forming cell to cell connections during stationary growth phase. They are additionally utilized as cable-like connectors to adhere to various solid surfaces such as sand grains in the habitat in which this species was discovered. This may lead to the formation of microcolonial 810:
the organization of the genetic code. It was also found that more polar amino acids and smaller amino acids were more likely to be barophilic. Through the comparison of these two archaea, the conclusion was reached that the genetic code was likely structured under high hydrostatic pressure, and that hydrostatic pressure was a more influential factor in determining genetic code than temperature.
33: 809:
Besides yielding information about the barophilicity of certain amino acids, the experiment also provided valuable insight into the origin of the genetic code and its organizational influences. It was found that most of the amino acids that determined barophilicity were also found to be important in
563:
ferredoxin oxidoreductase, or POR, which catalyzes the final step of the glycolytic pathway. It is possible that POR is an ancestor of mesophilic pyruvate oxidoreductases. There is also the indolepyruvate ferredoxin oxidoreductase, or IOR, which utilizes iron and sulfur to catalyze the "oxidative
343:, and protein sources (tryptone, peptone, casein, and meat extracts) through the Embden-Meyerhoff pathway. This is a relatively wide range of sources when compared to other archaea. Growth is very slow, or nonexistent, on amino acids, organic acids, alcohols, and most carbohydrates (including 279:
by Fiala and Stetter. It is noted for its rapid doubling time of 37 minutes under optimal conditions, meaning that every 37 minutes the number of individual organisms is multiplied by two, yielding an exponential growth curve. Each organism is surrounded by a cellular envelope composed of
2178:
Dong, Qing; Yan, Xufan; Zheng, Minhui; Yang, Ziwen (2014). "Characterization of an extremely thermostable but cold-adaptive β-galactosidase from the hyperthermophilic archaeon Pyrococcus furiosus for use as a recombinant aggregation for batch lactose degradation at high temperature".
487:
ADHs typically have a broad range of aldehyde substrates they can use, and they can also catalyze the reverse reaction (oxidation of alcohols) using ethanol, 1,3-propanediol, and other alcohols for substrate. As with most of the archaea's enzymes, the ADHs are sensitive to oxygen.
766:
plant. As a result of this procedure, cell death in plants occurs less often, therefore resulting in a reduction in the severity of responses to environmental stress. This enhances the survival of plants, making them more resistant to light, chemical, and heat stress.
720:
and put through various mutations in a laboratory in order to obtain a suitable alcohol dehydrogenase for use in artificial processes. This allowed scientists to obtain a mutant enzyme that could function efficiently at lower temperatures and maintain productivity.
805:
is, meaning that it functions optimally at very high pressures. Using two hyperthermophilic species of archaea lessens the possibility of deviations having to do with temperature of the environment, essentially reducing the variables in the experimental design.
711:
In order to make naturally derived enzymes useful in the laboratory, it is often necessary to alter their genetic makeup. Otherwise, the naturally occurring enzymes may not be efficient in an artificially induced procedure. Although the enzymes of
1140:
Robb, Frank T; Maeder, Dennis L; Brown, James R; DiRuggiero, Jocelyne; Stump, Mark D; Yeh, Raymond K; Weiss, Robert B; Dunn, Dianne M (2001), "Genomic sequence of hyperthermophile, Pyrococcus furiosus: Implications for physiology and enzymology",
399:
is also notable for an unusual and intriguingly simple respiratory system, which obtains energy by reducing protons to hydrogen gas and uses this energy to create an electrochemical gradient across its cell membrane, thereby driving
539:. This enzyme utilizes four types of cofactors: tungsten, iron, sulfur, and calcium. The next oxidoreductase, WOR4, does not help oxidize aldehydes, but rather has a role in the reduction of elemental sulfur (S) into H 331:) and 103 °C (217 °F), with an optimum temperature of 100 °C (212 °F), and between pH 5 and 9 (with an optimum at pH 7). Since it uses fermentation of carbohydrates, it grows well on yeast extract, 543:
S. This uses the same cofactors as FOR, and is only found in P. furiosus cells that are grown in the presence of elemental sulfur. The fifth and final oxidoreductase is named WOR5, and it has a broad specificity for
526:
ferredoxin oxidoreductase, or GAPOR, which utilizes tungsten and iron to catalyze the oxidation of specifically glyceraldehyde-3-phosphate. GAPOR only functions under anaerobic conditions, as with many enzymes in
1430:"The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase: Evidence for its participation in a unique glycolytic pathway" 770:
This study could potentially be used as a starting point to creating plants that could survive in more extreme climates on other planets such as Mars. By introducing more enzymes from extremophiles like
609:
exonucleolytic activity and a template-primer preference which is characteristic of a replicative DNA polymerase, leading scientists to believe that this enzyme may be the replicative DNA polymerase of
716:
function optimally at a high temperature, scientists may not necessarily want to carry out a procedure at 100 °C (212 °F). Consequently, in this case, the specific enzyme AdhA was taken from
389:
can be produced through its metabolic processes seemingly for the purpose of detoxication or energy conservation, not energy production. While many other hyperthermophiles depend on sulfur for growth,
708:
can perform well in laboratory processes because they are relatively resistant: they generally function well at high temperatures and high pressures, as well as in high concentrations of chemicals.
479:(ADHs): the short-chain AdhA, the iron-containing AdhB, the zinc-containing AdhC, and more. Each of these ADHs are NADP-dependent, and serve to replenish NADP by using the NADPH produced by 189:
because it thrives best under extremely high temperatures, and is notable for having an optimum growth temperature of 100 °C (a temperature that would destroy most living organisms).
2024:
Di Giulio, Massimo (2005). "A comparison of proteins from Pyrococcus furiosus and Pyrococcus abyssi: Barophily in the physicochemical properties of amino acids and in the genetic code".
614:. It has since been placed in the family B of polymerases, the same family as DNA polymerase II. Its structure, which appears quite typical for polymerase B, has been solved as well. 2125:
McTernan, Patrick M; Chandrayan, Sanjeev K; Wu, Chang-Hao; Vaccaro, Brian J; Lancaster, W. Andrew; Yang, Qingyuan; Fu, Dax; Hura, Greg L; Tainer, John A; Adams, Michael W. W (2014).
1469:"Glyceraldehyde-3-phosphate Ferredoxin Oxidoreductase, a Novel Tungsten-containing Enzyme with a Potential Glycolytic Role in the Hyperthermophilic Archaeon Pyrococcus furiosus" 1841:
Kim, Suhng Wook; Kim, Dong-Uk; Kim, Jin Kwang; Kang, Lin-Woo; Cho, Hyun-Soo (May 2008). "Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus".
522:
instead of NAD(P)H). As this was the first, all tungsten-containing oxidoreductases are said to be part of the AOR family. The next oxidoreductase to be discovered was
2210:"DNA polymerase hybrids derived from the family-B enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: Improving performance in the polymerase chain reaction" 1518:"Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus: the 1.85 Å resolution crystal structure and its mechanistic implications 1 1Edited by I. A. Wilson" 2921: 1271:
van der Oost, John; Voorhorst, Wilfried G. B.; Kengen, Servé W. M.; Geerling, Ans C. M.; Wittenhorst, Vincent; Gueguen, Yannick; de Vos, Willem M. (2001-05-15).
745:
from cells, but increasing the amount and activity of these enzymes is difficult and not the most efficient way to go about improving the durability of plants.
733:
in plants can also render them more durable by increasing their tolerance for heat. In response to environmental stresses such as heat exposure, plants produce
825:
from geothermal marine sediments with temperatures between 90 °C (194 °F) and 100 °C (212 °F) collected at the beach of Porto Levante,
1326:"Influence of temperature on the production of an archaeal thermoactive alcohol dehydrogenase from Pyrococcus furiosus with recombinant Escherichia coli" 1923:
Machielsen, Ronnie; Leferink, Nicole G. H; Hendriks, Annemarie; Brouns, Stan J. J; Hennemann, Hans-Georg; Dauβmann, Thomas; Van Der Oost, John (2008).
2895: 1710:"Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A new enzyme involved in peptide fermentation" 641:(PCR) DNA amplification process. The PCR process must use a thermostable DNA polymerase for automated in vitro amplification and originally used 429: 2934: 1925:"Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to improve the production of (2S,5S)-hexanediol at moderate temperatures" 793:, scientists have tried to determine the correlation between certain amino acids and affinity for certain pressures in different species. 1012: 1189:
Poole, Farris L.; Gerwe, Brian A.; Hopkins, Robert C.; Schut, Gerrit J.; Weinberg, Michael V.; Jenney, Francis E.; Adams, Michael W.W.
1381:"An Unusual Oxygen-Sensitive, Iron- and Zinc-Containing Alcohol Dehydrogenase from the Hyperthermophilic Archaeon Pyrococcus furiosus" 1034:
Silva, Pedro J.; Ban, Eyke C. D. van den; Wassink, Hans; Haaker, Huub; Castro, Baltazar de; Robb, Frank T.; Hagen, Wilfred R. (2000).
459:(ISs). These ISs have deactivated 13 genes and many more are altered, but the strain's growth is yet comparable to its parent strain. 483:
to reduce aldehydes to alcohols. The aldehydes are also products of fermentation and are toxic to the cell, so removal is necessary.
407: 2882: 2908: 2353: 1671:"Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus" 856:, to refer to the extremophile's round shape and ability to grow in temperatures of around 100 degrees Celsius. The species name 377:. The presence of hydrogen severely inhibits its growth and metabolism; this effect can be circumvented, however, by introducing 256:
can be introduced into plants to increase their tolerance in environmentally stressful conditions and ultimately their survival.
1751:"A novel DNA polymerase in the hyperthermophilic archaeon,Pyrococcus furiosus: Gene cloning, expression, and characterization" 961:
Lundberg, Kelly S.; Shoemaker, Dan D.; Adams, Michael W.W.; Short, Jay M.; Sorge, Joseph A.; Mathur, Eric J. (December 1991).
2913: 1192:
Defining Genes in the Genome of the Hyperthermophilic Archaeon Pyrococcus furiosus: Implications for All Microbial Genomes†
737:
which can result in cell death. If these free radicals are removed, cell death can be delayed. Enzymes in plants called
2993: 1614:"WOR5, a Novel Tungsten-Containing Aldehyde Oxidoreductase from Pyrococcus furiosus with a Broad Substrate Specificity" 606: 704:
are necessary in the production of enantio- and diastereomerically pure diols. Enzymes from hyperthermophiles such as
2672: 2110: 2088: 1214:
Bridger, Stephanie L.; Lancaster, W. Andrew; Poole, Farris L.; Schut, Gerrit J.; Adams, Michael W. W. (August 2012).
1160: 2081: 1273:"Genetic and biochemical characterization of a short-chain alcohol dehydrogenase from the hyperthermophilic archaeon 2960: 2208:
Elshawadfy, Ashraf M; Keith, Brian J; Ee Ooi, H'Ng; Kinsman, Thomas; Heslop, Pauline; Connolly, Bernard A (2014).
2939: 1557:"Characterization of a Fourth Tungsten-Containing Enzyme from the Hyperthermophilic Archaeon Pyrococcus furiosus" 2821: 605:
was found between its two proteins and those of other known DNA polymerases. This DNA polymerase has strong
447:
named COM1 is commonly used for its "high plasticity" and ability to take up foreign DNA, owing to its high
1876:
Saiki, RK; Gelfand, DH; Stoffel, S; Scharf, SJ; Higuchi, R; Horn, GT; Mullis, KB; Erlich, HA (1988-01-29).
1792:"DNA polymerases as useful reagents for biotechnology - the history of developmental research in the field" 404:. This could be a very early evolutionary precursor of respiratory systems in all higher organisms today. 2346: 1216:"Genome Sequencing of a Genetically Tractable Pyrococcus furiosus Strain Reveals a Highly Dynamic Genome" 877: 292:—meaning that it is roughly spherical—of 0.8 μm to 1.5 μm diameter with monopolar polytrichous 2657: 2590: 1324:
Kube, Jürgen; Brokamp, Christian; Machielsen, Ronnie; van der Oost, John; Märkl, Herbert (2006-02-07).
523: 52: 915:
sp. nov. Represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C".
676:
DNA polymerase in the PCR process revealed a more than tenfold improvement over the accuracy of using
2965: 883: 638: 230: 2508: 2075: 963:"High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus" 834: 519: 448: 2310: 2631: 2624: 2610: 2515: 1517: 734: 1670: 2988: 2900: 2783: 2339: 2092: 1974:"Expression of Pyrococcus furiosus Superoxide Reductase in Arabidopsis Enhances Heat Tolerance" 1516:
Hu, Yonglin; Faham, Salem; Roy, Roopali; Adams, Michael W.W; Rees, Douglas C (February 1999).
1020: 2952: 2617: 2546: 701: 476: 137: 2856: 2539: 2266: 1094: 924: 762: 749: 738: 452: 249: 248:
enzymes is useful in the creation of diols for laboratory and industrial purposes. Certain
1749:
Uemori, Takashi; Sato, Yoshimi; Kato, Ikunoshin; Doi, Hirofumi; Ishino, Yoshizumi (1997).
700:
for applications in such industries as food, pharmaceuticals, and fine-chemicals in which
8: 2738: 2715: 2662: 2637: 2406: 841:
actually originated a new genus of archaea with its relatively recent discovery in 1986.
775:
into other species of plants, it may be possible to create incredibly resistant species.
2270: 1098: 928: 436:(ORFs) that encode proteins. A study performed in 2005 revealed 17 new ORFs specific to 2323: 2287: 2254: 2236: 2209: 2161: 2126: 1998: 1973: 1949: 1924: 1818: 1791: 1767: 1750: 1646: 1613: 1361: 1248: 940: 822: 634: 549: 456: 433: 170: 47: 1726: 1709: 1589: 1556: 1152: 1117: 1082: 2947: 2843: 2743: 2721: 2583: 2532: 2292: 2241: 2196: 2166: 2041: 2003: 1954: 1905: 1897: 1858: 1823: 1772: 1731: 1690: 1686: 1651: 1633: 1629: 1594: 1576: 1572: 1537: 1498: 1490: 1449: 1445: 1410: 1405: 1380: 1353: 1345: 1306: 1298: 1293: 1272: 1253: 1235: 1196: 1166: 1156: 1122: 1083:"A simple energy-conserving system: Proton reduction coupled to proton translocation" 1063: 1055: 1051: 990: 982: 978: 789: 602: 507:. These enzymes function optimally above 90 °C. The first to be discovered was 200: 1612:
Bevers, Loes E.; Bol, Emile; Hagedoorn, Peter-Leon; Hagen, Wilfred R. (2005-10-15).
1396: 1365: 944: 672:
exonuclease activity allowing for the removal of errors. Subsequent tests utilizing
455:
activity. It has 1,571 more base pairs than the referenced NCBI genome, and 10 more
2926: 2848: 2677: 2475: 2470: 2446: 2282: 2274: 2231: 2221: 2188: 2156: 2146: 2033: 1993: 1985: 1944: 1936: 1889: 1878:"Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase" 1854: 1850: 1813: 1803: 1762: 1721: 1682: 1641: 1625: 1584: 1568: 1529: 1480: 1441: 1400: 1392: 1337: 1288: 1243: 1227: 1148: 1142: 1112: 1102: 1047: 974: 932: 601:
that was thought to be unrelated to other known DNA polymerases, as no significant
535:
ferredoxin oxidoreductase, or FOR, which catalyzes the oxidation of aldehydes into
382: 186: 1877: 1429: 962: 514:
oxidoreductase, or AOR, which utilizes tungsten, sulfur, and iron to catalyze the
2761: 2697: 2667: 2461: 2426: 2192: 1893: 565: 536: 244:
allows for a significantly more accurate process. The thermodynamic stability of
222: 104: 1675:
Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology
580: 2753: 2692: 2411: 2037: 1325: 826: 669: 642: 626: 594: 500: 432:. The Maryland team found that the genome has 1,908 kilobases, including 2,065 364: 238: 178: 94: 1940: 1341: 2982: 2806: 2708: 2226: 1901: 1808: 1637: 1580: 1494: 1453: 1349: 1302: 1239: 1200: 1059: 986: 853: 440:
that were not originally annotated, bringing the number of ORFs up to 2,082.
401: 74: 2151: 1485: 1468: 1107: 2766: 2727: 2702: 2682: 2521: 2456: 2362: 2296: 2245: 2200: 2170: 2045: 2007: 1958: 1862: 1827: 1655: 1598: 1541: 1533: 1357: 1310: 1257: 1170: 1126: 1067: 830: 696:
for various industrial processes. It may be possible to use the enzymes of
560: 532: 480: 300: 281: 174: 1989: 1909: 1776: 1735: 1694: 1502: 1414: 994: 2815: 2733: 2687: 2466: 2451: 2381: 2278: 1215: 653: 545: 272: 166: 84: 1231: 2887: 2835: 2748: 2577: 2441: 2431: 2421: 2416: 2386: 2376: 2127:"Intact Functional Fourteen-subunit Respiratory Membrane-bound [Ni 1972:
Im, Y. J; Ji, M; Lee, A; Killens, R; Grunden, A. M; Boss, W. F (2009).
936: 798: 742: 657: 511: 504: 336: 328: 303:
notable to archaea species makes up the majority of the composition of
275:, sulfur-reducing archaea originally isolated from heated sediments in 204: 195: 114: 2869: 2601: 2480: 2436: 2396: 1190: 868:, and refers to the extremophile's doubling time and rapid swimming. 356: 307: 293: 2777: 1147:, Methods in Enzymology, vol. 330, Elsevier, pp. 134–157, 2874: 2800: 2526: 2499: 2401: 2391: 1270: 1035: 508: 371: 348: 268: 212: 199:
genus, most commonly found in extreme environmental conditions of
2830: 2562: 1323: 618: 352: 344: 332: 324: 311: 285: 276: 182: 64: 2331: 1922: 760:
can be rapidly reduced. Scientists tested this method using the
221:
has many potential industrial applications, owing to its unique
2861: 2552: 421: 378: 340: 289: 208: 865: 846: 515: 32: 2207: 2131:]-Hydrogenase Complex of the Hyperthermophilic Archaeon 2124: 960: 693: 569: 237:
in PCR DNA amplification instead of the traditionally used
1213: 1875: 1139: 1611: 1467:
Mukund, Swarnalatha; Adams, Michael W.W. (April 1995).
1036:"Enzymes of hydrogen metabolism in Pyrococcus furiosus" 1669:
Blamey, Jenny M.; Adams, Michael W.W. (January 1993).
233:(PCR) because of its proofreading activity. Utilizing 229:
is used in the process of DNA amplification by way of
1033: 660:. Researchers discovered in the early 1990s that the 656:(proofreading) activity, it cannot excise mismatched 1379:
Ma, Kesen; Adams, Michael W. W. (15 February 1999).
411:
Interconnected flagella adhering to a solid surface.
1080: 518:of aldehydes and reduce ferredoxin (this being the 215:, an element rarely found in biological molecules. 2255:"Swimming Behavior of Selected Species of Archaea" 1843:International Journal of Biological Macromolecules 1188: 1748: 1555:Roy, Roopali; Adams, Michael W. W. (2002-12-15). 2980: 2177: 1515: 1087:Proceedings of the National Academy of Sciences 1081:Sapra, R; Bagramyan, K; Adams, M. W. W (2003). 381:into the organism's environment. In this case, 1971: 430:University of Maryland Biotechnology Institute 2347: 1840: 778: 1789: 1010: 910: 837:in Germany, and a colleague, Gerhard Fiala. 2252: 1668: 1466: 1427: 1074: 906: 904: 902: 900: 858: 428:was completed in 2001 by scientists at the 2354: 2340: 2019: 2017: 729:The expression of a certain gene found in 31: 2286: 2235: 2225: 2160: 2150: 2111:Learn how and when to remove this message 2023: 1997: 1948: 1817: 1807: 1766: 1725: 1645: 1588: 1484: 1428:Makund, S.; Adams, M.W.W. (August 1991). 1404: 1292: 1247: 1116: 1106: 911:Fiala, Gerhard; Stetter, Karl O (1986). " 683: 503:that are part of its NAD(P)H-independent 467: 2181:Journal of Bioscience and Bioengineering 2074:This article includes a list of general 1707: 1554: 897: 579: 406: 2319:- the Bacterial Diversity Metadatabase 2014: 1378: 588: 2981: 2259:Applied and Environmental Microbiology 475:possesses several highly thermostable 2782: 2781: 2335: 1195:. American Society for Microbiology. 2060: 1006: 1004: 956: 954: 499:has five unique tungsten-containing 829:, Italy. It was first described by 787:with a related species of archaea, 13: 2080:it lacks sufficient corresponding 2056: 1768:10.1046/j.1365-2443.1997.1380336.x 1708:Mai, X.; Adams, M.W. (June 1994). 1017:National Space Science Data Center 668:does actually possess a requisite 559:that does not contain tungsten is 491: 14: 3005: 2673:Acidophiles in acid mine drainage 2361: 2304: 1434:Journal of Inorganic Biochemistry 1001: 951: 2065: 1630:10.1128/JB.187.20.7056-7061.2005 1573:10.1128/JB.184.24.6952-6956.2002 1294:10.1046/j.1432-1327.2001.02201.x 1281:European Journal of Biochemistry 1144:Hyperthermophilic Enzymes Part A 1052:10.1046/j.1432-1327.2000.01745.x 1040:European Journal of Biochemistry 625:are extremely thermostable, the 51: 2139:Journal of Biological Chemistry 1965: 1916: 1869: 1834: 1783: 1742: 1714:Journal of Biological Chemistry 1701: 1662: 1605: 1548: 1509: 1473:Journal of Biological Chemistry 1460: 1421: 1397:10.1128/JB.181.4.1163-1170.1999 1372: 1317: 1011:Karen Miller (August 5, 2005). 420:The sequencing of the complete 288:. It appears as mostly regular 1855:10.1016/j.ijbiomac.2008.01.010 1264: 1207: 1182: 1133: 1027: 584:Pfu Polymerase ribbon diagram. 1: 1790:Ishino, S; Ishino, Y (2014). 1727:10.1016/S0021-9258(19)89451-6 1153:10.1016/s0076-6879(01)30372-5 890: 688:One practical application of 555:An oxidoreductase species in 359:). The metabolic products of 259: 2253:Herzog, B; Wirth, R (2012). 2193:10.1016/j.jbiosc.2013.12.002 1894:10.1126/science.239.4839.487 1687:10.1016/0167-4838(93)90190-3 1522:Journal of Molecular Biology 1446:10.1016/0162-0134(91)84247-7 979:10.1016/0378-1119(91)90480-y 847: 756:into plants, the levels of O 724: 531:. Another oxidoreductase is 7: 878:Thermostable DNA polymerase 871: 415: 10: 3010: 2658:Abiogenic petroleum origin 2591:Thermococcus gammatolerans 2038:10.1016/j.gene.2004.10.008 813: 779:In researching amino acids 648:. However, since purified 524:glyceraldehyde-3-phosphate 462: 2994:Archaea described in 1993 2790: 2650: 2600: 2561: 2498: 2489: 2369: 2214:Frontiers in Microbiology 1941:10.1007/s00792-008-0164-8 1796:Frontiers in Microbiology 1342:10.1007/s00792-005-0490-z 884:Thermococcus kodakarensis 743:superoxide anion radicals 639:polymerase chain reaction 231:polymerase chain reaction 143: 136: 48:Scientific classification 46: 39: 30: 23: 2509:Chloroflexus aurantiacus 2227:10.3389/fmicb.2014.00224 1809:10.3389/fmicb.2014.00465 917:Archives of Microbiology 835:University of Regensburg 821:was originally isolated 692:is in the production of 185:. It is classified as a 2632:Halicephalobus mephisto 2625:Paralvinella sulfincola 2611:Cyanidioschyzon merolae 2516:Deinococcus radiodurans 2152:10.1074/jbc.M114.567255 2095:more precise citations. 1618:Journal of Bacteriology 1561:Journal of Bacteriology 1486:10.1074/jbc.270.15.8389 1385:Journal of Bacteriology 1220:Journal of Bacteriology 1108:10.1073/pnas.1331436100 735:reactive oxygen species 575: 203:. It is one of the few 153:Fiala and Stetter, 1986 1534:10.1006/jmbi.1998.2488 1019:. NASA. Archived from 859: 702:alcohol dehydrogenases 684:In production of diols 585: 477:alcohol dehydrogenases 468:Alcohol dehydrogenases 412: 2618:Galdieria sulphuraria 2547:Spirochaeta americana 1990:10.1104/pp.109.145409 750:superoxide reductases 739:superoxide dismutases 652:DNA polymerase lacks 637:) can be used in the 583: 410: 250:superoxide dismutases 2540:Thermus thermophilus 2279:10.1128/AEM.06723-11 852:means "fireball" in 763:Arabidopsis thaliana 589:In DNA amplification 2927:pyrococcus-furiosus 2822:Pyrococcus furiosus 2792:Pyrococcus furiosus 2739:Radiotrophic fungus 2716:Helaeomyia petrolei 2663:Acidithiobacillales 2572:Pyrococcus furiosus 2326:Pyrococcus furiosus 2324:KEGG Genome : 2313:Pyrococcus furiosus 2271:2012ApEnM..78.1670H 1720:(24): 16726–16732. 1275:Pyrococcus furiosus 1232:10.1128/jb.00439-12 1099:2003PNAS..100.7545S 1013:"Prozac for Plants" 929:1986ArMic.145...56F 913:Pyrococcus furiosus 864:means 'rushing' in 839:Pyrococcus furiosus 819:Pyrococcus furiosus 748:By introducing the 497:Pyrococcus furiosus 473:Pyrococcus furiosus 457:insertion sequences 445:Pyrococcus furiosus 438:Pyrococcus furiosus 434:open reading frames 426:Pyrococcus furiosus 265:Pyrococcus furiosus 219:Pyrococcus furiosus 207:organisms that has 162:Pyrococcus furiosus 147:Pyrococcus furiosus 41:Pyrococcus furiosus 25:Pyrococcus furiosus 16:Species of archaeon 1023:on August 8, 2005. 937:10.1007/BF00413027 664:DNA polymerase of 635:Pfu DNA polymerase 597:was discovered in 586: 552:aldehyde species. 505:glycolytic pathway 413: 314:-like structures. 269:strictly anaerobic 201:hydrothermal vents 2976: 2975: 2948:Open Tree of Life 2784:Taxon identifiers 2775: 2774: 2722:Hydrothermal vent 2646: 2645: 2584:Pyrolobus fumarii 2533:Thermus aquaticus 2121: 2120: 2113: 1888:(4839): 487–491. 1624:(20): 7056–7061. 1567:(24): 6952–6956. 1479:(15): 8389–8392. 1287:(10): 3062–3068. 1226:(15): 4097–4106. 1046:(22): 6541–6551. 790:Pyrococcus abyssi 603:sequence homology 323:grows between 70 158: 157: 3001: 2969: 2968: 2956: 2955: 2943: 2942: 2930: 2929: 2917: 2916: 2904: 2903: 2891: 2890: 2878: 2877: 2865: 2864: 2852: 2851: 2839: 2838: 2826: 2825: 2824: 2811: 2810: 2809: 2779: 2778: 2678:Archaeoglobaceae 2651:Related articles 2496: 2495: 2476:Thermoacidophile 2471:Hyperthermophile 2447:Polyextremophile 2356: 2349: 2342: 2333: 2332: 2300: 2290: 2249: 2239: 2229: 2204: 2174: 2164: 2154: 2145:(28): 19364–72. 2116: 2109: 2105: 2102: 2096: 2091:this article by 2082:inline citations 2069: 2068: 2061: 2050: 2049: 2021: 2012: 2011: 2001: 1978:Plant Physiology 1969: 1963: 1962: 1952: 1920: 1914: 1913: 1873: 1867: 1866: 1838: 1832: 1831: 1821: 1811: 1787: 1781: 1780: 1770: 1746: 1740: 1739: 1729: 1705: 1699: 1698: 1666: 1660: 1659: 1649: 1609: 1603: 1602: 1592: 1552: 1546: 1545: 1513: 1507: 1506: 1488: 1464: 1458: 1457: 1425: 1419: 1418: 1408: 1391:(4): 1163–1170. 1376: 1370: 1369: 1321: 1315: 1314: 1296: 1268: 1262: 1261: 1251: 1211: 1205: 1204: 1186: 1180: 1179: 1178: 1177: 1137: 1131: 1130: 1120: 1110: 1078: 1072: 1071: 1031: 1025: 1024: 1008: 999: 998: 958: 949: 948: 908: 862: 850: 680:DNA polymerase. 537:carboxylic acids 520:electron carrier 443:A lab strain of 187:hyperthermophile 149: 129:P. furiosus 56: 55: 35: 21: 20: 3009: 3008: 3004: 3003: 3002: 3000: 2999: 2998: 2979: 2978: 2977: 2972: 2964: 2959: 2951: 2946: 2938: 2933: 2925: 2920: 2912: 2907: 2899: 2894: 2886: 2881: 2873: 2868: 2860: 2855: 2847: 2842: 2834: 2829: 2820: 2819: 2814: 2805: 2804: 2799: 2786: 2776: 2771: 2762:Thermostability 2698:Grylloblattidae 2668:Acidobacteriota 2642: 2596: 2557: 2491: 2485: 2427:Metallotolerant 2365: 2360: 2311:Type strain of 2307: 2117: 2106: 2100: 2097: 2087:Please help to 2086: 2070: 2066: 2059: 2057:Further reading 2054: 2053: 2022: 2015: 1970: 1966: 1921: 1917: 1874: 1870: 1839: 1835: 1788: 1784: 1747: 1743: 1706: 1702: 1667: 1663: 1610: 1606: 1553: 1549: 1514: 1510: 1465: 1461: 1426: 1422: 1377: 1373: 1322: 1318: 1269: 1265: 1212: 1208: 1187: 1183: 1175: 1173: 1163: 1138: 1134: 1093:(13): 7545–50. 1079: 1075: 1032: 1028: 1009: 1002: 959: 952: 909: 898: 893: 874: 816: 781: 759: 727: 686: 633:(also known as 591: 578: 566:decarboxylation 542: 501:oxidoreductases 494: 492:Oxidoreductases 470: 465: 418: 386: 375: 368: 262: 193:belongs to the 154: 151: 145: 132: 105:Thermococcaceae 50: 17: 12: 11: 5: 3007: 2997: 2996: 2991: 2974: 2973: 2971: 2970: 2957: 2944: 2931: 2918: 2905: 2892: 2879: 2866: 2853: 2840: 2827: 2812: 2796: 2794: 2788: 2787: 2773: 2772: 2770: 2769: 2764: 2759: 2751: 2746: 2741: 2736: 2731: 2724: 2719: 2712: 2705: 2700: 2695: 2693:Thermoproteota 2690: 2685: 2680: 2675: 2670: 2665: 2660: 2654: 2652: 2648: 2647: 2644: 2643: 2641: 2640: 2635: 2628: 2621: 2614: 2606: 2604: 2598: 2597: 2595: 2594: 2587: 2580: 2575: 2567: 2565: 2559: 2558: 2556: 2555: 2550: 2543: 2536: 2529: 2524: 2519: 2512: 2504: 2502: 2493: 2487: 2486: 2484: 2483: 2478: 2473: 2464: 2462:Radioresistant 2459: 2454: 2449: 2444: 2439: 2434: 2429: 2424: 2419: 2414: 2412:Lithoautotroph 2409: 2404: 2399: 2394: 2389: 2384: 2379: 2373: 2371: 2367: 2366: 2359: 2358: 2351: 2344: 2336: 2330: 2329: 2321: 2306: 2305:External links 2303: 2302: 2301: 2250: 2205: 2175: 2119: 2118: 2073: 2071: 2064: 2058: 2055: 2052: 2051: 2013: 1984:(2): 893–904. 1964: 1915: 1868: 1849:(4): 356–361. 1833: 1782: 1761:(8): 499–512. 1755:Genes to Cells 1741: 1700: 1661: 1604: 1547: 1528:(3): 899–914. 1508: 1459: 1420: 1371: 1336:(3): 221–227. 1316: 1263: 1206: 1181: 1161: 1132: 1073: 1026: 1000: 950: 895: 894: 892: 889: 888: 887: 880: 873: 870: 827:Vulcano Island 815: 812: 780: 777: 757: 726: 723: 685: 682: 646:DNA polymerase 627:DNA polymerase 595:DNA polymerase 590: 587: 577: 574: 540: 493: 490: 469: 466: 464: 461: 417: 414: 384: 373: 366: 277:Vulcano, Italy 261: 258: 242:DNA polymerase 156: 155: 152: 141: 140: 134: 133: 126: 124: 120: 119: 112: 108: 107: 102: 98: 97: 95:Thermococcales 92: 88: 87: 82: 78: 77: 72: 68: 67: 62: 58: 57: 44: 43: 37: 36: 28: 27: 15: 9: 6: 4: 3: 2: 3006: 2995: 2992: 2990: 2989:Euryarchaeota 2987: 2986: 2984: 2967: 2962: 2958: 2954: 2949: 2945: 2941: 2936: 2932: 2928: 2923: 2919: 2915: 2910: 2906: 2902: 2897: 2893: 2889: 2884: 2880: 2876: 2871: 2867: 2863: 2858: 2854: 2850: 2845: 2841: 2837: 2832: 2828: 2823: 2817: 2813: 2808: 2802: 2798: 2797: 2795: 2793: 2789: 2785: 2780: 2768: 2765: 2763: 2760: 2758: 2756: 2752: 2750: 2747: 2745: 2742: 2740: 2737: 2735: 2732: 2730: 2729: 2725: 2723: 2720: 2718: 2717: 2713: 2711: 2710: 2709:Halobacterium 2706: 2704: 2701: 2699: 2696: 2694: 2691: 2689: 2686: 2684: 2681: 2679: 2676: 2674: 2671: 2669: 2666: 2664: 2661: 2659: 2656: 2655: 2653: 2649: 2639: 2636: 2634: 2633: 2629: 2627: 2626: 2622: 2620: 2619: 2615: 2613: 2612: 2608: 2607: 2605: 2603: 2599: 2593: 2592: 2588: 2586: 2585: 2581: 2579: 2576: 2574: 2573: 2569: 2568: 2566: 2564: 2560: 2554: 2551: 2549: 2548: 2544: 2542: 2541: 2537: 2535: 2534: 2530: 2528: 2525: 2523: 2520: 2518: 2517: 2513: 2511: 2510: 2506: 2505: 2503: 2501: 2497: 2494: 2492:extremophiles 2488: 2482: 2479: 2477: 2474: 2472: 2468: 2465: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2423: 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2400: 2398: 2395: 2393: 2390: 2388: 2385: 2383: 2380: 2378: 2375: 2374: 2372: 2368: 2364: 2363:Extremophiles 2357: 2352: 2350: 2345: 2343: 2338: 2337: 2334: 2328: 2327: 2322: 2320: 2318: 2314: 2309: 2308: 2298: 2294: 2289: 2284: 2280: 2276: 2272: 2268: 2265:(6): 1670–4. 2264: 2260: 2256: 2251: 2247: 2243: 2238: 2233: 2228: 2223: 2219: 2215: 2211: 2206: 2202: 2198: 2194: 2190: 2187:(6): 706–10. 2186: 2182: 2176: 2172: 2168: 2163: 2158: 2153: 2148: 2144: 2140: 2136: 2134: 2130: 2123: 2122: 2115: 2112: 2104: 2101:November 2017 2094: 2090: 2084: 2083: 2077: 2072: 2063: 2062: 2047: 2043: 2039: 2035: 2031: 2027: 2020: 2018: 2009: 2005: 2000: 1995: 1991: 1987: 1983: 1979: 1975: 1968: 1960: 1956: 1951: 1946: 1942: 1938: 1935:(4): 587–94. 1934: 1930: 1929:Extremophiles 1926: 1919: 1911: 1907: 1903: 1899: 1895: 1891: 1887: 1883: 1879: 1872: 1864: 1860: 1856: 1852: 1848: 1844: 1837: 1829: 1825: 1820: 1815: 1810: 1805: 1801: 1797: 1793: 1786: 1778: 1774: 1769: 1764: 1760: 1756: 1752: 1745: 1737: 1733: 1728: 1723: 1719: 1715: 1711: 1704: 1696: 1692: 1688: 1684: 1680: 1676: 1672: 1665: 1657: 1653: 1648: 1643: 1639: 1635: 1631: 1627: 1623: 1619: 1615: 1608: 1600: 1596: 1591: 1586: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1551: 1543: 1539: 1535: 1531: 1527: 1523: 1519: 1512: 1504: 1500: 1496: 1492: 1487: 1482: 1478: 1474: 1470: 1463: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1424: 1416: 1412: 1407: 1402: 1398: 1394: 1390: 1386: 1382: 1375: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1331: 1330:Extremophiles 1327: 1320: 1312: 1308: 1304: 1300: 1295: 1290: 1286: 1282: 1278: 1276: 1267: 1259: 1255: 1250: 1245: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1210: 1202: 1198: 1194: 1193: 1185: 1172: 1168: 1164: 1162:9780121822316 1158: 1154: 1150: 1146: 1145: 1136: 1128: 1124: 1119: 1114: 1109: 1104: 1100: 1096: 1092: 1088: 1084: 1077: 1069: 1065: 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1030: 1022: 1018: 1014: 1007: 1005: 996: 992: 988: 984: 980: 976: 972: 968: 964: 957: 955: 946: 942: 938: 934: 930: 926: 922: 918: 914: 907: 905: 903: 901: 896: 886: 885: 881: 879: 876: 875: 869: 867: 863: 861: 855: 851: 849: 842: 840: 836: 832: 828: 824: 823:anaerobically 820: 811: 807: 804: 800: 796: 792: 791: 786: 783:By comparing 776: 774: 768: 765: 764: 755: 751: 746: 744: 740: 736: 732: 722: 719: 715: 709: 707: 703: 699: 695: 691: 681: 679: 675: 671: 667: 663: 659: 655: 651: 647: 645: 640: 636: 632: 628: 624: 620: 615: 613: 608: 604: 600: 596: 582: 573: 571: 567: 562: 558: 553: 551: 547: 538: 534: 530: 525: 521: 517: 513: 510: 506: 502: 498: 489: 486: 482: 478: 474: 460: 458: 454: 450: 449:recombination 446: 441: 439: 435: 431: 427: 423: 409: 405: 403: 402:ATP synthesis 398: 394: 392: 388: 380: 376: 369: 362: 358: 354: 350: 346: 342: 339:, β-glucans, 338: 334: 330: 326: 322: 319: 315: 313: 309: 306: 302: 297: 295: 291: 287: 283: 278: 274: 273:heterotrophic 270: 266: 257: 255: 251: 247: 243: 241: 236: 232: 228: 224: 220: 216: 214: 210: 206: 202: 198: 197: 192: 188: 184: 180: 176: 175:extremophilic 172: 168: 167:heterotrophic 164: 163: 150: 148: 142: 139: 138:Binomial name 135: 131: 130: 125: 122: 121: 118: 117: 113: 110: 109: 106: 103: 100: 99: 96: 93: 90: 89: 86: 83: 80: 79: 76: 75:Euryarchaeota 73: 70: 69: 66: 63: 60: 59: 54: 49: 45: 42: 38: 34: 29: 26: 22: 19: 2791: 2767:Thermotogota 2754: 2728:Methanopyrus 2726: 2714: 2707: 2703:Halobacteria 2683:Berkeley Pit 2638:Pompeii worm 2630: 2623: 2616: 2609: 2589: 2582: 2571: 2570: 2545: 2538: 2531: 2522:Deinococcota 2514: 2507: 2469: / 2457:Psychrophile 2325: 2316: 2312: 2262: 2258: 2217: 2213: 2184: 2180: 2142: 2138: 2132: 2128: 2107: 2098: 2079: 2029: 2025: 1981: 1977: 1967: 1932: 1928: 1918: 1885: 1881: 1871: 1846: 1842: 1836: 1799: 1795: 1785: 1758: 1754: 1744: 1717: 1713: 1703: 1681:(1): 19–27. 1678: 1674: 1664: 1621: 1617: 1607: 1564: 1560: 1550: 1525: 1521: 1511: 1476: 1472: 1462: 1440:(2–3): 257. 1437: 1433: 1423: 1388: 1384: 1374: 1333: 1329: 1319: 1284: 1280: 1274: 1266: 1223: 1219: 1209: 1191: 1184: 1174:, retrieved 1143: 1135: 1090: 1086: 1076: 1043: 1039: 1029: 1021:the original 1016: 970: 966: 923:(1): 56–61. 920: 916: 912: 882: 857: 845: 843: 838: 831:Karl Stetter 818: 817: 808: 802: 794: 788: 784: 782: 772: 769: 761: 753: 747: 730: 728: 717: 713: 710: 705: 697: 689: 687: 677: 673: 665: 661: 649: 643: 630: 622: 616: 611: 598: 592: 572:pyruvates." 556: 554: 533:formaldehyde 528: 496: 495: 484: 481:fermentation 472: 471: 444: 442: 437: 425: 419: 396: 395: 390: 360: 320: 317: 316: 304: 301:glycoprotein 298: 294:flagellation 282:glycoprotein 264: 263: 253: 246:P. furiosus' 245: 239: 234: 226: 225:properties. 223:thermostable 218: 217: 194: 190: 161: 160: 159: 146: 144: 128: 127: 115: 40: 24: 18: 2816:Wikispecies 2734:Movile Cave 2688:Blood Falls 2467:Thermophile 2452:Psammophile 2382:Alkaliphile 2093:introducing 795:P. furiosus 785:P. furiosus 773:P. furiosus 754:P. furiosus 731:P. furiosus 718:P. furiosus 714:P. furiosus 706:P. furiosus 698:P. furiosus 690:P. furiosus 666:P. furiosus 658:nucleotides 654:exonuclease 631:P. furiosus 623:P. furiosus 612:P. furiosus 599:P. furiosus 557:P. furiosus 529:P. furiosus 485:P. furiosus 397:P. furiosus 391:P. furiosus 361:P. furiosus 305:P. furiosus 254:P. furiosus 235:P. furiosus 227:P. furiosus 211:containing 205:prokaryotic 191:P. furiosus 181:species of 169:, strictly 85:Thermococci 2983:Categories 2757:polymerase 2749:Tardigrade 2578:Strain 121 2442:Piezophile 2432:Oligotroph 2422:Methanogen 2417:Lithophile 2387:Capnophile 2377:Acidophile 2133:Pyrococcus 2076:references 1176:2022-10-06 973:(1): 1–6. 891:References 848:Pyrococcus 799:barophilic 617:Since the 512:ferredoxin 453:transposon 393:does not. 337:cellobiose 284:called an 260:Properties 196:Pyrococcus 116:Pyrococcus 2744:Rio Tinto 2602:Eukaryota 2481:Xerophile 2437:Osmophile 2407:Lipophile 2397:Halophile 2135:furiosus" 1902:0036-8075 1638:0021-9193 1581:0021-9193 1495:0021-9258 1454:0162-0134 1350:1431-0651 1303:0014-2956 1240:0021-9193 1201:678564723 1060:0014-2956 987:0378-1119 844:The name 803:P. abyssi 725:In plants 550:aliphatic 516:oxidation 357:galactose 252:found in 171:anaerobic 123:Species: 71:Kingdom: 2901:10034286 2801:Wikidata 2527:Snottite 2500:Bacteria 2402:Hypolith 2392:Endolith 2297:22247169 2246:24904539 2201:24462527 2171:24860091 2046:15716096 2008:19684226 1959:18452026 1863:18355915 1828:25221550 1656:16199576 1599:12446645 1542:10024458 1366:28865345 1358:16463078 1311:11358525 1258:22636780 1171:11210495 1127:12792025 1068:11054105 945:41589578 872:See also 860:furiosus 801:, while 670:3’-to-5’ 607:3'-to-5' 561:pyruvate 546:aromatic 509:aldehyde 416:Genomics 349:fructose 321:furiosus 308:flagella 213:tungsten 101:Family: 61:Domain: 2953:1043510 2888:1000309 2831:BacDive 2807:Q146310 2563:Archaea 2490:Notable 2288:3298134 2267:Bibcode 2237:4034419 2220:: 224. 2162:4094048 2089:improve 2032:: 1–6. 1999:2754621 1950:2467505 1910:2448875 1882:Science 1819:4148896 1802:: 465. 1777:9348040 1736:8206994 1695:8380721 1647:1251609 1503:7721730 1415:9973342 1249:3416535 1095:Bibcode 995:1761218 925:Bibcode 833:of the 814:History 797:is not 741:remove 619:enzymes 463:Enzymes 353:lactose 345:glucose 333:maltose 312:biofilm 286:S-layer 209:enzymes 183:archaea 111:Genus: 91:Order: 81:Class: 65:Archaea 2966:573720 2914:951913 2875:PYRKFU 2862:973288 2553:GFAJ-1 2315:at Bac 2295:  2285:  2244:  2234:  2199:  2169:  2159:  2078:, but 2044:  2006:  1996:  1957:  1947:  1908:  1900:  1861:  1826:  1816:  1775:  1734:  1693:  1654:  1644:  1636:  1597:  1590:135473 1587:  1579:  1540:  1501:  1493:  1452:  1413:  1403:  1364:  1356:  1348:  1309:  1301:  1256:  1246:  1238:  1199:  1169:  1159:  1125:  1118:164623 1115:  1066:  1058:  993:  985:  943:  422:genome 379:sulfur 355:, and 341:starch 2961:WoRMS 2896:IRMNG 2849:78QJ4 2836:16854 2370:Types 1406:93493 1362:S2CID 941:S2CID 866:Latin 854:Greek 694:diols 629:from 327:(158 290:cocci 267:is a 179:model 165:is a 2940:2261 2935:NCBI 2922:LPSN 2909:ITIS 2883:GBIF 2870:EPPO 2317:Dive 2293:PMID 2242:PMID 2197:PMID 2167:PMID 2042:PMID 2026:Gene 2004:PMID 1955:PMID 1906:PMID 1898:ISSN 1859:PMID 1824:PMID 1773:PMID 1732:PMID 1691:PMID 1679:1161 1652:PMID 1634:ISSN 1595:PMID 1577:ISSN 1538:PMID 1499:PMID 1491:ISSN 1450:ISSN 1411:PMID 1354:PMID 1346:ISSN 1307:PMID 1299:ISSN 1254:PMID 1236:ISSN 1197:OCLC 1167:PMID 1157:ISBN 1123:PMID 1064:PMID 1056:ISSN 991:PMID 983:ISSN 967:Gene 576:Uses 570:aryl 548:and 451:and 370:and 363:are 2857:EoL 2844:CoL 2755:Taq 2283:PMC 2275:doi 2232:PMC 2222:doi 2189:doi 2185:117 2157:PMC 2147:doi 2143:289 2034:doi 2030:346 1994:PMC 1986:doi 1982:151 1945:PMC 1937:doi 1890:doi 1886:239 1851:doi 1814:PMC 1804:doi 1763:doi 1722:doi 1718:269 1683:doi 1642:PMC 1626:doi 1622:187 1585:PMC 1569:doi 1565:184 1530:doi 1526:286 1481:doi 1477:270 1442:doi 1401:PMC 1393:doi 1389:181 1338:doi 1289:doi 1285:268 1244:PMC 1228:doi 1224:194 1149:doi 1113:PMC 1103:doi 1091:100 1048:doi 1044:267 975:doi 971:108 933:doi 921:145 752:of 678:Taq 674:Pfu 662:Pfu 650:Taq 644:Taq 621:of 568:of 424:of 240:Taq 2985:: 2963:: 2950:: 2937:: 2924:: 2911:: 2898:: 2885:: 2872:: 2859:: 2846:: 2833:: 2818:: 2803:: 2291:. 2281:. 2273:. 2263:78 2261:. 2257:. 2240:. 2230:. 2216:. 2212:. 2195:. 2183:. 2165:. 2155:. 2141:. 2137:. 2129:Fe 2040:. 2028:. 2016:^ 2002:. 1992:. 1980:. 1976:. 1953:. 1943:. 1933:12 1931:. 1927:. 1904:. 1896:. 1884:. 1880:. 1857:. 1847:42 1845:. 1822:. 1812:. 1798:. 1794:. 1771:. 1757:. 1753:. 1730:. 1716:. 1712:. 1689:. 1677:. 1673:. 1650:. 1640:. 1632:. 1620:. 1616:. 1593:. 1583:. 1575:. 1563:. 1559:. 1536:. 1524:. 1520:. 1497:. 1489:. 1475:. 1471:. 1448:. 1438:43 1436:. 1432:. 1409:. 1399:. 1387:. 1383:. 1360:. 1352:. 1344:. 1334:10 1332:. 1328:. 1305:. 1297:. 1283:. 1279:. 1252:. 1242:. 1234:. 1222:. 1218:. 1165:, 1155:, 1121:. 1111:. 1101:. 1089:. 1085:. 1062:. 1054:. 1042:. 1038:. 1015:. 1003:^ 989:. 981:. 969:. 965:. 953:^ 939:. 931:. 919:. 899:^ 593:A 365:CO 351:, 347:, 335:, 329:°F 325:°C 318:P. 299:A 296:. 271:, 177:, 173:, 2355:e 2348:t 2341:v 2299:. 2277:: 2269:: 2248:. 2224:: 2218:5 2203:. 2191:: 2173:. 2149:: 2114:) 2108:( 2103:) 2099:( 2085:. 2048:. 2036:: 2010:. 1988:: 1961:. 1939:: 1912:. 1892:: 1865:. 1853:: 1830:. 1806:: 1800:5 1779:. 1765:: 1759:2 1738:. 1724:: 1697:. 1685:: 1658:. 1628:: 1601:. 1571:: 1544:. 1532:: 1505:. 1483:: 1456:. 1444:: 1417:. 1395:: 1368:. 1340:: 1313:. 1291:: 1277:" 1260:. 1230:: 1203:. 1151:: 1129:. 1105:: 1097:: 1070:. 1050:: 997:. 977:: 947:. 935:: 927:: 758:2 541:2 387:S 385:2 383:H 374:2 372:H 367:2

Index


Scientific classification
Edit this classification
Archaea
Euryarchaeota
Thermococci
Thermococcales
Thermococcaceae
Pyrococcus
Binomial name
heterotrophic
anaerobic
extremophilic
model
archaea
hyperthermophile
Pyrococcus
hydrothermal vents
prokaryotic
enzymes
tungsten
thermostable
polymerase chain reaction
Taq DNA polymerase
superoxide dismutases
strictly anaerobic
heterotrophic
Vulcano, Italy
glycoprotein
S-layer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.