Knowledge

Great Red Spot

Source 📝

338: 180:
of reduction, it will become circular by 2040. It is not known how long the spot will last, or whether the change is a result of normal fluctuations. In 2019, the Great Red Spot began "flaking" at its edge, with fragments of the storm breaking off and dissipating. The shrinking and "flaking" fueled speculation from some astronomers that the Great Red Spot could dissipate within 20 years. However, other astronomers believe that the apparent size of the Great Red Spot reflects its cloud coverage and not the size of the actual, underlying vortex, and they also believe that the flaking events can be explained by interactions with other cyclones or anticyclones, including incomplete absorptions of smaller systems; if this is the case, this would mean that the Great Red Spot is not in danger of dissipating.
20: 411:, Galileo, and Cassini missions suggested the GRS is a structure of an anticyclonic vortex with a cold core within a upwelling warmer annulus; this data shows a gradient in the temperature of the GRS. Better understanding of Jupiter's atmospheric temperature, aerosol particle opacity, and ammonia gas composition was provided by thermal-IR imaging: a direct correlation of the visible cloud layers reactions, thermal gradient and compositional mapping to observational data were collected over decades. During December 2000, high spatial resolution images from Galileo, of an atmospheric turbulent area to the northwest of the GRS, showed a thermal contrast between the warmest region of the anticyclone and regions to the east and west of the GRS. 78: 325:, however, is subject to constant variation, including a 90-day longitudinal oscillation with an amplitude of ~1°. Because Jupiter does not rotate uniformly at all latitudes, astronomers have defined three different systems for defining longitude. System II is used for latitudes of more than 10 degrees and was originally based on the average rotational period of the Great Red Spot of 9h 55m 42s. Despite this, however, the spot has "lapped" the planet in System II at least 10 times since the early 19th century. Its drift rate has changed dramatically over the years and has been linked to the brightness of the 415: 2684: 298: 89: 156: 423:
north–south of the structures edge. This structure is consistent with the data collected by the VISIR (VLT Mid-Infrared Imager Spectrometer on the ESO Very Large Telescope) imaging obtained in 2006; this revealed that the GRS was physically present at a wide range of altitudes that occur within the atmospheric pressure range of 80–600 mbar, and confirms the thermal infrared mapping result. To develop a model of the internal structure of the GRS the Cassini mission Composite
3123: 3134: 522: 266: 120:'s description of a "permanent spot" the following year. With fluctuations in visibility, Cassini's spot was observed from 1665 to 1713, but the 48-year observational gap makes the identity of the two spots inconclusive. The older spot's shorter observational history and slower motion than the modern spot makes it difficult to conclude that they are the same. 64:, it produces wind-speeds up to 432 km/h (268 mph). It was first observed in September 1831, with 60 recorded observations between then and 1878, when continuous observations began. A similar spot was observed from 1665 to 1713; if this is the same storm, it has existed for at least 359 years, but a study from 2024 suggests this is not the case. 510:(SEB). Its visibility is apparently coupled to the SEB; when the belt is bright white, the spot tends to be dark, and when it is dark, the spot is usually light. These periods when the spot is dark or light occur at irregular intervals; from 1947 to 1997, the spot was darkest in the periods 1961–1966, 1968–1975, 1989–1990, and 1992–1993. 480:
and compositional asymmetries of the GRS suggest that the structure exhibits a degree of tilt from the northern edge to the southern edge of the structure. The GRS depth and internal structure has been constantly changing over decades; however there is still no logical reason that it is 200–500 km in
392:
approach, which found a depth of ~290 km, and the Slepian approach showing wind extending to ~310 km. These methods, along with gravity signature MWR data, suggest that the GRS zonal winds still increase at a rate of 50% of the velocity of the viable cloud level, before the wind decay starts at lower
293:
rising from the turbulence of the storm below have been proposed as an explanation for the heating of this region. The acoustic waves travel vertically up to a height of 800 km (500 mi) above the storm where they break in the upper atmosphere, converting wave energy into heat. This creates
1594:
Wong, Michael H.; Simon, Amy A.; Tollefson, Joshua W.; de Pater, Imke; Barnett, Megan N.; Hsu, Andrew I.; Stephens, Andrew W.; Orton, Glenn S.; Fleming, Scott W.; Goullaud, Charles; Januszewski, William; Roman, Anthony; Bjoraker, Gordon L.; Atreya, Sushil K.; Adriani, Alberto; Fletcher, Leigh N. (1
179:
In the 21st century, the major diameter of the Great Red Spot has been observed to be shrinking in size. At the start of 2004, its length was about half that of a century earlier, when it reached a size of 40,000 km (25,000 mi), about three times the diameter of Earth. At the present rate
313:
to its south and a very strong westward one to its north. Though winds around the edge of the spot peak at about 432 km/h (268 mph), currents inside it seem stagnant, with little inflow or outflow. The rotation period of the spot has decreased with time, perhaps as a direct result of its
422:
The vertical temperature of the structure of the GRS is constrained between the 100–600 mbar range, with the vertical temperature of the GRS core is approximately 400 mbar of pressure, being 1.0–1.5 K, much warmer than regions of the GRS to the east–west, and 3.0–3.5 K warmer than regions to the
277:
Jupiter's Great Red Spot rotates counterclockwise, with a period of about 4.5 Earth days, or 11 Jovian days, as of 2008. Measuring 16,350 km (10,160 mi) in width as of 3 April 2017, the Great Red Spot is 1.3 times the diameter of Earth. The cloud-tops of this storm are about 8 km
475:
below the visible cloud layer at the southern peripheral ring of the GRS; this lower opacity is relative to a narrow band of atmospheric subsidence. The low mid-IR aerosol opacity, along with the temperature gradients, the altitude difference, and the vertical movement of the zonal winds, are
100:
The Great Red Spot may have existed before 1665, but it could be that the present spot was first seen only in 1830, and was well studied only after a prominent appearance in 1879. The storm that was seen in the 17th century may have been different from the storm that exists today. A long gap
139:
for accuracy, Creti's painting is the first known depiction of the Great Red Spot as red (albeit raised to the Jovian northern hemisphere due to an optical inversion inherent to the era's telescopes). No Jovian feature was explicitly described in writing as red before the late 19th century.
175:
spacecraft was 9,200,000 km (5,700,000 mi) from Jupiter, it transmitted the first detailed image of the Great Red Spot. Cloud details as small as 160 km (100 mi) across were visible. The colorful, wavy cloud pattern seen to the left (west) of the Red Spot is a region of
146:
A 2024 study of historical observations suggests that the "permanent spot" observed from 1665 to 1713 may not be the same as the modern Great Red Spot observed since 1831. It is suggested that the original spot disappeared, and later another spot formed, which is the one seen today.
230:, which entered into a polar orbit around Jupiter in 2016, flew over the Great Red Spot upon its close approach to Jupiter on 11 July 2017, taking several images of the storm from a distance of about 8,000 km (5,000 mi) above the surface. Over the duration of the 2246:
scientists Mark Loeffler and Reggie Hudson have been performing laboratory studies to investigate whether cosmic rays, one type of radiation that strikes Jupiter's clouds, can chemically alter ammonium hydrosulfide to produce new compounds that could explain the spot's
288:
data has long indicated that the Great Red Spot is colder (and thus higher in altitude) than most of the other clouds on the planet. The upper atmosphere above the storm, however, has substantially higher temperatures than the rest of the planet.
466:
were found to the north of the GRS peripheral rotation. They aided in determining the southward jet movement and showed evidence of an increase in altitude of the column of aerosols with pressures ranging from 200–500 mbar. However, the
387:
O layer. These MWR scans suggested that the GRS vertical depth extended to about 240 km below cloud level, with an estimated drop in atmospheric pressure to 100 bar. Two methods of analysis that constrain the data collected were the
2004:
Wong, Michael H.; Marcus, Philip S.; Simon, Amy A.; de Pater, Imke; Tollefson, Joshua W.; Asay-Davis, Xylar (28 September 2021). "Evolution of the Horizontal Winds in Jupiter's Great Red Spot From One Jovian Year of HST/WFC3 Maps".
294:
a region of upper atmosphere that is 1,600 K (1,330 °C; 2,420 °F)—several hundred kelvins warmer than the rest of the planet at this altitude. The effect is described as like "crashing ocean waves on a beach".
378:
mission, gravity signature and thermal infrared data were obtained that offered insight into the structural dynamics and depth of the GRS. During July 2017, the Juno spacecraft conducted a second pass of the GRS to collect
373:
observation determined the velocity and vorticity of the GRS, which is located in a thin anticyclonic ring at 70–85% of the radius and is located along Jupiter's fastest westward moving jet stream. During NASA's 2016
108:, who described a spot on the planet in May 1664. However, it is likely that Hooke's spot was not only in another belt altogether (the North Equatorial Belt, as opposed to the current Great Red Spot's location in the 489:
It is not known what causes the Great Red Spot's reddish color. Hypotheses supported by laboratory experiments suppose that it may be caused by chemical products created from the solar ultraviolet irradiation of
101:
separates its period of current study after 1830 from its 17th century discovery. Whether the original spot dissipated and reformed, whether it faded, or if the observational record was simply poor is unknown.
505:
The Great Red Spot varies greatly in hue, from almost brick-red to pale salmon or even white. The spot occasionally disappears, becoming evident only through the Red Spot Hollow, which is its location in the
1725:
Parisi, Marzia; Kaspi, Yohai; Galanti, Eli; Durante, Daniele; Bolton, Scott J.; Levin, Steven M.; Buccino, Dustin R.; Fletcher, Leigh N.; Folkner, William M.; Guillot, Tristan; Helled, Ravit (2021-11-19).
195:
As of 5 June 2006, the Great Red Spot and Oval BA appeared to be approaching convergence. The storms pass each other about every two years, but the passing of 2002 and 2004 were of little significance.
407:
of the GRS were conducted during 1995–2008, in order to find evidence of thermal inhomogeneities within the internal structure vortex of the GRS. Previous thermal infrared temperature maps from the
305:
Careful tracking of atmospheric features revealed the Great Red Spot's counterclockwise circulation as far back as 1966, observations dramatically confirmed by the first time-lapse movies from the
143:
The Great Red Spot has been observed since 5 September 1831. By 1879, over 60 observations had been recorded. Since it came into prominence in 1879, it has been under continuous observation.
1832:
Fletcher, Leigh N.; Orton, G. S.; Mousis, O.; Yanamandra-Fisher, P.; Parrish, P. D.; Irwin, P. G. J.; Fisher, B. M.; Vanzi, L.; Fujiyoshi, T.; Fuse, T.; Simon-Miller, A. A. (2010-07-01).
845: 447:
within the anticyclonic circulation of the GRS. The images that were collected from the CIRS and ground-based imaging trace the vertical motion in the Jovian atmosphere by PH
718:
Sánchez-Lavega, Agustín; García-Melendo, Enrique; Legarreta, Jon; Miró, Arnau; Soria, Manel; Ahrens-Velásquez, Kevin (June 2024). "The Origin of Jupiter's Great Red Spot".
1127: 257:
in 1989 and may have been an atmospheric hole rather than a storm. It was no longer present as of 1994, although a similar spot had appeared farther to the north.
1412:"Interim reports on STB (Oval BA passing GRS), STropB, GRS (internal rotation measured), EZ(S. Eq. Disturbance; dramatic darkening; NEB interactions), & NNTB" 1353: 365:
Jupiter's Great Red Spot (GRS) is an elliptical shaped anticyclone, occurring at 22 degrees below the equator, in Jupiter's southern hemisphere. The largest
282:) to provide friction; circulating gas eddies persist for a very long time in the atmosphere because there is nothing to oppose their angular momentum. 278:(5 mi) above the surrounding cloud-tops. The storm has continued to exist for centuries because there is no planetary surface (only a mantle of 2514: 337: 1947:
Sánchez-Lavega, A.; Hueso, R.; Eichstädt, G.; Orton, G.; Rogers, J.; Hansen, C. J.; Momary, T.; Tabataba-Vakili, F.; Bolton, S. (2018-09-18).
688: 237:
The Great Red Spot should not be confused with the Great Dark Spot, a feature observed near the northern pole of Jupiter in 2000 with the
1184: 1049: 369:
storm (~16,000 km) in our solar system, little is known about its internal depth and structure. Visible imaging and cloud-tracking from
2494: 2185:
Flasar, F. Michael; Conrath, Barney J.; Pirraglia, Joseph A.; Clark, Patrick C.; French, Richard G.; Gierasch, Peter J. (1981-09-30).
1157: 234:
mission, the spacecraft continued to study the composition and evolution of Jupiter's atmosphere, especially its Great Red Spot.
2040:
Simon, Amy A.; Tabataba-Vakili, Fachreddin; Cosentino, Richard; Beebe, Reta F.; Wong, Michael H.; Orton, Glenn S. (2018-03-13).
2828: 187:, which formed in March 2000 from the merging of three white ovals, has turned reddish in color. Astronomers have named it the 896: 2856: 2415: 2396: 2370: 2351: 2332: 2851: 52:. It is the most recognizable feature on Jupiter, owing to its red-orange color whose origin is still unknown. Located 22 2243: 1135: 209: 2259:
Loeffer, Mark J.; Hudson, Reggie L. (2018). "Coloring Jupiter's clouds: Radiolysis of ammonium hydrosulfide (NH4SH)".
1011:
Sanchez-Lavega, A.; et al. (February 2001). "The Merger of Two Giant Anticyclones in the Atmosphere of Jupiter".
2610: 1361: 2234: 1433:
Reese, Elmer J.; Solberg, H. Gordon (1966). "Recent measures of the latitude and longitude of Jupiter's red spot".
766: 19: 2683: 1097: 989: 357:; multiwavelength composite of Hubble and Gemini data showing visible light in blue and thermal infrared in red; 1533: 1560: 1262: 481:
depth, but the jet streams that supply the force that powers the GRS vortex are well below the structure base.
625: 720: 418:
Winds in the Great Red Spot as analyzed from Hubble's data. Red means faster wind, blue means slower wind.
131:. Part of a series of panels in which different (magnified) heavenly bodies serve as backdrops for various 2578: 2534:
Youssef, Ashraf; Marcus, Philip S. (2003). "The dynamics of jovian white ovals from formation to merger".
1075: 961: 77: 393:
levels. This rate of wind decay and gravity data suggest the depth of the GRS is between 200 and 500 km.
380: 321:
has been stable for the duration of good observational records, typically varying by about a degree. Its
201: 2518: 1884:"Velocity and vorticity measurements of Jupiter's Great Red Spot using automated cloud feature tracking" 3029: 2874: 2582: 2478: 2140:"Jupiter's Great Red Spot: Fine-scale matches of model vorticity patterns to prevailing cloud patterns" 938: 559: 273:
to Jupiter in 1979, showing the motion of atmospheric bands, and the circulation of the Great Red Spot.
2139: 1883: 1833: 2889: 2884: 2879: 2833: 2097:
Cho, James Y-K.; de la Torre Juárez, Manuel; Ingersoll, Andrew P.; Dritschel, David G. (2001-03-25).
1643:
Bjoraker, G. L.; Wong, M. H.; Pater, I. de; Hewagama, T.; Ádámkovics, M.; Orton, G. S. (2018-08-20).
1834:"Thermal structure and composition of Jupiter's Great Red Spot from high-resolution thermal imaging" 212:
as well as a team of professional astronomers beginning in April 2006 to study the storms using the
3184: 3164: 2866: 2658: 444: 383:(MWR) scans of the GRS to determine how far the GRS extended toward the surface of the condensed H 2673: 2668: 1484: 1483:
Trigo-Rodriguez, J.M; Sánchez-Lavega, A; Gómez, J.M; Lecacheux, J; Colas, F; Miyazaki, I (2000).
1210: 535: 2903: 692: 342: 213: 2294: 2042:"Historical and Contemporary Trends in the Size, Drift, and Color of Jupiter's Great Red Spot" 1289: 1188: 1053: 3169: 2646: 2603: 802: 507: 491: 424: 326: 109: 88: 41: 1500: 1246: 912: 476:
involved with the development and sustainability of the vorticity. The stronger atmospheric
414: 3061: 2991: 2954: 2543: 2498: 2434: 2268: 2198: 2151: 2110: 2053: 2014: 1960: 1905: 1845: 1739: 1666: 1608: 1548: 1496: 1442: 1301: 1222: 1022: 908: 739: 595: 396: 8: 3138: 3108: 3068: 2942: 2380: 527: 400: 265: 239: 2547: 2479:"Researcher predicts global climate change on Jupiter as giant planet's spots disappear" 2438: 2272: 2202: 2155: 2114: 2057: 2018: 1964: 1909: 1849: 1743: 1670: 1612: 1552: 1446: 1305: 1226: 1026: 743: 599: 204:, predicted the storms would have their closest passing on 4 July 2006. She worked with 3103: 3081: 2630: 2458: 2079: 1986: 1929: 1895: 1781: 1692: 1656: 1512: 1335: 1162: 729: 630: 354: 217: 136: 45: 37: 2555: 2425:
Smith, B. A.; et al. (1979). "The Jupiter system through the eyes of Voyager 1".
1727: 1508: 3174: 2924: 2450: 2411: 2392: 2366: 2347: 2328: 2167: 2083: 2071: 1990: 1978: 1921: 1861: 1785: 1773: 1765: 1696: 1684: 1516: 1454: 1327: 673: 375: 224: 93: 24: 2462: 1933: 1411: 3159: 3126: 2692: 2663: 2596: 2551: 2442: 2276: 2214: 2206: 2159: 2118: 2061: 2022: 1968: 1913: 1853: 1755: 1747: 1674: 1616: 1556: 1504: 1458: 1450: 1339: 1317: 1309: 1030: 1013: 916: 747: 603: 545: 346: 117: 2385: 645: 3179: 2997: 2969: 2948: 2786: 2776: 2755: 2750: 2717: 2712: 2446: 2280: 2163: 1917: 1857: 540: 408: 297: 248: 113: 155: 3036: 2843: 2801: 2732: 2187:"Thermal structure and dynamics of the Jovian atmosphere 1. The great red spot" 2186: 2066: 2041: 1973: 1948: 1882:
Choi, David S.; Banfield, Don; Gierasch, Peter; Showman, Adam P. (2007-05-01).
1728:"The depth of Jupiter's Great Red Spot constrained by Juno gravity overflights" 1679: 1644: 1621: 1596: 53: 608: 583: 216:; on 20 July 2006, the two storms were photographed passing each other by the 3153: 2771: 2745: 2171: 2075: 1982: 1925: 1865: 1769: 1688: 290: 205: 2323:(1999). Beatty, Kelly J.; Peterson, Carolyn Collins; Chaiki, Andrew (eds.). 2219: 2210: 1751: 1463: 1283: 1281: 498:, which produces a reddish material—likely complex organic compounds called 84:'s 1711 painting "Jupiter", the first depiction of the Great Red Spot as red 2963: 2791: 2781: 2722: 2707: 2454: 1777: 1482: 1331: 1034: 404: 128: 124: 105: 81: 49: 1645:"The Gas Composition and Deep Cloud Structure of Jupiter's Great Red Spot" 502:. The high altitude of the compounds may also contribute to the coloring. 2796: 2123: 2098: 2026: 1949:"The Rich Dynamics of Jupiter's Great Red Spot from JunoCam: Juno Images" 1760: 1278: 751: 717: 691:. Dept. Physics & Astronomy – University of Tennessee. Archived from 366: 358: 2099:"A high-resolution, three-dimensional model of Jupiter's Great Red Spot" 1313: 112:), but also that it was in the shadow of a transiting moon, most likely 2982: 2975: 2096: 477: 310: 1322: 1288:
O'Donoghue, J.; Moore, L.; Stallard, T. S.; Melin, H. (27 July 2016).
427:(CIRS) and ground based spatial imaging mapped the composition of the 3074: 3054: 3010: 3003: 2740: 966: 554: 495: 428: 322: 253: 197: 171: 161: 1831: 123:
A minor mystery concerns a Jovian spot depicted in a 1711 canvas by
2298: 1661: 734: 350: 318: 285: 279: 2039: 1900: 2619: 1946: 1432: 432: 370: 244: 184: 61: 57: 2533: 1290:"Heating of Jupiter's upper atmosphere above the Great Red Spot" 1287: 2564: 1597:"High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019" 1485:"The 90-day oscillations of Jupiter's Great Red Spot revisited" 549: 499: 389: 104:
The first sighting of the Great Red Spot is often credited to
329:
and the presence or absence of a South Tropical Disturbance.
132: 689:"The Solar System - The Planet Jupiter – The Great Red Spot" 471:
composition data shows that there is a major depletion of NH
2327:(4th ed.). Massachusetts: Sky Publishing Corporation. 2238: 2184: 1881: 1248:
The Voyager Mission: Jupiter, the Giant of the Solar System
220:
without converging. In May 2008, a third storm turned red.
159:
A wide view of Jupiter and the Great Red Spot as seen from
2588: 2322: 2138:
Morales-Juberías, Raúl; Dowling, Timothy E. (2013-07-01).
1593: 1561:
10.1175/1520-0469(1974)031<1471:OJROR>2.0.CO;2
1211:"The accelerating circulation of Jupiter's Great Red Spot" 962:"Jupiter's Great Red Spot Could Disappear Within 20 Years" 1724: 1642: 1158:"NASA's Juno Spacecraft Enters Into Orbit Around Jupiter" 243:
spacecraft. There is also a feature in the atmosphere of
1076:"Gemini Captures Close Encounter of Jupiter's Red Spots" 2137: 2003: 1354:"Jupiter's Great Red Spot Likely a Massive Heat Source" 1128:"NASA's Juno Spacecraft Spots Jupiter's Great Red Spot" 2363:
Galileo's Planet: Observing Jupiter Before Photography
2391:(Revised ed.). London: Faber and Faber Limited. 713: 711: 517: 1265:. www.astrophysicsspectator.com. November 24, 2004. 936: 309:fly-bys. The spot is confined by a modest eastward 2384: 990:"Jupiter's Great Red Spot may not be disappearing" 176:extraordinarily complex and variable wave motion. 708: 588:Monthly Notices of the Royal Astronomical Society 3151: 584:"Early history of the great red spot on Jupiter" 301:Size of the Earth compared to the Great Red Spot 2346:(2nd ed.). Washington: Smithsonian Books. 1215:Journal of the British Astronomical Association 626:"The Great Red Spot Descends Deep Into Jupiter" 332: 150: 2235:"Jupiter's Great Red Spot: A Swirling Mystery" 2191:Journal of Geophysical Research: Space Physics 1010: 930: 767:"Jupiter's Great Red Spot: A Swirling Mystery" 2604: 2258: 987: 939:"Is Jupiter's Great Red Spot disintegrating?" 1121: 1119: 1117: 96:in November 1881, showing the Great Red Spot 2579:Video based on Juno's Perijove 7 overflight 2387:The Planet Jupiter: The Observer's Handbook 1601:The Astrophysical Journal Supplement Series 135:scenes, and all overseen by the astronomer 2611: 2597: 2252: 868: 866: 764: 2410:. Cambridge: Cambridge University Press. 2365:. Bristol, Philadelphia: IOP Publishing. 2218: 2122: 2065: 1972: 1899: 1759: 1678: 1660: 1620: 1462: 1321: 1263:"Jupiter's Atmosphere and Great Red Spot" 1114: 846:"Donato Creti, Astronomical observations" 733: 607: 577: 575: 269:Time-lapse sequence from the approach of 2562: 2512: 2492: 2287: 2103:Journal of Geophysical Research: Planets 960:Urrutia, Doris Elin (21 February 2018). 788: 786: 582:Denning, William Frederick (June 1899). 484: 413: 361:image from Hubble; visible light detail 336: 296: 264: 154: 87: 76: 18: 16:Persistent storm in Jupiter's atmosphere 2567:. Geophysical Fluid Dynamics Laboratory 981: 959: 863: 594:(10). Royal Astronomical Society: 574. 581: 23:Close up view of the Great Red Spot by 3152: 2405: 2360: 1827: 1825: 1823: 1821: 1819: 1817: 1815: 1208: 894: 572: 260: 67: 2592: 2424: 2341: 1877: 1875: 1813: 1811: 1809: 1807: 1805: 1803: 1801: 1799: 1797: 1795: 1720: 1718: 1716: 1714: 1712: 1710: 1708: 1706: 1638: 1636: 1634: 1632: 1531: 1155: 1125: 843: 783: 671: 623: 72: 2476: 2379: 2295:"What makes Jupiter's Red Spot red?" 1182: 1047: 937:Paul Scott Anderson (10 June 2019). 2563:Williams, Gareth P. (May 4, 2005). 1541:Journal of the Atmospheric Sciences 1073: 251:. The latter feature was imaged by 13: 2316: 1872: 1792: 1703: 1629: 1414:. British Astronomical Association 1409: 1098:"Third red spot erupts on Jupiter" 988:Philip Marcus (26 November 2019). 14: 3196: 2517:. Science at NASA. Archived from 2497:. Science at NASA. Archived from 2470: 1187:. Science at NASA. Archived from 1095: 3132: 3122: 3121: 2682: 2493:Phillips, Tony (March 3, 2006). 674:"Jupiter Data Sheet – SPACE.com" 520: 458:The highest concentrations of PH 2513:Phillips, Tony (June 5, 2006). 2227: 2178: 2131: 2090: 2033: 1997: 1940: 1587: 1578: 1534:"On Jupiter's Rate of Rotation" 1523: 1476: 1425: 1403: 1394: 1385: 1376: 1346: 1269: 1255: 1239: 1202: 1176: 1149: 1089: 1067: 1041: 1004: 953: 888: 875: 837: 803:"This Month in Physics History" 2829:Jupiter-crossing minor planets 2477:Yang, Sarah (April 21, 2004). 1360:. 27 July 2016. Archived from 1052:. Science@NASA. Archived from 897:"Jupiter's Shrinking Red Spot" 828: 819: 795: 758: 664: 616: 169:On 25 February 1979, when the 1: 2556:10.1016/S0019-1035(02)00060-X 1509:10.1016/S0032-0633(00)00002-7 1156:Chang, Kenneth (2016-07-05). 624:Chang, Kenneth (2017-12-13). 565: 403:thermal infrared imaging and 2447:10.1126/science.204.4396.951 2281:10.1016/j.icarus.2017.10.041 2164:10.1016/j.icarus.2013.03.026 2007:Geophysical Research Letters 1918:10.1016/j.icarus.2006.10.037 1858:10.1016/j.icarus.2010.01.005 1455:10.1016/0019-1035(66)90036-4 1126:Perez, Martin (2017-07-12). 850:Muha m jaadugar sei Vaticani 721:Geophysical Research Letters 333:Internal depth and structure 151:Late 20th and 21st centuries 127:, which is exhibited in the 92:A sketch of Jupiter made by 7: 2618: 1489:Planetary and Space Science 513: 202:Goddard Space Flight Center 183:A smaller spot, designated 48:that is the largest in the 10: 3201: 3030:Jupiter Icy Moons Explorer 2433:(4396): 951–957, 960–972. 314:steady reduction in size. 3117: 3096: 3047: 3022: 2934: 2916: 2902: 2890:2016 Jupiter impact event 2885:2010 Jupiter impact event 2880:2009 Jupiter impact event 2865: 2842: 2821: 2814: 2764: 2731: 2700: 2691: 2680: 2639: 2626: 895:Beatty, J. Kelly (2002). 765:Karl Hille (2015-08-04). 560:WISEP J190648.47+401106.8 494:and the organic compound 341:Clockwise from top left: 116:. Far more convincing is 2495:"Jupiter's New Red Spot" 2408:The Giant Planet Jupiter 2406:Rogers, John H. (1995). 2344:Jupiter the Giant Planet 2067:10.3847/1538-3881/aaae01 2046:The Astronomical Journal 1974:10.3847/1538-3881/aada81 1953:The Astronomical Journal 1680:10.3847/1538-3881/aad186 1649:The Astronomical Journal 1622:10.3847/1538-4365/ab775f 1532:Stone, Peter H. (1974). 1251:. NASA. 1979. p. 5. 445:para-hydroxybenzoic acid 3139:Solar System portal 2361:Hockey, Thomas (1999). 2211:10.1029/JA086iA10p08759 1752:10.1126/science.abf1396 1573:Rogers (1995), 48, 193. 1501:2000P&SS...48..331T 913:2002S&T...103d..24B 650:Encyclopædia Britannica 609:10.1093/mnras/59.10.574 536:Extraterrestrial vortex 2875:Comet Shoemaker–Levy 9 2515:"Huge Storms Converge" 1050:"Huge Storms Converge" 1035:10.1006/icar.2000.6548 419: 362: 302: 291:Acoustic (sound) waves 274: 214:Hubble Space Telescope 166: 97: 85: 29: 1471:Rogers (1995), 192-3. 1382:Rogers (1995), 194-6. 1209:Rogers, John (2008). 1185:"The Great Dark Spot" 548:, a similar storm on 508:South Equatorial Belt 492:ammonium hydrosulfide 485:Color and composition 425:Infrared Spectrometer 417: 340: 327:South Equatorial Belt 317:The Great Red Spot's 300: 268: 158: 110:South Equatorial Belt 91: 80: 42:atmosphere of Jupiter 22: 2674:Jupiter's South Pole 2669:Jupiter's North Pole 2342:Beebe, Reta (1997). 2325:The New Solar System 2124:10.1029/2000JE001287 2027:10.1029/2021GL093982 1078:. Gemini Observatory 872:Hockey (1999), 40-1. 792:Beebe (1997), 38-41. 752:10.1029/2024GL108993 381:Microwave Radiometer 38:high-pressure region 3069:Io Volcano Observer 2581:by Seán Doran (see 2548:2003Icar..162...74Y 2501:on October 19, 2008 2439:1979Sci...204..951S 2273:2018Icar..302..418L 2203:1981JGR....86.8759F 2156:2013Icar..225..216M 2115:2001JGR...106.5099C 2058:2018AJ....155..151S 2019:2021GeoRL..4893982W 1965:2018AJ....156..162S 1910:2007Icar..188...35C 1850:2010Icar..208..306F 1744:2021Sci...374..964P 1671:2018AJ....156..101B 1613:2020ApJS..247...58W 1584:Rogers (1995), 193. 1553:1974JAtS...31.1471S 1447:1966Icar....5..266R 1400:Rogers (1995), 195. 1314:10.1038/nature18940 1306:2016Natur.536..190O 1275:Rogers (1995), 191. 1227:2008JBAA..118...14R 1027:2001Icar..149..491S 834:Rogers (1995), 188. 744:2024GeoRL..5108993S 600:1899MNRAS..59..574D 528:Solar System portal 261:Mechanical dynamics 208:and Phil Marcus of 68:Observation history 2631:Outline of Jupiter 2481:. UC Berkeley News 2241:. August 4, 2015. 2197:(A10): 8759–8767. 1163:The New York Times 631:The New York Times 420: 363: 355:Gemini Observatory 303: 275: 218:Gemini Observatory 167: 137:Eustachio Manfredi 98: 86: 73:First observations 46:anticyclonic storm 30: 3147: 3146: 3092: 3091: 2898: 2897: 2810: 2809: 2417:978-0-521-41008-3 2398:978-0-571-18026-4 2381:Peek, Bertrand M. 2372:978-0-7503-0448-1 2353:978-1-56098-685-0 2334:978-0-933346-86-4 2109:(E3): 5099–5105. 1738:(6570): 964–968. 1391:Beebe (1997), 35. 1300:(7615): 190–192. 901:Sky and Telescope 852:. Vatican Museums 825:Rogers (1995), 6. 94:Thomas Gwyn Elger 3192: 3137: 3136: 3135: 3125: 3124: 3032:(2023, en route) 2914: 2913: 2819: 2818: 2698: 2697: 2686: 2613: 2606: 2599: 2590: 2589: 2575: 2573: 2572: 2559: 2530: 2528: 2526: 2509: 2507: 2506: 2489: 2487: 2486: 2466: 2421: 2402: 2390: 2376: 2357: 2338: 2310: 2309: 2307: 2306: 2291: 2285: 2284: 2256: 2250: 2249: 2231: 2225: 2224: 2222: 2220:2060/19810016481 2182: 2176: 2175: 2135: 2129: 2128: 2126: 2094: 2088: 2087: 2069: 2037: 2031: 2030: 2001: 1995: 1994: 1976: 1944: 1938: 1937: 1903: 1879: 1870: 1869: 1829: 1790: 1789: 1763: 1722: 1701: 1700: 1682: 1664: 1640: 1627: 1626: 1624: 1591: 1585: 1582: 1576: 1570: 1568: 1567: 1547:(5): 1471–1472. 1538: 1527: 1521: 1520: 1480: 1474: 1468: 1466: 1464:2060/19650022425 1441:(1–6): 266–273. 1429: 1423: 1422: 1420: 1419: 1407: 1401: 1398: 1392: 1389: 1383: 1380: 1374: 1373: 1371: 1369: 1350: 1344: 1343: 1325: 1285: 1276: 1273: 1267: 1266: 1259: 1253: 1252: 1243: 1237: 1236: 1234: 1233: 1206: 1200: 1199: 1197: 1196: 1183:Phillips, Tony. 1180: 1174: 1173: 1171: 1170: 1153: 1147: 1146: 1144: 1143: 1134:. Archived from 1123: 1112: 1111: 1109: 1108: 1093: 1087: 1086: 1084: 1083: 1074:Michaud, Peter. 1071: 1065: 1064: 1062: 1061: 1048:Phillips, Tony. 1045: 1039: 1038: 1008: 1002: 1001: 999: 997: 985: 979: 978: 976: 974: 957: 951: 950: 948: 946: 934: 928: 927: 925: 924: 915:. Archived from 892: 886: 885:(1979), 951-972. 879: 873: 870: 861: 860: 858: 857: 841: 835: 832: 826: 823: 817: 816: 814: 813: 799: 793: 790: 781: 780: 778: 777: 762: 756: 755: 737: 715: 706: 703: 701: 700: 684: 682: 681: 668: 662: 659: 657: 656: 646:"Great Red Spot" 641: 639: 638: 620: 614: 613: 611: 579: 546:Great White Spot 530: 525: 524: 523: 347:visible spectrum 198:Amy Simon-Miller 118:Giovanni Cassini 36:is a persistent 3200: 3199: 3195: 3194: 3193: 3191: 3190: 3189: 3185:1830 in science 3165:Planetary spots 3150: 3149: 3148: 3143: 3133: 3131: 3113: 3088: 3043: 3018: 2998:Voyager program 2970:Pioneer program 2949:Galileo project 2943:Cassini–Huygens 2930: 2909: 2907: 2894: 2861: 2838: 2806: 2760: 2727: 2687: 2678: 2635: 2622: 2617: 2570: 2568: 2565:"NOAA Web Page" 2524: 2522: 2504: 2502: 2484: 2482: 2473: 2418: 2399: 2373: 2354: 2335: 2319: 2317:Further reading 2314: 2313: 2304: 2302: 2293: 2292: 2288: 2257: 2253: 2233: 2232: 2228: 2183: 2179: 2136: 2132: 2095: 2091: 2038: 2034: 2002: 1998: 1945: 1941: 1880: 1873: 1830: 1793: 1723: 1704: 1641: 1630: 1592: 1588: 1583: 1579: 1565: 1563: 1536: 1528: 1524: 1481: 1477: 1430: 1426: 1417: 1415: 1408: 1404: 1399: 1395: 1390: 1386: 1381: 1377: 1367: 1365: 1364:on 12 June 2019 1352: 1351: 1347: 1286: 1279: 1274: 1270: 1261: 1260: 1256: 1245: 1244: 1240: 1231: 1229: 1207: 1203: 1194: 1192: 1181: 1177: 1168: 1166: 1154: 1150: 1141: 1139: 1124: 1115: 1106: 1104: 1094: 1090: 1081: 1079: 1072: 1068: 1059: 1057: 1046: 1042: 1009: 1005: 995: 993: 986: 982: 972: 970: 958: 954: 944: 942: 935: 931: 922: 920: 893: 889: 880: 876: 871: 864: 855: 853: 842: 838: 833: 829: 824: 820: 811: 809: 801: 800: 796: 791: 784: 775: 773: 763: 759: 716: 709: 698: 696: 687: 679: 677: 669: 665: 654: 652: 644: 636: 634: 621: 617: 580: 573: 568: 541:Great Dark Spot 526: 521: 519: 516: 487: 474: 470: 465: 461: 454: 450: 442: 438: 386: 335: 263: 249:Great Dark Spot 240:Cassini–Huygens 189:Little Red Spot 153: 75: 70: 44:, producing an 17: 12: 11: 5: 3198: 3188: 3187: 3182: 3177: 3172: 3167: 3162: 3145: 3144: 3142: 3141: 3129: 3118: 3115: 3114: 3112: 3111: 3106: 3100: 3098: 3094: 3093: 3090: 3089: 3087: 3086: 3078: 3072: 3066: 3058: 3051: 3049: 3045: 3044: 3042: 3041: 3037:Europa Clipper 3033: 3026: 3024: 3020: 3019: 3017: 3016: 3015: 3014: 3007: 2995: 2988: 2987: 2986: 2979: 2967: 2960: 2959: 2958: 2946: 2938: 2936: 2932: 2931: 2929: 2928: 2920: 2918: 2911: 2900: 2899: 2896: 2895: 2893: 2892: 2887: 2882: 2877: 2871: 2869: 2863: 2862: 2860: 2859: 2854: 2848: 2846: 2840: 2839: 2837: 2836: 2834:Solar eclipses 2831: 2825: 2823: 2816: 2812: 2811: 2808: 2807: 2805: 2804: 2802:Pasiphae group 2799: 2794: 2789: 2784: 2779: 2774: 2768: 2766: 2762: 2761: 2759: 2758: 2753: 2748: 2743: 2737: 2735: 2729: 2728: 2726: 2725: 2720: 2715: 2710: 2704: 2702: 2695: 2689: 2688: 2681: 2679: 2677: 2676: 2671: 2666: 2661: 2656: 2655: 2654: 2652:Great Red Spot 2643: 2641: 2637: 2636: 2634: 2633: 2627: 2624: 2623: 2616: 2615: 2608: 2601: 2593: 2587: 2586: 2576: 2560: 2531: 2521:on May 5, 2007 2510: 2490: 2472: 2471:External links 2469: 2468: 2467: 2422: 2416: 2403: 2397: 2377: 2371: 2358: 2352: 2339: 2333: 2318: 2315: 2312: 2311: 2286: 2251: 2226: 2177: 2150:(1): 216–227. 2130: 2089: 2032: 1996: 1939: 1871: 1844:(1): 306–328. 1791: 1702: 1628: 1586: 1577: 1575: 1574: 1571: 1522: 1495:(4): 331–339. 1475: 1473: 1472: 1424: 1410:Rogers, John. 1402: 1393: 1384: 1375: 1345: 1277: 1268: 1254: 1238: 1201: 1175: 1148: 1113: 1096:Shiga, David. 1088: 1066: 1040: 1021:(2): 491–495. 1003: 980: 952: 929: 887: 874: 862: 844:Staff (2003). 836: 827: 818: 794: 782: 757: 707: 705: 704: 672:Staff (2007). 663: 661: 660: 615: 570: 569: 567: 564: 563: 562: 557: 552: 543: 538: 532: 531: 515: 512: 486: 483: 472: 468: 463: 459: 452: 448: 440: 436: 384: 334: 331: 262: 259: 152: 149: 74: 71: 69: 66: 34:Great Red Spot 15: 9: 6: 4: 3: 2: 3197: 3186: 3183: 3181: 3178: 3176: 3173: 3171: 3168: 3166: 3163: 3161: 3158: 3157: 3155: 3140: 3130: 3128: 3120: 3119: 3116: 3110: 3107: 3105: 3102: 3101: 3099: 3095: 3084: 3083: 3079: 3076: 3073: 3070: 3067: 3064: 3063: 3059: 3056: 3053: 3052: 3050: 3046: 3039: 3038: 3034: 3031: 3028: 3027: 3025: 3021: 3013: 3012: 3008: 3006: 3005: 3001: 3000: 2999: 2996: 2994: 2993: 2989: 2985: 2984: 2980: 2978: 2977: 2973: 2972: 2971: 2968: 2966: 2965: 2961: 2957: 2956: 2952: 2951: 2950: 2947: 2945: 2944: 2940: 2939: 2937: 2933: 2927: 2926: 2922: 2921: 2919: 2915: 2912: 2905: 2901: 2891: 2888: 2886: 2883: 2881: 2878: 2876: 2873: 2872: 2870: 2868: 2864: 2858: 2855: 2853: 2850: 2849: 2847: 2845: 2841: 2835: 2832: 2830: 2827: 2826: 2824: 2820: 2817: 2813: 2803: 2800: 2798: 2795: 2793: 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2773: 2772:Himalia group 2770: 2769: 2767: 2763: 2757: 2754: 2752: 2749: 2747: 2744: 2742: 2739: 2738: 2736: 2734: 2730: 2724: 2721: 2719: 2716: 2714: 2711: 2709: 2706: 2705: 2703: 2699: 2696: 2694: 2690: 2685: 2675: 2672: 2670: 2667: 2665: 2662: 2660: 2659:Magnetosphere 2657: 2653: 2650: 2649: 2648: 2645: 2644: 2642: 2638: 2632: 2629: 2628: 2625: 2621: 2614: 2609: 2607: 2602: 2600: 2595: 2594: 2591: 2584: 2580: 2577: 2566: 2561: 2557: 2553: 2549: 2545: 2541: 2537: 2532: 2520: 2516: 2511: 2500: 2496: 2491: 2480: 2475: 2474: 2464: 2460: 2456: 2452: 2448: 2444: 2440: 2436: 2432: 2428: 2423: 2419: 2413: 2409: 2404: 2400: 2394: 2389: 2388: 2382: 2378: 2374: 2368: 2364: 2359: 2355: 2349: 2345: 2340: 2336: 2330: 2326: 2321: 2320: 2300: 2296: 2290: 2282: 2278: 2274: 2270: 2266: 2262: 2255: 2248: 2245: 2240: 2236: 2230: 2221: 2216: 2212: 2208: 2204: 2200: 2196: 2192: 2188: 2181: 2173: 2169: 2165: 2161: 2157: 2153: 2149: 2145: 2141: 2134: 2125: 2120: 2116: 2112: 2108: 2104: 2100: 2093: 2085: 2081: 2077: 2073: 2068: 2063: 2059: 2055: 2051: 2047: 2043: 2036: 2028: 2024: 2020: 2016: 2012: 2008: 2000: 1992: 1988: 1984: 1980: 1975: 1970: 1966: 1962: 1958: 1954: 1950: 1943: 1935: 1931: 1927: 1923: 1919: 1915: 1911: 1907: 1902: 1897: 1893: 1889: 1885: 1878: 1876: 1867: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1835: 1828: 1826: 1824: 1822: 1820: 1818: 1816: 1814: 1812: 1810: 1808: 1806: 1804: 1802: 1800: 1798: 1796: 1787: 1783: 1779: 1775: 1771: 1767: 1762: 1761:11573/1605351 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1729: 1721: 1719: 1717: 1715: 1713: 1711: 1709: 1707: 1698: 1694: 1690: 1686: 1681: 1676: 1672: 1668: 1663: 1658: 1654: 1650: 1646: 1639: 1637: 1635: 1633: 1623: 1618: 1614: 1610: 1606: 1602: 1598: 1595:April 2020). 1590: 1581: 1572: 1562: 1558: 1554: 1550: 1546: 1542: 1535: 1530: 1529: 1526: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1479: 1470: 1469: 1465: 1460: 1456: 1452: 1448: 1444: 1440: 1436: 1428: 1413: 1406: 1397: 1388: 1379: 1363: 1359: 1355: 1349: 1341: 1337: 1333: 1329: 1324: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1291: 1284: 1282: 1272: 1264: 1258: 1250: 1249: 1242: 1228: 1224: 1220: 1216: 1212: 1205: 1191:on 2007-06-15 1190: 1186: 1179: 1165: 1164: 1159: 1152: 1138:on 2017-07-15 1137: 1133: 1129: 1122: 1120: 1118: 1103: 1102:New Scientist 1099: 1092: 1077: 1070: 1056:on 2007-02-02 1055: 1051: 1044: 1036: 1032: 1028: 1024: 1020: 1016: 1015: 1007: 991: 984: 969: 968: 963: 956: 940: 933: 919:on 2011-05-27 918: 914: 910: 906: 902: 898: 891: 884: 878: 869: 867: 851: 847: 840: 831: 822: 808: 804: 798: 789: 787: 772: 768: 761: 753: 749: 745: 741: 736: 731: 727: 723: 722: 714: 712: 695:on 2004-06-10 694: 690: 686: 685: 675: 667: 651: 647: 643: 642: 633: 632: 627: 619: 610: 605: 601: 597: 593: 589: 585: 578: 576: 571: 561: 558: 556: 553: 551: 547: 544: 542: 539: 537: 534: 533: 529: 518: 511: 509: 503: 501: 497: 493: 482: 479: 456: 446: 434: 430: 426: 416: 412: 410: 406: 402: 398: 394: 391: 382: 377: 372: 368: 360: 356: 352: 348: 344: 339: 330: 328: 324: 320: 315: 312: 308: 299: 295: 292: 287: 283: 281: 272: 267: 258: 256: 255: 250: 246: 242: 241: 235: 233: 229: 227: 221: 219: 215: 211: 207: 206:Imke de Pater 203: 199: 194: 190: 186: 181: 177: 174: 173: 164: 163: 157: 148: 144: 141: 138: 134: 130: 126: 121: 119: 115: 111: 107: 102: 95: 90: 83: 79: 65: 63: 59: 55: 51: 47: 43: 39: 35: 28: 27: 21: 3170:Anticyclones 3080: 3060: 3035: 3009: 3002: 2990: 2981: 2974: 2964:New Horizons 2962: 2953: 2941: 2923: 2792:Ananke group 2651: 2569:. Retrieved 2542:(1): 74–93. 2539: 2535: 2523:. Retrieved 2519:the original 2503:. Retrieved 2499:the original 2483:. Retrieved 2430: 2426: 2407: 2386: 2362: 2343: 2324: 2303:. Retrieved 2301:. 2014-11-11 2289: 2264: 2260: 2254: 2242: 2229: 2194: 2190: 2180: 2147: 2143: 2133: 2106: 2102: 2092: 2049: 2045: 2035: 2010: 2006: 1999: 1956: 1952: 1942: 1894:(1): 35–46. 1891: 1887: 1841: 1837: 1735: 1731: 1652: 1648: 1604: 1600: 1589: 1580: 1564:. Retrieved 1544: 1540: 1525: 1492: 1488: 1478: 1438: 1434: 1427: 1416:. Retrieved 1405: 1396: 1387: 1378: 1366:. Retrieved 1362:the original 1357: 1348: 1297: 1293: 1271: 1257: 1247: 1241: 1230:. Retrieved 1221:(1): 14–20. 1218: 1214: 1204: 1193:. Retrieved 1189:the original 1178: 1167:. Retrieved 1161: 1151: 1140:. Retrieved 1136:the original 1131: 1105:. Retrieved 1101: 1091: 1080:. Retrieved 1069: 1058:. Retrieved 1054:the original 1043: 1018: 1012: 1006: 994:. Retrieved 983: 971:. Retrieved 965: 955: 943:. Retrieved 932: 921:. Retrieved 917:the original 904: 900: 890: 882: 877: 854:. Retrieved 849: 839: 830: 821: 810:. Retrieved 806: 797: 774:. Retrieved 770: 760: 725: 719: 697:. Retrieved 693:the original 678:. Retrieved 666: 653:. Retrieved 649: 635:. Retrieved 629: 618: 591: 587: 504: 488: 457: 435:aerosols (PH 421: 405:spectroscopy 395: 367:anticyclonic 364: 316: 306: 304: 284: 276: 270: 252: 238: 236: 231: 225: 222: 192: 188: 182: 178: 170: 168: 160: 145: 142: 125:Donato Creti 122: 106:Robert Hooke 103: 99: 82:Donato Creti 50:Solar System 33: 31: 25: 2904:Exploration 2857:Trojan camp 2797:Carme group 2267:: 418–425. 1368:23 December 996:25 December 992:. Astronomy 807:www.aps.org 676:. Imaginova 359:ultraviolet 247:called the 210:UC Berkeley 3154:Categories 2983:Pioneer 11 2976:Pioneer 10 2852:Greek camp 2647:Atmosphere 2571:2007-07-21 2505:2007-06-14 2485:2007-06-14 2305:2019-03-13 2052:(4): 151. 1959:(4): 162. 1662:1808.01402 1655:(3): 101. 1566:2007-06-20 1418:2007-06-15 1323:2381/38554 1232:2022-08-28 1195:2007-06-20 1169:2017-07-12 1142:2017-07-16 1107:2008-05-23 1082:2007-06-15 1060:2007-01-08 941:. EarthSky 923:2007-06-21 856:2019-12-16 812:2021-12-29 776:2017-11-18 735:2406.13222 699:2015-08-30 680:2008-06-03 655:2018-12-04 637:2017-12-15 566:References 478:subsidence 311:jet stream 228:spacecraft 3109:Mythology 3075:Tianwen-4 3055:Laplace-P 3011:Voyager 2 3004:Voyager 1 2815:Astronomy 2765:Irregular 2640:Geography 2585:for more) 2172:0019-1035 2084:126147959 2076:1538-3881 1991:125185665 1983:1538-3881 1926:0019-1035 1901:1301.6119 1866:0019-1035 1786:240153766 1770:0036-8075 1697:119365729 1689:1538-3881 1607:(2): 58. 1517:120883365 967:Space.com 907:(4): 24. 555:Hypercane 496:acetylene 455:spectra. 429:phosphine 401:Cassini's 353:from the 345:image of 323:longitude 271:Voyager 1 254:Voyager 2 200:, of the 172:Voyager 1 162:Voyager 1 56:south of 3175:Vortices 3127:Category 3048:Proposed 2910:missions 2787:Valetudo 2777:Themisto 2756:Callisto 2751:Ganymede 2733:Galilean 2718:Amalthea 2713:Adrastea 2525:June 14, 2463:33147728 2455:17800430 2383:(1981). 2299:EarthSky 1934:55114257 1778:34709940 1332:27462811 973:30 April 514:See also 351:infrared 319:latitude 286:Infrared 280:hydrogen 165:in 1979. 114:Callisto 3160:Jupiter 3104:Fiction 3097:Related 3062:Shensuo 2992:Ulysses 2955:Galileo 2917:Current 2908:orbital 2867:Impacts 2844:Trojans 2822:General 2620:Jupiter 2544:Bibcode 2435:Bibcode 2427:Science 2269:Bibcode 2244:Goddard 2199:Bibcode 2152:Bibcode 2111:Bibcode 2054:Bibcode 2015:Bibcode 1961:Bibcode 1906:Bibcode 1846:Bibcode 1740:Bibcode 1732:Science 1667:Bibcode 1609:Bibcode 1549:Bibcode 1497:Bibcode 1443:Bibcode 1340:4462322 1302:Bibcode 1223:Bibcode 1023:Bibcode 909:Bibcode 740:Bibcode 596:Bibcode 500:tholins 433:ammonia 409:Voyager 397:Galileo 371:in-situ 307:Voyager 245:Neptune 193:Red Jr. 185:Oval BA 133:Italian 129:Vatican 62:equator 58:Jupiter 54:degrees 40:in the 3180:Storms 3085:(2030) 3077:(2029) 3071:(2026) 3065:(2024) 3057:(2023) 3040:(2024) 3023:Future 2746:Europa 2536:Icarus 2461:  2453:  2414:  2395:  2369:  2350:  2331:  2261:Icarus 2247:color. 2170:  2144:Icarus 2082:  2074:  2013:(18). 1989:  1981:  1932:  1924:  1888:Icarus 1864:  1838:Icarus 1784:  1776:  1768:  1695:  1687:  1515:  1435:Icarus 1338:  1330:  1294:Nature 1014:Icarus 945:2 July 881:Smith 728:(12). 550:Saturn 462:and NH 451:and NH 443:) and 390:mascon 343:Hubble 3082:SMARA 2782:Carpo 2723:Thebe 2708:Metis 2701:Inner 2693:Moons 2664:Rings 2583:album 2459:S2CID 2080:S2CID 1987:S2CID 1930:S2CID 1896:arXiv 1782:S2CID 1693:S2CID 1657:arXiv 1537:(PDF) 1513:S2CID 1336:S2CID 883:et al 730:arXiv 2935:Past 2925:Juno 2527:2007 2451:PMID 2412:ISBN 2393:ISBN 2367:ISBN 2348:ISBN 2329:ISBN 2239:NASA 2168:ISSN 2072:ISSN 1979:ISSN 1922:ISSN 1862:ISSN 1774:PMID 1766:ISSN 1685:ISSN 1370:2018 1358:NASA 1328:PMID 1132:NASA 998:2020 975:2023 947:2019 771:NASA 439:, NH 431:and 399:and 376:Juno 232:Juno 226:Juno 223:The 32:The 26:Juno 2552:doi 2540:162 2443:doi 2431:204 2277:doi 2265:302 2215:hdl 2207:doi 2160:doi 2148:225 2119:doi 2107:106 2062:doi 2050:155 2023:doi 1969:doi 1957:156 1914:doi 1892:188 1854:doi 1842:208 1756:hdl 1748:doi 1736:374 1675:doi 1653:156 1617:doi 1605:247 1557:doi 1505:doi 1459:hdl 1451:doi 1318:hdl 1310:doi 1298:536 1219:118 1031:doi 1019:149 905:103 748:doi 604:doi 191:or 60:'s 3156:: 2741:Io 2550:. 2538:. 2457:. 2449:. 2441:. 2429:. 2297:. 2275:. 2263:. 2237:. 2213:. 2205:. 2195:86 2193:. 2189:. 2166:. 2158:. 2146:. 2142:. 2117:. 2105:. 2101:. 2078:. 2070:. 2060:. 2048:. 2044:. 2021:. 2011:48 2009:. 1985:. 1977:. 1967:. 1955:. 1951:. 1928:. 1920:. 1912:. 1904:. 1890:. 1886:. 1874:^ 1860:. 1852:. 1840:. 1836:. 1794:^ 1780:. 1772:. 1764:. 1754:. 1746:. 1734:. 1730:. 1705:^ 1691:. 1683:. 1673:. 1665:. 1651:. 1647:. 1631:^ 1615:. 1603:. 1599:. 1555:. 1545:31 1543:. 1539:. 1511:. 1503:. 1493:48 1491:. 1487:. 1457:. 1449:. 1437:. 1431:* 1356:. 1334:. 1326:. 1316:. 1308:. 1296:. 1292:. 1280:^ 1217:. 1213:. 1160:. 1130:. 1116:^ 1100:. 1029:. 1017:. 964:. 903:. 899:. 865:^ 848:. 805:. 785:^ 769:. 746:. 738:. 726:51 724:. 710:^ 648:. 628:. 602:. 592:59 590:. 586:. 574:^ 467:NH 349:; 2906:, 2612:e 2605:t 2598:v 2574:. 2558:. 2554:: 2546:: 2529:. 2508:. 2488:. 2465:. 2445:: 2437:: 2420:. 2401:. 2375:. 2356:. 2337:. 2308:. 2283:. 2279:: 2271:: 2223:. 2217:: 2209:: 2201:: 2174:. 2162:: 2154:: 2127:. 2121:: 2113:: 2086:. 2064:: 2056:: 2029:. 2025:: 2017:: 1993:. 1971:: 1963:: 1936:. 1916:: 1908:: 1898:: 1868:. 1856:: 1848:: 1788:. 1758:: 1750:: 1742:: 1699:. 1677:: 1669:: 1659:: 1625:. 1619:: 1611:: 1569:. 1559:: 1551:: 1519:. 1507:: 1499:: 1467:. 1461:: 1453:: 1445:: 1439:5 1421:. 1372:. 1342:. 1320:: 1312:: 1304:: 1235:. 1225:: 1198:. 1172:. 1145:. 1110:. 1085:. 1063:. 1037:. 1033:: 1025:: 1000:. 977:. 949:. 926:. 911:: 859:. 815:. 779:. 754:. 750:: 742:: 732:: 702:. 683:. 670:* 658:. 640:. 622:* 612:. 606:: 598:: 473:3 469:3 464:3 460:3 453:3 449:3 441:3 437:3 385:2

Index


Juno
high-pressure region
atmosphere of Jupiter
anticyclonic storm
Solar System
degrees
Jupiter
equator

Donato Creti

Thomas Gwyn Elger
Robert Hooke
South Equatorial Belt
Callisto
Giovanni Cassini
Donato Creti
Vatican
Italian
Eustachio Manfredi

Voyager 1
Voyager 1
Oval BA
Amy Simon-Miller
Goddard Space Flight Center
Imke de Pater
UC Berkeley
Hubble Space Telescope

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.