Knowledge

Glossary of arithmetic and diophantine geometry

Source 📝

4335: 4295: 4315: 4305: 4325: 2128:
of the union of images of algebraic groups under non-trivial rational maps; alternatively one may take images of abelian varieties; another definition is the union of all subvarieties that are not of general type. For abelian varieties the definition would be the union of all translates of proper
2151:
shows that points of small height in projective space lie in a finite number of hyperplanes. A quantitative form of the theorem, in which the number of subspaces containing all solutions, was also obtained by Schmidt, and the theorem was generalised by Schlickewei (1977) to allow more general
1192:. One of the main objectives of Diophantine geometry is to classify cases where the Hasse principle holds. Generally that is for a large number of variables, when the degree of an equation is held fixed. The Hasse principle is often associated with the success of the 1196:. When the circle method works, it can provide extra, quantitative information such as asymptotic number of solutions. Reducing the number of variables makes the circle method harder; therefore failures of the Hasse principle, for example for 1363:'s classical method for Diophantine equations. It became one half of the standard proof of the Mordell–Weil theorem, with the other being an argument with height functions (q.v.). Descent is something like division by two in a group of 1911:
is a real number which describes the rate of growth of the number of rational points on the variety with respect to the embedding defined by the divisor. It has similar formal properties to the abscissa of convergence of the
781:. The arithmetic genus is larger than the geometric genus, and the height of a point may be bounded in terms of the arithmetic genus. Obtaining similar bounds involving the geometric genus would have significant consequences. 944:
of an algebraic curve or compact Riemann surface, with a point or more removed corresponding to the 'infinite places' of a number field. This idea is more precisely encoded in the theory that
1880:
as provided by the general theory of heights. It can be defined from a general height by a limiting process; there are also formulae, in the sense that it is a sum of local contributions.
2491: 2124:
in an algebraic variety is the subset in which one might expect to find many rational points. The precise definition varies according to context. One definition is the
2768: 500:
and the order of pole of its Hasse–Weil L-function. It has been an important landmark in Diophantine geometry since the mid-1960s, with results such as the
1817:
or classical height of a vector of rational numbers is the maximum absolute value of the vector of coprime integers obtained by multiplying through by a
904:
is, for the school of Grothendieck, one terminal point of development. It has the disadvantage of being quite hard to compute with. The reason that the
2321: 2415: 2368:
is an algebraic subgroup intersecting a subvariety of a torus or abelian variety in a set of unusually large dimension, such as is involved in the
2233:, an analogue of the Birch–Swinnerton-Dyer conjecture (q.v.), leading quickly to a clarification of the latter and a recognition of its importance. 2494:, e.g. better estimates for curves of the number of points than come from Weil's basic theorem of 1940. The latter turn out to be of interest for 2197:
was eventually proved. For abelian varieties, and in particular the Birch–Swinnerton-Dyer conjecture (q.v.), the Tamagawa number approach to a
1849:
as a sum of local contributions. The global Néron symbol, which is the sum of the local symbols, is just the negative of the height pairing.
3682: 1152: 1035:
allow clearing of denominators by multiplying by a common scalar. For a given, single point one can do this and not leave a common factor
594: 2486:, made public around 1949, on local zeta-functions. The proof was completed in 1973. Those being proved, there remain extensions of the 1116: 1059:
can become larger when linear terms reduce to 0 (the geometric formulation shows it is not the fault of a single set of coordinates).
4318: 1712:
states that there should be a uniform bound on the number of such points, depending only on the genus and the field of definition.
4018: 2550:
is an effective procedure for assigning a height function to any divisor on smooth projective variety over a number field (or to
1825:, or of a polynomial, regarded as a vector of coefficients, or of an algebraic number, from the height of its minimal polynomial. 2202: 2165: 3991: 3958: 3813: 3740: 3649: 3420: 3019: 2813: 2510:
decomposition of algebraic numbers in coordinates of points on algebraic varieties. It has remained somewhat under-developed.
1119:. The theory is subtle, in the sense that the freedom to change variables to try to improve matters is rather unobvious: see 3279:
Arithmetic and geometry. Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday. Vol. I: Arithmetic
610: 489: 1978:, i.e. solubility guaranteed by a number of variables polynomial in the degree of an equation, grew out of studies of the 2194: 1284: 4369: 1193: 115:. Arithmetic geometry has also been defined as the application of the techniques of algebraic geometry to problems in 3924: 3882: 3848: 3313: 3115: 1721: 1781: 842: 723: 2866:
van der Geer, G.; Schoof, R. (2000). "Effectivity of Arakelov divisors and the theta divisor of a number field".
1233: 1156: 866:
of an elliptic curve or abelian variety defined over a number field is a measure of its complexity introduced by
797: 432: 4049: 3677: 890: 4359: 3840: 2487: 2455: 1983: 1601:
is a geometrically irreducible Zariski-closed subgroup of an affine torus (product of multiplicative groups).
1510:
flavour, and, on the other hand, implicated in some formulations of arithmetic conjectures. See for example
4308: 4095: 2353: 1741: 1662: 965: 364: 4364: 4090: 4075: 4011: 3300:
Roessler, Damian (2005). "A note on the Manin–Mumford conjecture". In van der Geer, Gerard; Moonen, Ben;
2946: 2463: 2369: 1364: 3805: 3732: 3669: 3412: 3400: 2805: 2438:
The initial idea, later somewhat modified, for proving the Weil conjectures (q.v.), was to construct a
2198: 1391: 1132: 1108: 719: 4270: 4229: 4108: 3274: 3141: 3136: 2720: 2394: 2218: 2093: 1818: 1511: 1217: 1136: 590: 497: 455: 123: 4114: 3200:
Igusa, Jun-Ichi (1974). "Complex powers and asymptotic expansions. I. Functions of certain types".
3063: 2955: 2153: 2069: 1761: 1124: 1048: 882: 598: 505: 501: 2535: 2201:
fails on a direct attempt, though it has had heuristic value over many years. Now a sophisticated
1858: 1846: 535: 4334: 4057: 4041: 2495: 1975: 1578: 1164: 1032: 917: 765:, defined by Vojta. The difference between the two may be compared to the difference between the 400: 392: 4298: 4118: 4067: 4004: 2419: 2190: 1637: 1515: 1387: 1304: 1288: 1140: 1044: 834: 805: 629: 621: 586: 509: 4338: 2303:. Algebraically closed fields are of Tsen rank zero. The Tsen rank is greater or equal to the 1814: 4275: 4204: 2304: 2097: 1991: 1709: 1641: 1056: 921: 849:, and was basic in the formulation of the Tate conjecture (q.v.) and numerous other theories. 447: 408: 3379: 1800:
is an algebraic variety which has only finitely many points in any finitely generated field.
1708:, and states that a curve of genus at least two has only finitely many rational points. The 4265: 4100: 3892: 3346: 3072: 2964: 2823: 2161: 1913: 1890: 1237: 661: 104: 78: 43: 25: 4328: 3968: 3934: 3900: 3858: 3823: 3713: 3626: 3525: 3430: 3323: 3286: 3281:. Progress in Mathematics (in French). Vol. 35. Birkhauser-Boston. pp. 327–352. 3231: 3170: 2992: 2905: 2831: 1063:
refers to the reduced variety having the same properties as the original, for example, an
8: 4234: 4143: 4138: 4132: 4124: 4085: 3832: 3613:(1936). "Zur Stufentheorie der Quasi-algebraisch-Abgeschlossenheit kommutativer Körper". 3202: 2730: 2725: 2527: 2459: 1749: 1614: 1610: 1570: 1329: 1321: 846: 677: 669: 372: 340: 100: 47: 4324: 3404: 3350: 3076: 2968: 2043:
and a vector of positive real numbers with components indexed by the infinite places of
1023:
of fractions are tricky, in that reduction modulo a prime in the denominator looks like
830: 633: 451: 4280: 4224: 4128: 4045: 3701: 3513: 3362: 3219: 3158: 3088: 2980: 2893: 2875: 2467: 1995: 1905: 1701: 1645: 1503: 1345: 1160: 1040: 1000: 972: 871: 640:
coefficients in this case. It is one of a number of theories deriving in some way from
554: 553:-adic analytic functions, is a special application but capable of proving cases of the 108: 33: 3942: 308: 93:
is something to be proved and studied as an extra topic, even knowing the geometry of
4194: 3987: 3954: 3920: 3878: 3844: 3809: 3736: 3645: 3517: 3496:(1990). "On the number of rational points of bounded height on algebraic varieties". 3416: 3366: 3309: 3223: 3132: 3111: 3092: 3015: 2984: 2809: 2451: 2447: 2439: 2427: 2398: 2073: 1797: 1407: 1403: 1395: 1368: 1341: 1280: 1104: 809: 778: 641: 566: 557:
for curves whose Jacobian's rank is less than its dimension. It developed ideas from
459: 422:
is an approach to arithmetic geometry that explicitly includes the 'infinite primes'.
404: 336: 2897: 2798:(2008). "Computing Arakelov class groups". In Buhler, J.P.; P., Stevenhagen (eds.). 2748: 1542:(integral points case) and Piotr Blass have conjectured that algebraic varieties of 1367:(often called 'descents', when written out by equations); in more modern terms in a 4199: 4184: 3964: 3930: 3896: 3854: 3819: 3709: 3691: 3622: 3521: 3505: 3426: 3354: 3319: 3282: 3227: 3211: 3166: 3150: 3080: 2988: 2972: 2901: 2885: 2827: 2479: 2386: 2230: 2222: 2147: 2052: 2036: 1862: 1838: 1705: 1674: 1507: 1422: 1416: 1411: 1360: 1356: 1276: 1268: 1261: 1068: 1024: 976: 949: 937: 813: 804:
and other techniques that have not all been absorbed into general theories such as
766: 665: 625: 443: 368: 344: 112: 3696: 3215: 1252:
in Diophantine geometry quantifies the size of solutions to Diophantine equations.
311:
attempts to state as much as possible about repeated prime factors in an equation
4213: 4189: 4104: 3983: 3950: 3916: 3888: 3874: 3797: 3011: 2819: 2799: 2551: 2531: 2523: 2226: 2214: 2186: 2169: 2125: 1866: 1842: 1745: 1629: 1531: 1249: 1208:) are at a general level connected with the limitations of the analytic approach. 1181: 1064: 941: 901: 863: 793: 774: 562: 527: 493: 419: 396: 829:
The search for a Weil cohomology (q.v.) was at least partially fulfilled in the
4250: 4169: 4053: 3755: 3665: 3266: 3010:. Grundlehren der Mathematischen Wissenschaften. Vol. 323 (2nd ed.). 2279:: that is, such that any system of polynomials with no constant term of degree 2133:
is the Zariski closure of the images of all non-constant holomorphic maps from
2081: 2005: 1987: 1946: 1902: 1873: 1725: 1666: 1589:
is analytically hyperbolic if and only if all subvarieties are of general type.
1558:
a finitely-generated field. This circle of ideas includes the understanding of
1441: 1383: 1325: 1201: 1112: 1072: 992: 953: 801: 770: 582: 558: 531: 380: 300: 74: 3301: 2795: 1120: 4353: 4209: 4061: 4027: 3493: 3270: 3058: 2246: 1895: 1733: 1574: 1547: 1483: 1399: 1225: 913: 905: 867: 838: 789: 657: 116: 29: 2483: 1287:
which shows the rational numbers are Hilbertian. Results are applied to the
4255: 4179: 4079: 2950: 2801:
Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography
2443: 2423: 2157: 2085: 1979: 1622: 1543: 1372: 1185: 945: 925: 886: 376: 304: 66: 62: 2137:. Lang conjectured that the analytic and algebraic special sets are equal. 3673: 3380:
2 page exposition of the Mordell–Lang conjecture by B. Mazur, 3 Nov. 2005
3269:(1983). "Sous-variétés d'une variété abélienne et points de torsion". In 2507: 2077: 1205: 1189: 1020: 1009: 458:
could be regarded as Artin L-functions for the Galois representations on
70: 58: 21: 3337:
McQuillan, Michael (1995). "Division points on semi-abelian varieties".
3308:. Progress in Mathematics. Vol. 239. Birkhäuser. pp. 311–318. 1872:
is a height function (q.v.) that is essentially intrinsic, and an exact
1821:. This may be used to define height on a point in projective space over 885:, the most celebrated conjecture of Diophantine geometry, was proved by 4260: 4219: 4071: 3908: 3866: 3705: 3642:
Algebra. Volume II: Fields with Structure, Algebras and Advanced Topics
3610: 3509: 3358: 3183: 3162: 3084: 2976: 2889: 2390: 2266: 2242: 2089: 1737: 1729: 1680:
can only contain a finite number of points that are of finite order in
1539: 1535: 1296: 1229: 1197: 1128: 1013: 673: 602: 37: 3061:(1983). "Endlichkeitssätze für abelsche Varietäten über Zahlkörpern". 2557: 2307:
but it is not known if they are equal except in the case of rank zero.
1876:, rather than approximately quadratic with respect to the addition on 1332:
counting numbers of points on an algebraic variety modulo high powers
952:
over the complex numbers, also, have some quite strict analogies with
395:
on a projective space over the field of algebraic numbers is a global
323:. For example 3 + 125 = 128 but the prime powers here are exceptional. 132: 2880: 2262: 948:
should all be treated on the same basis. The idea goes further. Thus
812:
of local zeta-functions, the initial advance in the direction of the
3154: 2534:. They are used in the construction of the local components of the 2522:
on an algebraic variety is a real-valued function defined off some
2269:
who introduced their study in 1936, is the smallest natural number
3729:
Some Problems of Unlikely Intersections in Arithmetic and Geometry
2088:
obtained from reducing a given elliptic curve over the rationals.
1232:
remain largely in the realm of conjecture, with the proof of the
3996: 3949:. Grundlehren der Mathematischen Wissenschaften. Vol. 322. 1636:. According to the Weil conjectures (q.v.) these functions, for 1562:
and the Lang conjectures on that, and the Vojta conjectures. An
1083:, assumed smooth, such that there is otherwise a smooth reduced 4159: 1012:. In the typical situation this presents little difficulty for 1764:
is a foundational result stating that for an abelian variety
1240:
is largely complementary to the theory of global L-functions.
909: 644:, and has applications outside purely arithmetical questions. 3006:
Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay (2008).
2500: 3105: 2752: 1490:-adic L-function earlier introduced by Kubota and Leopoldt. 2953:(1977). "On the conjecture of Birch and Swinnerton-Dyer". 702:: that is, such that any homogeneous polynomial of degree 2229:, but well within arithmetic geometry. It also gave, for 1916:
and it is conjectured that they are essentially the same.
1228:
formed from local zeta-functions. The properties of such
664:
to study from an arithmetic point of view (including the
3139:(November 1968). "Good reduction of abelian varieties". 1075:
remaining smooth. In general there will be a finite set
565:. (Other older methods for Diophantine problems include 40:, which can be related at various levels of generality. 3306:
Number fields and function fields — two parallel worlds
3005: 2506:
André Weil proposed a theory in the 1920s and 1930s on
2490:
congruence, which comes from an elementary method, and
1640:
varieties, exhibit properties closely analogous to the
979:
to varieties of dimension at least two is often called
482: 363:) on a global field is an extension of the concept of 4174: 4164: 1577:
to it exists, that is not constant. Examples include
1414:). In its early days in the late 1960s it was called 1200:
in small numbers of variables (and in particular for
3122:→ Contains an English translation of Faltings (1983) 2249:
introduced by John Tate to study bad reduction (see
3664: 1837:is a bimultiplicative pairing between divisors and 1466:) as Galois module. In the same way, Iwasawa added 936:It was realised in the nineteenth century that the 738:refers to two related concepts relative to a point 3760:Poids dans la cohomologie des variétés algébriques 2865: 1031:per fraction. With a little extra sophistication, 424: 2273:, if it exists, such that the field is of class T 2129:abelian subvarieties. For a complex variety, the 1617:for the number of points on an algebraic variety 696:, if it exists, such that the field of is class C 4351: 3731:. Annals of Mathematics Studies. Vol. 181. 2096:suggested it around 1960. It is a prototype for 940:of a number field has analogies with the affine 122:See also the glossary of number theory terms at 36:. Much of the theory is in the form of proposed 24:, areas growing out of the traditional study of 3830: 3203:Journal für die reine und angewandte Mathematik 2160:. The theorem may be used to obtain results on 1788:, but extends to all finitely-generated fields. 1163:solutions. The initial result of this type was 1145: 963: 3796: 1784:. This was proved initially for number fields 1506:is on one hand a quite general theory with an 609: = 1. This is a special case of the 103:can be more generally defined as the study of 4012: 3399: 2843: 2841: 2482:were three highly influential conjectures of 2450:at detecting topological structure, and have 1569:over the complex numbers is one such that no 908:has been considered the 'right' foundational 530:is a height function that is a distinguished 3804:. New Mathematical Monographs. Vol. 4. 3683:Journal of the American Mathematical Society 3560:in the volume (O. F. G. Schilling, editor), 3558:Algebraic cycles and poles of zeta functions 3491: 3411:. New Mathematical Monographs. Vol. 9. 3106:Cornell, Gary; Silverman, Joseph H. (1986). 1440:Picard variety), where the finite field has 876: 2945: 2767:Sutherland, Andrew V. (September 5, 2013). 1720:The Mordell–Lang conjecture, now proved by 1655: 4314: 4304: 4019: 4005: 3409:Logarithmic Forms and Diophantine Geometry 2838: 2766: 2290:variables has a non-trivial zero whenever 1968: 1714: 1188:is the same as solubility in all relevant 728: 710:variables has a non-trivial zero whenever 692:of a field is the smallest natural number 3695: 3336: 3131: 2879: 2502:Weil distributions on algebraic varieties 1564:analytically hyperbolic algebraic variety 1478:→ ∞, for his analogue, to a number field 930: 920:, the discovery of Grothendieck that the 615: 3941: 3469: 3467: 3299: 3243: 3241: 3057: 2358: 2314: 2245:is a particular elliptic curve over the 1371:group which is to be proved finite. See 1210: 1153:Grothendieck–Katz p-curvature conjecture 1027:, but that rules out only finitely many 924:are sheaves for it (i.e. a very general 682: 540: 3726: 3600:Bombieri & Gubler (2006) pp.176–230 3443:Bombieri & Gubler (2006) pp.301–314 3265: 3044: 3042: 3040: 2790: 2788: 2352:. The conjecture would follow from the 2348:-rational points on any curve of genus 2062: 1882: 1754: 571: 371:. It is a formal linear combination of 325: 57:that are finitely generated over their 4352: 3639: 2999: 2794: 2540: 2203:equivariant Tamagawa number conjecture 2102: 1603: 1444:added to make finite field extensions 1314: 4000: 3837:Diophantine Geometry: An Introduction 3789:Hindry & Silverman (2000) 184–185 3576: 3464: 3437: 3256:Bombieri & Gubler (2006) pp.82–93 3238: 3199: 2918:Bombieri & Gubler (2006) pp.66–67 2769:"Introduction to Arithmetic Geometry" 2442:applying to algebraic varieties over 1923: 1694: 1344:are now known, drawing on methods of 1295:) are in some sense analogous to the 783: 399:with local contributions coming from 3984:An invitation to arithmetic geometry 3907: 3865: 3774: 3762:, Actes ICM, Vancouver, 1974, 79–85. 3609: 3455: 3187: 3037: 3028: 2785: 2458:could be applied to the counting in 2221:, 1963) provided an analogue to the 1851: 1790: 1740:unifying the Mordell conjecture and 1254: 752:geometric (logarithmic) discriminant 611:Birch and Swinnerton-Dyer conjecture 496:postulates a connection between the 490:Birch and Swinnerton-Dyer conjecture 484:Birch and Swinnerton-Dyer conjecture 437: 379:having integer coefficients and the 3582:Hindry & Silverman (2000) p.480 3482:Hindry & Silverman (2000) p.488 3247:Hindry & Silverman (2000) p.479 2804:. MSRI Publications. Vol. 44. 2472: 2379: 2195:Weil conjecture on Tamagawa numbers 2179: 2166:Siegel's theorem on integral points 2139: 1845:used in Néron's formulation of the 1350: 1155:applies reduction modulo primes to 1107:, good reduction is connected with 823: 520: 349: 18:arithmetic and diophantine geometry 13: 3976: 2432: 2207: 1525: 1451:The local zeta-function (q.v.) of 1242: 1174: 895: 856: 413: 385: 61:—including as of special interest 14: 4381: 4026: 2526:which generalises the concept of 2332:> 2, there is a uniform bound 2324:states that for any number field 1455:can be recovered from the points 1377: 985: 724:quasi-algebraically closed fields 651: 624:is a p-adic cohomology theory in 293: 4333: 4323: 4313: 4303: 4294: 4293: 2512: 2021: 1782:finitely-generated abelian group 1470:-power roots of unity for fixed 1291:. Thin sets (the French word is 1285:Hilbert's irreducibility theorem 1157:algebraic differential equations 798:algebraic differential equations 722:are of Diophantine dimension 0; 636:which is deficient in using mod 470: 3871:Introduction to Arakelov theory 3802:Heights in Diophantine Geometry 3783: 3765: 3749: 3720: 3678:"Uniformity of rational points" 3658: 3633: 3603: 3594: 3585: 3567: 3562:Arithmetical Algebraic Geometry 3550: 3541: 3532: 3485: 3476: 3446: 3393: 3384: 3373: 3330: 3293: 3259: 3250: 3193: 3177: 3125: 3099: 3051: 2939: 2560: 2389:is a complex of conjectures by 2189:definition works well only for 1861:(also often referred to as the 1827: 1807: 1591: 1117:Néron–Ogg–Shafarevich criterion 433:arithmetic of abelian varieties 426:Arithmetic of abelian varieties 135: 4072:analytic theory of L-functions 4050:non-abelian class field theory 3913:Survey of Diophantine Geometry 3644:. Springer. pp. 109–126. 2930: 2921: 2912: 2859: 2850: 2760: 2742: 2454:acting in such a way that the 2446:that would both be as good as 2114: 2072:describes the distribution of 1585:> 1. Lang conjectured that 1283:. This is a geometric take on 1194:Hardy–Littlewood circle method 1079:of primes for a given variety 446:are defined for quite general 1: 3841:Graduate Texts in Mathematics 3697:10.1090/S0894-0347-97-00195-1 3216:10.1515/crll.1974.268-269.110 2736: 2456:Lefschetz fixed-point theorem 2235: 1184:states that solubility for a 995:in arithmetic problems is to 841:. It provided a proof of the 4096:Transcendental number theory 3556:It is mentioned in J. Tate, 2559: 2255: 2205:is a major research problem. 1986:. It stalled in the face of 1365:principal homogeneous spaces 1147:Grothendieck–Katz conjecture 966:Geometric class field theory 792:used distinctive methods of 746:defined over a number field 407:and the usual metric on the 134: 28:to encompass large parts of 7: 4319:List of recreational topics 4091:Computational number theory 4076:probabilistic number theory 3008:Cohomology of Number Fields 2714: 2492:improvements of Weil bounds 2464:motive (algebraic geometry) 2393:, making analogies between 1724:following work of Laurent, 1497: 1486:of class groups, finding a 1421:. The analogy was with the 1234:Taniyama–Shimura conjecture 1159:, to derive information on 720:Algebraically closed fields 680:is the most classical case. 526:The canonical height on an 85:the existence of points of 46:in general is the study of 10: 4386: 3806:Cambridge University Press 3733:Princeton University Press 3413:Cambridge University Press 2806:Cambridge University Press 2408: 1236:being a breakthrough. The 1133:semistable abelian variety 4370:Glossaries of mathematics 4289: 4271:Diophantine approximation 4243: 4230:Chinese remainder theorem 4152: 4034: 3800:; Gubler, Walter (2006). 3727:Zannier, Umberto (2012). 3142:The Annals of Mathematics 2721:Glossary of number theory 2554:on non-smooth varieties). 2488:Chevalley–Warning theorem 2395:Diophantine approximation 2035:is a formal product of a 1984:Chevalley–Warning theorem 1819:lowest common denominator 1137:semistable elliptic curve 916:goes back to the fact of 672:are computed in terms of 660:are some of the simplest 591:imaginary quadratic field 498:rank of an elliptic curve 383:having real coefficients. 124:Glossary of number theory 4115:Arithmetic combinatorics 3064:Inventiones Mathematicae 2956:Inventiones Mathematicae 2572: 2567: 2496:Algebraic geometry codes 2462:. For later history see 2354:Bombieri–Lang conjecture 1742:Manin–Mumford conjecture 1663:Manin–Mumford conjecture 1657:Manin–Mumford conjecture 1579:compact Riemann surfaces 1419:analogue of the Jacobian 1336:of a fixed prime number 1125:potential good reduction 742:on an algebraic variety 632:to fill the gap left by 454:in the 1960s meant that 147: 142: 107:of finite type over the 4086:Geometric number theory 4042:Algebraic number theory 3982:Dino Lorenzini (1996), 3947:Algebraic Number Theory 2370:Mordell–Lang conjecture 2191:linear algebraic groups 2131:holomorphic special set 2011:a prime number or ideal 1976:quasi-algebraic closure 1970:Quasi-algebraic closure 1716:Mordell–Lang conjecture 1392:Stickelberger's theorem 1033:homogeneous coordinates 918:faithfully-flat descent 763:arithmetic discriminant 736:discriminant of a point 730:Discriminant of a point 335:is the analogue of the 4205:Transcendental numbers 4119:additive number theory 4068:Analytic number theory 3780:Lang (1997) pp.164,212 3640:Lorenz, Falko (2008). 3564:, pages 93–110 (1965). 3538:Lang (1997) pp.161–162 3110:. New York: Springer. 2927:Lang (1988) pp.156–157 2702: 2697: 2692: 2687: 2682: 2677: 2672: 2667: 2662: 2657: 2652: 2647: 2642: 2637: 2632: 2627: 2622: 2617: 2612: 2607: 2602: 2597: 2592: 2587: 2582: 2577: 2420:Alexander Grothendieck 2265:of a field, named for 2199:local–global principle 2098:Galois representations 1669:, states that a curve 1560:analytic hyperbolicity 1554:-rational points, for 1516:Lichtenbaum conjecture 1388:analytic number theory 1305:Baire category theorem 1289:inverse Galois problem 932:Function field analogy 922:representable functors 835:Alexander Grothendieck 808:. He first proved the 806:crystalline cohomology 630:Alexander Grothendieck 622:Crystalline cohomology 617:Crystalline cohomology 587:complex multiplication 456:Hasse–Weil L-functions 450:. The introduction of 448:Galois representations 409:non-Archimedean fields 277: 272: 267: 262: 257: 252: 247: 242: 237: 232: 227: 222: 217: 212: 207: 202: 197: 192: 187: 182: 177: 172: 167: 162: 157: 152: 16:This is a glossary of 4276:Irrationality measure 4266:Diophantine equations 4109:Hodge–Arakelov theory 3547:Neukirch (1999) p.185 2847:Neukirch (1999) p.189 2422:of analogies between 2366:unlikely intersection 2360:Unlikely intersection 2322:uniformity conjecture 2316:Uniformity conjecture 2305:Diophantine dimension 2162:Diophantine equations 1736:, is a conjecture of 1710:Uniformity conjecture 1642:Riemann zeta-function 1512:Birch–Tate conjecture 1482:, and considered the 1267:is one for which the 1220:, sometimes called a 1218:Hasse–Weil L-function 1212:Hasse–Weil L-function 1057:Zariski tangent space 883:Fermat's Last Theorem 878:Fermat's Last Theorem 690:Diophantine dimension 684:Diophantine dimension 73:. Of those, only the 26:Diophantine equations 4360:Diophantine geometry 4235:Arithmetic functions 4101:Diophantine geometry 3833:Silverman, Joseph H. 3615:J. Chinese Math. Soc 3573:Lang (1997) pp.17–23 3452:Lang (1988) pp.66–69 3210:(268–269): 110–130. 2936:Lang (1997) pp.91–96 2856:Lang (1988) pp.74–75 2808:. pp. 447–495. 2460:local zeta-functions 2418:is a formulation by 2404: 2375: 2310: 2175: 2168:and solution of the 2092:and, independently, 2070:Sato–Tate conjecture 2064:Sato–Tate conjecture 2058: 2001: 1964: 1953:and in addition the 1919: 1914:height zeta function 1891:Nevanlinna invariant 1884:Nevanlinna invariant 1803: 1768:over a number field 1762:Mordell–Weil theorem 1756:Mordell–Weil theorem 1651: 1521: 1493: 1432:over a finite field 1342:rationality theorems 1310: 1238:Langlands philosophy 1170: 1165:Eisenstein's theorem 1051:on reduction modulo 1008:or, more generally, 959: 870:in his proof of the 852: 847:local zeta-functions 819: 670:local zeta-functions 662:projective varieties 647: 579:Coates–Wiles theorem 573:Coates–Wiles theorem 516: 506:Gross–Zagier theorem 502:Coates–Wiles theorem 465: 401:Fubini–Study metrics 333:Arakelov class group 327:Arakelov class group 289: 89:with coordinates in 79:algebraically closed 44:Diophantine geometry 4281:Continued fractions 4144:Arithmetic dynamics 4139:Arithmetic topology 4133:P-adic Hodge theory 4125:Arithmetic geometry 4058:Iwasawa–Tate theory 3351:1995InMat.120..143M 3108:Arithmetic geometry 3077:1983InMat..73..349F 2969:1977InMat..39..223C 2868:Selecta Mathematica 2749:Arithmetic geometry 2731:Arithmetic dynamics 2726:Arithmetic topology 2561:Contents:  2548:Weil height machine 2542:Weil height machine 2344:) on the number of 1929:An Abelian variety 1750:semiabelian variety 1615:generating function 1611:local zeta-function 1605:Local zeta-function 1571:holomorphic mapping 1386:builds up from the 1330:generating function 1322:Igusa zeta-function 1316:Igusa zeta-function 1047:point may become a 983:class field theory. 956:over number fields. 843:functional equation 510:Kolyvagin's theorem 341:divisor class group 136:Contents:  101:Arithmetic geometry 48:algebraic varieties 4365:Algebraic geometry 4225:Modular arithmetic 4195:Irrational numbers 4129:anabelian geometry 4046:class field theory 3771:Lang (1988) pp.1–9 3510:10.1007/bf01453564 3359:10.1007/BF01241125 3133:Serre, Jean-Pierre 3085:10.1007/BF01388432 2977:10.1007/BF01402975 2890:10.1007/PL00001393 2468:motivic cohomology 2452:Frobenius mappings 2074:Frobenius elements 2031:in a number field 1996:mathematical logic 1957:-torsion has rank 1939:ordinary reduction 1925:Ordinary reduction 1906:projective variety 1702:Mordell conjecture 1696:Mordell conjecture 1646:Riemann hypothesis 1628:, over the finite 1504:Algebraic K-theory 1404:p-adic L-functions 1396:ideal class groups 1346:mathematical logic 1224:L-function, is an 1161:algebraic function 1141:Serre–Tate theorem 1041:singularity theory 1004:all prime numbers 975:-style results on 973:class field theory 872:Mordell conjecture 555:Mordell conjecture 405:Archimedean fields 375:of the field with 34:algebraic geometry 4347: 4346: 4244:Advanced concepts 4200:Algebraic numbers 4185:Composite numbers 3992:978-0-8218-0267-0 3986:, AMS Bookstore, 3960:978-3-540-65399-8 3843:. Vol. 201. 3815:978-0-521-71229-3 3742:978-0-691-15371-1 3651:978-0-387-72487-4 3591:Lang (1997) p.179 3461:Lang (1997) p.212 3422:978-0-521-88268-2 3405:Wüstholz, Gisbert 3048:Lang (1997) p.171 3034:Lang (1997) p.146 3021:978-3-540-37888-4 2815:978-0-521-20833-8 2536:Néron–Tate height 2448:singular homology 2440:cohomology theory 2428:l-adic cohomology 2399:Nevanlinna theory 2231:elliptic surfaces 2110:Chabauty's method 1992:Ax–Kochen theorem 1859:Néron–Tate height 1853:Néron–Tate height 1847:Néron–Tate height 1798:Mordellic variety 1792:Mordellic variety 1412:Bernoulli numbers 1408:Kummer congruence 1369:Galois cohomology 1281:Jean-Pierre Serre 1269:projective spaces 1256:Hilbertian fields 1105:abelian varieties 977:abelian coverings 971:The extension of 950:elliptic surfaces 779:desingularisation 561:'s method for an 547:Chabauty's method 542:Chabauty's method 536:Néron–Tate height 460:l-adic cohomology 444:Artin L-functions 439:Artin L-functions 431:See main article 345:Arakelov divisors 337:ideal class group 81:; over any other 4377: 4337: 4327: 4317: 4316: 4307: 4306: 4297: 4296: 4190:Rational numbers 4021: 4014: 4007: 3998: 3997: 3972: 3943:Neukirch, Jürgen 3938: 3904: 3862: 3827: 3798:Bombieri, Enrico 3790: 3787: 3781: 3778: 3772: 3769: 3763: 3753: 3747: 3746: 3724: 3718: 3717: 3699: 3662: 3656: 3655: 3637: 3631: 3630: 3607: 3601: 3598: 3592: 3589: 3583: 3580: 3574: 3571: 3565: 3554: 3548: 3545: 3539: 3536: 3530: 3529: 3489: 3483: 3480: 3474: 3473:Lang (1988) p.77 3471: 3462: 3459: 3453: 3450: 3444: 3441: 3435: 3434: 3397: 3391: 3390:Lang (1997) p.15 3388: 3382: 3377: 3371: 3370: 3334: 3328: 3327: 3297: 3291: 3290: 3263: 3257: 3254: 3248: 3245: 3236: 3235: 3197: 3191: 3181: 3175: 3174: 3129: 3123: 3121: 3103: 3097: 3096: 3055: 3049: 3046: 3035: 3032: 3026: 3025: 3003: 2997: 2996: 2943: 2937: 2934: 2928: 2925: 2919: 2916: 2910: 2909: 2883: 2863: 2857: 2854: 2848: 2845: 2836: 2835: 2792: 2783: 2782: 2780: 2778: 2773: 2764: 2758: 2746: 2562: 2552:Cartier divisors 2528:Green's function 2480:Weil conjectures 2474:Weil conjectures 2387:Vojta conjecture 2381:Vojta conjecture 2227:algebraic cycles 2223:Hodge conjecture 2181:Tamagawa numbers 2148:subspace theorem 2141:Subspace theorem 2053:Arakelov divisor 2037:fractional ideal 1863:canonical height 1839:algebraic cycles 1706:Faltings theorem 1675:Jacobian variety 1665:, now proved by 1644:, including the 1630:field extensions 1508:abstract algebra 1464: 1449: 1423:Jacobian variety 1361:Pierre de Fermat 1357:Infinite descent 1352:Infinite descent 1279:in the sense of 1262:Hilbertian field 1111:in the field of 1067:having the same 1025:division by zero 938:ring of integers 831:étale cohomology 825:Étale cohomology 814:Weil conjectures 802:Koszul complexes 767:arithmetic genus 678:Waring's problem 666:Fermat varieties 634:étale cohomology 628:, introduced by 626:characteristic p 522:Canonical height 452:étale cohomology 369:fractional ideal 357:Arakelov divisor 351:Arakelov divisor 137: 113:ring of integers 4385: 4384: 4380: 4379: 4378: 4376: 4375: 4374: 4350: 4349: 4348: 4343: 4285: 4251:Quadratic forms 4239: 4214:P-adic analysis 4170:Natural numbers 4148: 4105:Arakelov theory 4030: 4025: 3979: 3977:Further reading 3961: 3951:Springer-Verlag 3927: 3917:Springer-Verlag 3885: 3875:Springer-Verlag 3851: 3816: 3793: 3788: 3784: 3779: 3775: 3770: 3766: 3754: 3750: 3743: 3725: 3721: 3666:Caporaso, Lucia 3663: 3659: 3652: 3638: 3634: 3608: 3604: 3599: 3595: 3590: 3586: 3581: 3577: 3572: 3568: 3555: 3551: 3546: 3542: 3537: 3533: 3492:Batyrev, V.V.; 3490: 3486: 3481: 3477: 3472: 3465: 3460: 3456: 3451: 3447: 3442: 3438: 3423: 3398: 3394: 3389: 3385: 3378: 3374: 3335: 3331: 3316: 3298: 3294: 3267:Raynaud, Michel 3264: 3260: 3255: 3251: 3246: 3239: 3198: 3194: 3182: 3178: 3155:10.2307/1970722 3130: 3126: 3118: 3104: 3100: 3056: 3052: 3047: 3038: 3033: 3029: 3022: 3014:. p. 361. 3012:Springer-Verlag 3004: 3000: 2944: 2940: 2935: 2931: 2926: 2922: 2917: 2913: 2864: 2860: 2855: 2851: 2846: 2839: 2816: 2793: 2786: 2776: 2774: 2771: 2765: 2761: 2747: 2743: 2739: 2717: 2712: 2711: 2710: 2709: 2563: 2543: 2532:Arakelov theory 2524:Cartier divisor 2515: 2503: 2475: 2435: 2434:Weil cohomology 2416:yoga of weights 2411: 2407: 2382: 2378: 2361: 2317: 2313: 2302: 2284: 2278: 2258: 2238: 2215:Tate conjecture 2210: 2209:Tate conjecture 2187:Tamagawa number 2182: 2178: 2170:S-unit equation 2154:absolute values 2142: 2126:Zariski closure 2117: 2105: 2104:Skolem's method 2082:elliptic curves 2065: 2061: 2049:replete divisor 2024: 2012: 2004: 1988:counterexamples 1971: 1967: 1926: 1922: 1885: 1867:abelian variety 1854: 1843:Abelian variety 1830: 1810: 1806: 1793: 1757: 1746:abelian variety 1717: 1697: 1658: 1654: 1606: 1594: 1573:from the whole 1534:(dimension 2), 1532:Enrico Bombieri 1528: 1527:Lang conjecture 1524: 1500: 1496: 1462: 1447: 1406:(with roots in 1394:as a theory of 1380: 1353: 1317: 1313: 1257: 1250:height function 1245: 1244:Height function 1213: 1202:elliptic curves 1182:Hasse principle 1177: 1176:Hasse principle 1173: 1148: 1113:division points 1091: 1065:algebraic curve 991:Fundamental to 988: 968: 962: 954:elliptic curves 942:coordinate ring 933: 902:Flat cohomology 898: 897:Flat cohomology 879: 864:Faltings height 859: 858:Faltings height 855: 826: 822: 794:p-adic analysis 786: 775:geometric genus 731: 726:of dimension 1. 701: 685: 654: 650: 618: 605:with a zero at 597:1 and positive 581:states that an 574: 563:algebraic torus 543: 528:abelian variety 523: 519: 494:elliptic curves 485: 473: 468: 440: 427: 420:Arakelov theory 416: 415:Arakelov theory 397:height function 393:Arakelov height 388: 387:Arakelov height 381:infinite places 361:replete divisor 352: 328: 296: 292: 287: 286: 285: 284: 138: 129: 75:complex numbers 12: 11: 5: 4383: 4373: 4372: 4367: 4362: 4345: 4344: 4342: 4341: 4331: 4321: 4311: 4309:List of topics 4301: 4290: 4287: 4286: 4284: 4283: 4278: 4273: 4268: 4263: 4258: 4253: 4247: 4245: 4241: 4240: 4238: 4237: 4232: 4227: 4222: 4217: 4210:P-adic numbers 4207: 4202: 4197: 4192: 4187: 4182: 4177: 4172: 4167: 4162: 4156: 4154: 4150: 4149: 4147: 4146: 4141: 4136: 4122: 4112: 4098: 4093: 4088: 4083: 4065: 4054:Iwasawa theory 4038: 4036: 4032: 4031: 4024: 4023: 4016: 4009: 4001: 3995: 3994: 3978: 3975: 3974: 3973: 3959: 3939: 3925: 3905: 3883: 3863: 3849: 3831:Hindry, Marc; 3828: 3814: 3792: 3791: 3782: 3773: 3764: 3756:Pierre Deligne 3748: 3741: 3719: 3657: 3650: 3632: 3602: 3593: 3584: 3575: 3566: 3549: 3540: 3531: 3484: 3475: 3463: 3454: 3445: 3436: 3421: 3392: 3383: 3372: 3345:(1): 143–159. 3329: 3314: 3292: 3271:Artin, Michael 3258: 3249: 3237: 3192: 3176: 3149:(3): 492–517. 3124: 3116: 3098: 3071:(3): 349–366. 3059:Faltings, Gerd 3050: 3036: 3027: 3020: 2998: 2963:(3): 223–251. 2938: 2929: 2920: 2911: 2874:(4): 377–398. 2870:. New Series. 2858: 2849: 2837: 2814: 2784: 2759: 2740: 2738: 2735: 2734: 2733: 2728: 2723: 2716: 2713: 2706: 2705: 2700: 2695: 2690: 2685: 2680: 2675: 2670: 2665: 2660: 2655: 2650: 2645: 2640: 2635: 2630: 2625: 2620: 2615: 2610: 2605: 2600: 2595: 2590: 2585: 2580: 2575: 2570: 2564: 2558: 2556: 2555: 2544: 2541: 2539: 2516: 2513: 2511: 2504: 2501: 2499: 2476: 2473: 2471: 2436: 2433: 2431: 2412: 2409: 2406: 2403: 2402: 2383: 2380: 2377: 2374: 2373: 2362: 2359: 2357: 2318: 2315: 2312: 2309: 2308: 2298: 2282: 2274: 2259: 2256: 2254: 2251:good reduction 2247:p-adic numbers 2239: 2236: 2234: 2211: 2208: 2206: 2183: 2180: 2177: 2174: 2173: 2143: 2140: 2138: 2118: 2115: 2113: 2106: 2103: 2101: 2066: 2063: 2060: 2057: 2056: 2025: 2022: 2020: 2017:good reduction 2013: 2006: 2003: 2000: 1999: 1972: 1969: 1966: 1963: 1962: 1947:good reduction 1927: 1924: 1921: 1918: 1917: 1886: 1883: 1881: 1874:quadratic form 1855: 1852: 1850: 1831: 1828: 1826: 1811: 1808: 1805: 1802: 1801: 1794: 1791: 1789: 1758: 1755: 1753: 1718: 1715: 1713: 1698: 1695: 1693: 1667:Michel Raynaud 1659: 1656: 1653: 1650: 1649: 1607: 1604: 1602: 1595: 1592: 1590: 1529: 1526: 1523: 1520: 1519: 1501: 1498: 1495: 1492: 1491: 1442:roots of unity 1400:Galois modules 1384:Iwasawa theory 1381: 1379:Iwasawa theory 1378: 1376: 1354: 1351: 1349: 1326:Jun-ichi Igusa 1318: 1315: 1312: 1309: 1308: 1258: 1255: 1253: 1246: 1243: 1241: 1214: 1211: 1209: 1178: 1175: 1172: 1169: 1168: 1149: 1146: 1144: 1087: 1073:smooth variety 1061:Good reduction 1055:, because the 1049:singular point 1019:; for example 993:local analysis 989: 987:Good reduction 986: 984: 969: 964: 961: 958: 957: 934: 931: 929: 899: 896: 894: 891:Richard Taylor 880: 877: 875: 860: 857: 854: 851: 850: 827: 824: 821: 818: 817: 787: 785:Dwork's method 784: 782: 771:singular curve 732: 729: 727: 697: 686: 683: 681: 658:Diagonal forms 655: 653:Diagonal forms 652: 649: 646: 645: 642:Dwork's method 619: 616: 614: 583:elliptic curve 575: 572: 570: 567:Runge's method 559:Thoralf Skolem 544: 541: 539: 532:quadratic form 524: 521: 518: 515: 514: 513: 486: 483: 481: 478:good reduction 474: 471: 467: 464: 463: 441: 438: 436: 428: 425: 423: 417: 414: 412: 389: 386: 384: 353: 350: 348: 329: 326: 324: 301:abc conjecture 297: 295:abc conjecture 294: 291: 288: 281: 280: 275: 270: 265: 260: 255: 250: 245: 240: 235: 230: 225: 220: 215: 210: 205: 200: 195: 190: 185: 180: 175: 170: 165: 160: 155: 150: 145: 139: 133: 131: 9: 6: 4: 3: 2: 4382: 4371: 4368: 4366: 4363: 4361: 4358: 4357: 4355: 4340: 4336: 4332: 4330: 4326: 4322: 4320: 4312: 4310: 4302: 4300: 4292: 4291: 4288: 4282: 4279: 4277: 4274: 4272: 4269: 4267: 4264: 4262: 4259: 4257: 4256:Modular forms 4254: 4252: 4249: 4248: 4246: 4242: 4236: 4233: 4231: 4228: 4226: 4223: 4221: 4218: 4215: 4211: 4208: 4206: 4203: 4201: 4198: 4196: 4193: 4191: 4188: 4186: 4183: 4181: 4180:Prime numbers 4178: 4176: 4173: 4171: 4168: 4166: 4163: 4161: 4158: 4157: 4155: 4151: 4145: 4142: 4140: 4137: 4134: 4130: 4126: 4123: 4120: 4116: 4113: 4110: 4106: 4102: 4099: 4097: 4094: 4092: 4089: 4087: 4084: 4081: 4077: 4073: 4069: 4066: 4063: 4062:Kummer theory 4059: 4055: 4051: 4047: 4043: 4040: 4039: 4037: 4033: 4029: 4028:Number theory 4022: 4017: 4015: 4010: 4008: 4003: 4002: 3999: 3993: 3989: 3985: 3981: 3980: 3970: 3966: 3962: 3956: 3952: 3948: 3944: 3940: 3936: 3932: 3928: 3926:3-540-61223-8 3922: 3918: 3914: 3910: 3906: 3902: 3898: 3894: 3890: 3886: 3884:0-387-96793-1 3880: 3876: 3872: 3868: 3864: 3860: 3856: 3852: 3850:0-387-98981-1 3846: 3842: 3838: 3834: 3829: 3825: 3821: 3817: 3811: 3807: 3803: 3799: 3795: 3794: 3786: 3777: 3768: 3761: 3757: 3752: 3744: 3738: 3734: 3730: 3723: 3715: 3711: 3707: 3703: 3698: 3693: 3689: 3685: 3684: 3679: 3675: 3671: 3667: 3661: 3653: 3647: 3643: 3636: 3628: 3624: 3620: 3616: 3612: 3606: 3597: 3588: 3579: 3570: 3563: 3559: 3553: 3544: 3535: 3527: 3523: 3519: 3515: 3511: 3507: 3503: 3499: 3495: 3488: 3479: 3470: 3468: 3458: 3449: 3440: 3432: 3428: 3424: 3418: 3415:. p. 3. 3414: 3410: 3406: 3402: 3396: 3387: 3381: 3376: 3368: 3364: 3360: 3356: 3352: 3348: 3344: 3340: 3333: 3325: 3321: 3317: 3315:0-8176-4397-4 3311: 3307: 3303: 3296: 3288: 3284: 3280: 3276: 3272: 3268: 3262: 3253: 3244: 3242: 3233: 3229: 3225: 3221: 3217: 3213: 3209: 3205: 3204: 3196: 3189: 3185: 3180: 3172: 3168: 3164: 3160: 3156: 3152: 3148: 3144: 3143: 3138: 3134: 3128: 3119: 3117:0-387-96311-1 3113: 3109: 3102: 3094: 3090: 3086: 3082: 3078: 3074: 3070: 3066: 3065: 3060: 3054: 3045: 3043: 3041: 3031: 3023: 3017: 3013: 3009: 3002: 2994: 2990: 2986: 2982: 2978: 2974: 2970: 2966: 2962: 2958: 2957: 2952: 2948: 2942: 2933: 2924: 2915: 2907: 2903: 2899: 2895: 2891: 2887: 2882: 2877: 2873: 2869: 2862: 2853: 2844: 2842: 2833: 2829: 2825: 2821: 2817: 2811: 2807: 2803: 2802: 2797: 2791: 2789: 2770: 2763: 2757: 2755: 2750: 2745: 2741: 2732: 2729: 2727: 2724: 2722: 2719: 2718: 2708: 2704: 2701: 2699: 2696: 2694: 2691: 2689: 2686: 2684: 2681: 2679: 2676: 2674: 2671: 2669: 2666: 2664: 2661: 2659: 2656: 2654: 2651: 2649: 2646: 2644: 2641: 2639: 2636: 2634: 2631: 2629: 2626: 2624: 2621: 2619: 2616: 2614: 2611: 2609: 2606: 2604: 2601: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2581: 2579: 2576: 2574: 2571: 2569: 2566: 2565: 2553: 2549: 2545: 2537: 2533: 2529: 2525: 2521: 2520:Weil function 2517: 2514:Weil function 2509: 2505: 2497: 2493: 2489: 2485: 2481: 2477: 2469: 2465: 2461: 2457: 2453: 2449: 2445: 2444:finite fields 2441: 2437: 2429: 2425: 2421: 2417: 2413: 2400: 2396: 2392: 2388: 2384: 2371: 2367: 2363: 2355: 2351: 2347: 2343: 2339: 2335: 2331: 2327: 2323: 2319: 2306: 2301: 2297: 2293: 2289: 2285: 2277: 2272: 2268: 2264: 2260: 2252: 2248: 2244: 2240: 2232: 2228: 2224: 2220: 2216: 2212: 2204: 2200: 2196: 2192: 2188: 2184: 2171: 2167: 2163: 2159: 2158:number fields 2155: 2150: 2149: 2144: 2136: 2132: 2127: 2123: 2119: 2111: 2107: 2099: 2095: 2091: 2087: 2086:finite fields 2083: 2079: 2075: 2071: 2067: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2029:replete ideal 2026: 2023:Replete ideal 2018: 2014: 2010: 1997: 1993: 1989: 1985: 1981: 1977: 1974:The topic of 1973: 1960: 1956: 1952: 1948: 1944: 1940: 1936: 1933:of dimension 1932: 1928: 1915: 1910: 1907: 1904: 1900: 1897: 1896:ample divisor 1893: 1892: 1887: 1879: 1875: 1871: 1868: 1864: 1860: 1856: 1848: 1844: 1840: 1836: 1832: 1824: 1820: 1816: 1812: 1799: 1795: 1787: 1783: 1779: 1775: 1771: 1767: 1763: 1759: 1751: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1711: 1707: 1703: 1699: 1691: 1687: 1683: 1679: 1676: 1672: 1668: 1664: 1660: 1647: 1643: 1639: 1635: 1631: 1627: 1624: 1620: 1616: 1612: 1608: 1600: 1596: 1588: 1584: 1580: 1576: 1575:complex plane 1572: 1568: 1565: 1561: 1557: 1553: 1549: 1548:Zariski dense 1545: 1541: 1537: 1533: 1530: 1517: 1513: 1509: 1505: 1502: 1489: 1485: 1484:inverse limit 1481: 1477: 1473: 1469: 1465: 1458: 1454: 1450: 1443: 1439: 1435: 1431: 1427: 1424: 1420: 1418: 1413: 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1382: 1374: 1370: 1366: 1362: 1358: 1355: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1263: 1259: 1251: 1247: 1239: 1235: 1231: 1227: 1226:Euler product 1223: 1219: 1215: 1207: 1203: 1199: 1195: 1191: 1187: 1183: 1179: 1166: 1162: 1158: 1154: 1150: 1142: 1138: 1134: 1130: 1126: 1122: 1118: 1114: 1110: 1106: 1102: 1099: 1095: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1015: 1011: 1007: 1003: 1002: 998: 994: 990: 982: 978: 974: 970: 967: 955: 951: 947: 946:global fields 943: 939: 935: 927: 923: 919: 915: 914:scheme theory 911: 907: 906:flat topology 903: 900: 892: 888: 884: 881: 873: 869: 865: 861: 848: 844: 840: 839:Michael Artin 836: 832: 828: 815: 811: 807: 803: 799: 795: 791: 790:Bernard Dwork 788: 780: 776: 772: 768: 764: 760: 756: 753: 749: 745: 741: 737: 733: 725: 721: 717: 713: 709: 705: 700: 695: 691: 687: 679: 675: 671: 667: 663: 659: 656: 643: 639: 635: 631: 627: 623: 620: 612: 608: 604: 600: 596: 592: 588: 584: 580: 576: 568: 564: 560: 556: 552: 548: 545: 537: 533: 529: 525: 511: 507: 503: 499: 495: 491: 487: 479: 475: 472:Bad reduction 469: 461: 457: 453: 449: 445: 442: 435: 434: 429: 421: 418: 410: 406: 402: 398: 394: 390: 382: 378: 377:finite places 374: 370: 366: 362: 358: 354: 346: 342: 338: 334: 330: 322: 318: 314: 310: 306: 302: 298: 283: 279: 276: 274: 271: 269: 266: 264: 261: 259: 256: 254: 251: 249: 246: 244: 241: 239: 236: 234: 231: 229: 226: 224: 221: 219: 216: 214: 211: 209: 206: 204: 201: 199: 196: 194: 191: 189: 186: 184: 181: 179: 176: 174: 171: 169: 166: 164: 161: 159: 156: 154: 151: 149: 146: 144: 141: 140: 130: 127: 125: 120: 118: 117:number theory 114: 110: 106: 102: 98: 96: 92: 88: 84: 80: 76: 72: 68: 67:finite fields 64: 63:number fields 60: 56: 52: 49: 45: 41: 39: 35: 31: 30:number theory 27: 23: 19: 4153:Key concepts 4080:sieve theory 3946: 3912: 3873:. New York: 3870: 3836: 3801: 3785: 3776: 3767: 3759: 3751: 3728: 3722: 3687: 3681: 3674:Mazur, Barry 3660: 3641: 3635: 3618: 3614: 3605: 3596: 3587: 3578: 3569: 3561: 3557: 3552: 3543: 3534: 3501: 3497: 3494:Manin, Yu.I. 3487: 3478: 3457: 3448: 3439: 3408: 3395: 3386: 3375: 3342: 3339:Invent. Math 3338: 3332: 3305: 3302:Schoof, René 3295: 3278: 3261: 3252: 3207: 3201: 3195: 3179: 3146: 3140: 3127: 3107: 3101: 3068: 3062: 3053: 3030: 3007: 3001: 2960: 2954: 2941: 2932: 2923: 2914: 2881:math/9802121 2871: 2867: 2861: 2852: 2800: 2796:Schoof, René 2775:. Retrieved 2762: 2753: 2744: 2707: 2547: 2519: 2424:Hodge theory 2365: 2349: 2345: 2341: 2337: 2333: 2329: 2325: 2299: 2295: 2291: 2287: 2280: 2275: 2270: 2250: 2193:. There the 2146: 2134: 2130: 2121: 2109: 2078:Tate modules 2048: 2044: 2040: 2032: 2028: 2016: 2008: 1980:Brauer group 1958: 1954: 1950: 1942: 1938: 1934: 1930: 1908: 1898: 1889: 1877: 1869: 1835:Néron symbol 1834: 1829:Néron symbol 1822: 1815:naive height 1809:Naive height 1785: 1777: 1773: 1769: 1765: 1689: 1685: 1681: 1677: 1670: 1638:non-singular 1633: 1625: 1623:finite field 1618: 1599:linear torus 1598: 1593:Linear torus 1586: 1582: 1566: 1563: 1559: 1555: 1551: 1546:do not have 1544:general type 1487: 1479: 1475: 1471: 1467: 1460: 1456: 1452: 1445: 1437: 1433: 1429: 1425: 1415: 1373:Selmer group 1337: 1333: 1324:, named for 1300: 1292: 1272: 1264: 1221: 1206:cubic curves 1190:local fields 1186:global field 1109:ramification 1100: 1097: 1093: 1088: 1084: 1080: 1076: 1060: 1052: 1045:non-singular 1036: 1028: 1021:denominators 1016: 1010:prime ideals 1005: 999: 996: 980: 926:gluing axiom 887:Andrew Wiles 762: 758: 754: 751: 747: 743: 739: 735: 715: 711: 707: 703: 698: 693: 689: 637: 606: 595:class number 578: 550: 546: 477: 430: 360: 356: 332: 320: 316: 312: 282: 128: 121: 99: 94: 90: 86: 82: 71:local fields 59:prime fields 54: 53:over fields 50: 42: 17: 15: 4339:Wikiversity 4261:L-functions 3909:Lang, Serge 3867:Lang, Serge 3690:(1): 1–35. 3670:Harris, Joe 3401:Baker, Alan 2508:prime ideal 2185:The direct 2122:special set 2116:Special set 2100:in general. 1941:at a prime 1704:is now the 1550:subsets of 1428:of a curve 1297:meagre sets 1230:L-functions 1198:cubic forms 1121:Néron model 810:rationality 674:Jacobi sums 549:, based on 38:conjectures 22:mathematics 4354:Categories 4220:Arithmetic 3969:0956.11021 3935:0869.11051 3901:0667.14001 3859:0948.11023 3824:1130.11034 3714:0872.14017 3627:0015.38803 3526:0679.14008 3431:1145.11004 3324:1098.14030 3287:0581.14031 3275:Tate, John 3232:0287.43007 3171:0172.46101 3145:. Second. 3137:Tate, John 2993:0359.14009 2947:Coates, J. 2906:1030.11063 2832:1188.11076 2737:References 2484:André Weil 2391:Paul Vojta 2267:C. C. Tsen 2243:Tate curve 2237:Tate curve 2225:, also on 2145:Schmidt's 2090:Mikio Sato 2007:Reduction 1990:; but see 1945:if it has 1772:the group 1728:, Hindry, 1540:Paul Vojta 1536:Serge Lang 1340:. General 1129:Tate curve 1043:enters: a 1039:. However 1014:almost all 833:theory of 761:) and the 603:L-function 69:—and over 3621:: 81–92. 3518:119945673 3504:: 27–43. 3498:Math. Ann 3367:120053132 3224:117772856 3093:121049418 2985:189832636 2951:Wiles, A. 2263:Tsen rank 2257:Tsen rank 2219:John Tate 2094:John Tate 1722:McQuillan 1684:, unless 1581:of genus 1474:and with 1417:Iwasawa's 1303:) of the 1277:thin sets 981:geometric 796:, p-adic 668:). Their 4329:Wikibook 4299:Category 3945:(1999). 3911:(1997). 3869:(1988). 3835:(2000). 3676:(1997). 3611:Tsen, C. 3407:(2007). 3304:(eds.). 3277:(eds.). 2898:12089289 2777:22 March 2715:See also 2164:such as 1982:and the 1865:) on an 1734:Faltings 1499:K-theory 1299:(French 1275:are not 868:Faltings 845:for the 773:and the 309:Oesterlé 109:spectrum 4160:Numbers 3893:0969124 3706:2152901 3347:Bibcode 3186: ( 3163:1970722 3073:Bibcode 2965:Bibcode 2824:2467554 2751:at the 2410:Weights 2294:> Σ 2080:of the 2076:in the 1780:) is a 1726:Raynaud 1673:in its 1621:over a 1328:, is a 1115:by the 1071:, or a 928:holds). 777:of the 462:groups. 403:on the 365:divisor 111:of the 105:schemes 4035:Fields 3990:  3967:  3957:  3933:  3923:  3899:  3891:  3881:  3857:  3847:  3822:  3812:  3739:  3712:  3704:  3648:  3625:  3524:  3516:  3429:  3419:  3365:  3322:  3312:  3285:  3230:  3222:  3169:  3161:  3114:  3091:  3018:  2991:  2983:  2904:  2896:  2830:  2822:  2812:  2051:is an 2009:modulo 1903:normal 1894:of an 1841:on an 1744:in an 1732:, and 1301:maigre 1222:global 1103:. For 1001:modulo 997:reduce 750:: the 589:by an 534:. See 373:places 305:Masser 4175:Unity 3702:JSTOR 3514:S2CID 3363:S2CID 3220:S2CID 3159:JSTOR 3089:S2CID 2981:S2CID 2894:S2CID 2876:arXiv 2772:(PDF) 2084:over 1994:from 1901:on a 1730:Vojta 1613:is a 1293:mince 1271:over 1092:over 1069:genus 910:topos 769:of a 714:> 585:with 3988:ISBN 3955:ISBN 3921:ISBN 3879:ISBN 3845:ISBN 3810:ISBN 3737:ISBN 3646:ISBN 3417:ISBN 3310:ISBN 3208:1974 3188:1997 3184:Lang 3112:ISBN 3016:ISBN 2810:ISBN 2779:2019 2546:The 2478:The 2426:and 2414:The 2397:and 2385:The 2328:and 2320:The 2261:The 2241:The 2213:The 2120:The 2108:See 2068:The 2047:. A 2015:See 1937:has 1888:The 1857:The 1833:The 1813:The 1760:The 1738:Lang 1700:The 1661:The 1538:and 1402:and 1390:and 1359:was 1180:The 1151:The 912:for 889:and 862:The 837:and 734:The 688:The 601:has 599:rank 577:The 508:and 488:The 476:See 391:The 359:(or 343:for 331:The 307:and 299:The 77:are 65:and 32:and 3965:Zbl 3931:Zbl 3897:Zbl 3855:Zbl 3820:Zbl 3710:Zbl 3692:doi 3623:Zbl 3619:171 3522:Zbl 3506:doi 3502:286 3427:Zbl 3355:doi 3343:120 3320:Zbl 3283:Zbl 3228:Zbl 3212:doi 3167:Zbl 3151:doi 3081:doi 2989:Zbl 2973:doi 2902:Zbl 2886:doi 2828:Zbl 2756:Lab 2573:0–9 2568:Top 2530:in 2364:An 2286:in 2156:on 2039:of 1949:at 1748:or 1632:of 1438:qua 1410:on 1398:as 1320:An 1204:as 706:in 593:of 492:on 367:or 355:An 339:or 303:of 148:0–9 143:Top 20:in 4356:: 4131:, 4107:, 4078:, 4074:, 4060:, 4056:, 4052:, 4048:, 3963:. 3953:. 3929:. 3919:. 3915:. 3895:. 3889:MR 3887:. 3877:. 3853:. 3839:. 3818:. 3808:. 3758:, 3735:. 3708:. 3700:. 3688:10 3686:. 3680:. 3672:; 3668:; 3617:. 3520:. 3512:. 3500:. 3466:^ 3425:. 3403:; 3361:. 3353:. 3341:. 3318:. 3273:; 3240:^ 3226:. 3218:. 3206:. 3165:. 3157:. 3147:88 3135:; 3087:. 3079:. 3069:73 3067:. 3039:^ 2987:. 2979:. 2971:. 2961:39 2959:. 2949:; 2900:. 2892:. 2884:. 2840:^ 2826:. 2820:MR 2818:. 2787:^ 2518:A 2466:, 2253:). 2027:A 1796:A 1688:= 1609:A 1597:A 1514:, 1260:A 1248:A 1216:A 1139:, 1135:, 1131:, 1127:, 1123:, 800:, 718:. 676:. 569:.) 504:, 319:= 315:+ 126:. 119:. 97:. 4216:) 4212:( 4165:0 4135:) 4127:( 4121:) 4117:( 4111:) 4103:( 4082:) 4070:( 4064:) 4044:( 4020:e 4013:t 4006:v 3971:. 3937:. 3903:. 3861:. 3826:. 3745:. 3716:. 3694:: 3654:. 3629:. 3528:. 3508:: 3433:. 3369:. 3357:: 3349:: 3326:. 3289:. 3234:. 3214:: 3190:) 3173:. 3153:: 3120:. 3095:. 3083:: 3075:: 3024:. 2995:. 2975:: 2967:: 2908:. 2888:: 2878:: 2872:6 2834:. 2781:. 2754:n 2703:Z 2698:Y 2693:X 2688:W 2683:V 2678:U 2673:T 2668:S 2663:R 2658:Q 2653:P 2648:O 2643:N 2638:M 2633:L 2628:K 2623:J 2618:I 2613:H 2608:G 2603:F 2598:E 2593:D 2588:C 2583:B 2578:A 2538:. 2498:. 2470:. 2430:. 2405:W 2401:. 2376:V 2372:. 2356:. 2350:g 2346:K 2342:K 2340:, 2338:g 2336:( 2334:B 2330:g 2326:K 2311:U 2300:j 2296:d 2292:n 2288:n 2283:j 2281:d 2276:i 2271:i 2217:( 2176:T 2172:. 2135:C 2112:. 2059:S 2055:. 2045:K 2041:K 2033:K 2019:. 2002:R 1998:. 1965:Q 1961:. 1959:d 1955:p 1951:p 1943:p 1935:d 1931:A 1920:O 1909:X 1899:D 1878:A 1870:A 1823:Q 1804:N 1786:K 1778:K 1776:( 1774:A 1770:K 1766:A 1752:. 1692:. 1690:J 1686:C 1682:J 1678:J 1671:C 1652:M 1648:. 1634:F 1626:F 1619:V 1587:V 1583:g 1567:V 1556:K 1552:K 1522:L 1518:. 1494:K 1488:p 1480:K 1476:n 1472:p 1468:p 1463:′ 1461:F 1459:( 1457:J 1453:C 1448:′ 1446:F 1436:( 1434:F 1430:C 1426:J 1375:. 1348:. 1338:p 1334:p 1311:I 1307:. 1273:K 1265:K 1171:H 1167:. 1143:. 1101:Z 1098:p 1096:/ 1094:Z 1089:p 1085:V 1081:V 1077:S 1053:p 1037:p 1029:p 1017:p 1006:p 960:G 893:. 874:. 853:F 820:E 816:. 759:P 757:( 755:d 748:K 744:V 740:P 716:d 712:N 708:N 704:d 699:k 694:k 648:D 638:p 613:. 607:s 551:p 538:. 517:C 512:. 480:. 466:B 411:. 347:. 321:c 317:b 313:a 290:A 278:Z 273:Y 268:X 263:W 258:V 253:U 248:T 243:S 238:R 233:Q 228:P 223:O 218:N 213:M 208:L 203:K 198:J 193:I 188:H 183:G 178:F 173:E 168:D 163:C 158:B 153:A 95:V 91:K 87:V 83:K 55:K 51:V

Index

mathematics
Diophantine equations
number theory
algebraic geometry
conjectures
Diophantine geometry
algebraic varieties
prime fields
number fields
finite fields
local fields
complex numbers
algebraically closed
Arithmetic geometry
schemes
spectrum
ring of integers
number theory
Glossary of number theory
Top
0–9
A
B
C
D
E
F
G
H
I

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.