Knowledge

Finite group

Source 📝

946: 41: 821:. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. Important examples of finite groups include 1287:), gradually a belief formed that nearly all finite simple groups can be accounted for by appropriate extensions of Chevalley's construction, together with cyclic and alternating groups. Moreover, the exceptions, the 1837:. To see this for any particular order is usually not difficult (for example, there is, up to isomorphism, one non-solvable group and 12 solvable groups of order 60) but the proof of this for all orders uses the 1132:
An arbitrary finite abelian group is isomorphic to a direct sum of finite cyclic groups of prime power order, and these orders are uniquely determined, forming a complete system of invariants. The
486: 461: 424: 1635:
The proof of the theorem consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004.
2471: 788: 1624:
is that such "building blocks" do not necessarily determine uniquely a group, since there might be many non-isomorphic groups with the same
2441: 1144:
and later was both simplified and generalized to finitely generated modules over a principal ideal domain, forming an important chapter of
1136:
of a finite abelian group can be described directly in terms of these invariants. The theory had been first developed in the 1879 paper of
902:
of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. The theory of
1374:
This provides a partial converse to Lagrange's theorem giving information about how many subgroups of a given order are contained in
1279:. Moreover, as in the case of compact simple Lie groups, the corresponding groups turned out to be almost simple as abstract groups ( 852:
During the twentieth century, mathematicians investigated some aspects of the theory of finite groups in great depth, especially the
1291:, share many properties with the finite groups of Lie type, and in particular, can be constructed and characterized based on their 2374: 2344: 1838: 1561: 1299: 865: 837: 346: 1620:
is a more precise way of stating this fact about finite groups. However, a significant difference with respect to the case of
2582: 1608:
The finite simple groups can be seen as the basic building blocks of all finite groups, in a way reminiscent of the way the
1679: 1328: 296: 2359: 781: 291: 1247:≠ 2, 3. This theorem generalizes to projective groups of higher dimensions and gives an important infinite family PSL( 1236: 1220: 2541: 707: 2655: 2379: 1640: 1490: 774: 2354: 1747: 1699: 1565: 1617: 391: 205: 1423: 123: 1682:
implies that the cyclic subgroup generated by any of its non-identity elements is the whole group. If
1811: 1629: 589: 323: 200: 88: 1686:
is the square of a prime, then there are exactly two possible isomorphism types of group of order
469: 444: 407: 1118: 1086: 1283:). Although it was known since 19th century that other finite simple groups exist (for example, 2650: 1306:
include all the finite simple groups other than the cyclic groups, the alternating groups, the
1179: 739: 529: 954: 2399: 1766: 1702:
give asymptotically correct estimates for the number of isomorphism types of groups of order
1621: 1443: 1357: 1311: 1207:
Finite groups of Lie type were among the first groups to be considered in mathematics, after
613: 2404: 2369: 1541: 1529: 1460: 1338: 1268: 1256: 1193: 1141: 1098: 1021: 998: 888: 553: 541: 159: 93: 2551: 836:
since it arose in the 19th century. One major area of study has been classification: the
8: 2384: 1758: 1525: 1505: 1400: 1387: 1186: 1167: 1114: 982: 919: 907: 810: 128: 23: 2433: 2574: 2429: 2349: 1625: 1133: 113: 85: 2634: 1302:. Inspection of the list of finite simple groups shows that groups of Lie type over a 1228: 945: 2578: 2537: 2455: 1636: 1587: 1580: 1407: 1216: 1157: 1126: 1089:
gives an isomorphism between the two. This can be done with any finite cyclic group.
940: 914:. These are finite groups generated by reflections which act on a finite-dimensional 826: 518: 361: 255: 684: 2547: 1770: 1264: 1231:
in the 1830s. The systematic exploration of finite groups of Lie type started with
1201: 1197: 884: 880: 876: 802: 669: 661: 653: 645: 637: 625: 565: 505: 495: 337: 279: 154: 2389: 1415: 1288: 1260: 1212: 1137: 994: 915: 861: 841: 753: 746: 732: 689: 577: 500: 330: 244: 184: 64: 2409: 1834: 1718: 1644: 1613: 1594: 1533: 1501: 1369: 1284: 1232: 1145: 857: 853: 814: 760: 696: 386: 366: 303: 268: 189: 179: 164: 149: 103: 80: 2644: 1695: 1396: 1122: 1105: 1070: 679: 601: 435: 308: 174: 1675: 1671: 1609: 1573: 1478: 1452: 1303: 1208: 1043: 986: 950: 918:. The properties of finite groups can thus play a role in subjects such as 892: 869: 833: 822: 534: 233: 169: 139: 98: 69: 32: 2394: 1664: 1660: 1537: 1647:
are gradually publishing a simplified and revised version of the proof.
875:
During the second half of the twentieth century, mathematicians such as
1601: 1307: 974: 911: 887:, and other related groups. One such family of groups is the family of 818: 701: 429: 1713:, some restrictions may be placed on the structure of groups of order 1267:
realized that after an appropriate reformulation, many theorems about
1069:, the identity. A typical realization of this group is as the complex 1013: 1002: 923: 903: 522: 2623:
sequence A060689 (Number of non-Abelian groups of order n)
1054:
is a group all of whose elements are powers of a particular element
1411: 1342: 1121:
to two group elements does not depend on their order (the axiom of
899: 59: 2619: 2607: 2599: 2364: 1493: 401: 315: 1814:, which has a long and complicated proof, every group of order 40: 2611:
sequence A000688 (Number of Abelian groups of order
2434:"The Status of the Classification of the Finite Simple Groups" 1853:
for which there are two non-isomorphic simple groups of order
1271:
admit analogues for algebraic groups over an arbitrary field
1706:, and the number grows very rapidly as the power increases. 2622: 2610: 2602: 1877: 1873: 1869: 1781:
is divisible by fewer than three distinct primes, i.e. if
1659:, it is not at all a routine matter to determine how many 1555: 872:
from which all finite groups can be built are now known.
16:
Mathematical group based upon a finite number of elements
2628: 2603:
sequence A000001 (Number of groups of order n)
1717:, as a consequence, for example, of results such as the 1192:. Finite groups of Lie type give the bulk of nonabelian 832:
The study of finite groups has been an integral part of
1508:
has order divisible by at least three distinct primes.
2462:, December 1, 1985, vol. 253, no. 6, pp. 104–115. 1860: 883:
also increased our understanding of finite analogs of
472: 447: 410: 1650: 1204:, the Steinberg groups, and the Suzuki–Ree groups. 1005:from the set of symbols to itself. Since there are 1849:, and there are infinitely many positive integers 480: 455: 418: 1275:, leading to construction of what are now called 1024:(the number of elements) of the symmetric group S 2642: 1746:. For a necessary and sufficient condition, see 1604:(sometimes considered as a 27th sporadic group). 1263:in the beginning of 20th century. In the 1950s 1694:is a higher power of a prime, then results of 1422:. This can be understood as an example of the 2536:. Oxford University Press. pp. 238–242. 2472:Group Theory and its Application to Chemistry 2445:. Vol. 51, no. 7. pp. 736–740. 1845:there are at most two simple groups of order 782: 2442:Notices of the American Mathematical Society 1549: 1545: 910:", is strongly influenced by the associated 2477: 1001:of such permutations, which are treated as 898:Finite groups often occur when considering 2428: 1568:belongs to one of the following families: 1298:The belief has now become a theorem – the 1117:in which the result of applying the group 789: 775: 2531: 1259:. Other classical groups were studied by 474: 449: 412: 2568: 2519: 2507: 2495: 2483: 1709:Depending on the prime factorization of 1511: 1092: 944: 906:, which may be viewed as dealing with " 2643: 2375:Representation theory of finite groups 2345:Classification of finite simple groups 1839:classification of finite simple groups 1562:classification of finite simple groups 1556:Classification of finite simple groups 1300:classification of finite simple groups 866:classification of finite simple groups 838:classification of finite simple groups 347:Classification of finite simple groups 1612:are the basic building blocks of the 1437: 1322: 1151: 934: 868:was achieved, meaning that all those 1721:. For example, every group of order 1178:) of rational points of a reductive 1016:) possible permutations of a set of 1773:, states that every group of order 1381: 856:of finite groups and the theory of 13: 2561: 1861:Table of distinct groups of order 1810:are non-negative integers. By the 864:. As a consequence, the complete 14: 2667: 2593: 1651:Number of groups of a given order 1632:does not have a unique solution. 1363: 1329:Lagrange's theorem (group theory) 1223:over prime finite fields, PSL(2, 2474:The Chemistry LibreTexts library 2458:(1985), "The Enormous Theorem", 1690:, both of which are abelian. If 1564:is a theorem stating that every 1317: 1221:projective special linear groups 1037: 39: 2360:Cauchy's theorem (group theory) 1237:projective special linear group 2525: 2513: 2501: 2489: 2465: 2449: 2422: 1356:. The theorem is named after 1341:(number of elements) of every 1170:closely related to the group 708:Infinite dimensional Lie group 1: 2416: 2380:Modular representation theory 1196:. Special cases include the 1020:symbols, it follows that the 2355:List of finite simple groups 1628:or, put in another way, the 481:{\displaystyle \mathbb {Z} } 456:{\displaystyle \mathbb {Z} } 419:{\displaystyle \mathbb {Z} } 7: 2532:Humphreys, John F. (1996). 2337: 1841:. For any positive integer 1825:For every positive integer 1524:, states that every finite 985:whose elements are all the 929: 206:List of group theory topics 10: 2672: 1867: 1761:, then any group of order 1670:there are. Every group of 1441: 1385: 1367: 1326: 1155: 1096: 1041: 938: 847: 840:(those with no nontrivial 2637:for groups of small order 2569:Jacobson, Nathan (2009). 1655:Given a positive integer 1504:. Hence each non-Abelian 844:) was completed in 2004. 2534:A Course in Group Theory 1588:simple group of Lie type 1125:). They are named after 324:Elementary abelian group 201:Glossary of group theory 1829:, most groups of order 1802:are prime numbers, and 1281:Tits simplicity theorem 1227:) being constructed by 1087:primitive root of unity 953:of the symmetric group 1595:sporadic simple groups 1312:sporadic simple groups 1295:in the sense of Tits. 1180:linear algebraic group 960: 740:Linear algebraic group 482: 457: 420: 2400:Commuting probability 1812:Feit–Thompson theorem 1622:integer factorization 1618:Jordan–Hölder theorem 1583:of degree at least 5; 1518:Feit–Thompson theorem 1512:Feit–Thompson theorem 1459:is a finite group of 1395:, named in honour of 1358:Joseph-Louis Lagrange 1352:divides the order of 1333:For any finite group 1269:semisimple Lie groups 1093:Finite abelian groups 948: 889:general linear groups 483: 458: 421: 2656:Properties of groups 2405:Finite State Machine 2370:List of small groups 1542:John Griggs Thompson 1399:, states that every 1257:finite simple groups 1235:'s theorem that the 1194:finite simple groups 1142:Ludwig Stickelberger 1099:Finite abelian group 470: 445: 408: 2522:, p. 72, ex. 1 2460:Scientific American 2430:Aschbacher, Michael 2385:Monstrous moonshine 1663:types of groups of 1566:finite simple group 1536:. It was proved by 1506:finite simple group 1430:on the elements of 1185:with values in the 1003:bijective functions 993:symbols, and whose 920:theoretical physics 908:continuous symmetry 114:Group homomorphisms 24:Algebraic structure 2575:Dover Publications 2350:Association scheme 1767:Burnside's theorem 1680:Lagrange's theorem 1626:composition series 1449:Burnside's theorem 1444:Burnside's theorem 1438:Burnside's theorem 1323:Lagrange's theorem 1152:Groups of Lie type 1134:automorphism group 961: 935:Permutation groups 827:permutation groups 590:Special orthogonal 478: 453: 416: 297:Lagrange's theorem 2584:978-0-486-47189-1 2456:Daniel Gorenstein 2335: 2334: 1818:is solvable when 1777:is solvable when 1742:not divisible by 1630:extension problem 1581:alternating group 1576:with prime order; 1522:odd order theorem 1219:groups, with the 1164:group of Lie type 1158:Group of Lie type 1127:Niels Henrik Abel 1111:commutative group 941:Permutation group 799: 798: 374: 373: 256:Alternating group 213: 212: 2663: 2627:Small groups on 2621: 2609: 2601: 2588: 2573:(2nd ed.). 2556: 2555: 2529: 2523: 2517: 2511: 2505: 2499: 2493: 2487: 2481: 2475: 2469: 2463: 2453: 2447: 2446: 2438: 2426: 1882: 1881: 1793: 1771:group characters 1741: 1735:are primes with 1734: 1393:Cayley's theorem 1388:Cayley's theorem 1382:Cayley's theorem 1277:Chevalley groups 1265:Claude Chevalley 1243:) is simple for 1202:Chevalley groups 1198:classical groups 1109:, also called a 1078: 1077: 1068: 1048:A cyclic group Z 885:classical groups 862:nilpotent groups 803:abstract algebra 791: 784: 777: 733:Algebraic groups 506:Hyperbolic group 496:Arithmetic group 487: 485: 484: 479: 477: 462: 460: 459: 454: 452: 425: 423: 422: 417: 415: 338:Schur multiplier 292:Cauchy's theorem 280:Quaternion group 228: 227: 54: 53: 43: 30: 19: 18: 2671: 2670: 2666: 2665: 2664: 2662: 2661: 2660: 2641: 2640: 2596: 2591: 2585: 2571:Basic Algebra I 2564: 2562:Further reading 2559: 2544: 2530: 2526: 2518: 2514: 2506: 2502: 2494: 2490: 2482: 2478: 2470: 2466: 2454: 2450: 2436: 2427: 2423: 2419: 2414: 2390:Profinite group 2340: 1880: 1868:Main articles: 1866: 1782: 1769:, proved using 1736: 1726: 1725:is cyclic when 1653: 1614:natural numbers 1558: 1538:Walter Feit 1514: 1455:states that if 1446: 1440: 1416:symmetric group 1390: 1384: 1372: 1366: 1331: 1325: 1320: 1289:sporadic groups 1261:Leonard Dickson 1229:Évariste Galois 1160: 1154: 1138:Georg Frobenius 1101: 1095: 1075: 1071: 1059: 1053: 1046: 1040: 1029: 995:group operation 981:symbols is the 972: 965:symmetric group 958: 943: 937: 932: 916:Euclidean space 850: 842:normal subgroup 795: 766: 765: 754:Abelian variety 747:Reductive group 735: 725: 724: 723: 722: 673: 665: 657: 649: 641: 614:Special unitary 525: 511: 510: 492: 491: 473: 471: 468: 467: 448: 446: 443: 442: 411: 409: 406: 405: 397: 396: 387:Discrete groups 376: 375: 331:Frobenius group 276: 263: 252: 245:Symmetric group 241: 225: 215: 214: 65:Normal subgroup 51: 31: 22: 17: 12: 11: 5: 2669: 2659: 2658: 2653: 2639: 2638: 2631: 2625: 2617: 2605: 2595: 2594:External links 2592: 2590: 2589: 2583: 2565: 2563: 2560: 2558: 2557: 2542: 2524: 2512: 2500: 2488: 2476: 2464: 2448: 2420: 2418: 2415: 2413: 2412: 2410:Infinite group 2407: 2402: 2397: 2392: 2387: 2382: 2377: 2372: 2367: 2362: 2357: 2352: 2347: 2341: 2339: 2336: 2333: 2332: 2329: 2326: 2323: 2319: 2318: 2315: 2312: 2309: 2305: 2304: 2301: 2298: 2295: 2291: 2290: 2287: 2284: 2281: 2277: 2276: 2273: 2270: 2267: 2263: 2262: 2259: 2256: 2253: 2249: 2248: 2245: 2242: 2239: 2235: 2234: 2231: 2228: 2225: 2221: 2220: 2217: 2214: 2211: 2207: 2206: 2203: 2200: 2197: 2193: 2192: 2189: 2186: 2183: 2179: 2178: 2175: 2172: 2169: 2165: 2164: 2161: 2158: 2155: 2151: 2150: 2147: 2144: 2141: 2137: 2136: 2133: 2130: 2127: 2123: 2122: 2119: 2116: 2113: 2109: 2108: 2105: 2102: 2099: 2095: 2094: 2091: 2088: 2085: 2081: 2080: 2077: 2074: 2071: 2067: 2066: 2063: 2060: 2057: 2053: 2052: 2049: 2046: 2043: 2039: 2038: 2035: 2032: 2029: 2025: 2024: 2021: 2018: 2015: 2011: 2010: 2007: 2004: 2001: 1997: 1996: 1993: 1990: 1987: 1983: 1982: 1979: 1976: 1973: 1969: 1968: 1965: 1962: 1959: 1955: 1954: 1951: 1948: 1945: 1941: 1940: 1937: 1934: 1931: 1927: 1926: 1923: 1920: 1917: 1913: 1912: 1909: 1906: 1903: 1899: 1898: 1895: 1892: 1889: 1865: 1859: 1719:Sylow theorems 1652: 1649: 1606: 1605: 1598: 1593:One of the 26 1591: 1584: 1577: 1557: 1554: 1513: 1510: 1442:Main article: 1439: 1436: 1386:Main article: 1383: 1380: 1370:Sylow theorems 1368:Main article: 1365: 1364:Sylow theorems 1362: 1327:Main article: 1324: 1321: 1319: 1316: 1285:Mathieu groups 1233:Camille Jordan 1156:Main article: 1153: 1150: 1146:linear algebra 1097:Main article: 1094: 1091: 1079:roots of unity 1049: 1042:Main article: 1039: 1036: 1025: 968: 956: 939:Main article: 936: 933: 931: 928: 849: 846: 815:underlying set 797: 796: 794: 793: 786: 779: 771: 768: 767: 764: 763: 761:Elliptic curve 757: 756: 750: 749: 743: 742: 736: 731: 730: 727: 726: 721: 720: 717: 714: 710: 706: 705: 704: 699: 697:Diffeomorphism 693: 692: 687: 682: 676: 675: 671: 667: 663: 659: 655: 651: 647: 643: 639: 634: 633: 622: 621: 610: 609: 598: 597: 586: 585: 574: 573: 562: 561: 554:Special linear 550: 549: 542:General linear 538: 537: 532: 526: 517: 516: 513: 512: 509: 508: 503: 498: 490: 489: 476: 464: 451: 438: 436:Modular groups 434: 433: 432: 427: 414: 398: 395: 394: 389: 383: 382: 381: 378: 377: 372: 371: 370: 369: 364: 359: 356: 350: 349: 343: 342: 341: 340: 334: 333: 327: 326: 321: 312: 311: 309:Hall's theorem 306: 304:Sylow theorems 300: 299: 294: 286: 285: 284: 283: 277: 272: 269:Dihedral group 265: 264: 259: 253: 248: 242: 237: 226: 221: 220: 217: 216: 211: 210: 209: 208: 203: 195: 194: 193: 192: 187: 182: 177: 172: 167: 162: 160:multiplicative 157: 152: 147: 142: 134: 133: 132: 131: 126: 118: 117: 109: 108: 107: 106: 104:Wreath product 101: 96: 91: 89:direct product 83: 81:Quotient group 75: 74: 73: 72: 67: 62: 52: 49: 48: 45: 44: 36: 35: 15: 9: 6: 4: 3: 2: 2668: 2657: 2654: 2652: 2651:Finite groups 2649: 2648: 2646: 2636: 2632: 2630: 2626: 2624: 2618: 2616: 2614: 2606: 2604: 2598: 2597: 2586: 2580: 2576: 2572: 2567: 2566: 2553: 2549: 2545: 2539: 2535: 2528: 2521: 2520:Jacobson 2009 2516: 2509: 2508:Jacobson 2009 2504: 2497: 2496:Jacobson 2009 2492: 2485: 2484:Jacobson 2009 2480: 2473: 2468: 2461: 2457: 2452: 2444: 2443: 2435: 2431: 2425: 2421: 2411: 2408: 2406: 2403: 2401: 2398: 2396: 2393: 2391: 2388: 2386: 2383: 2381: 2378: 2376: 2373: 2371: 2368: 2366: 2363: 2361: 2358: 2356: 2353: 2351: 2348: 2346: 2343: 2342: 2330: 2327: 2324: 2321: 2320: 2316: 2313: 2310: 2307: 2306: 2302: 2299: 2296: 2293: 2292: 2288: 2285: 2282: 2279: 2278: 2274: 2271: 2268: 2265: 2264: 2260: 2257: 2254: 2251: 2250: 2246: 2243: 2240: 2237: 2236: 2232: 2229: 2226: 2223: 2222: 2218: 2215: 2212: 2209: 2208: 2204: 2201: 2198: 2195: 2194: 2190: 2187: 2184: 2181: 2180: 2176: 2173: 2170: 2167: 2166: 2162: 2159: 2156: 2153: 2152: 2148: 2145: 2142: 2139: 2138: 2134: 2131: 2128: 2125: 2124: 2120: 2117: 2114: 2111: 2110: 2106: 2103: 2100: 2097: 2096: 2092: 2089: 2086: 2083: 2082: 2078: 2075: 2072: 2069: 2068: 2064: 2061: 2058: 2055: 2054: 2050: 2047: 2044: 2041: 2040: 2036: 2033: 2030: 2027: 2026: 2022: 2019: 2016: 2013: 2012: 2008: 2005: 2002: 1999: 1998: 1994: 1991: 1988: 1985: 1984: 1980: 1977: 1974: 1971: 1970: 1966: 1963: 1960: 1957: 1956: 1952: 1949: 1946: 1943: 1942: 1938: 1935: 1932: 1929: 1928: 1924: 1921: 1918: 1915: 1914: 1910: 1907: 1904: 1901: 1900: 1896: 1893: 1890: 1888: 1884: 1883: 1879: 1875: 1871: 1864: 1858: 1856: 1852: 1848: 1844: 1840: 1836: 1832: 1828: 1823: 1821: 1817: 1813: 1809: 1805: 1801: 1797: 1792: 1789: 1785: 1780: 1776: 1772: 1768: 1765:is solvable. 1764: 1760: 1756: 1751: 1749: 1748:cyclic number 1745: 1739: 1733: 1729: 1724: 1720: 1716: 1712: 1707: 1705: 1701: 1697: 1696:Graham Higman 1693: 1689: 1685: 1681: 1677: 1673: 1669: 1666: 1662: 1658: 1648: 1646: 1642: 1638: 1633: 1631: 1627: 1623: 1619: 1615: 1611: 1610:prime numbers 1603: 1599: 1596: 1592: 1589: 1585: 1582: 1578: 1575: 1571: 1570: 1569: 1567: 1563: 1553: 1551: 1547: 1543: 1540: and 1539: 1535: 1531: 1527: 1523: 1519: 1509: 1507: 1503: 1499: 1495: 1492: 1488: 1484: 1480: 1479:prime numbers 1476: 1472: 1468: 1465: 1462: 1458: 1454: 1450: 1445: 1435: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1402: 1398: 1397:Arthur Cayley 1394: 1389: 1379: 1377: 1371: 1361: 1359: 1355: 1351: 1347: 1344: 1340: 1336: 1330: 1318:Main theorems 1315: 1313: 1310:, and the 26 1309: 1305: 1301: 1296: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1205: 1203: 1199: 1195: 1191: 1188: 1184: 1181: 1177: 1173: 1169: 1165: 1159: 1149: 1147: 1143: 1139: 1135: 1130: 1128: 1124: 1123:commutativity 1120: 1116: 1112: 1108: 1107: 1106:abelian group 1100: 1090: 1088: 1084: 1080: 1074: 1066: 1062: 1057: 1052: 1045: 1038:Cyclic groups 1035: 1033: 1028: 1023: 1019: 1015: 1012: 1008: 1004: 1000: 996: 992: 988: 984: 980: 976: 971: 966: 959: 952: 947: 942: 927: 925: 921: 917: 913: 909: 905: 901: 896: 894: 893:finite fields 890: 886: 882: 878: 873: 871: 870:simple groups 867: 863: 859: 855: 845: 843: 839: 835: 830: 828: 824: 823:cyclic groups 820: 816: 812: 808: 804: 792: 787: 785: 780: 778: 773: 772: 770: 769: 762: 759: 758: 755: 752: 751: 748: 745: 744: 741: 738: 737: 734: 729: 728: 718: 715: 712: 711: 709: 703: 700: 698: 695: 694: 691: 688: 686: 683: 681: 678: 677: 674: 668: 666: 660: 658: 652: 650: 644: 642: 636: 635: 631: 627: 624: 623: 619: 615: 612: 611: 607: 603: 600: 599: 595: 591: 588: 587: 583: 579: 576: 575: 571: 567: 564: 563: 559: 555: 552: 551: 547: 543: 540: 539: 536: 533: 531: 528: 527: 524: 520: 515: 514: 507: 504: 502: 499: 497: 494: 493: 465: 440: 439: 437: 431: 428: 403: 400: 399: 393: 390: 388: 385: 384: 380: 379: 368: 365: 363: 360: 357: 354: 353: 352: 351: 348: 345: 344: 339: 336: 335: 332: 329: 328: 325: 322: 320: 318: 314: 313: 310: 307: 305: 302: 301: 298: 295: 293: 290: 289: 288: 287: 281: 278: 275: 270: 267: 266: 262: 257: 254: 251: 246: 243: 240: 235: 232: 231: 230: 229: 224: 223:Finite groups 219: 218: 207: 204: 202: 199: 198: 197: 196: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 161: 158: 156: 153: 151: 148: 146: 143: 141: 138: 137: 136: 135: 130: 127: 125: 122: 121: 120: 119: 116: 115: 111: 110: 105: 102: 100: 97: 95: 92: 90: 87: 84: 82: 79: 78: 77: 76: 71: 68: 66: 63: 61: 58: 57: 56: 55: 50:Basic notions 47: 46: 42: 38: 37: 34: 29: 25: 21: 20: 2612: 2570: 2533: 2527: 2515: 2510:, p. 38 2503: 2498:, p. 41 2491: 2486:, p. 31 2479: 2467: 2459: 2451: 2440: 2424: 1897:Non-Abelian 1886: 1878:oeis:A060689 1874:oeis:A000688 1870:oeis:A000001 1862: 1854: 1850: 1846: 1842: 1830: 1826: 1824: 1819: 1815: 1807: 1803: 1799: 1795: 1790: 1787: 1783: 1778: 1774: 1762: 1754: 1752: 1743: 1737: 1731: 1727: 1722: 1714: 1710: 1708: 1703: 1700:Charles Sims 1691: 1687: 1683: 1667: 1656: 1654: 1634: 1607: 1574:cyclic group 1559: 1521: 1517: 1515: 1497: 1491:non-negative 1486: 1482: 1474: 1470: 1466: 1463: 1456: 1453:group theory 1448: 1447: 1431: 1427: 1424:group action 1419: 1403: 1392: 1391: 1375: 1373: 1353: 1349: 1345: 1334: 1332: 1304:finite field 1297: 1292: 1280: 1276: 1272: 1252: 1248: 1244: 1240: 1224: 1206: 1189: 1182: 1175: 1171: 1163: 1161: 1131: 1110: 1104: 1102: 1082: 1072: 1064: 1060: 1055: 1050: 1047: 1044:Cyclic group 1031: 1026: 1017: 1010: 1006: 990: 987:permutations 978: 969: 964: 962: 951:Cayley graph 897: 874: 854:local theory 851: 834:group theory 831: 807:finite group 806: 800: 629: 617: 605: 593: 581: 569: 557: 545: 316: 273: 260: 249: 238: 234:Cyclic group 222: 144: 112: 99:Free product 70:Group action 33:Group theory 28:Group theory 27: 2395:Finite ring 1661:isomorphism 1217:alternating 999:composition 912:Weyl groups 519:Topological 358:alternating 2645:Categories 2635:classifier 2629:GroupNames 2552:0843.20001 2543:0198534590 2417:References 1759:squarefree 1678:, because 1639:(d.1992), 1637:Gorenstein 1602:Tits group 1418:acting on 1408:isomorphic 1308:Tits group 1081:. Sending 975:finite set 904:Lie groups 626:Symplectic 566:Orthogonal 523:Lie groups 430:Free group 155:continuous 94:Direct sum 1891:# Groups 1674:order is 1213:symmetric 1119:operation 1014:factorial 924:chemistry 881:Steinberg 877:Chevalley 690:Conformal 578:Euclidean 185:nilpotent 2432:(2004). 2338:See also 1894:Abelian 1835:solvable 1822:is odd. 1794:, where 1534:solvable 1502:solvable 1494:integers 1469:, where 1412:subgroup 1343:subgroup 1293:geometry 930:Examples 900:symmetry 858:solvable 685:PoincarĂ© 530:Solenoid 402:Integers 392:Lattices 367:sporadic 362:Lie type 190:solvable 180:dihedral 165:additive 150:infinite 60:Subgroup 2365:P-group 1645:Solomon 1616:. The 1544: ( 1528:of odd 1496:, then 1414:of the 1239:PSL(2, 1113:, is a 997:is the 989:of the 848:History 680:Lorentz 602:Unitary 501:Lattice 441:PSL(2, 175:abelian 86:(Semi-) 2581:  2550:  2540:  1885:Order 1876:, and 1676:cyclic 1643:, and 1481:, and 1337:, the 1209:cyclic 1200:, the 1058:where 819:finite 813:whose 535:Circle 466:SL(2, 355:cyclic 319:-group 170:cyclic 145:finite 140:simple 124:kernel 2437:(PDF) 1730:< 1672:prime 1665:order 1641:Lyons 1530:order 1526:group 1520:, or 1461:order 1410:to a 1401:group 1339:order 1255:) of 1187:field 1168:group 1166:is a 1115:group 1085:to a 1022:order 983:group 973:on a 891:over 811:group 809:is a 719:Sp(∞) 716:SU(∞) 129:image 2620:OEIS 2608:OEIS 2600:OEIS 2579:ISBN 2538:ISBN 1833:are 1806:and 1798:and 1698:and 1600:The 1560:The 1550:1963 1546:1962 1516:The 1489:are 1485:and 1477:are 1473:and 1215:and 1140:and 963:The 922:and 879:and 860:and 825:and 805:, a 713:O(∞) 702:Loop 521:and 2548:Zbl 2322:30 2308:29 2294:28 2280:27 2266:26 2252:25 2247:12 2241:15 2238:24 2224:23 2210:22 2196:21 2182:20 2168:19 2154:18 2140:17 2129:14 2126:16 2112:15 2098:14 2084:13 2070:12 2056:11 2042:10 1757:is 1753:If 1740:− 1 1579:An 1532:is 1500:is 1451:in 1426:of 1406:is 1348:of 1103:An 1067:= e 1034:!. 1030:is 1009:! ( 977:of 817:is 801:In 628:Sp( 616:SU( 592:SO( 556:SL( 544:GL( 2647:: 2633:A 2577:. 2546:. 2439:. 2331:3 2328:1 2325:4 2317:0 2314:1 2311:1 2303:2 2300:2 2297:4 2289:2 2286:3 2283:5 2275:1 2272:1 2269:2 2261:0 2258:2 2255:2 2244:3 2233:0 2230:1 2227:1 2219:1 2216:1 2213:2 2205:1 2202:1 2199:2 2191:3 2188:2 2185:5 2177:0 2174:1 2171:1 2163:3 2160:2 2157:5 2149:0 2146:1 2143:1 2135:9 2132:5 2121:0 2118:1 2115:1 2107:1 2104:1 2101:2 2093:0 2090:1 2087:1 2079:3 2076:2 2073:5 2065:0 2062:1 2059:1 2051:1 2048:1 2045:2 2037:0 2034:2 2031:2 2028:9 2023:2 2020:3 2017:5 2014:8 2009:0 2006:1 2003:1 2000:7 1995:1 1992:1 1989:2 1986:6 1981:0 1978:1 1975:1 1972:5 1967:0 1964:2 1961:2 1958:4 1953:0 1950:1 1947:1 1944:3 1939:0 1936:1 1933:1 1930:2 1925:0 1922:1 1919:1 1916:1 1911:0 1908:0 1905:0 1902:0 1872:, 1857:. 1786:= 1750:. 1723:pq 1586:A 1572:A 1552:) 1548:, 1434:. 1378:. 1360:. 1314:. 1251:, 1211:, 1162:A 1148:. 1129:. 1076:th 1063:= 949:A 926:. 895:. 829:. 604:U( 580:E( 568:O( 26:→ 2615:) 2613:n 2587:. 2554:. 1887:n 1863:n 1855:n 1851:n 1847:n 1843:n 1831:n 1827:n 1820:n 1816:n 1808:b 1804:a 1800:q 1796:p 1791:q 1788:p 1784:n 1779:n 1775:n 1763:n 1755:n 1744:q 1738:p 1732:p 1728:q 1715:n 1711:n 1704:n 1692:n 1688:n 1684:n 1668:n 1657:n 1597:; 1590:; 1498:G 1487:b 1483:a 1475:q 1471:p 1467:q 1464:p 1457:G 1432:G 1428:G 1420:G 1404:G 1376:G 1354:G 1350:G 1346:H 1335:G 1273:k 1253:q 1249:n 1245:q 1241:q 1225:p 1190:k 1183:G 1176:k 1174:( 1172:G 1083:a 1073:n 1065:a 1061:a 1056:a 1051:n 1032:n 1027:n 1018:n 1011:n 1007:n 991:n 979:n 970:n 967:S 957:4 955:S 790:e 783:t 776:v 672:8 670:E 664:7 662:E 656:6 654:E 648:4 646:F 640:2 638:G 632:) 630:n 620:) 618:n 608:) 606:n 596:) 594:n 584:) 582:n 572:) 570:n 560:) 558:n 548:) 546:n 488:) 475:Z 463:) 450:Z 426:) 413:Z 404:( 317:p 282:Q 274:n 271:D 261:n 258:A 250:n 247:S 239:n 236:Z

Index

Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups
Cyclic group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑