Knowledge

Finite field

Source 📝

32: 4682: 5502: 4177: 4917: 3950: 4677:{\displaystyle {\begin{aligned}-(a+b\alpha +c\alpha ^{2})&=-a+(-b)\alpha +(-c)\alpha ^{2}\qquad {\text{(for }}\mathrm {GF} (8),{\text{this operation is the identity)}}\\(a+b\alpha +c\alpha ^{2})+(d+e\alpha +f\alpha ^{2})&=(a+d)+(b+e)\alpha +(c+f)\alpha ^{2}\\(a+b\alpha +c\alpha ^{2})(d+e\alpha +f\alpha ^{2})&=(ad+bf+ce)+(ae+bd+bf+ce+cf)\alpha +(af+be+cd+cf)\alpha ^{2}\end{aligned}}} 5497:{\displaystyle {\begin{aligned}(a+b\alpha +c\alpha ^{2}+d\alpha ^{3})+(e+f\alpha +g\alpha ^{2}+h\alpha ^{3})&=(a+e)+(b+f)\alpha +(c+g)\alpha ^{2}+(d+h)\alpha ^{3}\\(a+b\alpha +c\alpha ^{2}+d\alpha ^{3})(e+f\alpha +g\alpha ^{2}+h\alpha ^{3})&=(ae+bh+cg+df)+(af+be+bh+cg+df+ch+dg)\alpha \;+\\&\quad \;(ag+bf+ce+ch+dg+dh)\alpha ^{2}+(ah+bg+cf+de+dh)\alpha ^{3}\end{aligned}}} 3550: 7133: 3945:{\displaystyle {\begin{aligned}-(a+b\alpha )&=-a+(-b)\alpha \\(a+b\alpha )+(c+d\alpha )&=(a+c)+(b+d)\alpha \\(a+b\alpha )(c+d\alpha )&=(ac+rbd)+(ad+bc)\alpha \\(a+b\alpha )^{-1}&=a(a^{2}-rb^{2})^{-1}+(-b)(a^{2}-rb^{2})^{-1}\alpha \end{aligned}}} 8231: 7567: 8928: 6832: 8677:
an isomorphism, as do all algebraic closures, but contrarily to the general case, all its subfield are fixed by all its automorphisms, and it is also the algebraic closure of all finite fields of the same characteristic
8825: 8045: 6812: 5998:
over medium-sized fields, that is, fields that are sufficiently large for making natural algorithms inefficient, but not too large, as one has to pre-compute a table of the same size as the order of the field.
2503: 1227: 8114: 8567: 4807: 1915: 4922: 4182: 3555: 1073: 7373: 8975: 8639: 1705: 7666:
There are efficient algorithms for testing polynomial irreducibility and factoring polynomials over finite field. They are a key step for factoring polynomials over the integers or the
811: 4079: 457:
on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the
7252: 3213: 9058: 4146: 9343: 9132: 4882: 9197: 8719: 8671: 3117:
A table for subtraction is not given, because subtraction is identical to addition, as is the case for every field of characteristic 2. In the third table, for the division of
2274: 9277: 682: 7487: 6670: 8856: 8762: 7436: 3501: 2135: 9093: 6362:
has several interesting properties that smaller fields do not share: it has two subfields such that neither is contained in the other; not all generators (elements with
4728: 3996: 2400: 1393: 1619: 8851: 7713: 9016: 9304: 9229: 9161: 9136:
For explicit computations, it may be useful to have a coherent choice of the primitive elements for all finite fields; that is, to choose the primitive element
7663:, every monic polynomial over a finite field may be factored in a unique way (up to the order of the factors) into a product of irreducible monic polynomials. 552:; this means that multiplication, addition, subtraction and division (excluding division by zero) are defined and satisfy the rules of arithmetic known as the 9367:
over a finite field has a non-trivial zero whose components are in the field if the number of its variables is more than its degree. This was a conjecture of
840:
of the result of the corresponding integer operation. The multiplicative inverse of an element may be computed by using the extended Euclidean algorithm (see
1312:
A more general algebraic structure that satisfies all the other axioms of a field, but whose multiplication is not required to be commutative, is called a
7953: 6682: 8386:
Similarly many theoretical problems in number theory can be solved by considering their reductions modulo some or all prime numbers. See, for example,
2409: 8767: 7155:. In fact, this generator is a primitive element, and this polynomial is the irreducible polynomial that produces the easiest Euclidean division. 7615: 1151: 9495: 9491: 416: 8500: 9715: 1990: 7128:{\displaystyle (X^{6}+X^{4}+X^{3}+X+1)(X^{6}+X+1)(X^{6}+X^{5}+1)(X^{6}+X^{5}+X^{3}+X^{2}+1)(X^{6}+X^{5}+X^{2}+X+1)(X^{6}+X^{5}+X^{4}+X+1).} 4748: 1843: 8397: 7322: 5925:
are represented by their discrete logarithms, multiplication and division are easy, as they reduce to addition and subtraction modulo
8459:
is a generalization of field. Division rings are not assumed to be commutative. There are no non-commutative finite division rings:
5904:, there is no known efficient algorithm for computing the inverse operation, the discrete logarithm. This has been used in various 1640: 8289:
protocol. For example, in 2014, a secure internet connection to Knowledge involved the elliptic curve Diffie–Hellman protocol (
6468:
in the sense that no other subfield contains any of them. It follows that they are roots of irreducible polynomials of degree
4036: 9791: 9773: 9755: 9679: 7218: 3179: 4112: 842: 9452:
Mathematical Papers Read at the International Mathematics Congress Held in Connection with the World's Columbian Exposition
5583: 4848: 1013: 655:
with the same order. One may therefore identify all finite fields with the same order, and they are unambiguously denoted
409: 2229:. They ensure a certain compatibility between the representation of a field and the representations of its subfields. 9821: 9592: 9550: 9348: 8941: 8313: 6363: 2232:
In the next sections, we will show how the general construction method outlined above works for small finite fields.
2226: 2005:
may be difficult to distinguish from the corresponding polynomials. Therefore, it is common to give a name, commonly
1971: 1298: 75: 53: 8608: 6626: 46: 9360: 8986: 7896:
does not have any multiple factor, it is thus the product of all the irreducible monic polynomials that divide it.
5726: 5511: 744: 8226:{\displaystyle N(q,n)\geq {\frac {1}{n}}\left(q^{n}-\sum _{\ell \mid n,\ \ell {\text{ prime}}}q^{n/\ell }\right);} 7401: 3474: 2095: 2137:
which make the needed Euclidean divisions very efficient. However, for some fields, typically in characteristic
781: 8460: 4694: 3962: 2366: 1359: 1321: 7721:. More precisely, this polynomial is the product of all monic polynomials of degree one over a field of order 1988:. The multiplicative inverse of a non-zero element may be computed with the extended Euclidean algorithm; see 1588: 9841: 9381: 7909: 7685: 402: 9021: 8324:, since computer data is stored in binary. For example, a byte of data can be interpreted as an element of 9309: 9098: 7899:
This property is used to compute the product of the irreducible factors of each degree of polynomials over
9166: 8688: 9836: 7660: 6573: 6183: 5762: 271: 9533:
Shparlinski, Igor E. (2013), "Additive Combinatorics over Finite Fields: New Results and Applications",
8068: 9813: 8644: 8278: 5901: 5799: 2247: 1115: 9234: 658: 9643: 9482: 8476: 8372: 7291: 8930:
The formal validation of this notation results from the fact that the above field inclusions form a
8439: 8371:
proceed by reduction modulo one or several primes, and then reconstruction of the solution by using
7674:
has functions for factoring polynomials over finite fields, or, at least, over finite prime fields.
9419: 8435: 8360: 4743: 4031: 613: 40: 9831: 8724: 9404: 7671: 2086:, which produce isomorphic results. To simplify the Euclidean division, one commonly chooses for 362: 9063: 7916: 9871: 9399: 9372: 9364: 8480: 7637: 7287: 5905: 5530: 2356: 1815: 1008: 57: 8074:
By the above formula, the number of irreducible (not necessarily monic) polynomials of degree
8830: 8336:. Some CPUs have special instructions that can be useful for finite fields of characteristic 8309: 8251:, the right hand side is positive, so there is at least one irreducible polynomial of degree 6815: 6608: 6313: 6275: 3335: 450: 8991: 5647: 9282: 9202: 9139: 8400:
is an example of a deep result involving many mathematical tools, including finite fields.
7304: 1503:
The uniqueness up to isomorphism of splitting fields implies thus that all fields of order
1302: 1090: 736: 732: 349: 341: 313: 308: 299: 256: 198: 9689: 4158:
may thus be defined as follows; in following formulas, the operations between elements of
8: 9801: 9450:(1896), "A doubly-infinite system of simple groups", in E. H. Moore; et al. (eds.), 5973: 5965:
allows one to solve this problem by constructing the table of the discrete logarithms of
3415:
as a quadratic non-residue, which allows us to have a very simple irreducible polynomial
3161:
has to remain undefined.) From the tables, it can be seen that the additive structure of
1457: 1264: 1076: 549: 446: 367: 357: 208: 108: 100: 91: 9806: 7562:{\displaystyle \mathrm {Id} =\varphi ^{0},\varphi ,\varphi ^{2},\ldots ,\varphi ^{n-1}.} 2240:
The smallest non-prime field is the field with four elements, which is commonly denoted
747:
of the field. (In general there will be several primitive elements for a given field.)
9598: 9570: 9523:
This can be verified by looking at the information on the page provided by the browser.
9468:
in an address given in 1893 at the International Mathematical Congress held in Chicago
9394: 8431: 8393: 8352: 8341: 8286: 7646:, if it is not the product of two non-constant monic polynomials, with coefficients in 7267: 6818:
to each other, a root and its (multiplicative) inverse do not belong to the same orbit.
5910: 5876: 3154: 831: 770: 521: 173: 164: 122: 8923:{\displaystyle {\overline {\mathbb {F} }}_{p}=\bigcup _{n\geq 1}\mathbb {F} _{p^{n}}.} 8054: 442: 9817: 9787: 9769: 9751: 9675: 9648: 9588: 9546: 8467:
are commutative, and hence are finite fields. This result holds even if we relax the
8408: 7135:
They split into six orbits of six elements each under the action of the Galois group.
6374:) are primitive elements; and the primitive elements are not all conjugate under the 4906:
may be defined as follows; in following formulas, the operations between elements of
4890:
is defined as a root of the given irreducible polynomial). As the characteristic of
1422: 454: 9737: 9723: 9602: 9733: 9719: 9685: 9638: 9628: 9580: 9538: 9376: 8404: 7667: 7627: 7584: 6500: 3166: 2342: 1086: 743:, so all non-zero elements can be expressed as powers of a single element called a 513: 193: 20: 6814:
They form two orbits under the action of the Galois group. As the two factors are
218: 9743: 9671: 9584: 8412: 8388: 8368: 8298: 8282: 7795: 7656: 7602:
The fact that the Frobenius map is surjective implies that every finite field is
2062:(for example after a multiplication), one knows that one has to use the relation 1556:
In summary, we have the following classification theorem first proved in 1893 by
1353: 1260: 652: 529: 483:
of a finite field is its number of elements, which is either a prime number or a
285: 279: 266: 246: 237: 203: 140: 9855: 8376: 8364: 5995: 750:
The simplest examples of finite fields are the fields of prime order: for each
458: 327: 9633: 9616: 9542: 9865: 9652: 9424: 8472: 8468: 8464: 8456: 8423: 8416: 8380: 8348: 8294: 7917:
Number of monic irreducible polynomials of a given degree over a finite field
7603: 7572: 6008: 5654:, that is, all non-zero elements are powers of a single element. In summary: 5572: 3158: 1838: 1313: 1306: 537: 525: 517: 213: 178: 135: 8820:{\displaystyle \mathbb {\mathbb {F} } _{p^{n}}\subset \mathbb {F} _{p^{nm}}} 2406:
the construction of the preceding section must involve this polynomial, and
9414: 8935: 8931: 8356: 8302: 8274: 7596: 6375: 6292: 5744:, the primitive element is not unique. The number of primitive elements is 5651: 983: 751: 740: 553: 533: 473: 387: 318: 152: 8396:
were motivated by the need to enlarge the power of these modular methods.
3169:, while the non-zero multiplicative structure is isomorphic to the group Z 2348:
This may be deduced as follows from the results of the preceding section.
9465: 9447: 9409: 8427: 6324:
into distinct irreducible polynomials that have all the same degree, say
1814:
may be explicitly constructed in the following way. One first chooses an
1557: 1343: 760: 580: 506: 484: 430: 377: 372: 261: 251: 225: 2214:, with an even number of terms, are never irreducible in characteristic 1324:, any finite division ring is commutative, and hence is a finite field. 9368: 8438:
finite fields and finite field models are used extensively, such as in
7263: 713: 642: 127: 3344:(this is almost the definition of a quadratic non-residue). There are 3283:
is an odd prime, there are always irreducible polynomials of the form
512:
Finite fields are fundamental in a number of areas of mathematics and
9575: 2188: 1991:
Extended Euclidean algorithm § Simple algebraic field extensions
1582:
and they are all isomorphic. In these fields, every element satisfies
382: 188: 145: 113: 9565:
Green, Ben (2005), "Finite field models in additive combinatorics",
8351:, as many problems over the integers may be solved by reducing them 5987:(it is convenient to define the discrete logarithm of zero as being 8317: 8040:{\displaystyle N(q,n)={\frac {1}{n}}\sum _{d\mid n}\mu (d)q^{n/d},} 6807:{\displaystyle (X^{6}+X^{4}+X^{2}+X+1)(X^{6}+X^{5}+X^{4}+X^{2}+1).} 5932:. However, addition amounts to computing the discrete logarithm of 1565:
The order of a finite field is a prime power. For every prime power
183: 9728:
W. H. Bussey (1910) "Tables of Galois fields of order < 1000",
8411:
over finite fields and the theory has many applications including
6422: 6259: 1962:. The addition and the subtraction are those of polynomials over 1738:; in that case, this subfield is unique. In fact, the polynomial 868: 9617:"Finite field models in arithmetic combinatorics – ten years on" 8685:
This property results mainly from the fact that the elements of
19:"Galois field" redirects here. For Galois field extensions, see 8329: 2073:
to reduce its degree (it is what Euclidean division is doing).
117: 9359:
Although finite fields are not algebraically closed, they are
8980: 8057:. This formula is an immediate consequence of the property of 2498:{\displaystyle \mathrm {GF} (4)=\mathrm {GF} (2)/(X^{2}+X+1).} 651:
below). Moreover, a field cannot contain two different finite
8674: 8290: 5994:
Zech's logarithms are useful for large computations, such as
3270:, one has to find an irreducible polynomial of degree 2. For 3216: 7677: 2341:, the other operation results being easily deduced from the 8285:
is the basis of several widely used protocols, such as the
7158: 6672:
and are all conjugate under the action of the Galois group.
6243:
th roots of unity never exist in a field of characteristic
3531:
are defined as follows (the operations between elements of
1222:{\displaystyle X^{p}-X=\prod _{a\in \mathrm {GF} (p)}(X-a)} 612:
copies of any element always results in zero; that is, the
6600:
rd roots of unity. Summing these numbers, one finds again
4014:(to show this, it suffices to show that it has no root in 9668:
Points and lines. Characterizing the classical geometries
7750:
is the product of all monic irreducible polynomials over
5518:
as integer powers). These elements are the four roots of
1837:(such an irreducible polynomial always exists). Then the 1456:, which in general implies that the splitting field is a 8562:{\displaystyle f(T)=1+\prod _{\alpha \in F}(T-\alpha ),} 8320:. The finite field almost always has characteristic of 5539:
is a primitive element, and the primitive elements are
559:
The number of elements of a finite field is called its
4166:, represented by Latin letters, are the operations in 1970:. The product of two elements is the remainder of the 9312: 9285: 9237: 9205: 9169: 9142: 9101: 9066: 9024: 8994: 8944: 8859: 8833: 8770: 8727: 8691: 8647: 8611: 8503: 8117: 7956: 7688: 7490: 7404: 7325: 7221: 6835: 6685: 6629: 4920: 4910:, represented by Latin letters are the operations in 4851: 4802:{\displaystyle a+b\alpha +c\alpha ^{2}+d\alpha ^{3},} 4751: 4697: 4180: 4150:
The addition, additive inverse and multiplication on
4115: 4039: 3965: 3553: 3477: 3182: 2412: 2369: 2250: 2098: 1910:{\displaystyle \mathrm {GF} (q)=\mathrm {GF} (p)/(P)} 1846: 1643: 1591: 1476:, as well as the multiplicative inverse of a root of 1362: 1154: 1016: 784: 661: 7398:is not the identity, as, otherwise, the polynomial 5658:
The multiplicative group of the non-zero elements in
2225:
A possible choice for such a polynomial is given by
2187:
that makes the polynomial irreducible. If all these
917:
of the field. This allows defining a multiplication
843:
Extended Euclidean algorithm § Modular integers
3539:represented by Latin letters are the operations in 3135:must be read in the left column, and the values of 1464:shows that the sum and the product of two roots of 9805: 9337: 9298: 9271: 9223: 9191: 9155: 9126: 9087: 9052: 9010: 8977:which may thus be considered as "directed union". 8969: 8922: 8845: 8819: 8756: 8713: 8665: 8633: 8561: 8426:, two well known examples being the definition of 8225: 8039: 7715:factors into linear factors over a field of order 7707: 7561: 7430: 7367: 7246: 7127: 6806: 6664: 6544:. As the 3rd and the 7th roots of unity belong to 5496: 4876: 4801: 4722: 4676: 4140: 4073: 3990: 3944: 3495: 3277:, this has been done in the preceding section. If 3215:is the non-trivial field automorphism, called the 3207: 2497: 2394: 2268: 2129: 1909: 1699: 1613: 1387: 1221: 1105:, except the first and the last, is a multiple of 1067: 830:. The sum, the difference and the product are the 805: 676: 735:. The non-zero elements of a finite field form a 703:, where the letters GF stand for "Galois field". 9863: 9799: 8359:. For example, the fastest known algorithms for 7375:It has been shown in the preceding section that 7368:{\displaystyle \varphi ^{k}:x\mapsto x^{p^{k}}.} 5900:can be computed very quickly, for example using 5514:(the elements that have all nonzero elements of 8970:{\displaystyle {\overline {\mathbb {F} }}_{p},} 7616:Factorization of polynomials over finite fields 2345:. See below for the complete operation tables. 1997:However, with this representation, elements of 9492:National Institute of Standards and Technology 9484:Recommended Elliptic Curves for Government Use 8634:{\displaystyle {\overline {\mathbb {F} }}_{p}} 8450: 6278:are distinct in every field of characteristic 3232:of the above mentioned irreducible polynomial 1305:. To use a piece of jargon, finite fields are 9781: 9763: 9730:Bulletin of the American Mathematical Society 9716:Bulletin of the American Mathematical Society 9707:W. H. Bussey (1905) "Galois field tables for 9569:, Cambridge University Press, pp. 1–28, 9469: 8422:Finite fields have widespread application in 7139:This shows that the best choice to construct 6007:Every nonzero element of a finite field is a 1700:{\displaystyle X^{q}-X=\prod _{a\in F}(X-a).} 647: 410: 9306:is the primitive element already chosen for 8497:is not algebraically closed: the polynomial 7278:, which fixes every element of the subfield 6235:th root of unity. It follows that primitive 3246: 1409:is a finite field of lowest order, in which 986:. It follows that the number of elements of 822:may be represented by integers in the range 600:is a positive integer). In a field of order 9532: 8981:Primitive elements in the algebraic closure 7936:of monic irreducible polynomials of degree 7609: 5558: 2235: 2050:, and, when one encounters a polynomial in 1327: 9354: 8853:These inclusions allow writing informally 6131:th primitive root of unity if and only if 5650:implies that this multiplicative group is 5648:structure theorem of finite abelian groups 5361: 5349: 4898:, each element is its additive inverse in 3453:, in the same way that the complex number 3443:, that is, a symbol that has the property 2191:are reducible, one chooses "pentanomials" 2170:is reducible, it is recommended to choose 1500:by the minimality of the splitting field. 962:by choosing an integer representative for 806:{\displaystyle \mathbb {Z} /p\mathbb {Z} } 453:. As with any field, a finite field is a 417: 403: 9782:Mullen, Gary L.; Panario, Daniel (2013), 9644:1983/d340f853-0584-49c8-a463-ea16ee51ce0f 9642: 9632: 9574: 9315: 9172: 9104: 9027: 8949: 8900: 8864: 8797: 8774: 8694: 8650: 8616: 8111:The exact formula implies the inequality 7832:, it defines a field extension of degree 7678:Irreducible polynomials of a given degree 5668:is cyclic, i.e., there exists an element 2253: 2080:, there are several possible choices for 1547:cannot contain another subfield of order 816:The elements of the prime field of order 799: 786: 664: 548:A finite field is a finite set that is a 76:Learn how and when to remove this message 9742: 9511: 7812:is an irreducible monic polynomial over 7159:Frobenius automorphism and Galois theory 6338:is the smallest field of characteristic 4074:{\displaystyle a+b\alpha +c\alpha ^{2},} 2210:, as polynomials of degree greater than 1773: 39:This article includes a list of general 9764:Mullen, Gary L.; Mummert, Carl (2007), 9750:(Second ed.), Dover Publications, 9464:This latter notation was introduced by 9454:, Macmillan & Co., pp. 208–242 9442: 9440: 9347:Such a construction may be obtained by 7247:{\displaystyle \varphi :x\mapsto x^{p}} 6052:that is not a solution of the equation 3208:{\displaystyle \varphi :x\mapsto x^{2}} 1079:) is true in a field of characteristic 9864: 9829: 9768:, Student Mathematical Library (AMS), 9053:{\displaystyle \mathbb {F} _{q^{mn}},} 6081:th primitive root of unity in a field 5555:(that is, 1, 2, 4, 7, 8, 11, 13, 14). 4902:. The addition and multiplication on 4141:{\displaystyle \alpha ^{3}=\alpha +1.} 3425:Having chosen a quadratic non-residue 2557:result from this, and are as follows: 2141:, irreducible polynomials of the form 9665: 9564: 9446: 9338:{\displaystyle \mathbb {F} _{q^{m}}.} 9127:{\displaystyle \mathbb {F} _{q^{n}}.} 8398:Wiles' proof of Fermat's Last Theorem 6284:, as this polynomial is a divisor of 5805: 4877:{\displaystyle \alpha ^{4}=\alpha +1} 3259: 1068:{\displaystyle (x+y)^{p}=x^{p}+y^{p}} 9621:Finite Fields and Their Applications 9614: 9535:Finite Fields and Their Applications 9437: 9192:{\displaystyle \mathbb {F} _{q^{n}}} 8714:{\displaystyle \mathbb {F} _{p^{n}}} 8486: 8239:is a power of some prime. For every 6507:. This may be verified by factoring 4734:, that is, it is irreducible modulo 4006:, that is, it is irreducible modulo 2513:denote a root of this polynomial in 1525:as a subfield, its elements are the 1297:by adjoining a single element whose 1237:. More generally, every element in 25: 5575:under the multiplication, of order 4022:). It follows that the elements of 3954: 2019:that corresponds to the polynomial 1956:whose degree is strictly less than 1778: 855:be a finite field. For any element 13: 8314:Reed–Solomon error correction code 7670:. At least for this reason, every 7626:is a finite field, a non-constant 7495: 7492: 6353: 4738:. It follows that the elements of 4288: 4285: 2553:. The tables of the operations in 2437: 2434: 2417: 2414: 1871: 1868: 1851: 1848: 1718:contains a subfield isomorphic to 1245:satisfies the polynomial equation 1189: 1186: 45:it lacks sufficient corresponding 14: 9883: 9849: 8666:{\displaystyle \mathbb {F} _{p}.} 8430:and the related construction for 8347:Finite fields are widely used in 6002: 5640:is the lowest possible value for 2276:It consists of the four elements 2269:{\displaystyle \mathbb {F} _{4}.} 2155:may not exist. In characteristic 1940:More explicitly, the elements of 1509:are isomorphic. Also, if a field 449:that contains a finite number of 9766:Finite Fields and Applications I 9537:, DE GRUYTER, pp. 233–272, 9272:{\displaystyle g_{m}=g_{n}^{h},} 8407:concern the number of points on 8297:, many codes are constructed as 8293:) over a large finite field. In 5824:, then for any non-zero element 5563:The set of non-zero elements in 3262:of finite fields in the case of 731:elements of the finite field as 677:{\displaystyle \mathbb {F} _{q}} 30: 9738:10.1090/S0002-9904-1910-01888-7 9724:10.1090/S0002-9904-1905-01284-2 9501:from the original on 2008-07-19 8308:Finite fields are used by many 8268: 6679:st roots of unity are roots of 6623:th roots of unity are roots of 6157:, then the number of primitive 5360: 4306:this operation is the identity) 4278: 3471:are all the linear expressions 3386:is a quadratic non-residue for 3375:is a quadratic non-residue for 3310:More precisely, the polynomial 1482:. In other words, the roots of 648:§ Existence and uniqueness 9659: 9608: 9558: 9526: 9517: 9505: 9475: 9458: 8764:and this defines an inclusion 8553: 8541: 8513: 8507: 8392:. Many recent developments of 8133: 8121: 8013: 8007: 7972: 7960: 7770:is an irreducible factor over 7342: 7231: 7119: 7068: 7065: 7014: 7011: 6953: 6950: 6918: 6915: 6890: 6887: 6836: 6798: 6740: 6737: 6686: 6665:{\displaystyle X^{6}+X^{3}+1,} 6381:The order of this field being 6045:is a solution of the equation 5768:The result above implies that 5477: 5432: 5416: 5362: 5343: 5280: 5274: 5238: 5228: 5181: 5178: 5131: 5114: 5102: 5086: 5074: 5065: 5053: 5047: 5035: 5025: 4978: 4972: 4925: 4657: 4621: 4612: 4567: 4561: 4534: 4524: 4493: 4490: 4459: 4442: 4430: 4421: 4409: 4403: 4391: 4381: 4350: 4344: 4313: 4298: 4292: 4265: 4256: 4247: 4238: 4219: 4188: 3923: 3893: 3890: 3881: 3866: 3836: 3814: 3798: 3788: 3770: 3764: 3743: 3733: 3718: 3715: 3700: 3690: 3678: 3672: 3660: 3650: 3635: 3629: 3614: 3604: 3595: 3576: 3561: 3365:quadratic non-residues modulo 3192: 2489: 2464: 2456: 2450: 2447: 2441: 2427: 2421: 2076:Except in the construction of 2056:of degree greater or equal to 1904: 1898: 1890: 1884: 1881: 1875: 1861: 1855: 1691: 1679: 1216: 1204: 1199: 1193: 1030: 1017: 1: 9700: 9567:Surveys in Combinatorics 2005 8445: 8233:this is sharp if and only if 7910:Distinct degree factorization 6350:th primitive roots of unity. 6215:In a field of characteristic 6018:for every nonzero element of 5917:When the nonzero elements of 3459:is a symbolic square root of 3437:be a symbolic square root of 1461: 1148:. This implies the equality 1011: 543: 9585:10.1017/cbo9780511734885.002 8953: 8868: 8757:{\displaystyle x^{p^{n}}-x,} 8620: 8442:on arithmetic progressions. 5836:, there is a unique integer 5792:. The particular case where 968:. This multiplication makes 7: 9837:Encyclopedia of Mathematics 9388: 8641:be an algebraic closure of 8461:Wedderburn's little theorem 8451:Wedderburn's little theorem 7661:unique factorization domain 7484:-automorphisms, which are 7431:{\displaystyle X^{p^{k}}-X} 6562:th roots of unity for some 6534:th roots of unity for some 6229:th root of unity is also a 5551:less than and coprime with 3496:{\displaystyle a+b\alpha ,} 2130:{\displaystyle X^{n}+aX+b,} 1322:Wedderburn's little theorem 706:In a finite field of order 493:and every positive integer 10: 9888: 9814:Cambridge University Press 9361:quasi-algebraically closed 9095:is a primitive element of 9088:{\displaystyle g_{mn}^{m}} 8479:are finite fields, by the 8477:alternative division rings 8340:, generally variations of 8279:discrete logarithm problem 7613: 6476:. This implies that, over 6099:roots of unity, which are 6035:is a positive integer, an 5902:exponentiation by squaring 5816:is a primitive element in 3260:above general construction 2092:a polynomial of the form 1925:by the ideal generated by 769:may be constructed as the 567:. A finite field of order 499:there are fields of order 18: 9784:Handbook of Finite Fields 9666:Shult, Ernest E. (2011). 9634:10.1016/j.ffa.2014.11.003 9543:10.1515/9783110283600.233 9470:Mullen & Panario 2013 9382:Chevalley–Warning theorem 9363:, which means that every 8721:are exactly the roots of 8373:Chinese remainder theorem 7292:Ferdinand Georg Frobenius 6556:generators are primitive 6059:for any positive integer 5586:, there exists a divisor 4723:{\displaystyle X^{4}+X+1} 4686: 3991:{\displaystyle X^{3}-X-1} 3141:in the top row. (Because 2961: 2784: 2602: 2588: 2576: 2564: 2395:{\displaystyle X^{2}+X+1} 2181:with the lowest possible 1948:are the polynomials over 1573:there are fields of order 1388:{\displaystyle P=X^{q}-X} 1267:and simple. That is, if 1085:. This follows from the 832:remainder of the division 487:. For every prime number 9670:. Universitext. Berlin: 9494:, July 1999, p. 3, 9430: 9420:Elementary abelian group 9199:in order that, whenever 8436:arithmetic combinatorics 8361:polynomial factorization 8277:, the difficulty of the 8069:Möbius inversion formula 7838:, which is contained in 7610:Polynomial factorization 6574:Euler's totient function 6456:elements. The remaining 6184:Euler's totient function 5763:Euler's totient function 5633:solutions in any field, 5559:Multiplicative structure 3463:. Then, the elements of 2236:Field with four elements 1614:{\displaystyle x^{q}=x,} 1328:Existence and uniqueness 9830:Skopin, A. I. (2001) , 9615:Wolf, J. (March 2015). 9405:Finite field arithmetic 9355:Quasi-algebraic closure 8846:{\displaystyle m>1.} 8463:states that all finite 8281:in finite fields or in 7758:, whose degree divides 7708:{\displaystyle X^{q}-X} 7672:computer algebra system 7169:is a prime number, and 6592:st roots of unity, and 6043:primitive root of unity 5906:cryptographic protocols 5800:Fermat's little theorem 5531:multiplicative inverses 4845:is a symbol such that 4109:is a symbol such that 1917:of the polynomial ring 1116:Fermat's little theorem 60:more precise citations. 9400:Field with one element 9365:homogeneous polynomial 9339: 9300: 9273: 9225: 9193: 9157: 9128: 9089: 9054: 9012: 9011:{\displaystyle g_{mn}} 8971: 8924: 8847: 8821: 8758: 8715: 8673:It is not only unique 8667: 8635: 8563: 8475:, that is, all finite 8310:error correction codes 8227: 8041: 7730:This implies that, if 7709: 7563: 7432: 7369: 7288:Frobenius automorphism 7248: 7129: 6825:primitive elements of 6808: 6666: 6609:cyclotomic polynomials 6425:, the intersection of 6385:, and the divisors of 6306:. It follows that the 6252:On the other hand, if 5498: 4878: 4803: 4742:may be represented by 4724: 4678: 4142: 4075: 4030:may be represented by 3992: 3946: 3497: 3217:Frobenius automorphism 3209: 2499: 2396: 2357:irreducible polynomial 2270: 2131: 2033:become polynomials in 2025:. So, the elements of 1911: 1816:irreducible polynomial 1708: 1701: 1615: 1488:form a field of order 1460:of the original). The 1389: 1273:is a finite field and 1223: 1124:is a prime number and 1075:(sometimes called the 1069: 911:is the characteristic 807: 678: 635:, all fields of order 594:is a prime number and 573:exists if and only if 441:(so-named in honor of 9340: 9301: 9299:{\displaystyle g_{m}} 9274: 9226: 9224:{\displaystyle n=mh,} 9194: 9158: 9156:{\displaystyle g_{n}} 9129: 9090: 9055: 9013: 8972: 8925: 8848: 8822: 8759: 8716: 8668: 8636: 8601:Given a prime number 8564: 8228: 8042: 7788:, its degree divides 7710: 7630:with coefficients in 7564: 7438:would have more than 7433: 7381:is the identity. For 7370: 7249: 7215:implies that the map 7130: 6809: 6675:The twelve primitive 6667: 6576:shows that there are 6314:cyclotomic polynomial 6276:cyclotomic polynomial 6192:th roots of unity in 6163:th roots of unity in 5499: 4879: 4804: 4725: 4679: 4143: 4076: 3993: 3947: 3498: 3336:quadratic non-residue 3225:into the second root 3210: 3165:is isomorphic to the 2500: 2397: 2271: 2132: 1912: 1774:Explicit construction 1702: 1616: 1562: 1515:has a field of order 1395:over the prime field 1390: 1263:of a finite field is 1229:for polynomials over 1224: 1070: 898:. The least positive 808: 679: 9858:at Wolfram research. 9802:Niederreiter, Harald 9310: 9283: 9235: 9203: 9167: 9140: 9099: 9064: 9022: 8992: 8942: 8857: 8831: 8768: 8725: 8689: 8645: 8609: 8501: 8305:over finite fields. 8115: 7954: 7686: 7488: 7402: 7323: 7219: 6833: 6683: 6627: 6552:, respectively, the 6480:, there are exactly 5686:non-zero elements of 4918: 4849: 4749: 4730:is irreducible over 4695: 4178: 4113: 4103:(respectively), and 4037: 3998:is irreducible over 3963: 3551: 3523:. The operations on 3475: 3320:is irreducible over 3180: 2545:are the elements of 2517:. This implies that 2410: 2367: 2355:, there is only one 2248: 2159:, if the polynomial 2096: 1931:is a field of order 1844: 1783:Given a prime power 1641: 1589: 1494:, which is equal to 1421:distinct roots (the 1360: 1152: 1093:of the expansion of 1091:binomial coefficient 1014: 782: 737:multiplicative group 659: 314:Group with operators 257:Complemented lattice 92:Algebraic structures 9265: 9084: 8440:Szemerédi's theorem 8409:algebraic varieties 8332:bar code, which is 8328:. One exception is 7860:, and are roots of 7846:, and all roots of 7447:There are no other 7392:, the automorphism 7286:. It is called the 7264:linear endomorphism 7143:is to define it as 6584:th roots of unity, 6437:is the prime field 6393:, the subfields of 6268:, the roots of the 5606:for every non-zero 3405:= 3, 7, 11, 19, ... 3380:= 3, 5, 11, 13, ... 3251:) for an odd prime 2561: 1458:separable extension 1356:of the polynomial 563:or, sometimes, its 505:, all of which are 368:Composition algebra 128:Quasigroup and loop 16:Algebraic structure 9395:Quasi-finite field 9349:Conway polynomials 9335: 9296: 9269: 9251: 9221: 9189: 9153: 9124: 9085: 9067: 9050: 9008: 8967: 8920: 8897: 8843: 8817: 8754: 8711: 8663: 8631: 8559: 8540: 8481:Artin–Zorn theorem 8394:algebraic geometry 8367:over the field of 8342:carry-less product 8223: 8196: 8037: 8003: 7705: 7659:over a field is a 7575:, this means that 7559: 7463:. In other words, 7455:-automorphisms of 7428: 7365: 7268:field automorphism 7244: 7125: 6829:are the roots of 6804: 6662: 6619:The six primitive 6615:, one finds that: 6364:minimal polynomial 6344:that contains the 6300:is nonzero modulo 5911:Discrete logarithm 5877:discrete logarithm 5806:Discrete logarithm 5620:. As the equation 5584:Lagrange's theorem 5512:primitive elements 5494: 5492: 4874: 4799: 4720: 4674: 4672: 4138: 4071: 3988: 3942: 3940: 3493: 3205: 2560: 2495: 2392: 2266: 2227:Conway polynomials 2127: 2011:to the element of 1980:of the product in 1972:Euclidean division 1907: 1697: 1678: 1622:and the polynomial 1611: 1403:. This means that 1385: 1299:minimal polynomial 1219: 1203: 1065: 803: 674: 522:algebraic geometry 9793:978-1-4398-7378-6 9775:978-0-8218-4418-2 9757:978-0-486-47189-1 9681:978-3-642-15626-7 8987:primitive element 8956: 8882: 8871: 8623: 8525: 8487:Algebraic closure 8432:Hadamard Matrices 8193: 8186: 8167: 8147: 7988: 7986: 7806:. Conversely, if 7163:In this section, 6607:By factoring the 6501:monic polynomials 6186:). The number of 6093:contains all the 5974:Zech's logarithms 5727:primitive element 5533:. In particular, 4307: 4282: 3407:, one may choose 3258:For applying the 3115: 3114: 3111: 3110: 2959: 2958: 2782: 2781: 1663: 1423:formal derivative 1291:is obtained from 1279:is a subfield of 1174: 998:for some integer 745:primitive element 427: 426: 86: 85: 78: 9879: 9844: 9826: 9812:(2nd ed.), 9811: 9796: 9778: 9760: 9744:Jacobson, Nathan 9732:16(4): 188–206, 9713: 9694: 9693: 9663: 9657: 9656: 9646: 9636: 9612: 9606: 9605: 9578: 9562: 9556: 9555: 9530: 9524: 9521: 9515: 9509: 9503: 9502: 9500: 9489: 9479: 9473: 9462: 9456: 9455: 9444: 9344: 9342: 9341: 9336: 9331: 9330: 9329: 9328: 9318: 9305: 9303: 9302: 9297: 9295: 9294: 9278: 9276: 9275: 9270: 9264: 9259: 9247: 9246: 9230: 9228: 9227: 9222: 9198: 9196: 9195: 9190: 9188: 9187: 9186: 9185: 9175: 9162: 9160: 9159: 9154: 9152: 9151: 9133: 9131: 9130: 9125: 9120: 9119: 9118: 9117: 9107: 9094: 9092: 9091: 9086: 9083: 9078: 9059: 9057: 9056: 9051: 9046: 9045: 9044: 9043: 9030: 9017: 9015: 9014: 9009: 9007: 9006: 8976: 8974: 8973: 8968: 8963: 8962: 8957: 8952: 8947: 8929: 8927: 8926: 8921: 8916: 8915: 8914: 8913: 8903: 8896: 8878: 8877: 8872: 8867: 8862: 8852: 8850: 8849: 8844: 8826: 8824: 8823: 8818: 8816: 8815: 8814: 8813: 8800: 8791: 8790: 8789: 8788: 8778: 8777: 8763: 8761: 8760: 8755: 8744: 8743: 8742: 8741: 8720: 8718: 8717: 8712: 8710: 8709: 8708: 8707: 8697: 8681: 8672: 8670: 8669: 8664: 8659: 8658: 8653: 8640: 8638: 8637: 8632: 8630: 8629: 8624: 8619: 8614: 8604: 8597: 8591: 8585: 8574: 8569:has no roots in 8568: 8566: 8565: 8560: 8539: 8496: 8405:Weil conjectures 8369:rational numbers 8339: 8335: 8327: 8323: 8264: 8256: 8250: 8244: 8238: 8232: 8230: 8229: 8224: 8219: 8215: 8214: 8213: 8209: 8195: 8194: 8191: 8184: 8163: 8162: 8148: 8140: 8107: 8087: 8079: 8066: 8052: 8046: 8044: 8043: 8038: 8033: 8032: 8028: 8002: 7987: 7979: 7949: 7941: 7935: 7906: 7895: 7885: 7875: 7869: 7859: 7851: 7845: 7837: 7831: 7825: 7819: 7811: 7805: 7798:is contained in 7793: 7787: 7777: 7769: 7763: 7757: 7749: 7739: 7726: 7720: 7714: 7712: 7711: 7706: 7698: 7697: 7668:rational numbers 7651: 7645: 7635: 7628:monic polynomial 7625: 7594: 7585:Galois extension 7582: 7568: 7566: 7565: 7560: 7555: 7554: 7530: 7529: 7511: 7510: 7498: 7483: 7476: 7470: 7462: 7454: 7443: 7437: 7435: 7434: 7429: 7421: 7420: 7419: 7418: 7397: 7391: 7380: 7374: 7372: 7371: 7366: 7361: 7360: 7359: 7358: 7335: 7334: 7319:times, we have 7318: 7312: 7302: 7285: 7277: 7261: 7253: 7251: 7250: 7245: 7243: 7242: 7214: 7195: 7184: 7178: 7168: 7154: 7142: 7134: 7132: 7131: 7126: 7106: 7105: 7093: 7092: 7080: 7079: 7052: 7051: 7039: 7038: 7026: 7025: 7004: 7003: 6991: 6990: 6978: 6977: 6965: 6964: 6943: 6942: 6930: 6929: 6902: 6901: 6874: 6873: 6861: 6860: 6848: 6847: 6828: 6824: 6813: 6811: 6810: 6805: 6791: 6790: 6778: 6777: 6765: 6764: 6752: 6751: 6724: 6723: 6711: 6710: 6698: 6697: 6678: 6671: 6669: 6668: 6663: 6652: 6651: 6639: 6638: 6622: 6614: 6603: 6599: 6595: 6591: 6587: 6583: 6579: 6571: 6567: 6561: 6555: 6551: 6547: 6543: 6539: 6533: 6527: 6524:The elements of 6520: 6516: 6506: 6498: 6497: 6495: 6494: 6491: 6488: 6479: 6475: 6471: 6467: 6463: 6459: 6455: 6451: 6447: 6440: 6436: 6432: 6428: 6420: 6416: 6412: 6408: 6404: 6400: 6396: 6392: 6388: 6384: 6373: 6369: 6361: 6349: 6343: 6337: 6329: 6323: 6311: 6305: 6299: 6290: 6283: 6273: 6267: 6257: 6248: 6242: 6234: 6228: 6220: 6211: 6199: 6191: 6181: 6170: 6162: 6156: 6150:is a divisor of 6149: 6143: 6137:is a divisor of 6136: 6130: 6124: 6113: 6098: 6092: 6086: 6080: 6074: 6068: 6058: 6051: 6040: 6034: 6025: 6017: 5990: 5986: 5971: 5962: 5942:. The identity 5941: 5931: 5924: 5899: 5890: 5884: 5874: 5865: 5853: 5841: 5835: 5829: 5823: 5815: 5797: 5791: 5783: 5777: 5760: 5754: 5743: 5736: 5724: 5719:Such an element 5715: 5694: 5684: 5674: 5666: 5645: 5639: 5632: 5626: 5619: 5611: 5605: 5598: 5591: 5581: 5570: 5554: 5550: 5544: 5538: 5528: 5517: 5509: 5503: 5501: 5500: 5495: 5493: 5489: 5488: 5428: 5427: 5356: 5227: 5226: 5211: 5210: 5177: 5176: 5161: 5160: 5126: 5125: 5098: 5097: 5024: 5023: 5008: 5007: 4971: 4970: 4955: 4954: 4913: 4909: 4905: 4901: 4897: 4893: 4889: 4883: 4881: 4880: 4875: 4861: 4860: 4844: 4838: 4834: 4830: 4826: 4808: 4806: 4805: 4800: 4795: 4794: 4779: 4778: 4741: 4737: 4733: 4729: 4727: 4726: 4721: 4707: 4706: 4683: 4681: 4680: 4675: 4673: 4669: 4668: 4523: 4522: 4489: 4488: 4454: 4453: 4380: 4379: 4343: 4342: 4308: 4305: 4291: 4283: 4280: 4277: 4276: 4218: 4217: 4174:, respectively: 4173: 4169: 4165: 4161: 4157: 4153: 4147: 4145: 4144: 4139: 4125: 4124: 4108: 4102: 4098: 4095:are elements of 4094: 4080: 4078: 4077: 4072: 4067: 4066: 4029: 4025: 4021: 4017: 4013: 4009: 4005: 4001: 3997: 3995: 3994: 3989: 3975: 3974: 3955:GF(8) and GF(27) 3951: 3949: 3948: 3943: 3941: 3934: 3933: 3921: 3920: 3905: 3904: 3877: 3876: 3864: 3863: 3848: 3847: 3825: 3824: 3546: 3538: 3530: 3522: 3514: 3508: 3502: 3500: 3499: 3494: 3470: 3462: 3458: 3452: 3442: 3436: 3430: 3421: 3414: 3406: 3399: 3392: 3385: 3381: 3374: 3370: 3364: 3363: 3361: 3360: 3357: 3354: 3343: 3333: 3327: 3319: 3306: 3298: 3292: 3282: 3276: 3269: 3242: 3231: 3224: 3214: 3212: 3211: 3206: 3204: 3203: 3167:Klein four-group 3164: 3152: 3148: 3140: 3134: 3129:, the values of 3128: 3122: 3107: 3102: 3095: 3087: 3077: 3069: 3064: 3057: 3048: 3041: 3033: 3028: 3021: 3016: 3011: 3006: 2999: 2991: 2984: 2978: 2971: 2963: 2962: 2955: 2948: 2943: 2935: 2930: 2920: 2915: 2907: 2900: 2895: 2886: 2878: 2871: 2866: 2861: 2854: 2849: 2844: 2839: 2834: 2827: 2819: 2812: 2807: 2801: 2794: 2786: 2785: 2778: 2773: 2768: 2761: 2753: 2743: 2738: 2733: 2725: 2718: 2709: 2702: 2694: 2689: 2684: 2677: 2669: 2662: 2657: 2652: 2645: 2637: 2630: 2625: 2619: 2612: 2604: 2603: 2598: 2586: 2574: 2562: 2559: 2556: 2552: 2549:that are not in 2548: 2544: 2537: 2528: 2516: 2512: 2504: 2502: 2501: 2496: 2476: 2475: 2463: 2440: 2420: 2405: 2401: 2399: 2398: 2393: 2379: 2378: 2362: 2354: 2343:distributive law 2340: 2333: 2322: 2311: 2296: 2286: 2275: 2273: 2272: 2267: 2262: 2261: 2256: 2243: 2221: 2217: 2213: 2209: 2186: 2180: 2169: 2158: 2154: 2140: 2136: 2134: 2133: 2128: 2108: 2107: 2091: 2085: 2079: 2072: 2061: 2055: 2049: 2038: 2032: 2024: 2018: 2010: 2004: 1987: 1979: 1969: 1961: 1955: 1947: 1936: 1930: 1924: 1916: 1914: 1913: 1908: 1897: 1874: 1854: 1836: 1830: 1822: 1813: 1805: 1798: 1792: 1779:Non-prime fields 1769: 1764:is a divisor of 1763: 1757: 1747: 1737: 1732:is a divisor of 1731: 1725: 1717: 1710:It follows that 1706: 1704: 1703: 1698: 1677: 1653: 1652: 1632: 1620: 1618: 1617: 1612: 1601: 1600: 1579: 1571: 1552: 1546: 1540: 1530: 1524: 1514: 1508: 1499: 1493: 1487: 1481: 1475: 1469: 1455: 1453: 1441:, implying that 1440: 1438: 1430: 1420: 1414: 1408: 1402: 1394: 1392: 1391: 1386: 1378: 1377: 1351: 1341: 1296: 1290: 1284: 1278: 1272: 1255: 1244: 1236: 1228: 1226: 1225: 1220: 1202: 1192: 1164: 1163: 1147: 1137: 1130:is in the field 1129: 1123: 1110: 1104: 1087:binomial theorem 1084: 1077:freshman's dream 1074: 1072: 1071: 1066: 1064: 1063: 1051: 1050: 1038: 1037: 1003: 997: 991: 981: 973: 967: 961: 955: 949: 941: 935: 916: 910: 903: 897: 891: 885: 875: 866: 860: 854: 839: 829: 821: 812: 810: 809: 804: 802: 794: 789: 776: 771:integers modulo 768: 758: 739:. This group is 730: 724: 711: 702: 694: 683: 681: 680: 675: 673: 672: 667: 640: 634: 621: 616:of the field is 611: 605: 599: 593: 587: 578: 572: 514:computer science 504: 498: 492: 471: 464: 419: 412: 405: 194:Commutative ring 123:Rack and quandle 88: 87: 81: 74: 70: 67: 61: 56:this article by 47:inline citations 34: 33: 26: 21:Galois extension 9887: 9886: 9882: 9881: 9880: 9878: 9877: 9876: 9862: 9861: 9852: 9847: 9824: 9794: 9776: 9758: 9748:Basic algebra I 9718:12(1): 22–38, 9708: 9703: 9698: 9697: 9682: 9674:. p. 123. 9672:Springer-Verlag 9664: 9660: 9613: 9609: 9595: 9563: 9559: 9553: 9531: 9527: 9522: 9518: 9510: 9506: 9498: 9487: 9481: 9480: 9476: 9463: 9459: 9445: 9438: 9433: 9391: 9357: 9324: 9320: 9319: 9314: 9313: 9311: 9308: 9307: 9290: 9286: 9284: 9281: 9280: 9260: 9255: 9242: 9238: 9236: 9233: 9232: 9204: 9201: 9200: 9181: 9177: 9176: 9171: 9170: 9168: 9165: 9164: 9147: 9143: 9141: 9138: 9137: 9113: 9109: 9108: 9103: 9102: 9100: 9097: 9096: 9079: 9071: 9065: 9062: 9061: 9036: 9032: 9031: 9026: 9025: 9023: 9020: 9019: 8999: 8995: 8993: 8990: 8989: 8983: 8958: 8948: 8946: 8945: 8943: 8940: 8939: 8934:of fields; Its 8909: 8905: 8904: 8899: 8898: 8886: 8873: 8863: 8861: 8860: 8858: 8855: 8854: 8832: 8829: 8828: 8806: 8802: 8801: 8796: 8795: 8784: 8780: 8779: 8773: 8772: 8771: 8769: 8766: 8765: 8737: 8733: 8732: 8728: 8726: 8723: 8722: 8703: 8699: 8698: 8693: 8692: 8690: 8687: 8686: 8679: 8654: 8649: 8648: 8646: 8643: 8642: 8625: 8615: 8613: 8612: 8610: 8607: 8606: 8602: 8593: 8587: 8576: 8570: 8529: 8502: 8499: 8498: 8492: 8491:A finite field 8489: 8453: 8448: 8389:Hasse principle 8355:one or several 8337: 8333: 8325: 8321: 8283:elliptic curves 8271: 8258: 8252: 8246: 8240: 8234: 8205: 8201: 8197: 8190: 8171: 8158: 8154: 8153: 8149: 8139: 8116: 8113: 8112: 8089: 8081: 8075: 8058: 8055:Möbius function 8048: 8024: 8020: 8016: 7992: 7978: 7955: 7952: 7951: 7943: 7937: 7922: 7919: 7900: 7887: 7877: 7871: 7861: 7853: 7847: 7839: 7833: 7827: 7821: 7813: 7807: 7799: 7796:splitting field 7789: 7779: 7771: 7765: 7759: 7751: 7741: 7731: 7722: 7716: 7693: 7689: 7687: 7684: 7683: 7682:The polynomial 7680: 7657:polynomial ring 7647: 7641: 7631: 7621: 7618: 7612: 7588: 7576: 7544: 7540: 7525: 7521: 7506: 7502: 7491: 7489: 7486: 7485: 7477: 7472: 7464: 7456: 7448: 7439: 7414: 7410: 7409: 7405: 7403: 7400: 7399: 7393: 7382: 7376: 7354: 7350: 7349: 7345: 7330: 7326: 7324: 7321: 7320: 7314: 7308: 7298: 7279: 7271: 7255: 7238: 7234: 7220: 7217: 7216: 7197: 7196:, the identity 7189: 7180: 7170: 7164: 7161: 7144: 7140: 7101: 7097: 7088: 7084: 7075: 7071: 7047: 7043: 7034: 7030: 7021: 7017: 6999: 6995: 6986: 6982: 6973: 6969: 6960: 6956: 6938: 6934: 6925: 6921: 6897: 6893: 6869: 6865: 6856: 6852: 6843: 6839: 6834: 6831: 6830: 6826: 6822: 6786: 6782: 6773: 6769: 6760: 6756: 6747: 6743: 6719: 6715: 6706: 6702: 6693: 6689: 6684: 6681: 6680: 6676: 6647: 6643: 6634: 6630: 6628: 6625: 6624: 6620: 6612: 6601: 6597: 6593: 6589: 6585: 6581: 6577: 6569: 6563: 6557: 6553: 6549: 6545: 6541: 6535: 6529: 6525: 6518: 6508: 6504: 6492: 6489: 6486: 6485: 6483: 6481: 6477: 6473: 6469: 6465: 6461: 6457: 6453: 6449: 6445: 6438: 6434: 6430: 6426: 6418: 6414: 6410: 6406: 6402: 6398: 6394: 6390: 6386: 6382: 6371: 6367: 6359: 6356: 6354:Example: GF(64) 6345: 6339: 6331: 6325: 6317: 6307: 6301: 6295: 6285: 6279: 6269: 6263: 6253: 6244: 6236: 6230: 6222: 6216: 6201: 6193: 6187: 6172: 6164: 6158: 6151: 6145: 6138: 6132: 6126: 6118: 6100: 6094: 6088: 6082: 6076: 6070: 6060: 6053: 6046: 6036: 6030: 6019: 6012: 6005: 5988: 5977: 5966: 5963: 5945: 5933: 5926: 5918: 5895: 5886: 5880: 5870: 5867: 5857: 5843: 5837: 5831: 5825: 5817: 5811: 5808: 5793: 5785: 5779: 5769: 5756: 5745: 5738: 5730: 5720: 5717: 5698: 5688: 5679: 5670: 5660: 5641: 5634: 5628: 5621: 5613: 5607: 5600: 5593: 5587: 5576: 5564: 5561: 5552: 5546: 5540: 5534: 5519: 5515: 5507: 5491: 5490: 5484: 5480: 5423: 5419: 5354: 5353: 5231: 5222: 5218: 5206: 5202: 5172: 5168: 5156: 5152: 5128: 5127: 5121: 5117: 5093: 5089: 5028: 5019: 5015: 5003: 4999: 4966: 4962: 4950: 4946: 4921: 4919: 4916: 4915: 4911: 4907: 4903: 4899: 4895: 4891: 4885: 4856: 4852: 4850: 4847: 4846: 4840: 4836: 4832: 4828: 4810: 4790: 4786: 4774: 4770: 4750: 4747: 4746: 4739: 4735: 4731: 4702: 4698: 4696: 4693: 4692: 4691:The polynomial 4689: 4671: 4670: 4664: 4660: 4527: 4518: 4514: 4484: 4480: 4456: 4455: 4449: 4445: 4384: 4375: 4371: 4338: 4334: 4310: 4309: 4304: 4284: 4279: 4272: 4268: 4222: 4213: 4209: 4181: 4179: 4176: 4175: 4171: 4167: 4163: 4159: 4155: 4151: 4120: 4116: 4114: 4111: 4110: 4104: 4100: 4096: 4082: 4062: 4058: 4038: 4035: 4034: 4027: 4023: 4019: 4015: 4011: 4007: 4003: 3999: 3970: 3966: 3964: 3961: 3960: 3959:The polynomial 3957: 3939: 3938: 3926: 3922: 3916: 3912: 3900: 3896: 3869: 3865: 3859: 3855: 3843: 3839: 3826: 3817: 3813: 3795: 3794: 3736: 3697: 3696: 3653: 3611: 3610: 3579: 3554: 3552: 3549: 3548: 3540: 3532: 3524: 3516: 3510: 3504: 3476: 3473: 3472: 3464: 3460: 3454: 3444: 3438: 3432: 3426: 3416: 3408: 3401: 3394: 3391:= 5, 7, 17, ... 3387: 3383: 3376: 3372: 3371:. For example, 3366: 3358: 3355: 3349: 3348: 3346: 3345: 3339: 3329: 3328:if and only if 3321: 3311: 3300: 3294: 3284: 3278: 3271: 3263: 3256: 3233: 3226: 3220: 3199: 3195: 3181: 3178: 3177: 3172: 3162: 3150: 3142: 3136: 3130: 3124: 3118: 3105: 3098: 3090: 3082: 3072: 3067: 3060: 3053: 3044: 3036: 3031: 3026: 3019: 3014: 3009: 3004: 2994: 2987: 2982: 2979: 2974: 2972: 2967: 2951: 2946: 2938: 2933: 2925: 2918: 2910: 2903: 2898: 2891: 2881: 2874: 2869: 2864: 2859: 2852: 2847: 2842: 2837: 2832: 2822: 2815: 2810: 2805: 2802: 2797: 2795: 2790: 2776: 2771: 2764: 2756: 2748: 2741: 2736: 2728: 2721: 2714: 2705: 2697: 2692: 2687: 2682: 2672: 2665: 2660: 2655: 2650: 2640: 2633: 2628: 2623: 2620: 2615: 2613: 2608: 2590: 2578: 2577:Multiplication 2566: 2554: 2550: 2546: 2539: 2533: 2530: 2520: 2514: 2508: 2471: 2467: 2459: 2433: 2413: 2411: 2408: 2407: 2403: 2402:Therefore, for 2374: 2370: 2368: 2365: 2364: 2360: 2352: 2335: 2324: 2313: 2298: 2288: 2277: 2257: 2252: 2251: 2249: 2246: 2245: 2241: 2238: 2219: 2215: 2211: 2192: 2182: 2171: 2160: 2156: 2142: 2138: 2103: 2099: 2097: 2094: 2093: 2087: 2081: 2077: 2063: 2057: 2051: 2040: 2034: 2026: 2020: 2012: 2006: 1998: 1981: 1975: 1963: 1957: 1949: 1941: 1932: 1926: 1918: 1893: 1867: 1847: 1845: 1842: 1841: 1832: 1824: 1818: 1807: 1800: 1794: 1784: 1781: 1776: 1765: 1759: 1758:if and only if 1749: 1739: 1733: 1727: 1726:if and only if 1719: 1711: 1667: 1648: 1644: 1642: 1639: 1638: 1624: 1596: 1592: 1590: 1587: 1586: 1575: 1567: 1548: 1542: 1532: 1526: 1516: 1510: 1504: 1495: 1489: 1483: 1477: 1471: 1465: 1451: 1442: 1436: 1432: 1426: 1416: 1410: 1404: 1396: 1373: 1369: 1361: 1358: 1357: 1354:splitting field 1347: 1333: 1330: 1292: 1286: 1280: 1274: 1268: 1261:field extension 1246: 1238: 1230: 1185: 1178: 1159: 1155: 1153: 1150: 1149: 1139: 1131: 1125: 1119: 1106: 1094: 1080: 1059: 1055: 1046: 1042: 1033: 1029: 1015: 1012: 999: 993: 987: 975: 969: 963: 957: 951: 943: 937: 918: 912: 905: 899: 893: 887: 877: 871: 862: 856: 850: 835: 823: 817: 798: 790: 785: 783: 780: 779: 772: 764: 754: 726: 716: 707: 696: 693: 685: 668: 663: 662: 660: 657: 656: 636: 626: 617: 607: 601: 595: 589: 583: 574: 568: 546: 530:finite geometry 500: 494: 488: 467: 460: 443:Évariste Galois 423: 394: 393: 392: 363:Non-associative 345: 334: 333: 323: 303: 292: 291: 280:Map of lattices 276: 272:Boolean algebra 267:Heyting algebra 241: 230: 229: 223: 204:Integral domain 168: 157: 156: 150: 104: 82: 71: 65: 62: 52:Please help to 51: 35: 31: 24: 17: 12: 11: 5: 9885: 9875: 9874: 9860: 9859: 9851: 9850:External links 9848: 9846: 9845: 9832:"Galois field" 9827: 9822: 9800:Lidl, Rudolf; 9797: 9792: 9779: 9774: 9761: 9756: 9740: 9726: 9704: 9702: 9699: 9696: 9695: 9680: 9658: 9607: 9593: 9557: 9551: 9525: 9516: 9504: 9474: 9457: 9435: 9434: 9432: 9429: 9428: 9427: 9422: 9417: 9412: 9407: 9402: 9397: 9390: 9387: 9356: 9353: 9334: 9327: 9323: 9317: 9293: 9289: 9268: 9263: 9258: 9254: 9250: 9245: 9241: 9220: 9217: 9214: 9211: 9208: 9184: 9180: 9174: 9150: 9146: 9123: 9116: 9112: 9106: 9082: 9077: 9074: 9070: 9049: 9042: 9039: 9035: 9029: 9005: 9002: 8998: 8982: 8979: 8966: 8961: 8955: 8951: 8919: 8912: 8908: 8902: 8895: 8892: 8889: 8885: 8881: 8876: 8870: 8866: 8842: 8839: 8836: 8812: 8809: 8805: 8799: 8794: 8787: 8783: 8776: 8753: 8750: 8747: 8740: 8736: 8731: 8706: 8702: 8696: 8662: 8657: 8652: 8628: 8622: 8618: 8558: 8555: 8552: 8549: 8546: 8543: 8538: 8535: 8532: 8528: 8524: 8521: 8518: 8515: 8512: 8509: 8506: 8488: 8485: 8465:division rings 8452: 8449: 8447: 8444: 8377:Hensel lifting 8365:linear algebra 8287:Diffie–Hellman 8270: 8267: 8222: 8218: 8212: 8208: 8204: 8200: 8189: 8183: 8180: 8177: 8174: 8170: 8166: 8161: 8157: 8152: 8146: 8143: 8138: 8135: 8132: 8129: 8126: 8123: 8120: 8067:above and the 8036: 8031: 8027: 8023: 8019: 8015: 8012: 8009: 8006: 8001: 7998: 7995: 7991: 7985: 7982: 7977: 7974: 7971: 7968: 7965: 7962: 7959: 7918: 7915: 7764:. In fact, if 7704: 7701: 7696: 7692: 7679: 7676: 7614:Main article: 7611: 7608: 7599:Galois group. 7595:, which has a 7558: 7553: 7550: 7547: 7543: 7539: 7536: 7533: 7528: 7524: 7520: 7517: 7514: 7509: 7505: 7501: 7497: 7494: 7427: 7424: 7417: 7413: 7408: 7364: 7357: 7353: 7348: 7344: 7341: 7338: 7333: 7329: 7241: 7237: 7233: 7230: 7227: 7224: 7179:is a power of 7160: 7157: 7137: 7136: 7124: 7121: 7118: 7115: 7112: 7109: 7104: 7100: 7096: 7091: 7087: 7083: 7078: 7074: 7070: 7067: 7064: 7061: 7058: 7055: 7050: 7046: 7042: 7037: 7033: 7029: 7024: 7020: 7016: 7013: 7010: 7007: 7002: 6998: 6994: 6989: 6985: 6981: 6976: 6972: 6968: 6963: 6959: 6955: 6952: 6949: 6946: 6941: 6937: 6933: 6928: 6924: 6920: 6917: 6914: 6911: 6908: 6905: 6900: 6896: 6892: 6889: 6886: 6883: 6880: 6877: 6872: 6868: 6864: 6859: 6855: 6851: 6846: 6842: 6838: 6819: 6803: 6800: 6797: 6794: 6789: 6785: 6781: 6776: 6772: 6768: 6763: 6759: 6755: 6750: 6746: 6742: 6739: 6736: 6733: 6730: 6727: 6722: 6718: 6714: 6709: 6705: 6701: 6696: 6692: 6688: 6673: 6661: 6658: 6655: 6650: 6646: 6642: 6637: 6633: 6528:are primitive 6355: 6352: 6004: 6003:Roots of unity 6001: 5996:linear algebra 5944: 5875:is called the 5856: 5807: 5804: 5656: 5560: 5557: 5487: 5483: 5479: 5476: 5473: 5470: 5467: 5464: 5461: 5458: 5455: 5452: 5449: 5446: 5443: 5440: 5437: 5434: 5431: 5426: 5422: 5418: 5415: 5412: 5409: 5406: 5403: 5400: 5397: 5394: 5391: 5388: 5385: 5382: 5379: 5376: 5373: 5370: 5367: 5364: 5359: 5357: 5355: 5352: 5348: 5345: 5342: 5339: 5336: 5333: 5330: 5327: 5324: 5321: 5318: 5315: 5312: 5309: 5306: 5303: 5300: 5297: 5294: 5291: 5288: 5285: 5282: 5279: 5276: 5273: 5270: 5267: 5264: 5261: 5258: 5255: 5252: 5249: 5246: 5243: 5240: 5237: 5234: 5232: 5230: 5225: 5221: 5217: 5214: 5209: 5205: 5201: 5198: 5195: 5192: 5189: 5186: 5183: 5180: 5175: 5171: 5167: 5164: 5159: 5155: 5151: 5148: 5145: 5142: 5139: 5136: 5133: 5130: 5129: 5124: 5120: 5116: 5113: 5110: 5107: 5104: 5101: 5096: 5092: 5088: 5085: 5082: 5079: 5076: 5073: 5070: 5067: 5064: 5061: 5058: 5055: 5052: 5049: 5046: 5043: 5040: 5037: 5034: 5031: 5029: 5027: 5022: 5018: 5014: 5011: 5006: 5002: 4998: 4995: 4992: 4989: 4986: 4983: 4980: 4977: 4974: 4969: 4965: 4961: 4958: 4953: 4949: 4945: 4942: 4939: 4936: 4933: 4930: 4927: 4924: 4923: 4873: 4870: 4867: 4864: 4859: 4855: 4798: 4793: 4789: 4785: 4782: 4777: 4773: 4769: 4766: 4763: 4760: 4757: 4754: 4719: 4716: 4713: 4710: 4705: 4701: 4688: 4685: 4667: 4663: 4659: 4656: 4653: 4650: 4647: 4644: 4641: 4638: 4635: 4632: 4629: 4626: 4623: 4620: 4617: 4614: 4611: 4608: 4605: 4602: 4599: 4596: 4593: 4590: 4587: 4584: 4581: 4578: 4575: 4572: 4569: 4566: 4563: 4560: 4557: 4554: 4551: 4548: 4545: 4542: 4539: 4536: 4533: 4530: 4528: 4526: 4521: 4517: 4513: 4510: 4507: 4504: 4501: 4498: 4495: 4492: 4487: 4483: 4479: 4476: 4473: 4470: 4467: 4464: 4461: 4458: 4457: 4452: 4448: 4444: 4441: 4438: 4435: 4432: 4429: 4426: 4423: 4420: 4417: 4414: 4411: 4408: 4405: 4402: 4399: 4396: 4393: 4390: 4387: 4385: 4383: 4378: 4374: 4370: 4367: 4364: 4361: 4358: 4355: 4352: 4349: 4346: 4341: 4337: 4333: 4330: 4327: 4324: 4321: 4318: 4315: 4312: 4311: 4303: 4300: 4297: 4294: 4290: 4287: 4275: 4271: 4267: 4264: 4261: 4258: 4255: 4252: 4249: 4246: 4243: 4240: 4237: 4234: 4231: 4228: 4225: 4223: 4221: 4216: 4212: 4208: 4205: 4202: 4199: 4196: 4193: 4190: 4187: 4184: 4183: 4137: 4134: 4131: 4128: 4123: 4119: 4070: 4065: 4061: 4057: 4054: 4051: 4048: 4045: 4042: 3987: 3984: 3981: 3978: 3973: 3969: 3956: 3953: 3937: 3932: 3929: 3925: 3919: 3915: 3911: 3908: 3903: 3899: 3895: 3892: 3889: 3886: 3883: 3880: 3875: 3872: 3868: 3862: 3858: 3854: 3851: 3846: 3842: 3838: 3835: 3832: 3829: 3827: 3823: 3820: 3816: 3812: 3809: 3806: 3803: 3800: 3797: 3796: 3793: 3790: 3787: 3784: 3781: 3778: 3775: 3772: 3769: 3766: 3763: 3760: 3757: 3754: 3751: 3748: 3745: 3742: 3739: 3737: 3735: 3732: 3729: 3726: 3723: 3720: 3717: 3714: 3711: 3708: 3705: 3702: 3699: 3698: 3695: 3692: 3689: 3686: 3683: 3680: 3677: 3674: 3671: 3668: 3665: 3662: 3659: 3656: 3654: 3652: 3649: 3646: 3643: 3640: 3637: 3634: 3631: 3628: 3625: 3622: 3619: 3616: 3613: 3612: 3609: 3606: 3603: 3600: 3597: 3594: 3591: 3588: 3585: 3582: 3580: 3578: 3575: 3572: 3569: 3566: 3563: 3560: 3557: 3556: 3492: 3489: 3486: 3483: 3480: 3255: 3245: 3219:, which sends 3202: 3198: 3194: 3191: 3188: 3185: 3170: 3113: 3112: 3109: 3108: 3103: 3096: 3088: 3079: 3078: 3070: 3065: 3058: 3050: 3049: 3042: 3034: 3029: 3023: 3022: 3017: 3012: 3007: 3001: 3000: 2992: 2985: 2980: 2973: 2966: 2960: 2957: 2956: 2949: 2944: 2936: 2931: 2922: 2921: 2916: 2908: 2901: 2896: 2888: 2887: 2879: 2872: 2867: 2862: 2856: 2855: 2850: 2845: 2840: 2835: 2829: 2828: 2820: 2813: 2808: 2803: 2796: 2789: 2783: 2780: 2779: 2774: 2769: 2762: 2754: 2745: 2744: 2739: 2734: 2726: 2719: 2711: 2710: 2703: 2695: 2690: 2685: 2679: 2678: 2670: 2663: 2658: 2653: 2647: 2646: 2638: 2631: 2626: 2621: 2614: 2607: 2600: 2599: 2587: 2575: 2519: 2494: 2491: 2488: 2485: 2482: 2479: 2474: 2470: 2466: 2462: 2458: 2455: 2452: 2449: 2446: 2443: 2439: 2436: 2432: 2429: 2426: 2423: 2419: 2416: 2391: 2388: 2385: 2382: 2377: 2373: 2265: 2260: 2255: 2237: 2234: 2126: 2123: 2120: 2117: 2114: 2111: 2106: 2102: 1906: 1903: 1900: 1896: 1892: 1889: 1886: 1883: 1880: 1877: 1873: 1870: 1866: 1863: 1860: 1857: 1853: 1850: 1780: 1777: 1775: 1772: 1696: 1693: 1690: 1687: 1684: 1681: 1676: 1673: 1670: 1666: 1662: 1659: 1656: 1651: 1647: 1610: 1607: 1604: 1599: 1595: 1462:above identity 1384: 1381: 1376: 1372: 1368: 1365: 1329: 1326: 1316:(or sometimes 1218: 1215: 1212: 1209: 1206: 1201: 1198: 1195: 1191: 1188: 1184: 1181: 1177: 1173: 1170: 1167: 1162: 1158: 1062: 1058: 1054: 1049: 1045: 1041: 1036: 1032: 1028: 1025: 1022: 1019: 950:by an element 936:of an element 801: 797: 793: 788: 689: 671: 666: 614:characteristic 545: 542: 425: 424: 422: 421: 414: 407: 399: 396: 395: 391: 390: 385: 380: 375: 370: 365: 360: 354: 353: 352: 346: 340: 339: 336: 335: 332: 331: 328:Linear algebra 322: 321: 316: 311: 305: 304: 298: 297: 294: 293: 290: 289: 286:Lattice theory 282: 275: 274: 269: 264: 259: 254: 249: 243: 242: 236: 235: 232: 231: 222: 221: 216: 211: 206: 201: 196: 191: 186: 181: 176: 170: 169: 163: 162: 159: 158: 149: 148: 143: 138: 132: 131: 130: 125: 120: 111: 105: 99: 98: 95: 94: 84: 83: 38: 36: 29: 15: 9: 6: 4: 3: 2: 9884: 9873: 9872:Finite fields 9870: 9869: 9867: 9857: 9856:Finite Fields 9854: 9853: 9843: 9839: 9838: 9833: 9828: 9825: 9823:0-521-39231-4 9819: 9815: 9810: 9809: 9808:Finite Fields 9803: 9798: 9795: 9789: 9786:, CRC Press, 9785: 9780: 9777: 9771: 9767: 9762: 9759: 9753: 9749: 9745: 9741: 9739: 9735: 9731: 9727: 9725: 9721: 9717: 9711: 9706: 9705: 9691: 9687: 9683: 9677: 9673: 9669: 9662: 9654: 9650: 9645: 9640: 9635: 9630: 9626: 9622: 9618: 9611: 9604: 9600: 9596: 9594:9780511734885 9590: 9586: 9582: 9577: 9572: 9568: 9561: 9554: 9552:9783110283600 9548: 9544: 9540: 9536: 9529: 9520: 9513: 9512:Jacobson 2009 9508: 9497: 9493: 9486: 9485: 9478: 9472:, p. 10. 9471: 9467: 9461: 9453: 9449: 9443: 9441: 9436: 9426: 9425:Hamming space 9423: 9421: 9418: 9416: 9413: 9411: 9408: 9406: 9403: 9401: 9398: 9396: 9393: 9392: 9386: 9384: 9383: 9378: 9374: 9370: 9366: 9362: 9352: 9350: 9345: 9332: 9325: 9321: 9291: 9287: 9266: 9261: 9256: 9252: 9248: 9243: 9239: 9218: 9215: 9212: 9209: 9206: 9182: 9178: 9148: 9144: 9134: 9121: 9114: 9110: 9080: 9075: 9072: 9068: 9047: 9040: 9037: 9033: 9003: 9000: 8996: 8988: 8978: 8964: 8959: 8937: 8933: 8917: 8910: 8906: 8893: 8890: 8887: 8883: 8879: 8874: 8840: 8837: 8834: 8810: 8807: 8803: 8792: 8785: 8781: 8751: 8748: 8745: 8738: 8734: 8729: 8704: 8700: 8683: 8676: 8660: 8655: 8626: 8599: 8596: 8590: 8583: 8579: 8573: 8556: 8550: 8547: 8544: 8536: 8533: 8530: 8526: 8522: 8519: 8516: 8510: 8504: 8495: 8484: 8482: 8478: 8474: 8473:alternativity 8470: 8469:associativity 8466: 8462: 8458: 8457:division ring 8443: 8441: 8437: 8433: 8429: 8425: 8424:combinatorics 8420: 8418: 8417:character sum 8414: 8410: 8406: 8401: 8399: 8395: 8391: 8390: 8384: 8382: 8381:LLL algorithm 8378: 8374: 8370: 8366: 8362: 8358: 8357:prime numbers 8354: 8350: 8349:number theory 8345: 8343: 8331: 8319: 8315: 8311: 8306: 8304: 8303:vector spaces 8300: 8296: 8295:coding theory 8292: 8288: 8284: 8280: 8276: 8266: 8262: 8255: 8249: 8243: 8237: 8220: 8216: 8210: 8206: 8202: 8198: 8187: 8181: 8178: 8175: 8172: 8168: 8164: 8159: 8155: 8150: 8144: 8141: 8136: 8130: 8127: 8124: 8118: 8109: 8105: 8101: 8097: 8093: 8085: 8078: 8072: 8070: 8065: 8061: 8056: 8051: 8034: 8029: 8025: 8021: 8017: 8010: 8004: 7999: 7996: 7993: 7989: 7983: 7980: 7975: 7969: 7966: 7963: 7957: 7947: 7940: 7933: 7929: 7925: 7914: 7912: 7911: 7904: 7897: 7894: 7890: 7884: 7880: 7874: 7868: 7864: 7857: 7850: 7843: 7836: 7830: 7824: 7817: 7810: 7803: 7797: 7792: 7786: 7782: 7775: 7768: 7762: 7755: 7748: 7744: 7738: 7734: 7728: 7725: 7719: 7702: 7699: 7694: 7690: 7675: 7673: 7669: 7664: 7662: 7658: 7653: 7650: 7644: 7639: 7634: 7629: 7624: 7617: 7607: 7605: 7600: 7598: 7592: 7586: 7580: 7574: 7573:Galois theory 7569: 7556: 7551: 7548: 7545: 7541: 7537: 7534: 7531: 7526: 7522: 7518: 7515: 7512: 7507: 7503: 7499: 7481: 7475: 7468: 7460: 7452: 7445: 7442: 7425: 7422: 7415: 7411: 7406: 7396: 7390: 7386: 7379: 7362: 7355: 7351: 7346: 7339: 7336: 7331: 7327: 7317: 7311: 7306: 7301: 7295: 7293: 7289: 7283: 7275: 7269: 7265: 7259: 7239: 7235: 7228: 7225: 7222: 7213: 7209: 7205: 7201: 7193: 7186: 7183: 7177: 7173: 7167: 7156: 7152: 7148: 7122: 7116: 7113: 7110: 7107: 7102: 7098: 7094: 7089: 7085: 7081: 7076: 7072: 7062: 7059: 7056: 7053: 7048: 7044: 7040: 7035: 7031: 7027: 7022: 7018: 7008: 7005: 7000: 6996: 6992: 6987: 6983: 6979: 6974: 6970: 6966: 6961: 6957: 6947: 6944: 6939: 6935: 6931: 6926: 6922: 6912: 6909: 6906: 6903: 6898: 6894: 6884: 6881: 6878: 6875: 6870: 6866: 6862: 6857: 6853: 6849: 6844: 6840: 6820: 6817: 6801: 6795: 6792: 6787: 6783: 6779: 6774: 6770: 6766: 6761: 6757: 6753: 6748: 6744: 6734: 6731: 6728: 6725: 6720: 6716: 6712: 6707: 6703: 6699: 6694: 6690: 6674: 6659: 6656: 6653: 6648: 6644: 6640: 6635: 6631: 6618: 6617: 6616: 6610: 6605: 6575: 6566: 6560: 6538: 6532: 6522: 6515: 6511: 6502: 6444:The union of 6442: 6424: 6407:GF(2) = GF(8) 6403:GF(2) = GF(4) 6379: 6377: 6365: 6351: 6348: 6342: 6335: 6328: 6321: 6316:factors over 6315: 6310: 6304: 6298: 6294: 6288: 6282: 6277: 6272: 6266: 6261: 6256: 6250: 6247: 6240: 6233: 6226: 6219: 6213: 6209: 6205: 6197: 6190: 6185: 6179: 6175: 6168: 6161: 6154: 6148: 6141: 6135: 6129: 6122: 6115: 6112: 6108: 6104: 6097: 6091: 6085: 6079: 6073: 6067: 6063: 6056: 6049: 6044: 6039: 6033: 6027: 6023: 6015: 6010: 6009:root of unity 6000: 5997: 5992: 5984: 5980: 5975: 5969: 5960: 5956: 5952: 5948: 5943: 5940: 5936: 5929: 5922: 5915: 5914:for details. 5913: 5912: 5907: 5903: 5898: 5892: 5889: 5883: 5878: 5873: 5869:This integer 5864: 5860: 5855: 5851: 5847: 5840: 5834: 5828: 5821: 5814: 5803: 5801: 5796: 5789: 5782: 5776: 5772: 5766: 5764: 5759: 5752: 5748: 5741: 5734: 5728: 5723: 5713: 5709: 5705: 5701: 5697: 5692: 5687: 5682: 5678: 5677:such that the 5673: 5669: 5664: 5659: 5655: 5653: 5649: 5644: 5637: 5631: 5624: 5617: 5610: 5603: 5596: 5590: 5585: 5579: 5574: 5573:abelian group 5568: 5556: 5549: 5543: 5537: 5532: 5526: 5522: 5513: 5504: 5485: 5481: 5474: 5471: 5468: 5465: 5462: 5459: 5456: 5453: 5450: 5447: 5444: 5441: 5438: 5435: 5429: 5424: 5420: 5413: 5410: 5407: 5404: 5401: 5398: 5395: 5392: 5389: 5386: 5383: 5380: 5377: 5374: 5371: 5368: 5365: 5358: 5350: 5346: 5340: 5337: 5334: 5331: 5328: 5325: 5322: 5319: 5316: 5313: 5310: 5307: 5304: 5301: 5298: 5295: 5292: 5289: 5286: 5283: 5277: 5271: 5268: 5265: 5262: 5259: 5256: 5253: 5250: 5247: 5244: 5241: 5235: 5233: 5223: 5219: 5215: 5212: 5207: 5203: 5199: 5196: 5193: 5190: 5187: 5184: 5173: 5169: 5165: 5162: 5157: 5153: 5149: 5146: 5143: 5140: 5137: 5134: 5122: 5118: 5111: 5108: 5105: 5099: 5094: 5090: 5083: 5080: 5077: 5071: 5068: 5062: 5059: 5056: 5050: 5044: 5041: 5038: 5032: 5030: 5020: 5016: 5012: 5009: 5004: 5000: 4996: 4993: 4990: 4987: 4984: 4981: 4975: 4967: 4963: 4959: 4956: 4951: 4947: 4943: 4940: 4937: 4934: 4931: 4928: 4888: 4871: 4868: 4865: 4862: 4857: 4853: 4843: 4835:(elements of 4825: 4821: 4817: 4813: 4796: 4791: 4787: 4783: 4780: 4775: 4771: 4767: 4764: 4761: 4758: 4755: 4752: 4745: 4717: 4714: 4711: 4708: 4703: 4699: 4684: 4665: 4661: 4654: 4651: 4648: 4645: 4642: 4639: 4636: 4633: 4630: 4627: 4624: 4618: 4615: 4609: 4606: 4603: 4600: 4597: 4594: 4591: 4588: 4585: 4582: 4579: 4576: 4573: 4570: 4564: 4558: 4555: 4552: 4549: 4546: 4543: 4540: 4537: 4531: 4529: 4519: 4515: 4511: 4508: 4505: 4502: 4499: 4496: 4485: 4481: 4477: 4474: 4471: 4468: 4465: 4462: 4450: 4446: 4439: 4436: 4433: 4427: 4424: 4418: 4415: 4412: 4406: 4400: 4397: 4394: 4388: 4386: 4376: 4372: 4368: 4365: 4362: 4359: 4356: 4353: 4347: 4339: 4335: 4331: 4328: 4325: 4322: 4319: 4316: 4301: 4295: 4273: 4269: 4262: 4259: 4253: 4250: 4244: 4241: 4235: 4232: 4229: 4226: 4224: 4214: 4210: 4206: 4203: 4200: 4197: 4194: 4191: 4185: 4148: 4135: 4132: 4129: 4126: 4121: 4117: 4107: 4093: 4089: 4085: 4068: 4063: 4059: 4055: 4052: 4049: 4046: 4043: 4040: 4033: 3985: 3982: 3979: 3976: 3971: 3967: 3952: 3935: 3930: 3927: 3917: 3913: 3909: 3906: 3901: 3897: 3887: 3884: 3878: 3873: 3870: 3860: 3856: 3852: 3849: 3844: 3840: 3833: 3830: 3828: 3821: 3818: 3810: 3807: 3804: 3801: 3791: 3785: 3782: 3779: 3776: 3773: 3767: 3761: 3758: 3755: 3752: 3749: 3746: 3740: 3738: 3730: 3727: 3724: 3721: 3712: 3709: 3706: 3703: 3693: 3687: 3684: 3681: 3675: 3669: 3666: 3663: 3657: 3655: 3647: 3644: 3641: 3638: 3632: 3626: 3623: 3620: 3617: 3607: 3601: 3598: 3592: 3589: 3586: 3583: 3581: 3573: 3570: 3567: 3564: 3558: 3544: 3536: 3528: 3520: 3513: 3507: 3490: 3487: 3484: 3481: 3478: 3468: 3457: 3451: 3447: 3441: 3435: 3429: 3423: 3419: 3412: 3404: 3397: 3390: 3379: 3369: 3352: 3342: 3337: 3332: 3325: 3318: 3314: 3308: 3304: 3297: 3291: 3287: 3281: 3274: 3267: 3261: 3254: 3250: 3244: 3240: 3236: 3230: 3223: 3218: 3200: 3196: 3189: 3186: 3183: 3174: 3168: 3160: 3159:division by 0 3156: 3146: 3139: 3133: 3127: 3121: 3104: 3101: 3097: 3094: 3089: 3086: 3081: 3080: 3076: 3071: 3066: 3063: 3059: 3056: 3052: 3051: 3047: 3043: 3040: 3035: 3030: 3025: 3024: 3018: 3013: 3008: 3003: 3002: 2998: 2993: 2990: 2986: 2981: 2977: 2970: 2965: 2964: 2954: 2950: 2945: 2942: 2937: 2932: 2929: 2924: 2923: 2917: 2914: 2909: 2906: 2902: 2897: 2894: 2890: 2889: 2885: 2880: 2877: 2873: 2868: 2863: 2858: 2857: 2851: 2846: 2841: 2836: 2831: 2830: 2826: 2821: 2818: 2814: 2809: 2804: 2800: 2793: 2788: 2787: 2775: 2770: 2767: 2763: 2760: 2755: 2752: 2747: 2746: 2740: 2735: 2732: 2727: 2724: 2720: 2717: 2713: 2712: 2708: 2704: 2701: 2696: 2691: 2686: 2681: 2680: 2676: 2671: 2668: 2664: 2659: 2654: 2649: 2648: 2644: 2639: 2636: 2632: 2627: 2622: 2618: 2611: 2606: 2605: 2601: 2597: 2593: 2585: 2581: 2573: 2569: 2563: 2558: 2543: 2536: 2527: 2523: 2518: 2511: 2505: 2492: 2486: 2483: 2480: 2477: 2472: 2468: 2460: 2453: 2444: 2430: 2424: 2389: 2386: 2383: 2380: 2375: 2371: 2358: 2349: 2346: 2344: 2338: 2331: 2327: 2320: 2316: 2310: 2306: 2302: 2295: 2291: 2285: 2281: 2263: 2258: 2233: 2230: 2228: 2223: 2207: 2203: 2199: 2195: 2190: 2185: 2178: 2174: 2167: 2163: 2153: 2149: 2145: 2124: 2121: 2118: 2115: 2112: 2109: 2104: 2100: 2090: 2084: 2074: 2070: 2066: 2060: 2054: 2047: 2043: 2037: 2030: 2023: 2016: 2009: 2002: 1995: 1993: 1992: 1985: 1978: 1973: 1967: 1960: 1953: 1945: 1938: 1935: 1929: 1922: 1901: 1894: 1887: 1878: 1864: 1858: 1840: 1839:quotient ring 1835: 1828: 1821: 1817: 1811: 1803: 1797: 1791: 1787: 1771: 1768: 1762: 1756: 1752: 1746: 1742: 1736: 1730: 1723: 1715: 1707: 1694: 1688: 1685: 1682: 1674: 1671: 1668: 1664: 1660: 1657: 1654: 1649: 1645: 1636: 1635: 1631: 1627: 1623: 1608: 1605: 1602: 1597: 1593: 1584: 1583: 1578: 1574: 1570: 1566: 1561: 1559: 1554: 1551: 1545: 1539: 1535: 1529: 1523: 1519: 1513: 1507: 1501: 1498: 1492: 1486: 1480: 1474: 1470:are roots of 1468: 1463: 1459: 1450: 1446: 1435: 1429: 1424: 1419: 1413: 1407: 1400: 1382: 1379: 1374: 1370: 1366: 1363: 1355: 1350: 1345: 1340: 1336: 1325: 1323: 1319: 1315: 1314:division ring 1310: 1308: 1304: 1300: 1295: 1289: 1283: 1277: 1271: 1266: 1262: 1257: 1253: 1249: 1242: 1234: 1213: 1210: 1207: 1196: 1182: 1179: 1175: 1171: 1168: 1165: 1160: 1156: 1146: 1142: 1135: 1128: 1122: 1117: 1112: 1109: 1102: 1098: 1092: 1088: 1083: 1078: 1060: 1056: 1052: 1047: 1043: 1039: 1034: 1026: 1023: 1020: 1010: 1005: 1002: 996: 990: 985: 979: 972: 966: 960: 954: 947: 940: 934: 930: 926: 922: 915: 908: 902: 896: 890: 884: 880: 874: 870: 865: 859: 853: 847: 845: 844: 838: 833: 827: 820: 814: 795: 791: 777: 775: 767: 762: 757: 753: 748: 746: 742: 738: 734: 729: 723: 719: 715: 710: 704: 700: 692: 688: 669: 654: 650: 649: 644: 639: 633: 629: 623: 620: 615: 610: 604: 598: 592: 586: 582: 577: 571: 566: 562: 557: 555: 551: 541: 539: 538:coding theory 535: 531: 527: 526:Galois theory 523: 519: 518:number theory 515: 510: 508: 503: 497: 491: 486: 482: 477: 475: 470: 465: 463: 459:integers mod 456: 452: 448: 444: 440: 436: 432: 420: 415: 413: 408: 406: 401: 400: 398: 397: 389: 386: 384: 381: 379: 376: 374: 371: 369: 366: 364: 361: 359: 356: 355: 351: 348: 347: 343: 338: 337: 330: 329: 325: 324: 320: 317: 315: 312: 310: 307: 306: 301: 296: 295: 288: 287: 283: 281: 278: 277: 273: 270: 268: 265: 263: 260: 258: 255: 253: 250: 248: 245: 244: 239: 234: 233: 228: 227: 220: 217: 215: 214:Division ring 212: 210: 207: 205: 202: 200: 197: 195: 192: 190: 187: 185: 182: 180: 177: 175: 172: 171: 166: 161: 160: 155: 154: 147: 144: 142: 139: 137: 136:Abelian group 134: 133: 129: 126: 124: 121: 119: 115: 112: 110: 107: 106: 102: 97: 96: 93: 90: 89: 80: 77: 69: 66:February 2015 59: 55: 49: 48: 42: 37: 28: 27: 22: 9835: 9807: 9783: 9765: 9747: 9729: 9709: 9667: 9661: 9624: 9620: 9610: 9576:math/0409420 9566: 9560: 9534: 9528: 9519: 9507: 9483: 9477: 9460: 9451: 9448:Moore, E. H. 9415:Finite group 9380: 9358: 9346: 9135: 8984: 8936:direct limit 8932:directed set 8684: 8600: 8594: 8588: 8581: 8577: 8571: 8493: 8490: 8454: 8428:Paley Graphs 8421: 8402: 8387: 8385: 8346: 8307: 8275:cryptography 8272: 8269:Applications 8260: 8253: 8247: 8241: 8235: 8110: 8103: 8099: 8095: 8091: 8083: 8076: 8073: 8063: 8059: 8049: 7950:is given by 7945: 7938: 7931: 7927: 7923: 7920: 7908: 7902: 7898: 7892: 7888: 7882: 7878: 7872: 7866: 7862: 7855: 7848: 7841: 7834: 7828: 7822: 7815: 7808: 7801: 7790: 7784: 7780: 7773: 7766: 7760: 7753: 7746: 7742: 7736: 7732: 7729: 7723: 7717: 7681: 7665: 7654: 7648: 7642: 7632: 7622: 7619: 7601: 7590: 7578: 7571:In terms of 7570: 7479: 7473: 7471:has exactly 7466: 7458: 7450: 7446: 7440: 7394: 7388: 7384: 7377: 7315: 7313:with itself 7309: 7299: 7297:Denoting by 7296: 7281: 7273: 7257: 7211: 7207: 7203: 7199: 7191: 7187: 7181: 7175: 7171: 7165: 7162: 7150: 7146: 7138: 6606: 6564: 6558: 6536: 6530: 6523: 6513: 6509: 6499:irreducible 6460:elements of 6443: 6380: 6376:Galois group 6357: 6346: 6340: 6333: 6326: 6319: 6308: 6302: 6296: 6293:discriminant 6286: 6280: 6270: 6264: 6254: 6251: 6245: 6238: 6231: 6224: 6217: 6214: 6207: 6203: 6195: 6188: 6177: 6173: 6166: 6159: 6152: 6146: 6139: 6133: 6127: 6120: 6116: 6110: 6106: 6102: 6095: 6089: 6083: 6077: 6071: 6065: 6061: 6054: 6047: 6042: 6037: 6031: 6028: 6021: 6013: 6006: 5993: 5982: 5978: 5967: 5964: 5958: 5954: 5950: 5946: 5938: 5934: 5927: 5920: 5916: 5909: 5896: 5893: 5887: 5885:to the base 5881: 5871: 5868: 5862: 5858: 5849: 5845: 5838: 5832: 5826: 5819: 5812: 5809: 5798:is prime is 5794: 5787: 5780: 5774: 5770: 5767: 5757: 5750: 5746: 5739: 5732: 5725:is called a 5721: 5718: 5711: 5707: 5703: 5699: 5695: 5690: 5685: 5680: 5676: 5671: 5667: 5662: 5657: 5642: 5635: 5629: 5627:has at most 5622: 5615: 5608: 5601: 5594: 5588: 5577: 5566: 5562: 5547: 5541: 5535: 5524: 5520: 5505: 4886: 4841: 4823: 4819: 4815: 4811: 4690: 4149: 4105: 4091: 4087: 4083: 3958: 3542: 3534: 3526: 3518: 3511: 3505: 3466: 3455: 3449: 3445: 3439: 3433: 3427: 3424: 3417: 3410: 3402: 3395: 3388: 3377: 3367: 3350: 3340: 3330: 3323: 3316: 3312: 3309: 3302: 3295: 3289: 3285: 3279: 3272: 3265: 3257: 3252: 3248: 3238: 3234: 3228: 3221: 3175: 3144: 3137: 3131: 3125: 3119: 3116: 3099: 3092: 3084: 3074: 3061: 3054: 3045: 3038: 2996: 2988: 2975: 2968: 2952: 2940: 2927: 2912: 2904: 2892: 2883: 2875: 2824: 2816: 2798: 2791: 2765: 2758: 2750: 2730: 2722: 2715: 2706: 2699: 2674: 2666: 2642: 2634: 2616: 2609: 2595: 2591: 2583: 2579: 2571: 2567: 2541: 2534: 2531: 2525: 2521: 2509: 2506: 2350: 2347: 2336: 2334:, for every 2329: 2325: 2318: 2314: 2308: 2304: 2300: 2293: 2289: 2283: 2279: 2239: 2231: 2224: 2205: 2201: 2197: 2193: 2183: 2176: 2172: 2165: 2161: 2151: 2147: 2143: 2088: 2082: 2075: 2068: 2064: 2058: 2052: 2045: 2041: 2035: 2028: 2021: 2014: 2007: 2000: 1996: 1989: 1983: 1976: 1965: 1958: 1951: 1943: 1939: 1933: 1927: 1920: 1833: 1826: 1819: 1809: 1806:, the field 1801: 1795: 1789: 1785: 1782: 1766: 1760: 1754: 1750: 1744: 1740: 1734: 1728: 1721: 1713: 1709: 1637: 1633: 1629: 1625: 1621: 1585: 1581: 1576: 1572: 1568: 1564: 1563: 1555: 1549: 1543: 1537: 1533: 1527: 1521: 1517: 1511: 1505: 1502: 1496: 1490: 1484: 1478: 1472: 1466: 1448: 1444: 1433: 1427: 1417: 1411: 1405: 1398: 1348: 1338: 1334: 1331: 1317: 1311: 1293: 1287: 1281: 1275: 1269: 1258: 1251: 1247: 1240: 1232: 1144: 1140: 1133: 1126: 1120: 1113: 1107: 1100: 1096: 1081: 1006: 1000: 994: 988: 984:vector space 977: 970: 964: 958: 952: 945: 938: 932: 928: 924: 920: 913: 906: 900: 894: 888: 882: 878: 876:, denote by 872: 863: 857: 851: 848: 841: 836: 825: 818: 815: 773: 765: 755: 752:prime number 749: 727: 721: 717: 708: 705: 698: 690: 686: 646: 637: 631: 627: 624: 618: 608: 602: 596: 590: 584: 575: 569: 564: 560: 558: 554:field axioms 547: 534:cryptography 516:, including 511: 501: 495: 489: 480: 478: 474:prime number 468: 461: 439:Galois field 438: 435:finite field 434: 428: 388:Hopf algebra 326: 319:Vector space 284: 224: 153:Group theory 151: 116: / 72: 63: 44: 9627:: 233–274. 9466:E. H. Moore 9410:Finite ring 8419:estimates. 8413:exponential 8192: prime 7921:The number 7638:irreducible 7305:composition 6570:{9, 21, 63} 6413:itself. As 6330:, and that 6125:contains a 4827:are either 4744:expressions 4032:expressions 2222:as a root. 1558:E. H. Moore 1344:prime power 1259:Any finite 886:the sum of 761:prime field 581:prime power 485:prime power 431:mathematics 373:Lie algebra 358:Associative 262:Total order 252:Semilattice 226:Ring theory 58:introducing 9701:References 9690:1213.51001 9375:proved by 8446:Extensions 8312:, such as 8245:and every 7852:belong to 7820:of degree 6816:reciprocal 6604:elements. 6596:primitive 6588:primitive 6580:primitive 6503:of degree 6391:1, 2, 3, 6 6366:of degree 6358:The field 6117:The field 5981:= 0, ..., 5854:such that 5778:for every 5599:such that 5529:and their 5510:has eight 5506:The field 4884:(that is, 4281:(for  3400:, that is 3149:for every 2359:of degree 2328:⋅ 0 = 0 ⋅ 2287:such that 2189:trinomials 1831:of degree 1799:prime and 1634:factors as 1318:skew field 1089:, as each 904:such that 892:copies of 714:polynomial 643:isomorphic 544:Properties 507:isomorphic 41:references 9842:EMS Press 9746:(2009) , 9653:1071-5797 9377:Chevalley 8954:¯ 8891:≥ 8884:⋃ 8869:¯ 8793:⊂ 8746:− 8621:¯ 8551:α 8548:− 8534:∈ 8531:α 8527:∏ 8471:axiom to 8299:subspaces 8211:ℓ 8188:ℓ 8176:∣ 8173:ℓ 8169:∑ 8165:− 8137:≥ 8005:μ 7997:∣ 7990:∑ 7826:dividing 7794:, as its 7700:− 7655:As every 7549:− 7542:φ 7535:… 7523:φ 7516:φ 7504:φ 7423:− 7343:↦ 7328:φ 7232:↦ 7223:φ 7145:GF(2) / ( 6540:dividing 6464:generate 6452:has thus 5972:, called 5737:. Unless 5482:α 5421:α 5347:α 5220:α 5204:α 5194:α 5170:α 5154:α 5144:α 5119:α 5091:α 5069:α 5017:α 5001:α 4991:α 4964:α 4948:α 4938:α 4866:α 4854:α 4788:α 4772:α 4762:α 4662:α 4616:α 4516:α 4506:α 4482:α 4472:α 4447:α 4425:α 4373:α 4363:α 4336:α 4326:α 4270:α 4260:− 4251:α 4242:− 4230:− 4211:α 4201:α 4186:− 4130:α 4118:α 4060:α 4050:α 3983:− 3977:− 3936:α 3928:− 3907:− 3885:− 3871:− 3850:− 3819:− 3811:α 3792:α 3731:α 3713:α 3694:α 3648:α 3627:α 3608:α 3599:− 3587:− 3574:α 3559:− 3488:α 3398:≡ 3 mod 4 3193:↦ 3184:φ 3153:in every 2589:Division 2565:Addition 2532:and that 2218:, having 1686:− 1672:∈ 1665:∏ 1655:− 1531:roots of 1380:− 1303:separable 1265:separable 1211:− 1183:∈ 1176:∏ 1166:− 763:of order 653:subfields 606:, adding 383:Bialgebra 189:Near-ring 146:Lie group 114:Semigroup 9866:Category 9804:(1997), 9603:28297089 9496:archived 9389:See also 9231:one has 8985:Given a 8586:for all 8580: ( 8575:, since 8318:BCH code 7876:divides 7290:, after 6291:, whose 6221:, every 3176:The map 2039:, where 1748:divides 1009:identity 867:and any 824:0, ..., 725:has all 451:elements 219:Lie ring 184:Semiring 9514:, §4.13 9373:Dickson 8379:or the 8334:GF(929) 8053:is the 7870:; thus 7604:perfect 7444:roots. 7383:0 < 6496:⁠ 6484:⁠ 6423:coprime 6260:coprime 6109:, ..., 6087:, then 5706:, ..., 4839:), and 4018:nor in 3362:⁠ 3347:⁠ 3338:modulo 3293:, with 2339:∈ GF(4) 1352:be the 1307:perfect 1285:, then 974:into a 909:⋅ 1 = 0 869:integer 588:(where 445:) is a 350:Algebra 342:Algebra 247:Lattice 238:Lattice 54:improve 9820:  9790:  9772:  9754:  9688:  9678:  9651:  9601:  9591:  9549:  9279:where 8605:, let 8353:modulo 8330:PDF417 8185:  8047:where 7942:over 7907:; see 7597:cyclic 7266:and a 7141:GF(64) 6827:GF(64) 6526:GF(64) 6466:GF(64) 6462:GF(64) 6435:GF(64) 6411:GF(64) 6409:, and 6395:GF(64) 6389:being 6360:GF(64) 5976:, for 5908:, see 5894:While 5755:where 5742:= 2, 3 5652:cyclic 5646:. The 5571:is an 5516:GF(16) 5508:GF(16) 4904:GF(16) 4900:GF(16) 4809:where 4740:GF(16) 4687:GF(16) 4156:GF(27) 4081:where 4028:GF(27) 3431:, let 3382:, and 2524:= 1 + 2323:, and 2307:⋅ 1 = 2292:= 1 + 2282:, 1 + 2278:0, 1, 1804:> 1 1541:, and 1346:, and 1320:). By 759:, the 741:cyclic 712:, the 378:Graded 309:Module 300:Module 199:Domain 118:Monoid 43:, but 9712:≤ 169 9599:S2CID 9571:arXiv 9499:(PDF) 9488:(PDF) 9431:Notes 9379:(see 9369:Artin 9060:then 8675:up to 8584:) = 1 8434:. In 8326:GF(2) 8291:ECDHE 8257:over 8080:over 7886:. As 7740:then 7640:over 7583:is a 7387:< 7254:is a 6613:GF(2) 6611:over 6550:GF(8) 6546:GF(4) 6519:GF(2) 6517:over 6478:GF(2) 6474:GF(2) 6472:over 6450:GF(8) 6446:GF(4) 6439:GF(2) 6431:GF(8) 6427:GF(4) 6399:GF(2) 6372:GF(2) 6370:over 6144:; if 6075:is a 6069:. If 6064:< 6011:, as 5842:with 5582:. By 5545:with 4912:GF(2) 4908:GF(2) 4892:GF(2) 4837:GF(2) 4732:GF(2) 4172:GF(3) 4168:GF(2) 4164:GF(3) 4160:GF(2) 4152:GF(8) 4101:GF(3) 4097:GF(2) 4024:GF(8) 4020:GF(3) 4016:GF(2) 4004:GF(3) 4000:GF(2) 3503:with 3409:−1 ≡ 3393:. If 3334:is a 3163:GF(4) 2555:GF(4) 2551:GF(2) 2547:GF(4) 2515:GF(4) 2404:GF(4) 2353:GF(2) 2351:Over 2242:GF(4) 2078:GF(4) 2071:) = 0 2048:) = 0 1793:with 1454:) = 1 1342:be a 1138:then 1118:, if 733:roots 645:(see 579:is a 561:order 550:field 481:order 472:is a 466:when 447:field 344:-like 302:-like 240:-like 209:Field 167:-like 141:Magma 109:Group 103:-like 101:Group 9818:ISBN 9788:ISBN 9770:ISBN 9752:ISBN 9676:ISBN 9649:ISSN 9589:ISBN 9547:ISBN 9371:and 8838:> 8827:for 8415:and 8403:The 8363:and 8094:− 1) 7303:the 7206:) = 7153:+ 1) 6821:The 6548:and 6482:9 = 6448:and 6429:and 6421:are 6417:and 6397:are 6210:− 1) 6202:gcd( 5961:+ 1) 5844:0 ≤ 5753:− 1) 4154:and 4026:and 4010:and 4002:and 3509:and 3227:1 + 3157:the 3155:ring 3143:0 ⋅ 3091:1 + 3083:1 + 3073:1 + 3037:1 + 2995:1 + 2939:1 + 2926:1 + 2911:1 + 2882:1 + 2823:1 + 2757:1 + 2749:1 + 2729:1 + 2698:1 + 2673:1 + 2641:1 + 2540:1 + 2538:and 2507:Let 2299:1 ⋅ 2208:+ 1 1443:gcd( 1439:= −1 1415:has 1332:Let 1007:The 927:) ↦ 849:Let 641:are 565:size 536:and 479:The 433:, a 174:Ring 165:Ring 9734:doi 9720:doi 9714:", 9686:Zbl 9639:hdl 9629:doi 9581:doi 9539:doi 9385:). 9163:of 9018:of 8938:is 8592:in 8344:. 8316:or 8301:of 8273:In 8259:GF( 8088:is 8082:GF( 7944:GF( 7901:GF( 7854:GF( 7840:GF( 7814:GF( 7800:GF( 7778:of 7772:GF( 7752:GF( 7636:is 7620:If 7589:GF( 7587:of 7577:GF( 7478:GF( 7465:GF( 7457:GF( 7449:GF( 7307:of 7280:GF( 7272:GF( 7270:of 7256:GF( 7190:GF( 7188:In 6568:in 6433:in 6332:GF( 6318:GF( 6312:th 6289:− 1 6274:th 6262:to 6258:is 6200:is 6194:GF( 6171:is 6165:GF( 6155:− 1 6142:− 1 6119:GF( 6101:1, 6057:= 1 6050:= 1 6041:th 6029:If 6020:GF( 6016:= 1 5991:). 5985:− 2 5970:+ 1 5930:– 1 5919:GF( 5879:of 5852:− 2 5830:in 5818:GF( 5810:If 5786:GF( 5784:in 5761:is 5731:GF( 5729:of 5714:= 1 5696:are 5689:GF( 5683:– 1 5661:GF( 5638:– 1 5625:= 1 5614:GF( 5612:in 5604:= 1 5597:– 1 5592:of 5580:– 1 5565:GF( 5527:+ 1 4894:is 4831:or 4170:or 4162:or 4099:or 3547:): 3541:GF( 3533:GF( 3525:GF( 3517:GF( 3515:in 3465:GF( 3420:+ 1 3413:− 1 3353:− 1 3322:GF( 3301:GF( 3299:in 3275:= 2 3264:GF( 3247:GF( 3241:+ 1 3147:= 0 3123:by 2332:= 0 2321:= 0 2244:or 2204:+ 2200:+ 2179:+ 1 2168:+ 1 2027:GF( 2013:GF( 1999:GF( 1982:GF( 1974:by 1964:GF( 1950:GF( 1942:GF( 1919:GF( 1825:GF( 1823:in 1808:GF( 1720:GF( 1712:GF( 1431:is 1425:of 1397:GF( 1301:is 1254:= 0 1239:GF( 1231:GF( 1132:GF( 1114:By 992:is 976:GF( 956:of 944:GF( 942:of 861:in 846:). 834:by 828:− 1 697:GF( 695:or 625:If 455:set 437:or 429:In 179:Rng 9868:: 9840:, 9834:, 9816:, 9684:. 9647:. 9637:. 9625:32 9623:. 9619:. 9597:, 9587:, 9579:, 9545:, 9490:, 9439:^ 9351:. 8841:1. 8682:. 8598:. 8483:. 8455:A 8383:. 8375:, 8265:. 8108:. 8102:, 8071:. 8062:− 7930:, 7913:. 7891:− 7881:− 7865:− 7783:− 7745:− 7735:= 7727:. 7652:. 7606:. 7294:. 7210:+ 7202:+ 7185:. 7174:= 7149:+ 6823:36 6677:21 6602:54 6598:63 6594:36 6590:21 6586:12 6572:. 6554:54 6542:63 6521:. 6512:− 6487:54 6458:54 6454:10 6441:. 6405:, 6401:, 6378:. 6249:. 6239:np 6225:np 6212:. 6206:, 6114:. 6105:, 6026:. 5989:−∞ 5953:= 5949:+ 5937:+ 5891:. 5861:= 5848:≤ 5802:. 5773:= 5765:. 5710:, 5702:, 5675:, 5553:15 5523:+ 4914:. 4822:, 4818:, 4814:, 4136:1. 4090:, 4086:, 3461:−1 3448:= 3422:. 3315:− 3307:. 3288:− 3243:. 3237:+ 3173:. 2570:+ 2363:: 2317:+ 2312:, 2303:= 2297:, 2196:+ 2175:+ 2164:+ 2150:+ 2148:aX 2146:+ 1994:. 1937:. 1788:= 1770:. 1753:− 1743:− 1628:− 1580:, 1560:: 1553:. 1536:− 1520:= 1447:, 1337:= 1309:. 1256:. 1250:− 1143:= 1111:. 1099:+ 1004:. 931:⋅ 923:, 881:⋅ 813:. 778:, 720:− 684:, 630:= 622:. 556:. 540:. 532:, 528:, 524:, 520:, 509:. 476:. 9736:: 9722:: 9710:p 9692:. 9655:. 9641:: 9631:: 9583:: 9573:: 9541:: 9333:. 9326:m 9322:q 9316:F 9292:m 9288:g 9267:, 9262:h 9257:n 9253:g 9249:= 9244:m 9240:g 9219:, 9216:h 9213:m 9210:= 9207:n 9183:n 9179:q 9173:F 9149:n 9145:g 9122:. 9115:n 9111:q 9105:F 9081:m 9076:n 9073:m 9069:g 9048:, 9041:n 9038:m 9034:q 9028:F 9004:n 9001:m 8997:g 8965:, 8960:p 8950:F 8918:. 8911:n 8907:p 8901:F 8894:1 8888:n 8880:= 8875:p 8865:F 8835:m 8811:m 8808:n 8804:p 8798:F 8786:n 8782:p 8775:F 8752:, 8749:x 8739:n 8735:p 8730:x 8705:n 8701:p 8695:F 8680:p 8661:. 8656:p 8651:F 8627:p 8617:F 8603:p 8595:F 8589:α 8582:α 8578:f 8572:F 8557:, 8554:) 8545:T 8542:( 8537:F 8523:+ 8520:1 8517:= 8514:) 8511:T 8508:( 8505:f 8494:F 8338:2 8322:2 8263:) 8261:q 8254:n 8248:n 8242:q 8236:n 8221:; 8217:) 8207:/ 8203:n 8199:q 8182:, 8179:n 8160:n 8156:q 8151:( 8145:n 8142:1 8134:) 8131:n 8128:, 8125:q 8122:( 8119:N 8106:) 8104:n 8100:q 8098:( 8096:N 8092:q 8090:( 8086:) 8084:q 8077:n 8064:X 8060:X 8050:μ 8035:, 8030:d 8026:/ 8022:n 8018:q 8014:) 8011:d 8008:( 8000:n 7994:d 7984:n 7981:1 7976:= 7973:) 7970:n 7967:, 7964:q 7961:( 7958:N 7948:) 7946:q 7939:n 7934:) 7932:n 7928:q 7926:( 7924:N 7905:) 7903:p 7893:X 7889:X 7883:X 7879:X 7873:P 7867:X 7863:X 7858:) 7856:p 7849:P 7844:) 7842:p 7835:d 7829:n 7823:d 7818:) 7816:p 7809:P 7804:) 7802:p 7791:n 7785:X 7781:X 7776:) 7774:p 7767:P 7761:n 7756:) 7754:p 7747:X 7743:X 7737:p 7733:q 7724:q 7718:q 7703:X 7695:q 7691:X 7649:F 7643:F 7633:F 7623:F 7593:) 7591:p 7581:) 7579:p 7557:. 7552:1 7546:n 7538:, 7532:, 7527:2 7519:, 7513:, 7508:0 7500:= 7496:d 7493:I 7482:) 7480:p 7474:n 7469:) 7467:p 7461:) 7459:q 7453:) 7451:p 7441:p 7426:X 7416:k 7412:p 7407:X 7395:φ 7389:n 7385:k 7378:φ 7363:. 7356:k 7352:p 7347:x 7340:x 7337:: 7332:k 7316:k 7310:φ 7300:φ 7284:) 7282:p 7276:) 7274:q 7262:- 7260:) 7258:p 7240:p 7236:x 7229:x 7226:: 7212:y 7208:x 7204:y 7200:x 7198:( 7194:) 7192:q 7182:p 7176:p 7172:q 7166:p 7151:X 7147:X 7123:. 7120:) 7117:1 7114:+ 7111:X 7108:+ 7103:4 7099:X 7095:+ 7090:5 7086:X 7082:+ 7077:6 7073:X 7069:( 7066:) 7063:1 7060:+ 7057:X 7054:+ 7049:2 7045:X 7041:+ 7036:5 7032:X 7028:+ 7023:6 7019:X 7015:( 7012:) 7009:1 7006:+ 7001:2 6997:X 6993:+ 6988:3 6984:X 6980:+ 6975:5 6971:X 6967:+ 6962:6 6958:X 6954:( 6951:) 6948:1 6945:+ 6940:5 6936:X 6932:+ 6927:6 6923:X 6919:( 6916:) 6913:1 6910:+ 6907:X 6904:+ 6899:6 6895:X 6891:( 6888:) 6885:1 6882:+ 6879:X 6876:+ 6871:3 6867:X 6863:+ 6858:4 6854:X 6850:+ 6845:6 6841:X 6837:( 6802:. 6799:) 6796:1 6793:+ 6788:2 6784:X 6780:+ 6775:4 6771:X 6767:+ 6762:5 6758:X 6754:+ 6749:6 6745:X 6741:( 6738:) 6735:1 6732:+ 6729:X 6726:+ 6721:2 6717:X 6713:+ 6708:4 6704:X 6700:+ 6695:6 6691:X 6687:( 6660:, 6657:1 6654:+ 6649:3 6645:X 6641:+ 6636:6 6632:X 6621:9 6582:9 6578:6 6565:n 6559:n 6537:n 6531:n 6514:X 6510:X 6505:6 6493:6 6490:/ 6470:6 6419:3 6415:2 6387:6 6383:2 6368:6 6347:n 6341:p 6336:) 6334:p 6327:d 6322:) 6320:p 6309:n 6303:p 6297:n 6287:X 6281:p 6271:n 6265:p 6255:n 6246:p 6241:) 6237:( 6232:n 6227:) 6223:( 6218:p 6208:q 6204:n 6198:) 6196:q 6189:n 6182:( 6180:) 6178:n 6176:( 6174:φ 6169:) 6167:q 6160:n 6153:q 6147:n 6140:q 6134:n 6128:n 6123:) 6121:q 6111:a 6107:a 6103:a 6096:n 6090:F 6084:F 6078:n 6072:a 6066:n 6062:m 6055:x 6048:x 6038:n 6032:n 6024:) 6022:q 6014:x 5983:q 5979:n 5968:a 5959:a 5957:( 5955:a 5951:a 5947:a 5939:a 5935:a 5928:q 5923:) 5921:q 5897:a 5888:a 5882:x 5872:n 5866:. 5863:a 5859:x 5850:q 5846:n 5839:n 5833:F 5827:x 5822:) 5820:q 5813:a 5795:q 5790:) 5788:q 5781:x 5775:x 5771:x 5758:φ 5751:q 5749:( 5747:φ 5740:q 5735:) 5733:q 5722:a 5716:. 5712:a 5708:a 5704:a 5700:a 5693:) 5691:q 5681:q 5672:a 5665:) 5663:q 5643:k 5636:q 5630:k 5623:x 5618:) 5616:q 5609:x 5602:x 5595:q 5589:k 5578:q 5569:) 5567:q 5548:m 5542:α 5536:α 5525:X 5521:X 5486:3 5478:) 5475:h 5472:d 5469:+ 5466:e 5463:d 5460:+ 5457:f 5454:c 5451:+ 5448:g 5445:b 5442:+ 5439:h 5436:a 5433:( 5430:+ 5425:2 5417:) 5414:h 5411:d 5408:+ 5405:g 5402:d 5399:+ 5396:h 5393:c 5390:+ 5387:e 5384:c 5381:+ 5378:f 5375:b 5372:+ 5369:g 5366:a 5363:( 5351:+ 5344:) 5341:g 5338:d 5335:+ 5332:h 5329:c 5326:+ 5323:f 5320:d 5317:+ 5314:g 5311:c 5308:+ 5305:h 5302:b 5299:+ 5296:e 5293:b 5290:+ 5287:f 5284:a 5281:( 5278:+ 5275:) 5272:f 5269:d 5266:+ 5263:g 5260:c 5257:+ 5254:h 5251:b 5248:+ 5245:e 5242:a 5239:( 5236:= 5229:) 5224:3 5216:h 5213:+ 5208:2 5200:g 5197:+ 5191:f 5188:+ 5185:e 5182:( 5179:) 5174:3 5166:d 5163:+ 5158:2 5150:c 5147:+ 5141:b 5138:+ 5135:a 5132:( 5123:3 5115:) 5112:h 5109:+ 5106:d 5103:( 5100:+ 5095:2 5087:) 5084:g 5081:+ 5078:c 5075:( 5072:+ 5066:) 5063:f 5060:+ 5057:b 5054:( 5051:+ 5048:) 5045:e 5042:+ 5039:a 5036:( 5033:= 5026:) 5021:3 5013:h 5010:+ 5005:2 4997:g 4994:+ 4988:f 4985:+ 4982:e 4979:( 4976:+ 4973:) 4968:3 4960:d 4957:+ 4952:2 4944:c 4941:+ 4935:b 4932:+ 4929:a 4926:( 4896:2 4887:α 4872:1 4869:+ 4863:= 4858:4 4842:α 4833:1 4829:0 4824:d 4820:c 4816:b 4812:a 4797:, 4792:3 4784:d 4781:+ 4776:2 4768:c 4765:+ 4759:b 4756:+ 4753:a 4736:2 4718:1 4715:+ 4712:X 4709:+ 4704:4 4700:X 4666:2 4658:) 4655:f 4652:c 4649:+ 4646:d 4643:c 4640:+ 4637:e 4634:b 4631:+ 4628:f 4625:a 4622:( 4619:+ 4613:) 4610:f 4607:c 4604:+ 4601:e 4598:c 4595:+ 4592:f 4589:b 4586:+ 4583:d 4580:b 4577:+ 4574:e 4571:a 4568:( 4565:+ 4562:) 4559:e 4556:c 4553:+ 4550:f 4547:b 4544:+ 4541:d 4538:a 4535:( 4532:= 4525:) 4520:2 4512:f 4509:+ 4503:e 4500:+ 4497:d 4494:( 4491:) 4486:2 4478:c 4475:+ 4469:b 4466:+ 4463:a 4460:( 4451:2 4443:) 4440:f 4437:+ 4434:c 4431:( 4428:+ 4422:) 4419:e 4416:+ 4413:b 4410:( 4407:+ 4404:) 4401:d 4398:+ 4395:a 4392:( 4389:= 4382:) 4377:2 4369:f 4366:+ 4360:e 4357:+ 4354:d 4351:( 4348:+ 4345:) 4340:2 4332:c 4329:+ 4323:b 4320:+ 4317:a 4314:( 4302:, 4299:) 4296:8 4293:( 4289:F 4286:G 4274:2 4266:) 4263:c 4257:( 4254:+ 4248:) 4245:b 4239:( 4236:+ 4233:a 4227:= 4220:) 4215:2 4207:c 4204:+ 4198:b 4195:+ 4192:a 4189:( 4133:+ 4127:= 4122:3 4106:α 4092:c 4088:b 4084:a 4069:, 4064:2 4056:c 4053:+ 4047:b 4044:+ 4041:a 4012:3 4008:2 3986:1 3980:X 3972:3 3968:X 3931:1 3924:) 3918:2 3914:b 3910:r 3902:2 3898:a 3894:( 3891:) 3888:b 3882:( 3879:+ 3874:1 3867:) 3861:2 3857:b 3853:r 3845:2 3841:a 3837:( 3834:a 3831:= 3822:1 3815:) 3808:b 3805:+ 3802:a 3799:( 3789:) 3786:c 3783:b 3780:+ 3777:d 3774:a 3771:( 3768:+ 3765:) 3762:d 3759:b 3756:r 3753:+ 3750:c 3747:a 3744:( 3741:= 3734:) 3728:d 3725:+ 3722:c 3719:( 3716:) 3710:b 3707:+ 3704:a 3701:( 3691:) 3688:d 3685:+ 3682:b 3679:( 3676:+ 3673:) 3670:c 3667:+ 3664:a 3661:( 3658:= 3651:) 3645:d 3642:+ 3639:c 3636:( 3633:+ 3630:) 3624:b 3621:+ 3618:a 3615:( 3605:) 3602:b 3596:( 3593:+ 3590:a 3584:= 3577:) 3571:b 3568:+ 3565:a 3562:( 3545:) 3543:p 3537:) 3535:p 3529:) 3527:p 3521:) 3519:p 3512:b 3506:a 3491:, 3485:b 3482:+ 3479:a 3469:) 3467:p 3456:i 3450:r 3446:α 3440:r 3434:α 3428:r 3418:X 3411:p 3403:p 3396:p 3389:p 3384:3 3378:p 3373:2 3368:p 3359:2 3356:/ 3351:p 3341:p 3331:r 3326:) 3324:p 3317:r 3313:X 3305:) 3303:p 3296:r 3290:r 3286:X 3280:p 3273:p 3268:) 3266:p 3253:p 3249:p 3239:X 3235:X 3229:α 3222:α 3201:2 3197:x 3190:x 3187:: 3171:3 3151:z 3145:z 3138:y 3132:x 3126:y 3120:x 3106:1 3100:α 3093:α 3085:α 3075:α 3068:1 3062:α 3055:α 3046:α 3039:α 3032:1 3027:1 3020:0 3015:0 3010:0 3005:0 2997:α 2989:α 2983:1 2976:x 2969:y 2953:α 2947:1 2941:α 2934:0 2928:α 2919:1 2913:α 2905:α 2899:0 2893:α 2884:α 2876:α 2870:1 2865:0 2860:1 2853:0 2848:0 2843:0 2838:0 2833:0 2825:α 2817:α 2811:1 2806:0 2799:x 2792:y 2777:0 2772:1 2766:α 2759:α 2751:α 2742:1 2737:0 2731:α 2723:α 2716:α 2707:α 2700:α 2693:0 2688:1 2683:1 2675:α 2667:α 2661:1 2656:0 2651:0 2643:α 2635:α 2629:1 2624:0 2617:x 2610:y 2596:y 2594:/ 2592:x 2584:y 2582:⋅ 2580:x 2572:y 2568:x 2542:α 2535:α 2529:, 2526:α 2522:α 2510:α 2493:. 2490:) 2487:1 2484:+ 2481:X 2478:+ 2473:2 2469:X 2465:( 2461:/ 2457:] 2454:X 2451:[ 2448:) 2445:2 2442:( 2438:F 2435:G 2431:= 2428:) 2425:4 2422:( 2418:F 2415:G 2390:1 2387:+ 2384:X 2381:+ 2376:2 2372:X 2361:2 2337:x 2330:x 2326:x 2319:x 2315:x 2309:α 2305:α 2301:α 2294:α 2290:α 2284:α 2280:α 2264:. 2259:4 2254:F 2220:1 2216:2 2212:1 2206:X 2202:X 2198:X 2194:X 2184:k 2177:X 2173:X 2166:X 2162:X 2157:2 2152:b 2144:X 2139:2 2125:, 2122:b 2119:+ 2116:X 2113:a 2110:+ 2105:n 2101:X 2089:P 2083:P 2069:α 2067:( 2065:P 2059:n 2053:α 2046:α 2044:( 2042:P 2036:α 2031:) 2029:q 2022:X 2017:) 2015:q 2008:α 2003:) 2001:q 1986:) 1984:p 1977:P 1968:) 1966:p 1959:n 1954:) 1952:p 1946:) 1944:q 1934:q 1928:P 1923:) 1921:p 1905:) 1902:P 1899:( 1895:/ 1891:] 1888:X 1885:[ 1882:) 1879:p 1876:( 1872:F 1869:G 1865:= 1862:) 1859:q 1856:( 1852:F 1849:G 1834:n 1829:) 1827:p 1820:P 1812:) 1810:q 1802:n 1796:p 1790:p 1786:q 1767:n 1761:m 1755:X 1751:X 1745:X 1741:X 1735:n 1729:m 1724:) 1722:p 1716:) 1714:p 1695:. 1692:) 1689:a 1683:X 1680:( 1675:F 1669:a 1661:= 1658:X 1650:q 1646:X 1630:X 1626:X 1609:, 1606:x 1603:= 1598:q 1594:x 1577:q 1569:q 1550:q 1544:F 1538:X 1534:X 1528:q 1522:p 1518:q 1512:F 1506:q 1497:F 1491:q 1485:P 1479:P 1473:P 1467:P 1452:′ 1449:P 1445:P 1437:′ 1434:P 1428:P 1418:q 1412:P 1406:F 1401:) 1399:p 1383:X 1375:q 1371:X 1367:= 1364:P 1349:F 1339:p 1335:q 1294:F 1288:E 1282:E 1276:F 1270:E 1252:x 1248:x 1243:) 1241:p 1235:) 1233:p 1217:) 1214:a 1208:X 1205:( 1200:) 1197:p 1194:( 1190:F 1187:G 1180:a 1172:= 1169:X 1161:p 1157:X 1145:x 1141:x 1136:) 1134:p 1127:x 1121:p 1108:p 1103:) 1101:y 1097:x 1095:( 1082:p 1061:p 1057:y 1053:+ 1048:p 1044:x 1040:= 1035:p 1031:) 1027:y 1024:+ 1021:x 1018:( 1001:n 995:p 989:F 982:- 980:) 978:p 971:F 965:k 959:F 953:x 948:) 946:p 939:k 933:x 929:k 925:x 921:k 919:( 914:p 907:n 901:n 895:x 889:n 883:x 879:n 873:n 864:F 858:x 852:F 837:p 826:p 819:p 800:Z 796:p 792:/ 787:Z 774:p 766:p 756:p 728:q 722:X 718:X 709:q 701:) 699:q 691:q 687:F 670:q 665:F 638:q 632:p 628:q 619:p 609:p 603:p 597:k 591:p 585:p 576:q 570:q 502:p 496:k 490:p 469:p 462:p 418:e 411:t 404:v 79:) 73:( 68:) 64:( 50:. 23:.

Index

Galois extension
references
inline citations
improve
introducing
Learn how and when to remove this message
Algebraic structures
Group
Group
Semigroup
Monoid
Rack and quandle
Quasigroup and loop
Abelian group
Magma
Lie group
Group theory
Ring
Ring
Rng
Semiring
Near-ring
Commutative ring
Domain
Integral domain
Field
Division ring
Lie ring
Ring theory
Lattice

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.