Knowledge

Weight (representation theory)

Source 📝

4887: 2861: 798: 1369:. There is a subtle distinction between weights of group representations and Lie algebra representations, which is that there is a different notion of integrality condition in the two cases; see below. (The integrality condition is more restrictive in the group case, reflecting that not every representation of the Lie algebra comes from a representation of the group.) 5461:
case, the dominant integral elements live in a 60-degree sector. The notion of being dominant is not the same as being higher than zero. Note the grey area in the picture on the right is a 120-degree sector, strictly containing the 60-degree sector corresponding to the dominant integral elements.
1122: 3651: 4089: 1435: 3052:. For computations, it is convenient to choose an inner product that is invariant under the Weyl group, that is, under reflections about the hyperplanes orthogonal to the roots. We may then use this inner product to identify 3389: 684: 1256: 2176: 1766: 851: 3225: 5263:
is expressible as a linear combination of positive roots with non-negative real coefficients. This means, roughly, that "higher" means in the directions of the positive roots. We equivalently say that
1957: 3026: 939: 4704: 5816: 4575: 3946: 3553: 4135: 3325: 3391:
The angle bracket here is not an inner product, as it is not symmetric, and is linear only in the first argument. The angle bracket notation should not be confused with the inner product
514: 375: 5501: 5424: 3086: 2902: 636:/. Thus weights are primarily of interest for abelian Lie algebras, where they reduce to the simple notion of a generalized eigenvalue for space of commuting linear transformations. 2568: 5327: 5235: 5125: 4214: 3977: 3457: 3117: 2988: 2933: 2830: 2793: 2756: 2699: 2662: 2625: 2212: 4318: 4275: 3843: 3779: 2531: 3424: 3260: 2118: 2052: 5844: 5779: 5755: 5715: 5658: 5583: 5016: 4864: 4824: 4780: 4728: 4611: 4534: 4242: 4179: 3894: 3803: 3509: 3481: 3293: 3141: 3050: 2957: 1988: 1790: 1711: 1611: 1541: 1493: 1459: 1367: 1339: 1311: 1186: 1014: 963: 875: 787: 763: 735: 711: 4655: 3565: 5261: 2026: 1567: 1664: 1006: 901: 4969: 4942: 4915: 4507: 4480: 4453: 4426: 4399: 4372: 3870: 3701: 2481: 2415: 153: 5781:-module with a highest weight is necessarily a highest-weight module, but in the infinite-dimensional case, a highest weight module need not be irreducible. For each 5627: 5539: 5374: 5281: 5209: 5165: 5094: 4989: 4155: 2455: 2389: 2092: 1814: 5881: 5633: 3739: 3674: 3165: 2246: 1838: 1517: 1158: 5459: 5047: 4345: 5354: 5301: 5185: 5145: 5074: 3989: 2309: 5607: 5559: 2850: 2719: 2588: 2501: 2435: 2369: 2349: 2329: 2286: 2266: 2072: 1687: 1587: 4994:
We now introduce a partial ordering on the set of weights, which will be used to formulate the theorem of the highest weight describing the representations of
1383: 1278:(a basis of simultaneous eigenvectors) for all the represented elements of the algebra, i.e., to there being simultaneously diagonalizable matrices (see 765:. In this section, we describe the concepts needed to formulate the "theorem of the highest weight" classifying the finite-dimensional representations of 5850:(λ), but this module is infinite dimensional unless λ is dominant integral. It can be shown that each highest weight module with highest weight λ is a 3872:
in any finite-dimensional representation must be an integer. We conclude that, as stated above, the weight of any finite-dimensional representation of
789:. Notably, we will explain the notion of a "dominant integral element." The representations themselves are described in the article linked to above. 3334: 1720:
From the perspective of representation theory, the significance of the roots and root vectors is the following elementary but important result: If
1201: 6220: 6225: 2126: 1723: 808: 3173: 5886: 2864:
Algebraically integral elements (triangular lattice), dominant integral elements (black dots), and fundamental weights for sl(3,C)
1378: 685:
Representation theory of semisimple Lie algebras § Classifying finite-dimensional representations of semisimple Lie algebras
1160:) is a linear functional λ such that the corresponding weight space is nonzero. Nonzero elements of the weight space are called 1846: 2993: 906: 6195: 6169: 6146: 6105: 6069: 573:), then instead of requiring multiplicativity of a character, one requires that it maps any Lie bracket to the corresponding 6031:
together with the general result on complete reducibility of finite-dimensional representations of semisimple Lie algebras
5819: 4660: 6124: 4157:
is then algebraically integral if and only if it is an integral combination of the fundamental weights. The set of all
17: 5784: 4543: 3905: 3521: 4097: 3298: 5920: 5167:
are integral, but this assumption is not necessary to the definition we are about to introduce. We then say that
460: 321: 6041: 5516: 5468: 5391: 1461:, the space over which the representation acts is the Lie algebra itself. Then the nonzero weights are called 6053: 3055: 2871: 2536: 671:
on its Lie algebra by differentiation. (For Lie groups, this is differentiation at the identity element of
5673:(4) every dominant, algebraically integral element is the highest weight of an irreducible representation. 5306: 5214: 4886: 5099: 5050: 4188: 3980: 3951: 3431: 3091: 2962: 2907: 2798: 2761: 2724: 2667: 2630: 2593: 2181: 4283: 4247: 3808: 3744: 2506: 1117:{\displaystyle V_{\lambda }:=\{v\in V:\forall H\in {\mathfrak {h}},\quad (\sigma (H))(v)=\lambda (H)v\}} 249:. This map is also multiplicative, and sends the identity to 1; thus it is an algebra homomorphism from 6045: 5916: 3646:{\displaystyle (\lambda ,H_{\alpha })=2{\frac {(\lambda ,\alpha )}{(\alpha ,\alpha )}}\in \mathbb {Z} } 3459:. The motivation for these definitions is simple: The weights of finite-dimensional representations of 167: 86: 3394: 3233: 2097: 2031: 5825: 5760: 5736: 5696: 5639: 5564: 4997: 4845: 4805: 4761: 4709: 4592: 4515: 4223: 4160: 3875: 3784: 3490: 3462: 3269: 3122: 3031: 2938: 1969: 1771: 1692: 1592: 1522: 1474: 1440: 1348: 1320: 1292: 1167: 944: 856: 768: 744: 716: 692: 4616: 5240: 1993: 1546: 257: 186: 78: 1619: 1164:. That is to say, a weight vector is a simultaneous eigenvector for the action of the elements of 984: 884: 5891: 4947: 4920: 4893: 4867: 4485: 4458: 4431: 4404: 4377: 4350: 3848: 3679: 2460: 2394: 535: 196: 132: 66: 5612: 5524: 5359: 5266: 5194: 5150: 5079: 4974: 4140: 2440: 2374: 2077: 1799: 6215: 4084:{\displaystyle 2{\frac {(\omega _{i},\alpha _{j})}{(\alpha _{j},\alpha _{j})}}=\delta _{i,j}} 3710: 3659: 3150: 2217: 1823: 1502: 1279: 1143: 182: 159: 32: 253:
to the base field. This "generalized eigenvalue" is a prototype for the notion of a weight.
6179: 6079: 5437: 5025: 4323: 397: 276: 155: 90: 54: 40: 5339: 5286: 5170: 5130: 5059: 8: 630: 570: 179: 82: 47: 2291: 5677:
The last point is the most difficult one; the representations may be constructed using
5592: 5544: 2835: 2704: 2573: 2486: 2420: 2354: 2334: 2314: 2271: 2251: 2057: 1672: 1572: 265: 163: 2503:
maps the weight spaces to themselves. In the fundamental representation, with weights
1430:{\displaystyle \mathrm {ad} :{\mathfrak {g}}\to \operatorname {End} ({\mathfrak {g}})} 6191: 6165: 6142: 6135: 6120: 6101: 6083: 6065: 4871: 738: 223: 5670:(3) two irreducible representations with the same highest weight are isomorphic, and 675:, and the algebraic group case is an abstraction using the notion of a derivation.) 6057: 4787: 308: 678: 6175: 6161: 6075: 5851: 4182: 648: 626: 94: 5818:—not necessarily dominant or integral—there exists a unique (up to isomorphism) 5664:(1) every irreducible (finite-dimensional) representation has a highest weight, 6061: 3384:{\displaystyle \langle \lambda ,\alpha \rangle \equiv (\lambda ,H_{\alpha }).} 3295:
In addition to this inner product, it is common for an angle bracket notation
546:
to any simultaneous eigenspace, this corresponds an algebra homomorphism from
6209: 6087: 5730: 3263: 2860: 5667:(2) the highest weight is always a dominant, algebraically integral element, 241:; this functional is defined as the map which associates to each element of 5855: 5678: 261: 235: 189: 1251:{\displaystyle V=\bigoplus _{\lambda \in {\mathfrak {h}}^{*}}V_{\lambda }} 6119:, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, 6117:
Lie Groups, Lie Algebras, and Representations: An Elementary Introduction
5896: 3328: 1714: 1463: 582: 566: 416:: the eigenvalue on this common eigenspace of each element of the group. 206: 28: 5660:
is by means of a "theorem of the highest weight." The theorem says that
85:. The importance of the concept, however, stems from its application to 4706:. The reason for making this definition is that if a representation of 1275: 574: 440: 110: 106: 1136:(the representation is often referred to in short by the vector space 419:
The notion of multiplicative character can be extended to any algebra
6056:, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. 801:
Example of the weights of a representation of the Lie algebra sl(3,C)
644: 98: 3428:
We now define two different notions of integrality for elements of
2171:{\displaystyle {\mathfrak {g}}={\mathfrak {su}}_{\mathbb {C} }(2)} 1761:{\displaystyle \sigma :{\mathfrak {g}}\to \operatorname {End} (V)} 846:{\displaystyle \sigma :{\mathfrak {g}}\to \operatorname {End} (V)} 6160:, Graduate Texts in Mathematics, vol. 21, Berlin, New York: 3220:{\displaystyle H_{\alpha }=2{\frac {\alpha }{(\alpha ,\alpha )}}} 3983:. That is, the fundamental weights are defined by the condition 3144: 1140:
over which elements of the Lie algebra act rather than the map
679:
Weights in the representation theory of semisimple Lie algebras
5882:
Classifying finite-dimensional representations of Lie algebras
5634:
classifying the finite-dimensional irreducible representations
585:
this simply means that this map must vanish on Lie brackets:
1345:
is then simply a weight of the associated representation of
797: 4881: 412:, if such exists, determines a multiplicative character on 5923:, without needing to assume that they are diagonalizable. 2028:
is either the zero vector or a weight vector with weight
1952:{\displaystyle \sigma (H)(\sigma (X)(v))=(\sigma (X)(v))} 3676:. The motivation for this condition is that the coroot 3021:{\displaystyle \lambda :{\mathfrak {h}}\to \mathbb {C} } 934:{\displaystyle \lambda :{\mathfrak {h}}\to \mathbb {C} } 5434:
integer combination of the fundamental weights. In the
3511:, the weights of finite-dimensional representations of 6137:
Introduction to Lie Algebras and Representation Theory
6098:
Representations and Invariants of the Classical Groups
5887:
Representation theory of a connected compact Lie group
5689:
A representation (not necessarily finite dimensional)
5465:
The set of all λ (not necessarily integral) such that
3948:
are defined by the property that they form a basis of
6027:
This follows from (the proof of) Proposition 6.13 in
5828: 5787: 5763: 5739: 5699: 5642: 5615: 5595: 5567: 5547: 5527: 5471: 5440: 5394: 5362: 5342: 5309: 5289: 5269: 5243: 5217: 5197: 5173: 5153: 5133: 5102: 5082: 5062: 5028: 5000: 4977: 4971:, the shaded region is the set of points higher than 4950: 4923: 4896: 4848: 4808: 4764: 4712: 4663: 4619: 4595: 4546: 4518: 4509:. The weight lattice is then the triangular lattice. 4488: 4461: 4434: 4407: 4380: 4353: 4326: 4286: 4250: 4226: 4191: 4163: 4143: 4100: 3992: 3954: 3908: 3878: 3851: 3811: 3787: 3747: 3713: 3682: 3662: 3568: 3524: 3493: 3465: 3434: 3397: 3337: 3301: 3272: 3236: 3176: 3153: 3125: 3094: 3058: 3034: 2996: 2965: 2941: 2910: 2874: 2838: 2801: 2764: 2727: 2707: 2670: 2633: 2596: 2576: 2539: 2509: 2489: 2463: 2443: 2423: 2397: 2377: 2357: 2337: 2317: 2294: 2274: 2254: 2220: 2184: 2129: 2100: 2080: 2060: 2034: 1996: 1972: 1849: 1826: 1802: 1774: 1726: 1695: 1675: 1622: 1595: 1575: 1549: 1525: 1505: 1477: 1471:, and the weight vectors, which are thus elements of 1443: 1386: 1351: 1323: 1295: 1204: 1170: 1146: 1017: 987: 947: 909: 887: 859: 811: 771: 747: 719: 695: 463: 324: 135: 408:, each simultaneous eigenspace for every element of 5915:In fact, given a set of commuting matrices over an 6134: 5838: 5810: 5773: 5749: 5709: 5652: 5621: 5601: 5577: 5553: 5533: 5495: 5453: 5418: 5368: 5348: 5321: 5295: 5275: 5255: 5229: 5203: 5179: 5159: 5139: 5119: 5088: 5068: 5041: 5010: 4983: 4963: 4936: 4909: 4858: 4818: 4774: 4722: 4699:{\displaystyle (\lambda ,t)\in 2\pi i\mathbb {Z} } 4698: 4649: 4605: 4569: 4528: 4501: 4474: 4447: 4420: 4393: 4366: 4339: 4312: 4269: 4236: 4208: 4173: 4149: 4129: 4083: 3971: 3940: 3888: 3864: 3837: 3797: 3773: 3733: 3695: 3668: 3645: 3547: 3503: 3483:satisfy the first integrality condition, while if 3475: 3451: 3418: 3383: 3319: 3287: 3254: 3219: 3159: 3135: 3111: 3080: 3044: 3020: 2982: 2951: 2927: 2896: 2844: 2824: 2787: 2750: 2713: 2693: 2656: 2619: 2582: 2562: 2525: 2495: 2475: 2449: 2429: 2409: 2383: 2363: 2343: 2323: 2311:respectively. The Cartan subalgebra is spanned by 2303: 2280: 2260: 2240: 2206: 2170: 2112: 2086: 2066: 2046: 2020: 1982: 1951: 1832: 1808: 1784: 1760: 1705: 1681: 1658: 1605: 1581: 1561: 1535: 1511: 1487: 1453: 1429: 1361: 1333: 1305: 1250: 1180: 1152: 1116: 1000: 957: 933: 895: 869: 845: 781: 757: 729: 705: 508: 369: 147: 4734:, then the weights of the representation will be 1188:, with the corresponding eigenvalues given by λ. 120: 6207: 5846:-module with highest weight λ, which is denoted 5510: 4280:The figure shows the example of the Lie algebra 5811:{\displaystyle \lambda \in {\mathfrak {h}}^{*}} 5507:associated to the given set of positive roots. 4570:{\displaystyle \lambda \in {\mathfrak {h}}_{0}} 3941:{\displaystyle \omega _{1},\ldots ,\omega _{n}} 3548:{\displaystyle \lambda \in {\mathfrak {h}}_{0}} 256:The notion is closely related to the idea of a 6095: 4130:{\displaystyle \alpha _{1},\ldots \alpha _{n}} 5127:. We are mainly interested in the case where 3979:dual to the set of coroots associated to the 3320:{\displaystyle \langle \cdot ,\cdot \rangle } 1372: 1313:, every finite-dimensional representation of 792: 6040: 3350: 3338: 3314: 3302: 2351:classifies the weight spaces. The action of 1111: 1031: 4455:and should project orthogonally to half of 6155: 6132: 4830:is not simply connected, then the lattice 3515:satisfy the second integrality condition. 509:{\displaystyle \chi (ab)=\chi (a)\chi (b)} 370:{\displaystyle \chi (gh)=\chi (g)\chi (h)} 5729:that is annihilated by the action of all 5430:. Equivalently, λ is dominant if it is a 4692: 4347:root system. There are two simple roots, 4303: 3828: 3764: 3639: 3014: 2153: 1274:this corresponds to there being a common 927: 889: 6096:Goodman, Roe; Wallach, Nolan R. (1998), 5684: 5496:{\displaystyle (\lambda ,\gamma )\geq 0} 5419:{\displaystyle (\lambda ,\gamma )\geq 0} 4885: 4882:Partial ordering on the space of weights 2859: 796: 713:be a complex semisimple Lie algebra and 105:is a generalization of the notion of an 3081:{\displaystyle {\mathfrak {h}}_{0}^{*}} 2897:{\displaystyle {\mathfrak {h}}_{0}^{*}} 1195:is the direct sum of its weight spaces 14: 6208: 5872:highest weight module is irreducible. 5721:if it is generated by a weight vector 5022:is the set of roots; we now fix a set 2563:{\displaystyle V_{\pm {\frac {1}{2}}}} 881:over a field of characteristic 0, say 629:and hence descends to a weight on the 158:over the same field, each of which is 6221:Representation theory of Lie algebras 6185: 6050:Representation theory. A first course 5865:in the definition of a Verma module. 853:be a representation of a Lie algebra 651:, then a multiplicative character θ: 65:, or equivalently, a one-dimensional 6114: 6028: 6015: 6003: 5991: 5979: 5967: 5955: 5943: 5336:ordering; it can easily happen that 5322:{\displaystyle \lambda \preceq \mu } 5230:{\displaystyle \mu \succeq \lambda } 3331:, with the angle bracket defined as 1341:. A weight of the representation of 214:. Each of these common eigenvectors 6226:Representation theory of Lie groups 5861:(λ). This is just a restatement of 5831: 5797: 5766: 5742: 5702: 5645: 5570: 5120:{\displaystyle {\mathfrak {h}}_{0}} 5106: 5003: 4851: 4811: 4767: 4715: 4598: 4556: 4521: 4259: 4229: 4209:{\displaystyle {\mathfrak {h}}_{0}} 4195: 4166: 3972:{\displaystyle {\mathfrak {h}}_{0}} 3958: 3881: 3790: 3534: 3496: 3468: 3452:{\displaystyle {\mathfrak {h}}_{0}} 3438: 3128: 3112:{\displaystyle {\mathfrak {h}}_{0}} 3098: 3062: 3037: 3005: 2990:is the space of linear functionals 2983:{\displaystyle {\mathfrak {h}}^{*}} 2969: 2944: 2928:{\displaystyle {\mathfrak {h}}^{*}} 2914: 2878: 2855: 2825:{\displaystyle V_{-{\frac {1}{2}}}} 2788:{\displaystyle V_{+{\frac {1}{2}}}} 2751:{\displaystyle V_{-{\frac {1}{2}}}} 2694:{\displaystyle V_{+{\frac {1}{2}}}} 2657:{\displaystyle V_{-{\frac {1}{2}}}} 2620:{\displaystyle V_{+{\frac {1}{2}}}} 2207:{\displaystyle {\mathfrak {su}}(2)} 2190: 2187: 2146: 2143: 2132: 1975: 1777: 1735: 1698: 1598: 1528: 1480: 1446: 1419: 1400: 1354: 1326: 1298: 1225: 1173: 1057: 950: 918: 862: 820: 774: 750: 722: 698: 24: 5994:Corollary 13.8 and Corollary 13.20 5379: 4746:-integral weights is a sublattice 4536:is the Lie algebra of a Lie group 4313:{\displaystyle sl(3,\mathbb {C} )} 4270:{\displaystyle P({\mathfrak {g}})} 3838:{\displaystyle sl(2,\mathbb {C} )} 3774:{\displaystyle sl(2,\mathbb {C} )} 2852:maps each weight space to itself. 2526:{\displaystyle \pm {\frac {1}{2}}} 2248:span the algebra and have weights 2094:into the weight space with weight 2074:maps the weight space with weight 1713:. The collection of roots forms a 1499:. Explicitly, a linear functional 1391: 1388: 1046: 245:its eigenvalue on the eigenvector 77:. It is the algebra analogue of a 25: 6237: 6188:Lie Groups Beyond an Introduction 5356:is neither higher nor lower than 4512:Suppose now that the Lie algebra 4137:are the simple roots. An element 234: ) generated by the set of 4730:arises from a representation of 4401:. The first fundamental weight, 3419:{\displaystyle (\cdot ,\cdot ).} 3255:{\displaystyle (\alpha ,\beta )} 3143:. With this identification, the 2113:{\displaystyle \lambda +\alpha } 2047:{\displaystyle \lambda +\alpha } 5921:simultaneously triangularizable 5839:{\displaystyle {\mathfrak {g}}} 5774:{\displaystyle {\mathfrak {g}}} 5750:{\displaystyle {\mathfrak {g}}} 5710:{\displaystyle {\mathfrak {g}}} 5653:{\displaystyle {\mathfrak {g}}} 5578:{\displaystyle {\mathfrak {g}}} 5011:{\displaystyle {\mathfrak {g}}} 4859:{\displaystyle {\mathfrak {g}}} 4819:{\displaystyle {\mathfrak {g}}} 4775:{\displaystyle {\mathfrak {g}}} 4723:{\displaystyle {\mathfrak {g}}} 4606:{\displaystyle {\mathfrak {h}}} 4529:{\displaystyle {\mathfrak {g}}} 4237:{\displaystyle {\mathfrak {g}}} 4174:{\displaystyle {\mathfrak {g}}} 3889:{\displaystyle {\mathfrak {g}}} 3798:{\displaystyle {\mathfrak {g}}} 3504:{\displaystyle {\mathfrak {g}}} 3476:{\displaystyle {\mathfrak {g}}} 3288:{\displaystyle \alpha ,\beta .} 3136:{\displaystyle {\mathfrak {h}}} 3045:{\displaystyle {\mathfrak {h}}} 2952:{\displaystyle {\mathfrak {g}}} 2214:complexified, the root vectors 1983:{\displaystyle {\mathfrak {h}}} 1796:is a weight vector with weight 1785:{\displaystyle {\mathfrak {g}}} 1706:{\displaystyle {\mathfrak {h}}} 1606:{\displaystyle {\mathfrak {g}}} 1536:{\displaystyle {\mathfrak {h}}} 1488:{\displaystyle {\mathfrak {g}}} 1467:, the weight spaces are called 1454:{\displaystyle {\mathfrak {g}}} 1362:{\displaystyle {\mathfrak {g}}} 1334:{\displaystyle {\mathfrak {g}}} 1306:{\displaystyle {\mathfrak {g}}} 1181:{\displaystyle {\mathfrak {h}}} 1065: 958:{\displaystyle {\mathfrak {h}}} 870:{\displaystyle {\mathfrak {g}}} 782:{\displaystyle {\mathfrak {g}}} 758:{\displaystyle {\mathfrak {g}}} 730:{\displaystyle {\mathfrak {h}}} 706:{\displaystyle {\mathfrak {g}}} 87:representations of Lie algebras 6100:, Cambridge University Press, 6021: 6009: 5997: 5985: 5973: 5961: 5949: 5937: 5909: 5517:Theorem on the highest weights 5484: 5472: 5407: 5395: 4676: 4664: 4650:{\displaystyle \exp(t)=1\in G} 4632: 4626: 4307: 4293: 4264: 4254: 4056: 4030: 4025: 3999: 3832: 3818: 3768: 3754: 3629: 3617: 3612: 3600: 3588: 3569: 3410: 3398: 3375: 3356: 3249: 3237: 3211: 3199: 3010: 2457:to the weight space of weight 2437:maps a weight space of weight 2391:to the weight space of weight 2371:maps a weight space of weight 2201: 2195: 2165: 2159: 2015: 2009: 2006: 2000: 1946: 1943: 1937: 1934: 1928: 1922: 1919: 1916: 1910: 1907: 1895: 1892: 1886: 1883: 1877: 1874: 1868: 1862: 1859: 1853: 1755: 1749: 1740: 1650: 1644: 1635: 1623: 1424: 1414: 1405: 1105: 1099: 1090: 1084: 1081: 1078: 1072: 1066: 923: 840: 834: 825: 621:. Any weight on a Lie algebra 503: 497: 491: 485: 476: 467: 364: 358: 352: 346: 337: 328: 121:Motivation and general concept 13: 1: 6156:Humphreys, James E. (1972b), 6133:Humphreys, James E. (1972a), 6054:Graduate Texts in Mathematics 5930: 5511:Theorem of the highest weight 5256:{\displaystyle \mu -\lambda } 3327:to be used in discussions of 2021:{\displaystyle \sigma (X)(v)} 1562:{\displaystyle \alpha \neq 0} 554:assigning to each element of 6190:(2nd ed.), Birkhäuser, 3805:. By elementary results for 3487:is a group with Lie algebra 1659:{\displaystyle =\alpha (H)X} 1317:induces a representation of 1001:{\displaystyle V_{\lambda }} 896:{\displaystyle \mathbb {C} } 174:. Equivalently, for any set 7: 5875: 4964:{\displaystyle \alpha _{3}} 4937:{\displaystyle \alpha _{2}} 4910:{\displaystyle \alpha _{1}} 4742:semisimple, the set of all 4502:{\displaystyle \omega _{2}} 4475:{\displaystyle \gamma _{1}} 4448:{\displaystyle \gamma _{2}} 4421:{\displaystyle \omega _{1}} 4394:{\displaystyle \gamma _{2}} 4367:{\displaystyle \gamma _{1}} 4320:, whose root system is the 3896:is algebraically integral. 3865:{\displaystyle H_{\alpha }} 3703:can be identified with the 3696:{\displaystyle H_{\alpha }} 1820:is a root vector with root 1569:and there exists a nonzero 569:(which is generally not an 166:, it is always possible to 10: 6242: 6186:Knapp, Anthony W. (2002), 5946:Theorem 7.19 and Eq. (7.9) 5917:algebraically closed field 5514: 4890:If the positive roots are 4428:, should be orthogonal to 2935:generated by the roots of 2476:{\displaystyle \lambda -1} 2410:{\displaystyle \lambda +1} 1373:Action of the root vectors 1289:is group with Lie algebra 941:be a linear functional on 793:Weight of a representation 682: 168:simultaneously diagonalize 103:weight of a representation 6062:10.1007/978-1-4612-0979-9 5589:if every other weight of 5384:An integral element λ is 148:{\displaystyle n\times n} 5902: 5622:{\displaystyle \lambda } 5534:{\displaystyle \lambda } 5505:fundamental Weyl chamber 5369:{\displaystyle \lambda } 5276:{\displaystyle \lambda } 5204:{\displaystyle \lambda } 5160:{\displaystyle \lambda } 5089:{\displaystyle \lambda } 4984:{\displaystyle \lambda } 4150:{\displaystyle \lambda } 2904:be the real subspace of 2450:{\displaystyle \lambda } 2384:{\displaystyle \lambda } 2087:{\displaystyle \lambda } 1809:{\displaystyle \lambda } 258:multiplicative character 109:, and the corresponding 79:multiplicative character 6158:Linear Algebraic Groups 6115:Hall, Brian C. (2015), 5892:Highest-weight category 5426:for each positive root 4181:-integral weights is a 3734:{\displaystyle {X,Y,H}} 3669:{\displaystyle \alpha } 3160:{\displaystyle \alpha } 2241:{\displaystyle {H,X,Y}} 1833:{\displaystyle \alpha } 1768:is a representation of 1512:{\displaystyle \alpha } 1153:{\displaystyle \sigma } 170:all of the elements of 162:, and any two of which 5840: 5812: 5775: 5751: 5711: 5654: 5623: 5603: 5579: 5555: 5535: 5497: 5455: 5420: 5370: 5350: 5323: 5297: 5277: 5257: 5231: 5205: 5181: 5161: 5141: 5121: 5090: 5070: 5056:Consider two elements 5043: 5012: 4991: 4985: 4965: 4938: 4911: 4860: 4820: 4776: 4724: 4700: 4651: 4607: 4571: 4530: 4503: 4476: 4449: 4422: 4395: 4368: 4341: 4314: 4271: 4238: 4210: 4175: 4151: 4131: 4085: 3973: 3942: 3890: 3866: 3839: 3799: 3775: 3735: 3707:element in a standard 3697: 3670: 3647: 3557:algebraically integral 3549: 3505: 3477: 3453: 3420: 3385: 3321: 3289: 3256: 3221: 3161: 3137: 3113: 3082: 3046: 3022: 2984: 2953: 2929: 2898: 2865: 2846: 2826: 2789: 2752: 2715: 2695: 2658: 2621: 2584: 2564: 2527: 2497: 2477: 2451: 2431: 2411: 2385: 2365: 2345: 2325: 2305: 2282: 2262: 2242: 2208: 2172: 2114: 2088: 2068: 2054:. Thus, the action of 2048: 2022: 1984: 1953: 1834: 1810: 1786: 1762: 1707: 1683: 1660: 1607: 1583: 1563: 1537: 1513: 1489: 1455: 1431: 1379:adjoint representation 1363: 1335: 1307: 1252: 1182: 1154: 1132:of the representation 1118: 1002: 959: 935: 897: 871: 847: 802: 783: 759: 731: 707: 510: 371: 183:linear transformations 178:of mutually commuting 149: 5863:universality property 5841: 5813: 5776: 5752: 5719:highest-weight module 5712: 5685:Highest-weight module 5655: 5624: 5604: 5580: 5556: 5536: 5498: 5456: 5454:{\displaystyle A_{2}} 5421: 5371: 5351: 5324: 5298: 5278: 5258: 5232: 5206: 5182: 5162: 5142: 5122: 5091: 5071: 5044: 5042:{\displaystyle R^{+}} 5013: 4986: 4966: 4939: 4912: 4889: 4870:is isomorphic to the 4861: 4821: 4777: 4725: 4701: 4652: 4608: 4579:analytically integral 4572: 4531: 4504: 4477: 4450: 4423: 4396: 4369: 4342: 4340:{\displaystyle A_{2}} 4315: 4272: 4239: 4211: 4176: 4152: 4132: 4086: 3974: 3943: 3891: 3867: 3845:, the eigenvalues of 3840: 3800: 3776: 3736: 3698: 3671: 3648: 3550: 3506: 3478: 3454: 3421: 3386: 3322: 3290: 3257: 3222: 3162: 3147:associated to a root 3138: 3114: 3083: 3047: 3023: 2985: 2954: 2930: 2899: 2863: 2847: 2827: 2790: 2753: 2716: 2696: 2659: 2622: 2585: 2565: 2528: 2498: 2478: 2452: 2432: 2412: 2386: 2366: 2346: 2326: 2306: 2283: 2263: 2243: 2209: 2173: 2115: 2089: 2069: 2049: 2023: 1985: 1954: 1835: 1811: 1787: 1763: 1708: 1684: 1661: 1608: 1584: 1564: 1538: 1514: 1490: 1456: 1432: 1364: 1336: 1308: 1280:diagonalizable matrix 1253: 1183: 1155: 1119: 1003: 960: 936: 898: 872: 848: 800: 784: 760: 732: 708: 609:with λ() = 0 for all 511: 372: 150: 101:. In this context, a 33:representation theory 6018:Theorems 9.4 and 9.5 5826: 5785: 5761: 5757:. Every irreducible 5737: 5697: 5640: 5613: 5593: 5565: 5545: 5541:of a representation 5525: 5469: 5438: 5392: 5360: 5349:{\displaystyle \mu } 5340: 5307: 5303:, which we write as 5296:{\displaystyle \mu } 5287: 5267: 5241: 5215: 5211:, which we write as 5195: 5180:{\displaystyle \mu } 5171: 5151: 5140:{\displaystyle \mu } 5131: 5100: 5080: 5069:{\displaystyle \mu } 5060: 5026: 4998: 4975: 4948: 4921: 4894: 4846: 4806: 4762: 4710: 4661: 4617: 4593: 4544: 4516: 4486: 4482:, and similarly for 4459: 4432: 4405: 4378: 4351: 4324: 4284: 4248: 4224: 4189: 4161: 4141: 4098: 3990: 3952: 3906: 3876: 3849: 3809: 3785: 3745: 3711: 3680: 3660: 3566: 3522: 3491: 3463: 3432: 3395: 3335: 3299: 3270: 3234: 3174: 3151: 3123: 3092: 3056: 3032: 3028:, the dual space to 2994: 2963: 2939: 2908: 2872: 2836: 2799: 2762: 2725: 2705: 2668: 2631: 2594: 2574: 2537: 2507: 2487: 2483:, and the action of 2461: 2441: 2421: 2395: 2375: 2355: 2335: 2331:, and the action of 2315: 2292: 2272: 2252: 2218: 2182: 2127: 2098: 2078: 2058: 2032: 1994: 1970: 1847: 1824: 1800: 1772: 1724: 1693: 1673: 1620: 1593: 1573: 1547: 1543:is called a root if 1523: 1503: 1475: 1441: 1384: 1349: 1321: 1293: 1202: 1168: 1144: 1015: 985: 945: 907: 885: 857: 809: 769: 745: 717: 693: 461: 322: 277:multiplicative group 133: 55:algebra homomorphism 4540:. Then we say that 3901:fundamental weights 3077: 2893: 631:abelian Lie algebra 601:is a linear map λ: 571:associative algebra 210:of all elements of 5870:finite-dimensional 5836: 5808: 5771: 5747: 5707: 5650: 5619: 5599: 5575: 5551: 5531: 5493: 5451: 5416: 5366: 5346: 5319: 5293: 5273: 5253: 5227: 5201: 5177: 5157: 5137: 5117: 5086: 5066: 5039: 5008: 4992: 4981: 4961: 4934: 4907: 4856: 4838:) is smaller than 4816: 4772: 4720: 4696: 4647: 4603: 4567: 4526: 4499: 4472: 4445: 4418: 4391: 4364: 4337: 4310: 4267: 4234: 4206: 4171: 4147: 4127: 4081: 3969: 3938: 3886: 3862: 3835: 3795: 3771: 3731: 3693: 3666: 3643: 3545: 3501: 3473: 3449: 3416: 3381: 3317: 3285: 3252: 3217: 3157: 3133: 3109: 3078: 3059: 3042: 3018: 2980: 2949: 2925: 2894: 2875: 2866: 2842: 2822: 2785: 2748: 2711: 2691: 2654: 2617: 2580: 2560: 2533:and weight spaces 2523: 2493: 2473: 2447: 2427: 2417:and the action of 2407: 2381: 2361: 2341: 2321: 2304:{\displaystyle -1} 2301: 2278: 2258: 2238: 2204: 2168: 2110: 2084: 2064: 2044: 2018: 1980: 1949: 1830: 1806: 1782: 1758: 1703: 1679: 1656: 1603: 1579: 1559: 1533: 1509: 1485: 1451: 1427: 1359: 1331: 1303: 1248: 1237: 1178: 1150: 1114: 998: 955: 931: 893: 877:on a vector space 867: 843: 803: 779: 755: 727: 703: 538:on a vector space 506: 400:on a vector space 367: 226:on the subalgebra 187:finite-dimensional 145: 89:and hence also to 18:Fundamental weight 6197:978-0-8176-4259-4 6171:978-0-387-90108-4 6148:978-0-387-90053-7 6107:978-0-521-66348-9 6071:978-0-387-97495-8 5602:{\displaystyle V} 5554:{\displaystyle V} 4872:fundamental group 4060: 3633: 3215: 2845:{\displaystyle H} 2818: 2781: 2744: 2714:{\displaystyle Y} 2687: 2650: 2613: 2583:{\displaystyle X} 2556: 2521: 2496:{\displaystyle H} 2430:{\displaystyle Y} 2364:{\displaystyle X} 2344:{\displaystyle H} 2324:{\displaystyle H} 2281:{\displaystyle 1} 2261:{\displaystyle 0} 2067:{\displaystyle X} 1682:{\displaystyle H} 1582:{\displaystyle X} 1211: 739:Cartan subalgebra 659:induces a weight 593:on a Lie algebra 224:linear functional 16:(Redirected from 6233: 6200: 6182: 6151: 6140: 6129: 6110: 6091: 6032: 6025: 6019: 6013: 6007: 6001: 5995: 5989: 5983: 5982:Proposition 12.5 5977: 5971: 5970:Proposition 8.36 5965: 5959: 5953: 5947: 5941: 5924: 5913: 5845: 5843: 5842: 5837: 5835: 5834: 5817: 5815: 5814: 5809: 5807: 5806: 5801: 5800: 5780: 5778: 5777: 5772: 5770: 5769: 5756: 5754: 5753: 5748: 5746: 5745: 5716: 5714: 5713: 5708: 5706: 5705: 5659: 5657: 5656: 5651: 5649: 5648: 5628: 5626: 5625: 5620: 5608: 5606: 5605: 5600: 5584: 5582: 5581: 5576: 5574: 5573: 5560: 5558: 5557: 5552: 5540: 5538: 5537: 5532: 5503:is known as the 5502: 5500: 5499: 5494: 5460: 5458: 5457: 5452: 5450: 5449: 5425: 5423: 5422: 5417: 5375: 5373: 5372: 5367: 5355: 5353: 5352: 5347: 5328: 5326: 5325: 5320: 5302: 5300: 5299: 5294: 5283:is "lower" than 5282: 5280: 5279: 5274: 5262: 5260: 5259: 5254: 5236: 5234: 5233: 5228: 5210: 5208: 5207: 5202: 5186: 5184: 5183: 5178: 5166: 5164: 5163: 5158: 5146: 5144: 5143: 5138: 5126: 5124: 5123: 5118: 5116: 5115: 5110: 5109: 5095: 5093: 5092: 5087: 5075: 5073: 5072: 5067: 5048: 5046: 5045: 5040: 5038: 5037: 5017: 5015: 5014: 5009: 5007: 5006: 4990: 4988: 4987: 4982: 4970: 4968: 4967: 4962: 4960: 4959: 4943: 4941: 4940: 4935: 4933: 4932: 4916: 4914: 4913: 4908: 4906: 4905: 4865: 4863: 4862: 4857: 4855: 4854: 4825: 4823: 4822: 4817: 4815: 4814: 4788:simply connected 4781: 4779: 4778: 4773: 4771: 4770: 4729: 4727: 4726: 4721: 4719: 4718: 4705: 4703: 4702: 4697: 4695: 4656: 4654: 4653: 4648: 4612: 4610: 4609: 4604: 4602: 4601: 4576: 4574: 4573: 4568: 4566: 4565: 4560: 4559: 4535: 4533: 4532: 4527: 4525: 4524: 4508: 4506: 4505: 4500: 4498: 4497: 4481: 4479: 4478: 4473: 4471: 4470: 4454: 4452: 4451: 4446: 4444: 4443: 4427: 4425: 4424: 4419: 4417: 4416: 4400: 4398: 4397: 4392: 4390: 4389: 4373: 4371: 4370: 4365: 4363: 4362: 4346: 4344: 4343: 4338: 4336: 4335: 4319: 4317: 4316: 4311: 4306: 4276: 4274: 4273: 4268: 4263: 4262: 4243: 4241: 4240: 4235: 4233: 4232: 4215: 4213: 4212: 4207: 4205: 4204: 4199: 4198: 4180: 4178: 4177: 4172: 4170: 4169: 4156: 4154: 4153: 4148: 4136: 4134: 4133: 4128: 4126: 4125: 4110: 4109: 4090: 4088: 4087: 4082: 4080: 4079: 4061: 4059: 4055: 4054: 4042: 4041: 4028: 4024: 4023: 4011: 4010: 3997: 3978: 3976: 3975: 3970: 3968: 3967: 3962: 3961: 3947: 3945: 3944: 3939: 3937: 3936: 3918: 3917: 3895: 3893: 3892: 3887: 3885: 3884: 3871: 3869: 3868: 3863: 3861: 3860: 3844: 3842: 3841: 3836: 3831: 3804: 3802: 3801: 3796: 3794: 3793: 3780: 3778: 3777: 3772: 3767: 3740: 3738: 3737: 3732: 3730: 3702: 3700: 3699: 3694: 3692: 3691: 3675: 3673: 3672: 3667: 3652: 3650: 3649: 3644: 3642: 3634: 3632: 3615: 3598: 3587: 3586: 3554: 3552: 3551: 3546: 3544: 3543: 3538: 3537: 3510: 3508: 3507: 3502: 3500: 3499: 3482: 3480: 3479: 3474: 3472: 3471: 3458: 3456: 3455: 3450: 3448: 3447: 3442: 3441: 3425: 3423: 3422: 3417: 3390: 3388: 3387: 3382: 3374: 3373: 3326: 3324: 3323: 3318: 3294: 3292: 3291: 3286: 3261: 3259: 3258: 3253: 3226: 3224: 3223: 3218: 3216: 3214: 3194: 3186: 3185: 3166: 3164: 3163: 3158: 3142: 3140: 3139: 3134: 3132: 3131: 3118: 3116: 3115: 3110: 3108: 3107: 3102: 3101: 3088:with a subspace 3087: 3085: 3084: 3079: 3076: 3071: 3066: 3065: 3051: 3049: 3048: 3043: 3041: 3040: 3027: 3025: 3024: 3019: 3017: 3009: 3008: 2989: 2987: 2986: 2981: 2979: 2978: 2973: 2972: 2958: 2956: 2955: 2950: 2948: 2947: 2934: 2932: 2931: 2926: 2924: 2923: 2918: 2917: 2903: 2901: 2900: 2895: 2892: 2887: 2882: 2881: 2856:Integral element 2851: 2849: 2848: 2843: 2831: 2829: 2828: 2823: 2821: 2820: 2819: 2811: 2794: 2792: 2791: 2786: 2784: 2783: 2782: 2774: 2757: 2755: 2754: 2749: 2747: 2746: 2745: 2737: 2720: 2718: 2717: 2712: 2700: 2698: 2697: 2692: 2690: 2689: 2688: 2680: 2663: 2661: 2660: 2655: 2653: 2652: 2651: 2643: 2626: 2624: 2623: 2618: 2616: 2615: 2614: 2606: 2589: 2587: 2586: 2581: 2569: 2567: 2566: 2561: 2559: 2558: 2557: 2549: 2532: 2530: 2529: 2524: 2522: 2514: 2502: 2500: 2499: 2494: 2482: 2480: 2479: 2474: 2456: 2454: 2453: 2448: 2436: 2434: 2433: 2428: 2416: 2414: 2413: 2408: 2390: 2388: 2387: 2382: 2370: 2368: 2367: 2362: 2350: 2348: 2347: 2342: 2330: 2328: 2327: 2322: 2310: 2308: 2307: 2302: 2287: 2285: 2284: 2279: 2267: 2265: 2264: 2259: 2247: 2245: 2244: 2239: 2237: 2213: 2211: 2210: 2205: 2194: 2193: 2177: 2175: 2174: 2169: 2158: 2157: 2156: 2150: 2149: 2136: 2135: 2123:For example, if 2119: 2117: 2116: 2111: 2093: 2091: 2090: 2085: 2073: 2071: 2070: 2065: 2053: 2051: 2050: 2045: 2027: 2025: 2024: 2019: 1989: 1987: 1986: 1981: 1979: 1978: 1958: 1956: 1955: 1950: 1839: 1837: 1836: 1831: 1815: 1813: 1812: 1807: 1791: 1789: 1788: 1783: 1781: 1780: 1767: 1765: 1764: 1759: 1739: 1738: 1712: 1710: 1709: 1704: 1702: 1701: 1688: 1686: 1685: 1680: 1665: 1663: 1662: 1657: 1612: 1610: 1609: 1604: 1602: 1601: 1588: 1586: 1585: 1580: 1568: 1566: 1565: 1560: 1542: 1540: 1539: 1534: 1532: 1531: 1518: 1516: 1515: 1510: 1494: 1492: 1491: 1486: 1484: 1483: 1460: 1458: 1457: 1452: 1450: 1449: 1436: 1434: 1433: 1428: 1423: 1422: 1404: 1403: 1394: 1368: 1366: 1365: 1360: 1358: 1357: 1340: 1338: 1337: 1332: 1330: 1329: 1312: 1310: 1309: 1304: 1302: 1301: 1271: 1270: 1257: 1255: 1254: 1249: 1247: 1246: 1236: 1235: 1234: 1229: 1228: 1187: 1185: 1184: 1179: 1177: 1176: 1159: 1157: 1156: 1151: 1123: 1121: 1120: 1115: 1061: 1060: 1027: 1026: 1007: 1005: 1004: 999: 997: 996: 981:is the subspace 971: 970: 964: 962: 961: 956: 954: 953: 940: 938: 937: 932: 930: 922: 921: 902: 900: 899: 894: 892: 876: 874: 873: 868: 866: 865: 852: 850: 849: 844: 824: 823: 788: 786: 785: 780: 778: 777: 764: 762: 761: 756: 754: 753: 736: 734: 733: 728: 726: 725: 712: 710: 709: 704: 702: 701: 625:vanishes on the 558:its eigenvalue. 531:. If an algebra 515: 513: 512: 507: 376: 374: 373: 368: 309:identity element 154: 152: 151: 146: 21: 6241: 6240: 6236: 6235: 6234: 6232: 6231: 6230: 6206: 6205: 6204: 6198: 6172: 6162:Springer-Verlag 6149: 6127: 6108: 6072: 6042:Fulton, William 6036: 6035: 6026: 6022: 6014: 6010: 6006:Definition 8.39 6002: 5998: 5990: 5986: 5978: 5974: 5966: 5962: 5958:Proposition 9.2 5954: 5950: 5942: 5938: 5933: 5928: 5927: 5914: 5910: 5905: 5878: 5830: 5829: 5827: 5824: 5823: 5822:highest-weight 5802: 5796: 5795: 5794: 5786: 5783: 5782: 5765: 5764: 5762: 5759: 5758: 5741: 5740: 5738: 5735: 5734: 5701: 5700: 5698: 5695: 5694: 5687: 5644: 5643: 5641: 5638: 5637: 5614: 5611: 5610: 5594: 5591: 5590: 5569: 5568: 5566: 5563: 5562: 5546: 5543: 5542: 5526: 5523: 5522: 5519: 5513: 5470: 5467: 5466: 5445: 5441: 5439: 5436: 5435: 5393: 5390: 5389: 5382: 5380:Dominant weight 5361: 5358: 5357: 5341: 5338: 5337: 5332:This is only a 5308: 5305: 5304: 5288: 5285: 5284: 5268: 5265: 5264: 5242: 5239: 5238: 5216: 5213: 5212: 5196: 5193: 5192: 5172: 5169: 5168: 5152: 5149: 5148: 5132: 5129: 5128: 5111: 5105: 5104: 5103: 5101: 5098: 5097: 5081: 5078: 5077: 5061: 5058: 5057: 5033: 5029: 5027: 5024: 5023: 5002: 5001: 4999: 4996: 4995: 4976: 4973: 4972: 4955: 4951: 4949: 4946: 4945: 4928: 4924: 4922: 4919: 4918: 4901: 4897: 4895: 4892: 4891: 4884: 4850: 4849: 4847: 4844: 4843: 4810: 4809: 4807: 4804: 4803: 4766: 4765: 4763: 4760: 4759: 4738:-integral. For 4714: 4713: 4711: 4708: 4707: 4691: 4662: 4659: 4658: 4618: 4615: 4614: 4597: 4596: 4594: 4591: 4590: 4561: 4555: 4554: 4553: 4545: 4542: 4541: 4520: 4519: 4517: 4514: 4513: 4493: 4489: 4487: 4484: 4483: 4466: 4462: 4460: 4457: 4456: 4439: 4435: 4433: 4430: 4429: 4412: 4408: 4406: 4403: 4402: 4385: 4381: 4379: 4376: 4375: 4358: 4354: 4352: 4349: 4348: 4331: 4327: 4325: 4322: 4321: 4302: 4285: 4282: 4281: 4258: 4257: 4249: 4246: 4245: 4228: 4227: 4225: 4222: 4221: 4200: 4194: 4193: 4192: 4190: 4187: 4186: 4165: 4164: 4162: 4159: 4158: 4142: 4139: 4138: 4121: 4117: 4105: 4101: 4099: 4096: 4095: 4069: 4065: 4050: 4046: 4037: 4033: 4029: 4019: 4015: 4006: 4002: 3998: 3996: 3991: 3988: 3987: 3963: 3957: 3956: 3955: 3953: 3950: 3949: 3932: 3928: 3913: 3909: 3907: 3904: 3903: 3880: 3879: 3877: 3874: 3873: 3856: 3852: 3850: 3847: 3846: 3827: 3810: 3807: 3806: 3789: 3788: 3786: 3783: 3782: 3781:-subalgebra of 3763: 3746: 3743: 3742: 3714: 3712: 3709: 3708: 3687: 3683: 3681: 3678: 3677: 3661: 3658: 3657: 3638: 3616: 3599: 3597: 3582: 3578: 3567: 3564: 3563: 3539: 3533: 3532: 3531: 3523: 3520: 3519: 3495: 3494: 3492: 3489: 3488: 3467: 3466: 3464: 3461: 3460: 3443: 3437: 3436: 3435: 3433: 3430: 3429: 3396: 3393: 3392: 3369: 3365: 3336: 3333: 3332: 3300: 3297: 3296: 3271: 3268: 3267: 3235: 3232: 3231: 3198: 3193: 3181: 3177: 3175: 3172: 3171: 3152: 3149: 3148: 3127: 3126: 3124: 3121: 3120: 3103: 3097: 3096: 3095: 3093: 3090: 3089: 3072: 3067: 3061: 3060: 3057: 3054: 3053: 3036: 3035: 3033: 3030: 3029: 3013: 3004: 3003: 2995: 2992: 2991: 2974: 2968: 2967: 2966: 2964: 2961: 2960: 2943: 2942: 2940: 2937: 2936: 2919: 2913: 2912: 2911: 2909: 2906: 2905: 2888: 2883: 2877: 2876: 2873: 2870: 2869: 2858: 2837: 2834: 2833: 2810: 2806: 2802: 2800: 2797: 2796: 2773: 2769: 2765: 2763: 2760: 2759: 2736: 2732: 2728: 2726: 2723: 2722: 2706: 2703: 2702: 2679: 2675: 2671: 2669: 2666: 2665: 2642: 2638: 2634: 2632: 2629: 2628: 2605: 2601: 2597: 2595: 2592: 2591: 2575: 2572: 2571: 2548: 2544: 2540: 2538: 2535: 2534: 2513: 2508: 2505: 2504: 2488: 2485: 2484: 2462: 2459: 2458: 2442: 2439: 2438: 2422: 2419: 2418: 2396: 2393: 2392: 2376: 2373: 2372: 2356: 2353: 2352: 2336: 2333: 2332: 2316: 2313: 2312: 2293: 2290: 2289: 2273: 2270: 2269: 2253: 2250: 2249: 2221: 2219: 2216: 2215: 2186: 2185: 2183: 2180: 2179: 2152: 2151: 2142: 2141: 2140: 2131: 2130: 2128: 2125: 2124: 2099: 2096: 2095: 2079: 2076: 2075: 2059: 2056: 2055: 2033: 2030: 2029: 1995: 1992: 1991: 1974: 1973: 1971: 1968: 1967: 1848: 1845: 1844: 1825: 1822: 1821: 1801: 1798: 1797: 1776: 1775: 1773: 1770: 1769: 1734: 1733: 1725: 1722: 1721: 1697: 1696: 1694: 1691: 1690: 1674: 1671: 1670: 1621: 1618: 1617: 1597: 1596: 1594: 1591: 1590: 1574: 1571: 1570: 1548: 1545: 1544: 1527: 1526: 1524: 1521: 1520: 1504: 1501: 1500: 1479: 1478: 1476: 1473: 1472: 1445: 1444: 1442: 1439: 1438: 1418: 1417: 1399: 1398: 1387: 1385: 1382: 1381: 1375: 1353: 1352: 1350: 1347: 1346: 1325: 1324: 1322: 1319: 1318: 1297: 1296: 1294: 1291: 1290: 1268: 1267: 1242: 1238: 1230: 1224: 1223: 1222: 1215: 1203: 1200: 1199: 1172: 1171: 1169: 1166: 1165: 1145: 1142: 1141: 1056: 1055: 1022: 1018: 1016: 1013: 1012: 992: 988: 986: 983: 982: 968: 967: 949: 948: 946: 943: 942: 926: 917: 916: 908: 905: 904: 888: 886: 883: 882: 861: 860: 858: 855: 854: 819: 818: 810: 807: 806: 795: 773: 772: 770: 767: 766: 749: 748: 746: 743: 742: 721: 720: 718: 715: 714: 697: 696: 694: 691: 690: 687: 681: 649:algebraic group 627:derived algebra 462: 459: 458: 427:, by replacing 323: 320: 319: 195:there exists a 134: 131: 130: 123: 91:representations 23: 22: 15: 12: 11: 5: 6239: 6229: 6228: 6223: 6218: 6203: 6202: 6196: 6183: 6170: 6153: 6147: 6141:, Birkhäuser, 6130: 6126:978-3319134666 6125: 6112: 6106: 6093: 6070: 6037: 6034: 6033: 6020: 6008: 5996: 5984: 5972: 5960: 5948: 5935: 5934: 5932: 5929: 5926: 5925: 5907: 5906: 5904: 5901: 5900: 5899: 5894: 5889: 5884: 5877: 5874: 5833: 5805: 5799: 5793: 5790: 5768: 5744: 5704: 5686: 5683: 5675: 5674: 5671: 5668: 5665: 5647: 5618: 5609:is lower than 5598: 5587:highest weight 5572: 5550: 5530: 5515:Main article: 5512: 5509: 5492: 5489: 5486: 5483: 5480: 5477: 5474: 5448: 5444: 5415: 5412: 5409: 5406: 5403: 5400: 5397: 5381: 5378: 5365: 5345: 5318: 5315: 5312: 5292: 5272: 5252: 5249: 5246: 5226: 5223: 5220: 5200: 5176: 5156: 5136: 5114: 5108: 5085: 5065: 5051:positive roots 5036: 5032: 5018:. Recall that 5005: 4980: 4958: 4954: 4931: 4927: 4904: 4900: 4883: 4880: 4853: 4813: 4769: 4717: 4694: 4690: 4687: 4684: 4681: 4678: 4675: 4672: 4669: 4666: 4646: 4643: 4640: 4637: 4634: 4631: 4628: 4625: 4622: 4600: 4585:) if for each 4564: 4558: 4552: 4549: 4523: 4496: 4492: 4469: 4465: 4442: 4438: 4415: 4411: 4388: 4384: 4361: 4357: 4334: 4330: 4309: 4305: 4301: 4298: 4295: 4292: 4289: 4266: 4261: 4256: 4253: 4231: 4218:weight lattice 4203: 4197: 4168: 4146: 4124: 4120: 4116: 4113: 4108: 4104: 4092: 4091: 4078: 4075: 4072: 4068: 4064: 4058: 4053: 4049: 4045: 4040: 4036: 4032: 4027: 4022: 4018: 4014: 4009: 4005: 4001: 3995: 3966: 3960: 3935: 3931: 3927: 3924: 3921: 3916: 3912: 3883: 3859: 3855: 3834: 3830: 3826: 3823: 3820: 3817: 3814: 3792: 3770: 3766: 3762: 3759: 3756: 3753: 3750: 3729: 3726: 3723: 3720: 3717: 3690: 3686: 3665: 3656:for all roots 3654: 3653: 3641: 3637: 3631: 3628: 3625: 3622: 3619: 3614: 3611: 3608: 3605: 3602: 3596: 3593: 3590: 3585: 3581: 3577: 3574: 3571: 3542: 3536: 3530: 3527: 3498: 3470: 3446: 3440: 3415: 3412: 3409: 3406: 3403: 3400: 3380: 3377: 3372: 3368: 3364: 3361: 3358: 3355: 3352: 3349: 3346: 3343: 3340: 3316: 3313: 3310: 3307: 3304: 3284: 3281: 3278: 3275: 3251: 3248: 3245: 3242: 3239: 3228: 3227: 3213: 3210: 3207: 3204: 3201: 3197: 3192: 3189: 3184: 3180: 3156: 3130: 3106: 3100: 3075: 3070: 3064: 3039: 3016: 3012: 3007: 3002: 2999: 2977: 2971: 2946: 2922: 2916: 2891: 2886: 2880: 2857: 2854: 2841: 2817: 2814: 2809: 2805: 2780: 2777: 2772: 2768: 2743: 2740: 2735: 2731: 2710: 2686: 2683: 2678: 2674: 2649: 2646: 2641: 2637: 2612: 2609: 2604: 2600: 2579: 2555: 2552: 2547: 2543: 2520: 2517: 2512: 2492: 2472: 2469: 2466: 2446: 2426: 2406: 2403: 2400: 2380: 2360: 2340: 2320: 2300: 2297: 2277: 2257: 2236: 2233: 2230: 2227: 2224: 2203: 2200: 2197: 2192: 2189: 2167: 2164: 2161: 2155: 2148: 2145: 2139: 2134: 2109: 2106: 2103: 2083: 2063: 2043: 2040: 2037: 2017: 2014: 2011: 2008: 2005: 2002: 1999: 1977: 1960: 1959: 1948: 1945: 1942: 1939: 1936: 1933: 1930: 1927: 1924: 1921: 1918: 1915: 1912: 1909: 1906: 1903: 1900: 1897: 1894: 1891: 1888: 1885: 1882: 1879: 1876: 1873: 1870: 1867: 1864: 1861: 1858: 1855: 1852: 1829: 1805: 1779: 1757: 1754: 1751: 1748: 1745: 1742: 1737: 1732: 1729: 1700: 1678: 1667: 1666: 1655: 1652: 1649: 1646: 1643: 1640: 1637: 1634: 1631: 1628: 1625: 1600: 1578: 1558: 1555: 1552: 1530: 1508: 1482: 1448: 1426: 1421: 1416: 1413: 1410: 1407: 1402: 1397: 1393: 1390: 1374: 1371: 1356: 1328: 1300: 1259: 1258: 1245: 1241: 1233: 1227: 1221: 1218: 1214: 1210: 1207: 1175: 1162:weight vectors 1149: 1126: 1125: 1113: 1110: 1107: 1104: 1101: 1098: 1095: 1092: 1089: 1086: 1083: 1080: 1077: 1074: 1071: 1068: 1064: 1059: 1054: 1051: 1048: 1045: 1042: 1039: 1036: 1033: 1030: 1025: 1021: 995: 991: 952: 929: 925: 920: 915: 912: 891: 864: 842: 839: 836: 833: 830: 827: 822: 817: 814: 794: 791: 776: 752: 724: 700: 680: 677: 517: 516: 505: 502: 499: 496: 493: 490: 487: 484: 481: 478: 475: 472: 469: 466: 391: 390: 366: 363: 360: 357: 354: 351: 348: 345: 342: 339: 336: 333: 330: 327: 203:consisting of 160:diagonalizable 144: 141: 138: 122: 119: 67:representation 9: 6: 4: 3: 2: 6238: 6227: 6224: 6222: 6219: 6217: 6214: 6213: 6211: 6199: 6193: 6189: 6184: 6181: 6177: 6173: 6167: 6163: 6159: 6154: 6150: 6144: 6139: 6138: 6131: 6128: 6122: 6118: 6113: 6109: 6103: 6099: 6094: 6089: 6085: 6081: 6077: 6073: 6067: 6063: 6059: 6055: 6051: 6047: 6043: 6039: 6038: 6030: 6024: 6017: 6012: 6005: 6000: 5993: 5988: 5981: 5976: 5969: 5964: 5957: 5952: 5945: 5940: 5936: 5922: 5918: 5912: 5908: 5898: 5895: 5893: 5890: 5888: 5885: 5883: 5880: 5879: 5873: 5871: 5866: 5864: 5860: 5857: 5853: 5849: 5821: 5803: 5791: 5788: 5732: 5731:positive root 5728: 5724: 5720: 5692: 5682: 5680: 5679:Verma modules 5672: 5669: 5666: 5663: 5662: 5661: 5635: 5630: 5616: 5596: 5588: 5548: 5528: 5518: 5508: 5506: 5490: 5487: 5481: 5478: 5475: 5463: 5446: 5442: 5433: 5429: 5413: 5410: 5404: 5401: 5398: 5387: 5377: 5363: 5343: 5335: 5330: 5316: 5313: 5310: 5290: 5270: 5250: 5247: 5244: 5224: 5221: 5218: 5198: 5190: 5174: 5154: 5134: 5112: 5083: 5063: 5054: 5052: 5034: 5030: 5021: 4978: 4956: 4952: 4929: 4925: 4902: 4898: 4888: 4879: 4877: 4873: 4869: 4841: 4837: 4833: 4829: 4801: 4797: 4793: 4789: 4785: 4757: 4753: 4749: 4745: 4741: 4737: 4733: 4688: 4685: 4682: 4679: 4673: 4670: 4667: 4644: 4641: 4638: 4635: 4629: 4623: 4620: 4588: 4584: 4580: 4562: 4550: 4547: 4539: 4510: 4494: 4490: 4467: 4463: 4440: 4436: 4413: 4409: 4386: 4382: 4359: 4355: 4332: 4328: 4299: 4296: 4290: 4287: 4278: 4251: 4244:, denoted by 4219: 4201: 4184: 4144: 4122: 4118: 4114: 4111: 4106: 4102: 4076: 4073: 4070: 4066: 4062: 4051: 4047: 4043: 4038: 4034: 4020: 4016: 4012: 4007: 4003: 3993: 3986: 3985: 3984: 3982: 3964: 3933: 3929: 3925: 3922: 3919: 3914: 3910: 3902: 3897: 3857: 3853: 3824: 3821: 3815: 3812: 3760: 3757: 3751: 3748: 3741:basis for an 3727: 3724: 3721: 3718: 3715: 3706: 3688: 3684: 3663: 3635: 3626: 3623: 3620: 3609: 3606: 3603: 3594: 3591: 3583: 3579: 3575: 3572: 3562: 3561: 3560: 3558: 3540: 3528: 3525: 3516: 3514: 3486: 3444: 3426: 3413: 3407: 3404: 3401: 3378: 3370: 3366: 3362: 3359: 3353: 3347: 3344: 3341: 3330: 3311: 3308: 3305: 3282: 3279: 3276: 3273: 3265: 3264:inner product 3246: 3243: 3240: 3208: 3205: 3202: 3195: 3190: 3187: 3182: 3178: 3170: 3169: 3168: 3167:is given as 3154: 3146: 3104: 3073: 3068: 3000: 2997: 2975: 2920: 2889: 2884: 2862: 2853: 2839: 2815: 2812: 2807: 2803: 2778: 2775: 2770: 2766: 2741: 2738: 2733: 2729: 2708: 2684: 2681: 2676: 2672: 2647: 2644: 2639: 2635: 2610: 2607: 2602: 2598: 2577: 2553: 2550: 2545: 2541: 2518: 2515: 2510: 2490: 2470: 2467: 2464: 2444: 2424: 2404: 2401: 2398: 2378: 2358: 2338: 2318: 2298: 2295: 2275: 2255: 2234: 2231: 2228: 2225: 2222: 2198: 2162: 2137: 2121: 2107: 2104: 2101: 2081: 2061: 2041: 2038: 2035: 2012: 2003: 1997: 1965: 1940: 1931: 1925: 1913: 1904: 1901: 1898: 1889: 1880: 1871: 1865: 1856: 1850: 1843: 1842: 1841: 1827: 1819: 1803: 1795: 1752: 1746: 1743: 1730: 1727: 1718: 1716: 1676: 1653: 1647: 1641: 1638: 1632: 1629: 1626: 1616: 1615: 1614: 1576: 1556: 1553: 1550: 1506: 1498: 1495:, are called 1470: 1466: 1465: 1411: 1408: 1395: 1380: 1370: 1344: 1316: 1288: 1283: 1281: 1277: 1273: 1269:weight module 1264: 1243: 1239: 1231: 1219: 1216: 1212: 1208: 1205: 1198: 1197: 1196: 1194: 1189: 1163: 1147: 1139: 1135: 1131: 1108: 1102: 1096: 1093: 1087: 1075: 1069: 1062: 1052: 1049: 1043: 1040: 1037: 1034: 1028: 1023: 1019: 1011: 1010: 1009: 993: 989: 980: 976: 972: 913: 910: 880: 837: 831: 828: 815: 812: 799: 790: 740: 686: 676: 674: 670: 666: 662: 658: 654: 650: 646: 642: 637: 635: 632: 628: 624: 620: 616: 612: 608: 604: 600: 597:over a field 596: 592: 588: 584: 580: 576: 572: 568: 564: 559: 557: 553: 549: 545: 541: 537: 534: 530: 526: 522: 500: 494: 488: 482: 479: 473: 470: 464: 457: 456: 455: 453: 449: 445: 442: 438: 434: 430: 426: 422: 417: 415: 411: 407: 403: 399: 396: 388: 384: 380: 361: 355: 349: 343: 340: 334: 331: 325: 318: 317: 316: 314: 310: 306: 303:) = 1 (where 302: 298: 294: 290: 286: 282: 278: 274: 271:from a group 270: 267: 264:, which is a 263: 259: 254: 252: 248: 244: 240: 237: 236:endomorphisms 233: 229: 225: 221: 217: 213: 209: 208: 205:simultaneous 202: 198: 194: 191: 188: 184: 181: 177: 173: 169: 165: 161: 157: 142: 139: 136: 128: 118: 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 49: 45: 42: 38: 34: 30: 19: 6216:Lie algebras 6187: 6157: 6136: 6116: 6097: 6049: 6023: 6011: 5999: 5987: 5975: 5963: 5951: 5939: 5911: 5869: 5867: 5862: 5858: 5856:Verma module 5847: 5726: 5722: 5718: 5690: 5688: 5676: 5631: 5586: 5585:is called a 5520: 5504: 5464: 5432:non-negative 5431: 5427: 5385: 5383: 5333: 5331: 5188: 5055: 5019: 4993: 4875: 4866:) and their 4839: 4835: 4831: 4827: 4799: 4795: 4791: 4783: 4755: 4751: 4747: 4743: 4739: 4735: 4731: 4586: 4582: 4578: 4537: 4511: 4279: 4217: 4093: 3981:simple roots 3900: 3898: 3704: 3655: 3556: 3517: 3512: 3484: 3427: 3329:root systems 3262:denotes the 3229: 2867: 2758:to zero and 2627:to zero and 2122: 1963: 1961: 1817: 1793: 1719: 1668: 1497:root vectors 1496: 1468: 1462: 1376: 1342: 1314: 1286: 1284: 1266: 1265:is called a 1262: 1260: 1192: 1190: 1161: 1137: 1133: 1129: 1127: 978: 977:with weight 974: 969:weight space 966: 878: 804: 688: 672: 668: 664: 660: 656: 652: 640: 638: 633: 622: 618: 614: 610: 606: 602: 598: 594: 590: 586: 578: 577:; but since 562: 560: 555: 551: 547: 543: 539: 532: 528: 524: 520: 518: 451: 447: 443: 436: 432: 428: 424: 420: 418: 413: 409: 405: 401: 394: 392: 386: 382: 378: 312: 304: 300: 296: 292: 288: 284: 280: 272: 268: 266:homomorphism 262:group theory 255: 250: 246: 242: 238: 231: 227: 219: 215: 211: 207:eigenvectors 204: 200: 192: 190:vector space 175: 171: 126: 125:Given a set 124: 115:weight space 114: 113:is called a 102: 74: 70: 62: 58: 50: 43: 36: 29:mathematical 26: 6046:Harris, Joe 5919:, they are 5897:Root system 5632:The theory 4216:called the 3518:An element 3266:of vectors 1990:. That is, 1715:root system 1469:root spaces 965:. Then the 583:commutative 567:Lie algebra 393:Indeed, if 279:of a field 6210:Categories 5931:References 5733:spaces in 5717:is called 4613:such that 4583:G-integral 1613:such that 1276:eigenbasis 903:, and let 683:See also: 589:() = 0. A 575:commutator 441:linear map 295:satisfies 222:defines a 180:semisimple 111:eigenspace 107:eigenvalue 99:Lie groups 6088:246650103 6029:Hall 2015 6016:Hall 2015 6004:Hall 2015 5992:Hall 2015 5980:Hall 2015 5968:Hall 2015 5956:Hall 2015 5944:Hall 2015 5804:∗ 5792:∈ 5789:λ 5617:λ 5529:λ 5521:A weight 5488:≥ 5482:γ 5476:λ 5411:≥ 5405:γ 5399:λ 5364:λ 5344:μ 5317:μ 5314:⪯ 5311:λ 5291:μ 5271:λ 5251:λ 5248:− 5245:μ 5225:λ 5222:⪰ 5219:μ 5199:λ 5175:μ 5155:λ 5135:μ 5084:λ 5064:μ 4979:λ 4953:α 4926:α 4899:α 4686:π 4680:∈ 4668:λ 4642:∈ 4624:⁡ 4551:∈ 4548:λ 4491:ω 4464:γ 4437:γ 4410:ω 4383:γ 4356:γ 4145:λ 4119:α 4115:… 4103:α 4067:δ 4048:α 4035:α 4017:α 4004:ω 3930:ω 3923:… 3911:ω 3858:α 3689:α 3664:α 3636:∈ 3627:α 3621:α 3610:α 3604:λ 3584:α 3573:λ 3529:∈ 3526:λ 3408:⋅ 3402:⋅ 3371:α 3360:λ 3354:≡ 3351:⟩ 3348:α 3342:λ 3339:⟨ 3315:⟩ 3312:⋅ 3306:⋅ 3303:⟨ 3280:β 3274:α 3247:β 3241:α 3209:α 3203:α 3196:α 3183:α 3155:α 3074:∗ 3011:→ 2998:λ 2976:∗ 2921:∗ 2890:∗ 2808:− 2734:− 2640:− 2546:± 2511:± 2468:− 2465:λ 2445:λ 2399:λ 2379:λ 2296:− 2108:α 2102:λ 2082:λ 2042:α 2036:λ 1998:σ 1926:σ 1905:α 1899:λ 1866:σ 1851:σ 1828:α 1804:λ 1747:⁡ 1741:→ 1728:σ 1642:α 1554:≠ 1551:α 1507:α 1412:⁡ 1406:→ 1244:λ 1232:∗ 1220:∈ 1217:λ 1213:⨁ 1148:σ 1097:λ 1070:σ 1053:∈ 1047:∀ 1038:∈ 1024:λ 1008:given by 994:λ 924:→ 911:λ 832:⁡ 826:→ 813:σ 645:Lie group 495:χ 483:χ 465:χ 356:χ 344:χ 326:χ 140:× 95:algebraic 31:field of 6048:(1991). 5876:See also 5852:quotient 5386:dominant 4868:quotient 4657:we have 2959:, where 2701:, while 1962:for all 1669:for all 1377:For the 519:for all 377:for all 156:matrices 6180:0396773 6080:1153249 5854:of the 5334:partial 4790:, then 4183:lattice 4094:where 1840:, then 307:is the 283:. Thus 275:to the 230:of End( 164:commute 46:over a 41:algebra 27:In the 6194:  6178:  6168:  6145:  6123:  6104:  6086:  6078:  6068:  5868:Every 5820:simple 5189:higher 4944:, and 4826:). If 4782:). If 3230:where 3145:coroot 2832:, and 2288:, and 1130:weight 663:= dθ: 647:or an 591:weight 454:with: 315:) and 53:is an 39:of an 37:weight 5903:Notes 5237:, if 5191:than 2721:maps 2590:maps 2178:, or 1464:roots 1261:then 643:is a 565:is a 542:over 439:by a 423:over 404:over 197:basis 185:of a 83:group 81:of a 73:over 57:from 48:field 6192:ISBN 6166:ISBN 6143:ISBN 6121:ISBN 6102:ISBN 6084:OCLC 6066:ISBN 5147:and 5096:of 5076:and 4798:) = 4754:) ⊂ 4374:and 4220:for 3899:The 2868:Let 1816:and 1437:of 805:Let 689:Let 536:acts 398:acts 97:and 35:, a 6058:doi 5693:of 5636:of 5561:of 5388:if 5187:is 5049:of 4874:of 4786:is 4621:exp 4589:in 4577:is 4185:in 3559:if 3555:is 3119:of 2795:to 2664:to 1966:in 1744:End 1689:in 1589:in 1519:on 1409:End 1285:If 1282:). 1191:If 973:of 829:End 741:of 639:If 617:in 581:is 561:If 550:to 527:in 385:in 311:of 260:in 199:of 129:of 93:of 69:of 61:to 6212:: 6176:MR 6174:, 6164:, 6082:. 6076:MR 6074:. 6064:. 6052:. 6044:; 5725:∈ 5681:. 5629:. 5376:. 5329:. 5053:. 4917:, 4878:. 4277:. 2570:, 2268:, 2120:. 1792:, 1717:. 1128:A 1029::= 737:a 667:→ 655:→ 613:, 605:→ 523:, 450:→ 446:: 435:→ 431:: 381:, 291:→ 287:: 218:∈ 117:. 6201:. 6152:. 6111:. 6092:. 6090:. 6060:: 5859:M 5848:L 5832:g 5798:h 5767:g 5743:g 5727:V 5723:v 5703:g 5691:V 5646:g 5597:V 5571:g 5549:V 5491:0 5485:) 5479:, 5473:( 5447:2 5443:A 5428:γ 5414:0 5408:) 5402:, 5396:( 5113:0 5107:h 5035:+ 5031:R 5020:R 5004:g 4957:3 4930:2 4903:1 4876:G 4852:g 4842:( 4840:P 4836:G 4834:( 4832:P 4828:G 4812:g 4802:( 4800:P 4796:G 4794:( 4792:P 4784:G 4768:g 4758:( 4756:P 4752:G 4750:( 4748:P 4744:G 4740:G 4736:G 4732:G 4716:g 4693:Z 4689:i 4683:2 4677:) 4674:t 4671:, 4665:( 4645:G 4639:1 4636:= 4633:) 4630:t 4627:( 4599:h 4587:t 4581:( 4563:0 4557:h 4538:G 4522:g 4495:2 4468:1 4441:2 4414:1 4387:2 4360:1 4333:2 4329:A 4308:) 4304:C 4300:, 4297:3 4294:( 4291:l 4288:s 4265:) 4260:g 4255:( 4252:P 4230:g 4202:0 4196:h 4167:g 4123:n 4112:, 4107:1 4077:j 4074:, 4071:i 4063:= 4057:) 4052:j 4044:, 4039:j 4031:( 4026:) 4021:j 4013:, 4008:i 4000:( 3994:2 3965:0 3959:h 3934:n 3926:, 3920:, 3915:1 3882:g 3854:H 3833:) 3829:C 3825:, 3822:2 3819:( 3816:l 3813:s 3791:g 3769:) 3765:C 3761:, 3758:2 3755:( 3752:l 3749:s 3728:H 3725:, 3722:Y 3719:, 3716:X 3705:H 3685:H 3640:Z 3630:) 3624:, 3618:( 3613:) 3607:, 3601:( 3595:2 3592:= 3589:) 3580:H 3576:, 3570:( 3541:0 3535:h 3513:G 3497:g 3485:G 3469:g 3445:0 3439:h 3414:. 3411:) 3405:, 3399:( 3379:. 3376:) 3367:H 3363:, 3357:( 3345:, 3309:, 3283:. 3277:, 3250:) 3244:, 3238:( 3212:) 3206:, 3200:( 3191:2 3188:= 3179:H 3129:h 3105:0 3099:h 3069:0 3063:h 3038:h 3015:C 3006:h 3001:: 2970:h 2945:g 2915:h 2885:0 2879:h 2840:H 2816:2 2813:1 2804:V 2779:2 2776:1 2771:+ 2767:V 2742:2 2739:1 2730:V 2709:Y 2685:2 2682:1 2677:+ 2673:V 2648:2 2645:1 2636:V 2611:2 2608:1 2603:+ 2599:V 2578:X 2554:2 2551:1 2542:V 2519:2 2516:1 2491:H 2471:1 2425:Y 2405:1 2402:+ 2359:X 2339:H 2319:H 2299:1 2276:1 2256:0 2235:Y 2232:, 2229:X 2226:, 2223:H 2202:) 2199:2 2196:( 2191:u 2188:s 2166:) 2163:2 2160:( 2154:C 2147:u 2144:s 2138:= 2133:g 2105:+ 2062:X 2039:+ 2016:) 2013:v 2010:( 2007:) 2004:X 2001:( 1976:h 1964:H 1947:) 1944:) 1941:v 1938:( 1935:) 1932:X 1929:( 1923:( 1920:] 1917:) 1914:H 1911:( 1908:) 1902:+ 1896:( 1893:[ 1890:= 1887:) 1884:) 1881:v 1878:( 1875:) 1872:X 1869:( 1863:( 1860:) 1857:H 1854:( 1818:X 1794:v 1778:g 1756:) 1753:V 1750:( 1736:g 1731:: 1699:h 1677:H 1654:X 1651:) 1648:H 1645:( 1639:= 1636:] 1633:X 1630:, 1627:H 1624:[ 1599:g 1577:X 1557:0 1529:h 1481:g 1447:g 1425:) 1420:g 1415:( 1401:g 1396:: 1392:d 1389:a 1355:g 1343:G 1327:g 1315:G 1299:g 1287:G 1272:; 1263:V 1240:V 1226:h 1209:= 1206:V 1193:V 1174:h 1138:V 1134:V 1124:. 1112:} 1109:v 1106:) 1103:H 1100:( 1094:= 1091:) 1088:v 1085:( 1082:) 1079:) 1076:H 1073:( 1067:( 1063:, 1058:h 1050:H 1044:: 1041:V 1035:v 1032:{ 1020:V 990:V 979:λ 975:V 951:h 928:C 919:h 914:: 890:C 879:V 863:g 841:) 838:V 835:( 821:g 816:: 775:g 751:g 723:h 699:g 673:G 669:F 665:g 661:χ 657:F 653:G 641:G 634:g 623:g 619:g 615:y 611:x 607:F 603:g 599:F 595:g 587:χ 579:F 563:A 556:A 552:F 548:A 544:F 540:V 533:A 529:A 525:b 521:a 504:) 501:b 498:( 492:) 489:a 486:( 480:= 477:) 474:b 471:a 468:( 452:F 448:A 444:χ 437:F 433:G 429:χ 425:F 421:A 414:G 410:G 406:F 402:V 395:G 389:. 387:G 383:h 379:g 365:) 362:h 359:( 353:) 350:g 347:( 341:= 338:) 335:h 332:g 329:( 313:G 305:e 301:e 299:( 297:χ 293:F 289:G 285:χ 281:F 273:G 269:χ 251:U 247:v 243:U 239:S 232:V 228:U 220:V 216:v 212:S 201:V 193:V 176:S 172:S 143:n 137:n 127:S 75:F 71:A 63:F 59:A 51:F 44:A 20:)

Index

Fundamental weight
mathematical
representation theory
algebra
field
algebra homomorphism
representation
multiplicative character
group
representations of Lie algebras
representations
algebraic
Lie groups
eigenvalue
eigenspace
matrices
diagonalizable
commute
simultaneously diagonalize
semisimple
linear transformations
finite-dimensional
vector space
basis
eigenvectors
linear functional
endomorphisms
multiplicative character
group theory
homomorphism

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.