Knowledge

Effective fitness

Source đź“ť

318:, an effective fitness function tries to encompass things that are needed to be fulfilled for survival on population level. In homogeneous populations, reproductive fitness and effective fitness are equal. When a population moves away from homogeneity a higher effective fitness is reached for the recessive genotype. This advantage will decrease while the population moves toward an equilibrium. The deviation from this equilibrium displays how close the population is to achieving a steady state.  When this equilibrium is reached, the maximum effective fitness of the population is achieved. 1045: 376:
Models using a combination of Darwinian fitness functions and effective functions are better at predicting population trends. Effective models could be used to determine therapeutic outcomes of disease treatment. Other models could determine effective protein engineering and works towards finding
372:
When evolutionary equations of the studied population dynamics are available, one can algorithmically compute the effective fitness of a given population. Though the perfect effective fitness model is yet to be found, it is already known to be a good framework to the better understanding of the
363:
in which the objective of the agents is unknown. In the case of bacteria effective fitness could include production of toxins and rate of mutation of different plasmids, which are mostly stochastically determined
343:
The effective fitness model is superior to its predecessor, the standard reproductive fitness model. It advances in the qualitatively and quantitatively understanding of evolutionary concepts like bloat,
340:
The effective fitness function models the number of fit offspring and is used in calculations that include evolutionary processes, such as mutation and crossover, important on the population level.
359:
fits to a problem, while an effective fitness function is an assumption if the objective was reached. The difference is important for designing fitness functions with algorithms like
352:. While reproductive fitness only looks at pure selection, effective fitness describes the flow of a population and natural selection by taking genetic operators into account. 292: 262: 314:
Effective fitness is used in Evolutionary Computation to understand population dynamics. While a biological fitness function only looks at
1086: 520:
Stephens CR, Vargas JM (2000). "Effective Fitness as an Alternative Paradigm for Evolutionary Computation I: General Formalism".
85: 559:. Proceedings of the 11th annual conference companion on Genetic and evolutionary computation conference - GECCO 09. ACM Press. 221: 835:
Woolley BF, Stanley KO (2012). "Exploring promising stepping stones by combining novelty search with interactive evolution".
255: 464:"Effects of stochasticity and division of labor in toxin production on two-strain bacterial competition in Escherichia coli" 90: 438: 168: 1105: 248: 115: 23: 50: 148: 582:. Proceedings of 18th International Conference on Soft Computing MENDEL 2012. Vol. 2012. pp. 58–63. 304: 201: 178: 158: 120: 856:
Lehman J, Stanley KO (2010-09-24). "Abandoning objectives: evolution through the search for novelty alone".
1079: 308: 216: 163: 296: 226: 95: 970:"On simplified global nonlinear function for fitness landscape: a case study of inverse protein folding" 763:. Proceedings of the 8th annual conference on Genetic and evolutionary computation GECCO 06. ACM Press. 325:
is realized with a cost function. If cost functions are applied to swarm optimization they are called a
206: 153: 105: 792:
Lehman J, Stanley KO (2011). "Abandoning objectives: evolution through the search for novelty alone".
745: 597:. Proceedings of the 2015 on Genetic and Evolutionary Computation Conference - GECCO 15. ACM Press. 1110: 769: 322: 284: 70: 557:
A series of failed and partially successful fitness functions for evolving spiking neural networks
1072: 727:
Fernandez AC (2017). "Creating a fitness function that is the right fit for the problem at hand".
764: 373:
moving of the genotype-phenotype map, population dynamics, and the flow on fitness landscapes.
349: 60: 40: 31: 732: 580:
Optimization with auxiliary criteria using evolutionary algorithms and reinforcement learning
211: 173: 1060: 981: 922: 681: 315: 8: 192: 125: 80: 985: 926: 685: 1004: 969: 945: 912: 900: 881: 836: 817: 704: 669: 648: 537: 490: 463: 444: 416: 345: 75: 55: 413:
Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)
1009: 950: 873: 809: 709: 495: 434: 360: 334: 330: 288: 139: 100: 885: 821: 448: 999: 989: 940: 930: 865: 801: 774: 699: 689: 629: 598: 560: 541: 529: 485: 475: 426: 356: 326: 236: 130: 994: 935: 694: 480: 280: 45: 1030: 329:. Strategies like reinforcement learning and NEAT neuroevolution are creating a 1056: 411:
Stephens CR (1999). ""Effective" fitness landscapes for evolutionary systems".
110: 533: 1099: 898: 595:
The Effect of Fitness Function Design on Performance in Evolutionary Robotics
183: 778: 602: 564: 430: 1013: 954: 877: 813: 761:
Fitness function for finding out robust solutions on time-varying functions
713: 633: 499: 378: 899:
Mahdipour-Shirayeh A, Kaveh K, Kohandel M, Sivaloganathan S (2017-10-30).
1044: 869: 805: 653: 617: 462:
von Bronk B, Schaffer SA, Götz A, Opitz M (May 2017). Balaban N (ed.).
1052: 670:"φ-evo: A program to evolve phenotypic models of biological networks" 421: 276: 917: 841: 231: 461: 901:"Phenotypic heterogeneity in modeling cancer evolution" 554: 592: 667: 577: 1097: 615: 834: 519: 1080: 855: 791: 256: 967: 333:which describes the reproductive success of 668:Henry A, Hemery M, François P (June 2018). 555:Schaffer JD, Sichtig HM, Laramee C (2009). 16:Reproductive success given genetic mutation 1087: 1073: 522:Genetic Programming and Evolvable Machines 263: 249: 1003: 993: 968:Xu Y, Hu C, Dai Y, Liang J (2014-08-11). 944: 934: 916: 840: 768: 726: 703: 693: 652: 489: 479: 420: 410: 647:Bagnoli F (1998). "Cellular automata". 646: 1098: 758: 1039: 800:(2). MIT Press - Journals: 189–223. 628:(4–5). Informa UK Limited: 389–431. 593:Divband Soorati M, Hamann H (2015). 515: 513: 511: 509: 406: 404: 402: 400: 398: 396: 394: 91:Evolutionary multimodal optimization 13: 1031:Foundations of Genetic Programming 618:"Landscapes and Effective Fitness" 14: 1122: 1024: 578:Afanasyeva A, Buzdalov M (2012). 506: 391: 1043: 616:Stadler PF, Stephens CR (2003). 116:Promoter based genetic algorithm 961: 892: 849: 828: 785: 752: 720: 622:Comments on Theoretical Biology 367: 279:and artificial evolution (e.g. 51:Cellular evolutionary algorithm 661: 640: 609: 586: 571: 548: 455: 1: 384: 202:Cartesian genetic programming 121:Spiral optimization algorithm 1059:. You can help Knowledge by 995:10.1371/journal.pone.0104403 936:10.1371/journal.pone.0187000 695:10.1371/journal.pcbi.1006244 481:10.1371/journal.pbio.2001457 217:Multi expression programming 7: 96:Particle swarm optimization 10: 1127: 1038: 674:PLOS Computational Biology 207:Linear genetic programming 154:Clonal selection algorithm 106:Natural evolution strategy 303:which takes into account 858:Evolutionary Computation 794:Evolutionary Computation 323:evolutionary computation 299:is rescaled to give its 285:evolutionary computation 71:Evolutionary computation 1106:Evolutionary algorithms 779:10.1145/1143997.1144186 603:10.1145/2739480.2754676 565:10.1145/1570256.1570378 534:10.1023/A:1010017207202 431:10.1109/CEC.1999.782002 350:evolutionary robustness 1055:-related article is a 740:Cite journal requires 634:10.1080/08948550302439 61:Differential evolution 41:Artificial development 32:Evolutionary algorithm 321:Problem solving with 212:Grammatical evolution 174:Genetic fuzzy systems 870:10.1162/EVCO_a_00025 806:10.1162/evco_a_00025 415:. pp. 703–714. 377:novel or heightened 316:reproductive success 986:2014PLoSO...9j4403X 927:2017PLoSO..1287000M 686:2018PLSCB..14E6244H 291:(or performance or 222:Genetic Improvement 193:Genetic programming 126:Self-modifying code 81:Gaussian adaptation 76:Evolution strategy 56:Cultural algorithm 1068: 1067: 335:cellular automata 331:fitness landscape 301:effective fitness 293:objective measure 277:natural evolution 273: 272: 140:Genetic algorithm 101:Memetic algorithm 86:Grammar induction 66:Effective fitness 1118: 1089: 1082: 1075: 1047: 1040: 1018: 1017: 1007: 997: 965: 959: 958: 948: 938: 920: 911:(10): e0187000. 896: 890: 889: 853: 847: 846: 844: 832: 826: 825: 789: 783: 782: 772: 759:Handa H (2006). 756: 750: 749: 743: 738: 736: 728: 724: 718: 717: 707: 697: 665: 659: 658: 656: 654:cond-mat/9810012 644: 638: 637: 613: 607: 606: 590: 584: 583: 575: 569: 568: 552: 546: 545: 517: 504: 503: 493: 483: 459: 453: 452: 424: 408: 357:fitness function 327:fitness function 265: 258: 251: 237:Parity benchmark 131:Polymorphic code 19: 18: 1126: 1125: 1121: 1120: 1119: 1117: 1116: 1115: 1111:Evolution stubs 1096: 1095: 1094: 1093: 1036: 1027: 1022: 1021: 966: 962: 897: 893: 854: 850: 833: 829: 790: 786: 757: 753: 741: 739: 730: 729: 725: 721: 680:(6): e1006244. 666: 662: 645: 641: 614: 610: 591: 587: 576: 572: 553: 549: 518: 507: 474:(5): e2001457. 460: 456: 441: 409: 392: 387: 370: 346:self-adaptation 281:artificial life 269: 46:Artificial life 17: 12: 11: 5: 1124: 1114: 1113: 1108: 1092: 1091: 1084: 1077: 1069: 1066: 1065: 1048: 1034: 1033: 1026: 1025:External links 1023: 1020: 1019: 980:(8): e104403. 960: 891: 864:(2): 189–223. 848: 827: 784: 770:10.1.1.421.930 751: 742:|journal= 719: 660: 639: 608: 585: 570: 547: 528:(4): 363–378. 505: 454: 439: 389: 388: 386: 383: 369: 366: 361:novelty search 271: 270: 268: 267: 260: 253: 245: 242: 241: 240: 239: 234: 229: 224: 219: 214: 209: 204: 196: 195: 189: 188: 187: 186: 181: 176: 171: 169:Genetic memory 166: 161: 156: 151: 143: 142: 136: 135: 134: 133: 128: 123: 118: 113: 111:Neuroevolution 108: 103: 98: 93: 88: 83: 78: 73: 68: 63: 58: 53: 48: 43: 35: 34: 28: 27: 15: 9: 6: 4: 3: 2: 1123: 1112: 1109: 1107: 1104: 1103: 1101: 1090: 1085: 1083: 1078: 1076: 1071: 1070: 1064: 1062: 1058: 1054: 1049: 1046: 1042: 1041: 1037: 1032: 1029: 1028: 1015: 1011: 1006: 1001: 996: 991: 987: 983: 979: 975: 971: 964: 956: 952: 947: 942: 937: 932: 928: 924: 919: 914: 910: 906: 902: 895: 887: 883: 879: 875: 871: 867: 863: 859: 852: 843: 838: 831: 823: 819: 815: 811: 807: 803: 799: 795: 788: 780: 776: 771: 766: 762: 755: 747: 734: 723: 715: 711: 706: 701: 696: 691: 687: 683: 679: 675: 671: 664: 655: 650: 643: 635: 631: 627: 623: 619: 612: 604: 600: 596: 589: 581: 574: 566: 562: 558: 551: 543: 539: 535: 531: 527: 523: 516: 514: 512: 510: 501: 497: 492: 487: 482: 477: 473: 469: 465: 458: 450: 446: 442: 440:0-7803-5536-9 436: 432: 428: 423: 418: 414: 407: 405: 403: 401: 399: 397: 395: 390: 382: 380: 374: 365: 362: 358: 353: 351: 347: 341: 338: 336: 332: 328: 324: 319: 317: 312: 310: 306: 302: 298: 294: 290: 286: 282: 278: 266: 261: 259: 254: 252: 247: 246: 244: 243: 238: 235: 233: 230: 228: 225: 223: 220: 218: 215: 213: 210: 208: 205: 203: 200: 199: 198: 197: 194: 191: 190: 185: 184:Fly algorithm 182: 180: 177: 175: 172: 170: 167: 165: 162: 160: 157: 155: 152: 150: 147: 146: 145: 144: 141: 138: 137: 132: 129: 127: 124: 122: 119: 117: 114: 112: 109: 107: 104: 102: 99: 97: 94: 92: 89: 87: 84: 82: 79: 77: 74: 72: 69: 67: 64: 62: 59: 57: 54: 52: 49: 47: 44: 42: 39: 38: 37: 36: 33: 30: 29: 25: 21: 20: 1061:expanding it 1050: 1035: 977: 973: 963: 908: 904: 894: 861: 857: 851: 830: 797: 793: 787: 760: 754: 733:cite journal 722: 677: 673: 663: 642: 625: 621: 611: 594: 588: 579: 573: 556: 550: 525: 521: 471: 468:PLOS Biology 467: 457: 422:nlin/0006050 412: 379:biochemistry 375: 371: 368:Applications 354: 342: 339: 320: 313: 300: 274: 65: 1100:Categories 918:1610.08163 385:References 149:Chromosome 1053:evolution 842:1207.6682 765:CiteSeerX 355:A normal 305:crossover 179:Selection 159:Crossover 1014:25110986 974:PLOS ONE 955:29084232 905:PLOS ONE 886:12129661 878:20868264 822:12129661 814:20868264 714:29889886 500:28459803 449:10062119 309:mutation 164:Mutation 24:a series 22:Part of 1005:4128808 982:Bibcode 946:5662227 923:Bibcode 705:6013240 682:Bibcode 542:1511583 491:5411026 295:) of a 289:fitness 287:) the 232:Eurisko 1012:  1002:  953:  943:  884:  876:  820:  812:  767:  712:  702:  540:  498:  488:  447:  437:  348:, and 297:schema 227:Schema 26:on the 1051:This 913:arXiv 882:S2CID 837:arXiv 818:S2CID 649:arXiv 538:S2CID 445:S2CID 417:arXiv 1057:stub 1010:PMID 951:PMID 874:PMID 810:PMID 746:help 710:PMID 496:PMID 435:ISBN 307:and 283:and 1000:PMC 990:doi 941:PMC 931:doi 866:doi 802:doi 775:doi 700:PMC 690:doi 630:doi 599:doi 561:doi 530:doi 486:PMC 476:doi 427:doi 275:In 1102:: 1008:. 998:. 988:. 976:. 972:. 949:. 939:. 929:. 921:. 909:12 907:. 903:. 880:. 872:. 862:19 860:. 816:. 808:. 798:19 796:. 773:. 737:: 735:}} 731:{{ 708:. 698:. 688:. 678:14 676:. 672:. 624:. 620:. 536:. 524:. 508:^ 494:. 484:. 472:15 470:. 466:. 443:. 433:. 425:. 393:^ 381:. 337:. 311:. 1088:e 1081:t 1074:v 1063:. 1016:. 992:: 984:: 978:9 957:. 933:: 925:: 915:: 888:. 868:: 845:. 839:: 824:. 804:: 781:. 777:: 748:) 744:( 716:. 692:: 684:: 657:. 651:: 636:. 632:: 626:8 605:. 601:: 567:. 563:: 544:. 532:: 526:1 502:. 478:: 451:. 429:: 419:: 264:e 257:t 250:v

Index

a series
Evolutionary algorithm
Artificial development
Artificial life
Cellular evolutionary algorithm
Cultural algorithm
Differential evolution
Effective fitness
Evolutionary computation
Evolution strategy
Gaussian adaptation
Grammar induction
Evolutionary multimodal optimization
Particle swarm optimization
Memetic algorithm
Natural evolution strategy
Neuroevolution
Promoter based genetic algorithm
Spiral optimization algorithm
Self-modifying code
Polymorphic code
Genetic algorithm
Chromosome
Clonal selection algorithm
Crossover
Mutation
Genetic memory
Genetic fuzzy systems
Selection
Fly algorithm

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑