Knowledge

Characteristic subgroup

Source 📝

1233: 834:
Similarly, while being strictly characteristic (distinguished) is not transitive, it is true that every fully characteristic subgroup of a strictly characteristic subgroup is strictly characteristic.
434: 918:
Every subgroup that is fully characteristic is certainly strictly characteristic and characteristic; but a characteristic or even strictly characteristic subgroup need not be fully characteristic.
1018: 311:
and a characteristic subgroup is invariant under all automorphisms, every characteristic subgroup is normal. However, not every normal subgroup is characteristic. Here are several examples:
960: 1351: 1297: 1262: 1179: 1143: 1099: 722: 562:
2, all of which are normal. One of these is the cyclic subgroup, which is characteristic. The other two subgroups are dihedral; these are permuted by an
1188: 925:
is always a strictly characteristic subgroup, but it is not always fully characteristic. For example, the finite group of order 12,
355:, are both normal, but neither is characteristic. In particular, neither of these subgroups is invariant under the automorphism, 534:
of order 8, each of the cyclic subgroups of order 4 is normal, but none of these are characteristic. However, the subgroup,
395: 806:
Moreover, while normality is not transitive, it is true that every characteristic subgroup of a normal subgroup is normal.
666:
Every group has itself (the improper subgroup) and the trivial subgroup as two of its fully characteristic subgroups. The
982: 1531: 1506: 1481: 1445: 1473: 602:, surjectivity of an endomorphism implies injectivity, so a surjective endomorphism is an automorphism; thus being 1412: 930: 1469: 1043: 1553: 440:, every subgroup is normal; but every permutation of the 3 non-identity elements is an automorphism of 1327: 1273: 1238: 1155: 1119: 1075: 563: 328: 639: 1353:, is not contained in the center, so here the center is not a fully characteristic subgroup of 48: 1437: 59:; though the converse is not guaranteed. Examples of characteristic subgroups include the 8: 738: 667: 559: 60: 44: 1396: 52: 1527: 1502: 1477: 1441: 1400: 922: 389: 64: 1380: 1376: 531: 385: 24: 1103: 1047: 1035: 718: 710: 279: 267: 56: 548: 202: 1547: 1384: 437: 1107: 599: 595: 40: 28: 729:, the converse also holds: every fully characteristic subgroup is verbal. 20: 1027:
The relationship amongst these subgroup properties can be expressed as:
1461: 1264:
onto the indicated subgroup. Then the composition of the projection of
726: 714: 592: 16:
Subgroup mapped to itself under every automorphism of the parent group
1031: 36: 1228:{\displaystyle f:\mathbb {Z} _{2}<\rightarrow {\text{S}}_{3}} 737:
The property of being characteristic or fully characteristic is
1379:(or commutator subgroup) of a group is a verbal subgroup. The 538:, is characteristic, since it is the only subgroup of order 2. 446:, so the 3 subgroups of order 2 are not characteristic. Here 1522:
Magnus, Wilhelm; Karrass, Abraham; Solitar, Donald (2004).
566:
of the parent group, and are therefore not characteristic.
278:
that is invariant under all inner automorphisms is called
1102:(the group of order 12 that is the direct product of the 129:
It would be equivalent to require the stronger condition
713:, which is the image of a fully invariant subgroup of a 429:{\displaystyle \mathbb {Z} _{2}\times \mathbb {Z} _{2}} 670:
of a group is always a fully characteristic subgroup.
1330: 1276: 1241: 1191: 1158: 1122: 1078: 985: 933: 398: 1521: 1367:
Every subgroup of a cyclic group is characteristic.
610:. This is not the case anymore for infinite groups. 570: 1345: 1291: 1256: 1227: 1173: 1137: 1093: 1013:{\displaystyle 1\times \mathbb {Z} /2\mathbb {Z} } 1012: 954: 428: 1318:as its first factor, provides an endomorphism of 1545: 613: 1024:, which meets the center only in the identity. 1432:Dummit, David S.; Foote, Richard M. (2004). 1431: 955:{\displaystyle \mathbb {Z} /2\mathbb {Z} } 717:under a homomorphism. More generally, any 1333: 1279: 1244: 1200: 1161: 1125: 1081: 1006: 993: 948: 935: 416: 401: 771:is a (fully) characteristic subgroup of 759:is a (fully) characteristic subgroup of 747:is a (fully) characteristic subgroup of 721:is always fully characteristic. For any 1546: 1496: 1403:is always a characteristic subgroup. 1390: 1324:under which the image of the center, 1042:⇐ Strictly characteristic subgroup ⇐ 871:is not necessarily characteristic in 1460: 1370: 378:For a concrete example of this, let 1152:, contains subgroups isomorphic to 1116:is isomorphic to its second factor 618:For an even stronger constraint, a 256: 180: 55:, every characteristic subgroup is 13: 704: 261: 39:that is mapped to itself by every 14: 1565: 1058: 1362: 1346:{\displaystyle \mathbb {Z} _{2}} 1292:{\displaystyle \mathbb {Z} _{2}} 1257:{\displaystyle \mathbb {Z} _{2}} 1174:{\displaystyle \mathbb {Z} _{2}} 1138:{\displaystyle \mathbb {Z} _{2}} 1094:{\displaystyle \mathbb {Z} _{2}} 579:strictly characteristic subgroup 571:Strictly characteristic subgroup 375:, that switches the two factors. 1413:Characteristically simple group 1387:is a fully invariant subgroup. 1305:, followed by the inclusion of 913: 732: 709:An even stronger constraint is 478:and consider the automorphism, 321:be a nontrivial group, and let 282:; also, an invariant subgroup. 201:induces an automorphism of the 1515: 1490: 1454: 1425: 1145:. Note that the first factor, 837:However, unlike normality, if 725:, and, in particular, for any 210:, which yields a homomorphism 166:implies the reverse inclusion 23:, particularly in the area of 1: 1470:Graduate Texts in Mathematics 1418: 1044:Fully characteristic subgroup 620:fully characteristic subgroup 614:Fully characteristic subgroup 70: 963:, has a homomorphism taking 642:under every endomorphism of 7: 1406: 1110:of order 2). The center of 1053: 679:induces an endomorphism of 626:; cf. invariant subgroup), 591:, which is invariant under 10: 1570: 1524:Combinatorial Group Theory 979:, which takes the center, 265: 91:if for every automorphism 1526:. Dover. pp. 74–85. 1501:. Dover. pp. 45–46. 1235:be the morphism mapping 624:fully invariant subgroup 436:). Since this group is 195:, every automorphism of 1270:onto its second factor 1040:Characteristic subgroup 638:, is a group remaining 604:strictly characteristic 392:to the direct product, 341:. Then the subgroups, 241:of a given index, then 143:for every automorphism 89:characteristic subgroup 33:characteristic subgroup 1347: 1293: 1258: 1229: 1175: 1139: 1095: 1014: 956: 673:Every endomorphism of 587:distinguished subgroup 430: 235:has a unique subgroup 1438:John Wiley & Sons 1348: 1294: 1259: 1230: 1176: 1140: 1096: 1020:, into a subgroup of 1015: 957: 685:, which yields a map 431: 247:is characteristic in 1497:Scott, W.R. (1987). 1328: 1274: 1239: 1189: 1156: 1120: 1076: 983: 931: 521:is not contained in 396: 1554:Subgroup properties 1063:Consider the group 668:commutator subgroup 558:has 3 subgroups of 61:commutator subgroup 1397:identity component 1391:Topological groups 1343: 1289: 1254: 1225: 1171: 1135: 1091: 1010: 952: 865:, then in general 723:reduced free group 564:outer automorphism 426: 53:inner automorphism 1401:topological group 1371:Subgroup functors 1217: 1106:of order 6 and a 923:center of a group 853:is a subgroup of 606:is equivalent to 65:center of a group 47:. Because every 1561: 1538: 1537: 1519: 1513: 1512: 1494: 1488: 1487: 1458: 1452: 1451: 1436:(3rd ed.). 1434:Abstract Algebra 1429: 1381:torsion subgroup 1377:derived subgroup 1358: 1352: 1350: 1349: 1344: 1342: 1341: 1336: 1323: 1317: 1311: 1304: 1298: 1296: 1295: 1290: 1288: 1287: 1282: 1269: 1263: 1261: 1260: 1255: 1253: 1252: 1247: 1234: 1232: 1231: 1226: 1224: 1223: 1218: 1215: 1209: 1208: 1203: 1184: 1180: 1178: 1177: 1172: 1170: 1169: 1164: 1151: 1144: 1142: 1141: 1136: 1134: 1133: 1128: 1115: 1101: 1100: 1098: 1097: 1092: 1090: 1089: 1084: 1023: 1019: 1017: 1016: 1011: 1009: 1001: 996: 978: 974: 962: 961: 959: 958: 953: 951: 943: 938: 909: 876: 870: 864: 858: 852: 846: 830: 801: 776: 770: 764: 758: 752: 746: 700: 684: 678: 661: 647: 637: 631: 589: 588: 581: 580: 557: 546: 537: 532:quaternion group 526: 520: 512: 477: 465: 445: 435: 433: 432: 427: 425: 424: 419: 410: 409: 404: 386:Klein four-group 383: 374: 354: 347: 340: 326: 320: 310: 295: 277: 257:Related concepts 252: 246: 240: 234: 225: 209: 200: 194: 181:Basic properties 176: 165: 154: 148: 142: 136: 124: 113: 102: 96: 86: 80: 25:abstract algebra 1569: 1568: 1564: 1563: 1562: 1560: 1559: 1558: 1544: 1543: 1542: 1541: 1534: 1520: 1516: 1509: 1495: 1491: 1484: 1459: 1455: 1448: 1430: 1426: 1421: 1409: 1393: 1373: 1365: 1354: 1337: 1332: 1331: 1329: 1326: 1325: 1319: 1313: 1310: 1306: 1300: 1283: 1278: 1277: 1275: 1272: 1271: 1265: 1248: 1243: 1242: 1240: 1237: 1236: 1219: 1214: 1213: 1204: 1199: 1198: 1190: 1187: 1186: 1182: 1181:, for instance 1165: 1160: 1159: 1157: 1154: 1153: 1150: 1146: 1129: 1124: 1123: 1121: 1118: 1117: 1111: 1104:symmetric group 1085: 1080: 1079: 1077: 1074: 1073: 1071: 1064: 1061: 1056: 1048:Verbal subgroup 1036:Normal subgroup 1021: 1005: 997: 992: 984: 981: 980: 976: 964: 947: 939: 934: 932: 929: 928: 926: 916: 881: 872: 866: 860: 854: 848: 838: 810: 781: 772: 766: 760: 754: 748: 742: 735: 719:verbal subgroup 711:verbal subgroup 707: 705:Verbal subgroup 686: 680: 674: 652: 643: 633: 627: 616: 586: 585: 578: 577: 573: 552: 542: 535: 522: 514: 479: 467: 447: 441: 420: 415: 414: 405: 400: 399: 397: 394: 393: 379: 356: 349: 342: 332: 322: 316: 300: 286: 273: 270: 268:Normal subgroup 264: 262:Normal subgroup 259: 248: 242: 236: 230: 211: 205: 196: 186: 183: 167: 156: 150: 144: 138: 130: 116: 104: 98: 92: 82: 76: 73: 49:conjugation map 17: 12: 11: 5: 1567: 1557: 1556: 1540: 1539: 1532: 1514: 1507: 1489: 1482: 1453: 1446: 1423: 1422: 1420: 1417: 1416: 1415: 1408: 1405: 1392: 1389: 1372: 1369: 1364: 1361: 1340: 1335: 1308: 1299:, followed by 1286: 1281: 1251: 1246: 1222: 1212: 1207: 1202: 1197: 1194: 1168: 1163: 1148: 1132: 1127: 1088: 1083: 1069: 1060: 1059:Finite example 1057: 1055: 1052: 1051: 1050: 1008: 1004: 1000: 995: 991: 988: 950: 946: 942: 937: 915: 912: 911: 910: 832: 831: 804: 803: 734: 731: 706: 703: 664: 663: 615: 612: 608:characteristic 572: 569: 568: 567: 549:dihedral group 539: 528: 423: 418: 413: 408: 403: 376: 329:direct product 297: 296: 272:A subgroup of 266:Main article: 263: 260: 258: 255: 203:quotient group 182: 179: 72: 69: 43:of the parent 15: 9: 6: 4: 3: 2: 1566: 1555: 1552: 1551: 1549: 1535: 1533:0-486-43830-9 1529: 1525: 1518: 1510: 1508:0-486-65377-3 1504: 1500: 1493: 1485: 1483:0-387-95385-X 1479: 1475: 1471: 1467: 1463: 1457: 1449: 1447:0-471-43334-9 1443: 1439: 1435: 1428: 1424: 1414: 1411: 1410: 1404: 1402: 1398: 1388: 1386: 1385:abelian group 1382: 1378: 1368: 1363:Cyclic groups 1360: 1357: 1338: 1322: 1316: 1303: 1284: 1268: 1249: 1220: 1211:<→ 1210: 1205: 1195: 1192: 1166: 1130: 1114: 1109: 1105: 1086: 1067: 1049: 1045: 1041: 1037: 1033: 1030: 1029: 1028: 1025: 1002: 998: 989: 986: 972: 968: 944: 940: 924: 919: 908: 904: 900: 896: 892: 888: 884: 880: 879: 878: 875: 869: 863: 857: 851: 845: 841: 835: 829: 825: 821: 817: 813: 809: 808: 807: 800: 796: 792: 788: 784: 780: 779: 778: 775: 769: 763: 757: 751: 745: 740: 730: 728: 724: 720: 716: 712: 702: 698: 694: 690: 683: 677: 671: 669: 660: 656: 651: 650: 649: 646: 641: 636: 632:, of a group 630: 625: 621: 611: 609: 605: 601: 600:finite groups 597: 596:endomorphisms 594: 590: 582: 565: 561: 556: 550: 547:is even, the 545: 540: 533: 529: 525: 518: 511: 507: 503: 499: 495: 491: 487: 483: 475: 471: 463: 459: 455: 451: 444: 439: 421: 411: 406: 391: 387: 382: 377: 372: 368: 364: 360: 352: 346: 339: 335: 330: 325: 319: 314: 313: 312: 308: 304: 294: 290: 285: 284: 283: 281: 276: 269: 254: 251: 245: 239: 233: 227: 223: 219: 215: 208: 204: 199: 193: 189: 178: 174: 170: 164: 160: 153: 147: 141: 134: 127: 125: 123: 119: 114:; then write 112: 108: 101: 95: 90: 85: 79: 68: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 1523: 1517: 1499:Group Theory 1498: 1492: 1465: 1456: 1433: 1427: 1394: 1374: 1366: 1355: 1320: 1314: 1301: 1266: 1112: 1108:cyclic group 1065: 1062: 1039: 1026: 970: 966: 920: 917: 914:Containments 906: 902: 898: 894: 890: 886: 882: 873: 867: 861: 855: 849: 843: 839: 836: 833: 827: 823: 819: 815: 811: 805: 798: 794: 790: 786: 782: 773: 767: 761: 755: 749: 743: 736: 733:Transitivity 708: 696: 692: 688: 681: 675: 672: 665: 658: 654: 644: 634: 628: 623: 619: 617: 607: 603: 584: 576: 574: 554: 543: 523: 516: 509: 505: 501: 497: 493: 489: 485: 481: 473: 469: 461: 457: 453: 449: 442: 380: 370: 366: 362: 358: 350: 344: 337: 333: 323: 317: 306: 302: 298: 292: 288: 274: 271: 249: 243: 237: 231: 228: 221: 217: 213: 206: 197: 191: 187: 184: 172: 168: 162: 158: 151: 145: 139: 132: 128: 121: 117: 115: 110: 106: 99: 93: 88: 87:is called a 83: 77: 74: 41:automorphism 32: 29:group theory 18: 1462:Lang, Serge 977:((1, 2), 0) 859:containing 648:; that is, 466:. Consider 81:of a group 75:A subgroup 21:mathematics 1419:References 1183:{e, (12)} 1022:Sym(3) × 1 739:transitive 727:free group 715:free group 593:surjective 390:isomorphic 388:(which is 155:, because 103:, one has 71:Definition 990:× 927:Sym(3) × 653:∀φ ∈ End( 640:invariant 551:of order 412:× 287:∀φ ∈ Inn( 27:known as 1548:Category 1474:Springer 1464:(2002). 1407:See also 1054:Examples 1032:Subgroup 691:) → End( 305:) ⊆ Aut( 216:) → Aut( 63:and the 37:subgroup 1466:Algebra 765:, then 657:): φ ≤ 622:(also, 583:, or a 536:{1, −1} 530:In the 513:; then 438:abelian 384:be the 327:be the 291:): φ ≤ 1530:  1505:  1480:  1444:  1383:of an 1185:; let 753:, and 598:. For 343:{1} × 299:Since 280:normal 185:Given 57:normal 51:is an 1399:of a 1312:into 905:char 897:< 893:< 885:char 842:char 814:char 797:char 789:char 785:char 741:; if 560:index 468:H = { 448:V = { 365:) → ( 353:× {1} 190:char 120:char 45:group 35:is a 1528:ISBN 1503:ISBN 1478:ISBN 1442:ISBN 1395:The 1375:The 921:The 847:and 687:End( 508:) = 504:, T( 500:) = 496:, T( 492:) = 488:, T( 484:) = 348:and 315:Let 301:Inn( 212:Aut( 171:≤ φ( 161:) ≤ 109:) ≤ 31:, a 1068:= S 975:to 682:G/H 541:If 229:If 207:G/H 149:of 97:of 19:In 1550:: 1476:. 1472:. 1468:. 1440:. 1359:. 1072:× 1046:⇐ 1038:⇐ 1034:⇐ 969:, 901:⇏ 889:, 877:. 826:⊲ 822:⇒ 818:⊲ 793:⇒ 777:. 701:. 575:A 515:T( 510:ab 506:ab 480:T( 472:, 464:} 462:ab 460:, 456:, 452:, 369:, 361:, 336:× 331:, 253:. 226:. 177:. 157:φ( 137:= 131:φ( 126:. 105:φ( 67:. 1536:. 1511:. 1486:. 1450:. 1356:G 1339:2 1334:Z 1321:G 1315:G 1309:3 1307:S 1302:f 1285:2 1280:Z 1267:G 1250:2 1245:Z 1221:3 1216:S 1206:2 1201:Z 1196:: 1193:f 1167:2 1162:Z 1149:3 1147:S 1131:2 1126:Z 1113:G 1087:2 1082:Z 1070:3 1066:G 1007:Z 1003:2 999:/ 994:Z 987:1 973:) 971:y 967:π 965:( 949:Z 945:2 941:/ 936:Z 907:K 903:H 899:G 895:K 891:H 887:G 883:H 874:K 868:H 862:H 856:G 850:K 844:G 840:H 828:G 824:H 820:G 816:K 812:H 802:. 799:G 795:H 791:G 787:K 783:H 774:G 768:H 762:G 756:K 750:K 744:H 699:) 697:H 695:/ 693:G 689:G 676:G 662:. 659:H 655:G 645:G 635:G 629:H 555:n 553:2 544:n 527:. 524:H 519:) 517:H 502:a 498:b 494:b 490:a 486:e 482:e 476:} 474:a 470:e 458:b 454:a 450:e 443:V 422:2 417:Z 407:2 402:Z 381:V 373:) 371:x 367:y 363:y 359:x 357:( 351:H 345:H 338:H 334:H 324:G 318:H 309:) 307:G 303:G 293:H 289:G 275:H 250:G 244:H 238:H 232:G 224:) 222:H 220:/ 218:G 214:G 198:G 192:G 188:H 175:) 173:H 169:H 163:H 159:H 152:G 146:φ 140:H 135:) 133:H 122:G 118:H 111:H 107:H 100:G 94:φ 84:G 78:H

Index

mathematics
abstract algebra
group theory
subgroup
automorphism
group
conjugation map
inner automorphism
normal
commutator subgroup
center of a group
quotient group
Normal subgroup
normal
direct product
Klein four-group
isomorphic
abelian
quaternion group
dihedral group
index
outer automorphism
surjective
endomorphisms
finite groups
invariant
commutator subgroup
verbal subgroup
free group
verbal subgroup

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.