Knowledge

Preferential attachment

Source 📝

1325:.) The preferential attachment process does not incorporate the taking away part. This point may be moot, however, since the scientific insight behind the Matthew effect is in any case entirely different. Qualitatively it is intended to describe not a mechanical multiplicative effect like preferential attachment but a specific human behavior in which people are more likely to give credit to the famous than to the little known. The classic example of the Matthew effect is a scientific discovery made simultaneously by two different people, one well known and the other little known. It is claimed that under these circumstances people tend more often to credit the discovery to the well-known scientist. Thus the real-world phenomenon the Matthew effect is intended to describe is quite distinct from (though certainly related to) preferential attachment. 752:, meaning a process in which discrete units of wealth, usually called "balls", are added in a random or partly random fashion to a set of objects or containers, usually called "urns". A preferential attachment process is an urn process in which additional balls are added continuously to the system and are distributed among the urns as an increasing function of the number of balls the urns already have. In the most commonly studied examples, the number of urns also increases continuously, although this is not a necessary condition for preferential attachment and examples have been studied with constant or even decreasing numbers of urns. 38: 71: 772:(i.e., split in two) and, assuming that new species belong to the same genus as their parent (except for those that start new genera), the probability that a new species is added to a genus will be proportional to the number of species the genus already has. This process, first studied by British statistician 1375:
in 1999. Barabási and Albert also coined the name "preferential attachment" by which the process is best known today and suggested that the process might apply to the growth of other networks as well. For growing networks, the precise functional form of preferential attachment can be estimated by
1337:
in 1925, who used it to explain the power-law distribution of the number of species per genus of flowering plants. The process is sometimes called a "Yule process" in his honor. Yule was able to show that the process gave rise to a distribution with a power-law tail, but the details of his proof
711:
is any of a class of processes in which some quantity, typically some form of wealth or credit, is distributed among a number of individuals or objects according to how much they already have, so that those who are already wealthy receive more than those who are not. "Preferential attachment" is
1216:
in its tail. This is the primary reason for the historical interest in preferential attachment: the species distribution and many other phenomena are observed empirically to follow power laws and the preferential attachment process is a leading candidate mechanism to explain this behavior.
1217:
Preferential attachment is considered a possible candidate for, among other things, the distribution of the sizes of cities, the wealth of extremely wealthy individuals, the number of citations received by learned publications, and the number of links to pages on the World Wide Web.
767:
of biotic organisms. New genera ("urns") are added to a taxon whenever a newly appearing species is considered sufficiently different from its predecessors that it does not belong in any of the current genera. New species ("balls") are added as old ones
935: 1055: 1360:. It is in the context of network growth that the process is most frequently studied today. Price also promoted preferential attachment as a possible explanation for power laws in many other phenomena, including 736:
distributions. If preferential attachment is non-linear, measured distributions may deviate from a power law. These mechanisms may generate distributions which are approximately power law over transient periods.
1356:
in 1976. (He referred to the process as a "cumulative advantage" process.) His was also the first application of the process to the growth of a network, producing what would now be called a
1124: 1200: 1220:
The general model described here includes many other specific models as special cases. In the species/genus example above, for instance, each genus starts out with a single species (
1338:
are, by today's standards, contorted and difficult, since the modern tools of stochastic process theory did not yet exist and he was forced to use more cumbersome methods of proof.
41:
Graph generated using preferential attachment. A small number of nodes have a large number of incoming edges, whereas a large number of nodes have a small number of incoming edges.
832: 1395: 967: 785:
Linear preferential attachment processes in which the number of urns increases are known to produce a distribution of balls over the urns following the so-called
1659:
Falkenberg, Max; Lee, Jong-Hyeok; Amano, Shun-ichi; Ogawa, Ken-ichiro; Yano, Kazuo; Miyake, Yoshihiro; Evans, Tim S.; Christensen, Kim (18 June 2020).
587: 1711: 1318: 1314:: "For everyone who has will be given more, and he will have an abundance. Whoever does not have, even what he has will be taken from him." ( 1606:
Krapivsky, Paul; Krioukov, Dmitri (21 August 2008). "Scale-free networks as preasymptotic regimes of superlinear preferential attachment".
1854: 721: 694: 1072: 732:. The principal reason for scientific interest in preferential attachment is that it can, under suitable circumstances, generate 1157: 782:
preferential attachment process, since the rate at which genera accrue new species is linear in the number they already have.
1425: 17: 577: 306: 712:
only the most recent of many names that have been given to such processes. They are also referred to under the names
651: 234: 547: 537: 532: 1377: 687: 646: 163: 492: 336: 283: 98: 527: 1553:
Krapivsky, P. L.; Redner, S.; Leyvraz, F. (20 November 2000). "Connectivity of Growing Random Networks".
1460: 1450: 1415: 1405: 725: 656: 562: 557: 522: 321: 219: 158: 1996: 1322: 244: 2001: 680: 582: 542: 49: 1278: 440: 1353: 663: 482: 249: 138: 1934:"PAFit: A Statistical Method for Measuring Preferential Attachment in Temporal Complex Networks" 789:. In the most general form of the process, balls are added to the system at an overall rate of 1430: 1371:
The application of preferential attachment to the growth of the World Wide Web was proposed by
567: 552: 467: 1831: 668: 487: 457: 346: 301: 1945: 1890: 1759: 1511: 1400: 435: 316: 31: 8: 1707:"A Mathematical Theory of Evolution, based on the Conclusions of Dr. J. C. Willis, F.R.S" 1455: 1227: = 1) and gains new species in direct proportion to the number it already has ( 1209: 472: 341: 331: 326: 178: 123: 113: 1949: 1894: 1763: 1515: 1968: 1933: 1914: 1775: 1749: 1672: 1641: 1615: 1588: 1562: 1535: 1501: 1390: 1357: 930:{\displaystyle P(k)={\mathrm {B} (k+a,\gamma ) \over \mathrm {B} (k_{0}+a,\gamma -1)},} 746: 311: 264: 239: 128: 118: 755:
A classic example of a preferential attachment process is the growth in the number of
1973: 1906: 1779: 1687: 1660: 1633: 1580: 1527: 1365: 1315: 1311: 786: 608: 274: 224: 133: 108: 37: 1645: 1592: 1303:, but the two are not precisely equivalent. The Matthew effect, first discussed by 1963: 1953: 1918: 1898: 1878: 1846: 1807: 1767: 1720: 1682: 1625: 1572: 1519: 1435: 1352:
The first application of preferential attachment to learned citations was given by
1346: 1304: 367: 356: 254: 214: 198: 1539: 1958: 1523: 1410: 1342: 729: 603: 384: 259: 168: 103: 57: 1902: 1811: 1576: 1333:
The first rigorous consideration of preferential attachment seems to be that of
1629: 1440: 1361: 1300: 1064: 800:
balls and further balls are added to urns at a rate proportional to the number
613: 419: 394: 389: 363: 352: 229: 193: 188: 148: 86: 1771: 1492:
Barabási, A.-L.; R. Albert (1999). "Emergence of scaling in random networks".
1266:. Similarly the Price model for scientific citations corresponds to the case 1990: 1349:
in 1955, in work on the distribution of sizes of cities and other phenomena.
959: 572: 477: 462: 404: 153: 143: 1740:
Newman, M. E. J. (2005). "Power laws, Pareto distributions and Zipf's law".
1050:{\displaystyle \mathrm {B} (x,y)={\Gamma (x)\Gamma (y) \over \Gamma (x+y)},} 1977: 1910: 1850: 1832:"A general theory of bibliometric and other cumulative advantage processes" 1725: 1706: 1637: 1584: 1531: 1420: 517: 414: 269: 1932:
Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi (September 17, 2015).
1754: 1567: 1506: 1445: 749: 1465: 769: 452: 409: 399: 1334: 1213: 1205: 773: 733: 617: 173: 793:
new balls for each new urn. Each newly created urn starts out with
70: 1677: 1372: 1798:
Simon, H. A. (1955). "On a class of skew distribution functions".
1620: 1341:
Most modern treatments of preferential attachment make use of the
30:"Yule process" redirects here. For the type of birth process, see 1204:
In other words, the preferential attachment process generates a "
756: 778: 1308: 764: 760: 1299:
Preferential attachment is sometimes referred to as the
1658: 1931: 1552: 1396:
Bose–Einstein condensation: a network theory approach
1160: 1075: 970: 835: 1345:method, whose use in this context was pioneered by 27:
Stochastic process formalizing cumulative advantage
1194: 1118: 1049: 929: 1712:Philosophical Transactions of the Royal Society B 1605: 1491: 1988: 1700: 1698: 1661:"Identifying time dependence in network growth" 1128:The beta function behaves asymptotically as B( 1793: 1791: 1789: 688: 1825: 1823: 1821: 1695: 1119:{\displaystyle \gamma =2+{k_{0}+a \over m}.} 827:balls in the limit of long time is given by 1487: 1485: 1483: 1481: 1786: 695: 681: 1967: 1957: 1881:(1968). "The Matthew effect in science". 1818: 1753: 1724: 1686: 1676: 1619: 1566: 1505: 1195:{\displaystyle P(k)\propto k^{-\gamma }.} 1148:, which implies that for large values of 1478: 815:. With these definitions, the fraction 36: 804:that they already have plus a constant 745:A preferential attachment process is a 14: 1989: 1877: 1739: 1277: = 1 and the widely studied 1829: 1797: 1704: 1426:Link-centric preferential attachment 24: 1023: 1009: 997: 972: 883: 855: 25: 2013: 1688:10.1103/PhysRevResearch.2.023352 1307:, is named for a passage in the 69: 1925: 1860:from the original on 2020-12-01 1364:of scientific productivity and 709:preferential attachment process 1871: 1733: 1652: 1599: 1546: 1170: 1164: 1038: 1026: 1018: 1012: 1006: 1000: 988: 976: 950:(and zero otherwise), where B( 918: 887: 877: 859: 845: 839: 13: 1: 1472: 1378:maximum likelihood estimation 740: 1959:10.1371/journal.pone.0137796 1524:10.1126/science.286.5439.509 7: 1903:10.1126/science.159.3810.56 1830:Price, D. J. de S. (1976). 1577:10.1103/PhysRevLett.85.4629 1416:Double jeopardy (marketing) 1383: 1231: = 0), and hence 1208:" distribution following a 728:. They are also related to 10: 2018: 1630:10.1103/PhysRevE.78.026114 1406:Chinese restaurant process 1328: 29: 1839:J. Amer. Soc. Inform. Sci 1812:10.1093/biomet/42.3-4.425 1772:10.1080/00107510500052444 1451:Success to the successful 1323:New International Version 548:Exponential random (ERGM) 215:Informational (computing) 1665:Physical Review Research 235:Scientific collaboration 1555:Physical Review Letters 1461:Yule–Simon distribution 664:Category:Network theory 184:Preferential attachment 1851:10.1002/asi.4630270505 1726:10.1098/rstb.1925.0002 1196: 1120: 1051: 931: 553:Random geometric (RGG) 42: 1279:Barabási-Albert model 1258: − 1) with 1197: 1121: 1063:) being the standard 1052: 932: 669:Category:Graph theory 40: 1742:Contemporary Physics 1705:Yule, G. U. (1925). 1401:Capital accumulation 1158: 1073: 968: 833: 718:cumulative advantage 32:Simple birth process 18:Cumulative advantage 1950:2015PLoSO..1037796P 1895:1968Sci...159...56M 1764:2005ConPh..46..323N 1516:1999Sci...286..509B 1456:Wealth condensation 1373:Barabási and Albert 1210:Pareto distribution 722:the rich get richer 473:Degree distribution 124:Community structure 1719:(402–410): 21–87. 1431:Pitman–Yor process 1391:Assortative mixing 1358:scale-free network 1192: 1116: 1047: 927: 657:Network scientists 583:Soft configuration 43: 1879:Merton, Robert K. 1608:Physical Review E 1561:(21): 4629–4632. 1500:(5439): 509–512. 1312:Gospel of Matthew 1262:=2 + 1/ 1111: 1042: 922: 823:) of urns having 808: > − 787:Yule distribution 705: 704: 625: 624: 533:Bianconi–Barabási 427: 426: 245:Artificial neural 220:Telecommunication 16:(Redirected from 2009: 1997:Social phenomena 1982: 1981: 1971: 1961: 1929: 1923: 1922: 1875: 1869: 1868: 1866: 1865: 1859: 1836: 1827: 1816: 1815: 1806:(3–4): 425–440. 1795: 1784: 1783: 1757: 1755:cond-mat/0412004 1737: 1731: 1730: 1728: 1702: 1693: 1692: 1690: 1680: 1656: 1650: 1649: 1623: 1603: 1597: 1596: 1570: 1568:cond-mat/0005139 1550: 1544: 1543: 1509: 1507:cond-mat/9910332 1489: 1368:of journal use. 1305:Robert K. Merton 1296: = 0. 1273: = 0, 1239:) = B( 1201: 1199: 1198: 1193: 1188: 1187: 1125: 1123: 1122: 1117: 1112: 1107: 1100: 1099: 1089: 1056: 1054: 1053: 1048: 1043: 1041: 1021: 995: 975: 936: 934: 933: 928: 923: 921: 899: 898: 886: 880: 858: 852: 697: 690: 683: 568:Stochastic block 558:Hyperbolic (HGN) 507: 506: 370: 359: 291: 290: 199:Social influence 73: 45: 44: 21: 2017: 2016: 2012: 2011: 2010: 2008: 2007: 2006: 2002:Network science 1987: 1986: 1985: 1944:(9): e0137796. 1930: 1926: 1889:(3810): 56–63. 1876: 1872: 1863: 1861: 1857: 1834: 1828: 1819: 1796: 1787: 1738: 1734: 1703: 1696: 1657: 1653: 1604: 1600: 1551: 1547: 1490: 1479: 1475: 1470: 1411:Complex network 1386: 1343:master equation 1331: 1287: 1281:corresponds to 1272: 1253: 1226: 1180: 1176: 1159: 1156: 1155: 1095: 1091: 1090: 1088: 1074: 1071: 1070: 1022: 996: 994: 971: 969: 966: 965: 958:) is the Euler 949: 894: 890: 882: 881: 854: 853: 851: 834: 831: 830: 814: 799: 763:in some higher 743: 701: 639: 604:Boolean network 578:Maximum entropy 528:Barabási–Albert 445: 362: 351: 139:Controllability 104:Complex network 91: 78: 77: 76: 75: 74: 58:Network science 35: 28: 23: 22: 15: 12: 11: 5: 2015: 2005: 2004: 1999: 1984: 1983: 1924: 1870: 1845:(5): 292–306. 1817: 1785: 1748:(5): 323–351. 1732: 1694: 1651: 1598: 1545: 1476: 1474: 1471: 1469: 1468: 1463: 1458: 1453: 1448: 1443: 1441:Proof of stake 1438: 1433: 1428: 1423: 1418: 1413: 1408: 1403: 1398: 1393: 1387: 1385: 1382: 1366:Bradford's law 1330: 1327: 1301:Matthew effect 1285: 1270: 1251: 1224: 1191: 1186: 1183: 1179: 1175: 1172: 1169: 1166: 1163: 1136:) ~  1115: 1110: 1106: 1103: 1098: 1094: 1087: 1084: 1081: 1078: 1065:gamma function 1046: 1040: 1037: 1034: 1031: 1028: 1025: 1020: 1017: 1014: 1011: 1008: 1005: 1002: 999: 993: 990: 987: 984: 981: 978: 974: 947: 926: 920: 917: 914: 911: 908: 905: 902: 897: 893: 889: 885: 879: 876: 873: 870: 867: 864: 861: 857: 850: 847: 844: 841: 838: 812: 797: 742: 739: 726:Matthew effect 703: 702: 700: 699: 692: 685: 677: 674: 673: 672: 671: 666: 660: 659: 654: 649: 641: 640: 638: 637: 634: 630: 627: 626: 623: 622: 621: 620: 611: 606: 598: 597: 593: 592: 591: 590: 585: 580: 575: 570: 565: 560: 555: 550: 545: 543:Watts–Strogatz 540: 535: 530: 525: 520: 512: 511: 503: 502: 498: 497: 496: 495: 490: 485: 480: 475: 470: 465: 460: 455: 447: 446: 444: 443: 438: 432: 429: 428: 425: 424: 423: 422: 417: 412: 407: 402: 397: 392: 387: 379: 378: 374: 373: 372: 371: 364:Incidence list 360: 353:Adjacency list 349: 344: 339: 334: 329: 324: 322:Data structure 319: 314: 309: 304: 296: 295: 287: 286: 280: 279: 278: 277: 272: 267: 262: 257: 252: 250:Interdependent 247: 242: 237: 232: 227: 222: 217: 209: 208: 204: 203: 202: 201: 196: 194:Network effect 191: 189:Balance theory 186: 181: 176: 171: 166: 161: 156: 151: 149:Social capital 146: 141: 136: 131: 126: 121: 116: 111: 106: 101: 93: 92: 90: 89: 83: 80: 79: 68: 67: 66: 65: 64: 61: 60: 54: 53: 26: 9: 6: 4: 3: 2: 2014: 2003: 2000: 1998: 1995: 1994: 1992: 1979: 1975: 1970: 1965: 1960: 1955: 1951: 1947: 1943: 1939: 1935: 1928: 1920: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1880: 1874: 1856: 1852: 1848: 1844: 1840: 1833: 1826: 1824: 1822: 1813: 1809: 1805: 1801: 1794: 1792: 1790: 1781: 1777: 1773: 1769: 1765: 1761: 1756: 1751: 1747: 1743: 1736: 1727: 1722: 1718: 1714: 1713: 1708: 1701: 1699: 1689: 1684: 1679: 1674: 1671:(2): 023352. 1670: 1666: 1662: 1655: 1647: 1643: 1639: 1635: 1631: 1627: 1622: 1617: 1614:(2): 026114. 1613: 1609: 1602: 1594: 1590: 1586: 1582: 1578: 1574: 1569: 1564: 1560: 1556: 1549: 1541: 1537: 1533: 1529: 1525: 1521: 1517: 1513: 1508: 1503: 1499: 1495: 1488: 1486: 1484: 1482: 1477: 1467: 1464: 1462: 1459: 1457: 1454: 1452: 1449: 1447: 1444: 1442: 1439: 1437: 1436:Price's model 1434: 1432: 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1388: 1381: 1379: 1374: 1369: 1367: 1363: 1359: 1355: 1350: 1348: 1344: 1339: 1336: 1326: 1324: 1320: 1317: 1313: 1310: 1306: 1302: 1297: 1295: 1291: 1288: =  1284: 1280: 1276: 1269: 1265: 1261: 1257: 1250: 1246: 1242: 1238: 1234: 1230: 1223: 1218: 1215: 1211: 1207: 1202: 1189: 1184: 1181: 1177: 1173: 1167: 1161: 1153: 1151: 1147: 1143: 1139: 1135: 1131: 1126: 1113: 1108: 1104: 1101: 1096: 1092: 1085: 1082: 1079: 1076: 1068: 1066: 1062: 1057: 1044: 1035: 1032: 1029: 1015: 1003: 991: 985: 982: 979: 963: 961: 960:beta function 957: 953: 946: 943: ≥  942: 937: 924: 915: 912: 909: 906: 903: 900: 895: 891: 874: 871: 868: 865: 862: 848: 842: 836: 828: 826: 822: 818: 811: 807: 803: 796: 792: 788: 783: 781: 780: 775: 771: 766: 762: 758: 753: 751: 748: 738: 735: 731: 727: 723: 719: 715: 710: 698: 693: 691: 686: 684: 679: 678: 676: 675: 670: 667: 665: 662: 661: 658: 655: 653: 650: 648: 645: 644: 643: 642: 635: 632: 631: 629: 628: 619: 615: 612: 610: 607: 605: 602: 601: 600: 599: 595: 594: 589: 588:LFR Benchmark 586: 584: 581: 579: 576: 574: 573:Blockmodeling 571: 569: 566: 564: 561: 559: 556: 554: 551: 549: 546: 544: 541: 539: 538:Fitness model 536: 534: 531: 529: 526: 524: 521: 519: 516: 515: 514: 513: 509: 508: 505: 504: 500: 499: 494: 491: 489: 486: 484: 481: 479: 478:Assortativity 476: 474: 471: 469: 466: 464: 461: 459: 456: 454: 451: 450: 449: 448: 442: 439: 437: 434: 433: 431: 430: 421: 418: 416: 413: 411: 408: 406: 403: 401: 398: 396: 393: 391: 388: 386: 383: 382: 381: 380: 376: 375: 369: 365: 361: 358: 354: 350: 348: 345: 343: 340: 338: 335: 333: 330: 328: 325: 323: 320: 318: 315: 313: 310: 308: 305: 303: 300: 299: 298: 297: 293: 292: 289: 288: 285: 282: 281: 276: 273: 271: 268: 266: 263: 261: 258: 256: 253: 251: 248: 246: 243: 241: 238: 236: 233: 231: 228: 226: 223: 221: 218: 216: 213: 212: 211: 210: 207:Network types 206: 205: 200: 197: 195: 192: 190: 187: 185: 182: 180: 177: 175: 172: 170: 167: 165: 162: 160: 157: 155: 154:Link analysis 152: 150: 147: 145: 144:Graph drawing 142: 140: 137: 135: 132: 130: 127: 125: 122: 120: 117: 115: 112: 110: 107: 105: 102: 100: 97: 96: 95: 94: 88: 85: 84: 82: 81: 72: 63: 62: 59: 56: 55: 51: 47: 46: 39: 33: 19: 1941: 1937: 1927: 1886: 1882: 1873: 1862:. Retrieved 1842: 1838: 1803: 1799: 1745: 1741: 1735: 1716: 1710: 1668: 1664: 1654: 1611: 1607: 1601: 1558: 1554: 1548: 1497: 1493: 1421:Lindy effect 1370: 1351: 1340: 1332: 1298: 1293: 1289: 1282: 1274: 1267: 1263: 1259: 1255: 1248: 1244: 1240: 1236: 1232: 1228: 1221: 1219: 1203: 1154: 1149: 1145: 1141: 1137: 1133: 1129: 1127: 1069: 1060: 1058: 964: 955: 951: 944: 940: 938: 829: 824: 820: 816: 809: 805: 801: 794: 790: 784: 777: 754: 744: 730:Gibrat's law 717: 714:Yule process 713: 708: 706: 563:Hierarchical 518:Random graph 366: / 355: / 337:Neighborhood 183: 179:Transitivity 159:Optimization 1446:Simon model 1362:Lotka's law 1206:long-tailed 750:urn process 609:agent based 523:Erdős–Rényi 164:Reciprocity 129:Percolation 114:Small-world 1991:Categories 1864:2008-07-19 1800:Biometrika 1678:2001.09118 1473:References 1466:Bibliogram 1144:and fixed 1140:for large 747:stochastic 741:Definition 724:, and the 636:Categories 493:Efficiency 488:Modularity 468:Clustering 453:Centrality 441:Algorithms 265:Dependency 240:Biological 119:Scale-free 1780:202719165 1621:0804.1366 1335:Udny Yule 1214:power law 1185:γ 1182:− 1174:∝ 1077:γ 1024:Γ 1010:Γ 998:Γ 913:− 910:γ 875:γ 774:Udny Yule 734:power law 385:Bipartite 307:Component 225:Transport 174:Homophily 134:Evolution 109:Contagion 1978:26378457 1938:PLOS ONE 1911:17737466 1855:Archived 1646:14292535 1638:18850904 1593:16251662 1585:11082613 1532:10521342 1384:See also 1309:biblical 1152:we have 770:speciate 652:Software 614:Epidemic 596:Dynamics 510:Topology 483:Distance 420:Weighted 395:Directed 390:Complete 294:Features 255:Semantic 50:a series 48:Part of 1969:4574777 1946:Bibcode 1919:3526819 1891:Bibcode 1883:Science 1760:Bibcode 1512:Bibcode 1494:Science 1329:History 1316:Matthew 1254:,  1243:,  1132:,  1059:with Γ( 954:,  776:, is a 757:species 436:Metrics 405:Labeled 275:on-Chip 260:Spatial 169:Closure 1976:  1966:  1917:  1909:  1778:  1644:  1636:  1591:  1583:  1540:524106 1538:  1530:  1067:, and 779:linear 647:Topics 501:Models 458:Degree 415:Random 368:matrix 357:matrix 347:Vertex 302:Clique 284:Graphs 230:Social 87:Theory 1915:S2CID 1858:(PDF) 1835:(PDF) 1776:S2CID 1750:arXiv 1673:arXiv 1642:S2CID 1616:arXiv 1589:S2CID 1563:arXiv 1536:S2CID 1502:arXiv 1354:Price 1347:Simon 1319:25:29 765:taxon 761:genus 633:Lists 463:Motif 410:Multi 400:Hyper 377:Types 317:Cycle 99:Graph 1974:PMID 1907:PMID 1634:PMID 1581:PMID 1528:PMID 1247:)/B( 939:for 759:per 342:Path 332:Loop 327:Edge 270:Flow 1964:PMC 1954:doi 1899:doi 1887:159 1847:doi 1808:doi 1768:doi 1721:doi 1717:213 1683:doi 1626:doi 1573:doi 1520:doi 1498:286 1212:or 618:SIR 312:Cut 1993:: 1972:. 1962:. 1952:. 1942:10 1940:. 1936:. 1913:. 1905:. 1897:. 1885:. 1853:. 1843:27 1841:. 1837:. 1820:^ 1804:42 1802:. 1788:^ 1774:. 1766:. 1758:. 1746:46 1744:. 1715:. 1709:. 1697:^ 1681:. 1667:. 1663:. 1640:. 1632:. 1624:. 1612:78 1610:. 1587:. 1579:. 1571:. 1559:85 1557:. 1534:. 1526:. 1518:. 1510:. 1496:. 1480:^ 1380:. 1321:, 1292:, 962:: 720:, 716:, 707:A 52:on 1980:. 1956:: 1948:: 1921:. 1901:: 1893:: 1867:. 1849:: 1814:. 1810:: 1782:. 1770:: 1762:: 1752:: 1729:. 1723:: 1691:. 1685:: 1675:: 1669:2 1648:. 1628:: 1618:: 1595:. 1575:: 1565:: 1542:. 1522:: 1514:: 1504:: 1294:a 1290:m 1286:0 1283:k 1275:a 1271:0 1268:k 1264:m 1260:γ 1256:γ 1252:0 1249:k 1245:γ 1241:k 1237:k 1235:( 1233:P 1229:a 1225:0 1222:k 1190:. 1178:k 1171:) 1168:k 1165:( 1162:P 1150:k 1146:y 1142:x 1138:x 1134:y 1130:x 1114:. 1109:m 1105:a 1102:+ 1097:0 1093:k 1086:+ 1083:2 1080:= 1061:x 1045:, 1039:) 1036:y 1033:+ 1030:x 1027:( 1019:) 1016:y 1013:( 1007:) 1004:x 1001:( 992:= 989:) 986:y 983:, 980:x 977:( 973:B 956:y 952:x 948:0 945:k 941:k 925:, 919:) 916:1 907:, 904:a 901:+ 896:0 892:k 888:( 884:B 878:) 872:, 869:a 866:+ 863:k 860:( 856:B 849:= 846:) 843:k 840:( 837:P 825:k 821:k 819:( 817:P 813:0 810:k 806:a 802:k 798:0 795:k 791:m 696:e 689:t 682:v 616:/ 34:. 20:)

Index

Cumulative advantage
Simple birth process

a series
Network science
Internet_map_1024.jpg
Theory
Graph
Complex network
Contagion
Small-world
Scale-free
Community structure
Percolation
Evolution
Controllability
Graph drawing
Social capital
Link analysis
Optimization
Reciprocity
Closure
Homophily
Transitivity
Preferential attachment
Balance theory
Network effect
Social influence
Informational (computing)
Telecommunication

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.