Knowledge

Beta-tungsten

Source đź“ť

332:(PVD) technique. In the sputter deposition, a tungsten target is bombarded with ionized gas molecules (usually Ar), causing the tungsten atoms to be “sputtered” off into the plasma. These vaporized atoms are then deposited when they condense as a thin film on the substrate to be coated. The formation of β-W through sputter deposition depends on the base pressure, Ar pressure, substrate temperature, impurity gas, deposition rate, film thickness, substrate type, etc. It has been widely observed that oxygen or nitrogen gas flow can assist and is necessary for the formation of β-W, but recently there have also been reports on preparing β-W without putting into any impurity gas during deposition. 20: 303:
Thin films of β-W display a giant spin Hall effect with a spin Hall angle of 0.30 ± 0.02 and a spin-diffusion length of around 3.5 nm. In contrast, α-W exhibits a much smaller spin Hall angle of less than 0.07 and a comparable spin-diffusion length. In the spin Hall effect, the application of a
102:
melts below 650°C. In the beginning stages of research into β-W, oxygen was commonly found to promote the formation of the β-W structure, thus discussions of whether the β-W structure is a phase of single-element tungsten or a tungsten suboxide were long-standing, but ever since the 1950s there has
295:
Although the exact value depends on the preparation conditions, β-W has an electrical resistivity of at least five to ten times higher than that of α-W (5.3 μΩ.cm), and this high conductivity will remain almost unchanged in a temperature range of 5 to 380 K, making β-W a potential thin film
118:
properties at low temperatures, the discovery of giant spin Hall effect in β-W thin films by Burhman et al. in 2012 has generated new interest in the material for potential applications in spintronic magnetic random access memories and spin-logic devices.
172:
family. Each unit cell contains eight tungsten atoms. The structure can be seen as a cubic lattice with one atom at each corner, one atom in the center, and two atoms on each face. There are two inequivalent tungsten sites corresponding to
308:, and the spin Hall angle is defined as the ratio of the transverse spin current density and the longitudinal electric current density. The spin Hall angle of β-W is large enough to generate spin torques capable of flipping or setting the 324:
While there have been some reports about preparing β-W with chemical methods such as hydrogen reduction reaction, almost all the reported β-W in the recent thirty years are prepared through
166: 272:, each tungsten atom is bonded to fourteen neighboring tungsten atoms, and there is a spread of W–W bond lengths ranging from 2.54 to 3.12 Å. The experimentally measured 270: 243: 220: 197: 1072:
Chattaraj, Ananya; Asirvatham, Joshua; Das, Gangadhar; Manna, Gouranga; Saha, Pinku; Kumar, Vijay; Kanjilal, Aloke (2022-03-28).
289: 944:"Transformation of topologically close-packed β-W to body-centered cubic α-W: Comparison of experiments and computations" 55: 837: 1192:
Vink, T. J.; Walrave, W.; Daams, J. L. C.; Dirks, A. G.; Somers, M. A. J.; van den Aker, K. J. A. (1993-07-15).
1272:"Elastic constants of beta tungsten thin films studied by picosecond ultrasonics and density functional theory" 942:
Barmak, Katayun; Liu, Jiaxing; Harlan, Liam; Xiao, Penghao; Duncan, Juliana; Henkelman, Graeme (2017-10-21).
63: 62:
structure containing eight atoms per unit cell, and it irreversibly transforms to the stable α phase through
304:
longitudinal electric current through a nonmagnetic material generates a transverse spin current due to the
1155:"Impact of deposition rate, underlayers, and substrates on β-tungsten formation in sputter deposited films" 443:
Donaldson, Olivia K.; Hattar, Khalid; Kaub, Tyler; Thompson, Gregory B.; Trelewicz, Jason R. (2017-09-05).
245:, each tungsten atom is bonded to twelve equivalent W atoms to form a mixture of edge- and face-sharing WW 1321:"Phase control and Young's modulus of tungsten thin film prepared by dual ion beam sputtering deposition" 358:"Topologically close-packed phases: Deposition and formation mechanism of metastable β-W in thin films" 305: 673:"Microstructure, growth, resistivity, and stresses in thin tungsten films deposited by rf sputtering" 329: 277: 1074:"Growth-dependent structural ordering and stability in β-tungsten films for spintronic applications" 133: 169: 1194:"Stress, strain, and microstructure in thin tungsten films deposited by dc magnetron sputtering" 491:
Pai, Chi-Feng; Liu, Luqiao; Li, Y.; Tseng, H. W.; Ralph, D. C.; Buhrman, R. A. (2012-09-17).
542:"Elektrolysen in Phosphatschmelzen. I. Die elektrolytische Gewinnung von α- und β-Wolfram" 8: 1363: 991:"Beta (β) tungsten thin films: Structure, electron transport, and giant spin Hall effect" 104: 51: 671:
Petroff, P.; Sheng, T. T.; Sinha, A. K.; Rozgonyi, G. A.; Alexander, F. B. (June 1973).
252: 225: 202: 179: 103:
been a lot of experimental proof showing that the oxygen in β-W thin films is in a zero
1271: 1154: 504: 325: 771: 1358: 1301: 1252: 1213: 1174: 1132: 1093: 1049: 1010: 971: 963: 921: 882: 878: 816: 775: 731: 692: 648: 607: 561: 522: 466: 425: 379: 174: 115: 75: 1113:"Magnetron sputter deposition of A-15 and bcc crystal structure tungsten thin films" 588:"The preparation and characterization of beta-tungsten, a metastable tungsten phase" 1332: 1291: 1283: 1244: 1205: 1166: 1124: 1085: 1041: 1002: 955: 913: 874: 806: 767: 755: 723: 684: 638: 599: 553: 514: 456: 417: 369: 273: 87: 67: 862: 374: 357: 1231:
Weerasekera, I. A.; Shah, S. Ismat; Baxter, David V.; Unruh, K. M. (1994-06-13).
445:"Solute stabilization of nanocrystalline tungsten against abnormal grain growth" 493:"Spin transfer torque devices utilizing the giant spin Hall effect of tungsten" 421: 643: 626: 541: 401: 1352: 1305: 1256: 1217: 1178: 1136: 1097: 1053: 1014: 967: 925: 886: 820: 779: 735: 696: 652: 611: 565: 557: 526: 470: 429: 383: 309: 39: 19: 975: 756:"Influences of oxygen on the formation and stability of A15 β-W thin films" 95: 71: 586:
Morcom, W. R.; Worrell, W. L.; Sell, H. G.; Kaplan, H. I. (January 1974).
711: 461: 444: 128: 1112: 727: 587: 1296: 1270:
Nagakubo, A.; Lee, H. T.; Ogi, H.; Moriyama, T.; Ono, T. (2020-01-13).
1233:"Structure and stability of sputter deposited beta-tungsten thin films" 1128: 1073: 990: 943: 672: 603: 492: 313: 59: 1337: 1320: 1287: 1232: 1193: 1170: 1089: 1029: 1006: 959: 901: 811: 794: 688: 518: 1248: 1209: 1045: 917: 108: 99: 66:
of up to 650 Â°C. It has been found that β-W possesses the giant
47: 24: 1030:"Identification of a Beta-Tungsten Phase in Tungsten–Rhenium Alloys" 540:
Hartmann, Hellmuth; Ebert, Fritz; Bretschneider, Otto (1931-05-28).
297: 43: 900:
Desai, P. D.; Chu, T. K.; James, H. M.; Ho, C. Y. (October 1984).
863:"Resistivity behavior and phase transformations in β-W thin films" 509: 91: 86:β-W was first observed by Hartmann et al. in 1931 as part of the 249:
cuboctahedratungsten. On the second site, with Wyckoff position
50:. While the commonly existing stable alpha-tungsten (α-W) has a 400:
Costa, M; Costa, A T; Hu, J; Wu, R Q; Muniz, R B (2018-07-03).
288:
Two key properties of β-W have been well-established: the high
114:
While the initial interest in β-W thin films was driven by its
1111:
O’Keefe, M. J.; Grant, J. T.; Solomon, J. S. (August 1995).
70:, wherein the applied charge current generates a transverse 1071: 442: 1230: 539: 670: 585: 58:) structure, β-W adopts the topologically close-packed 1269: 1191: 255: 228: 205: 182: 136: 1319:
Zhu, Fei; Xie, Zheng; Zhang, Zhengjun (2018-03-01).
222:, respectively. On the first site, Wyckoff position 1110: 989:Hao, Qiang; Chen, Wenzhe; Xiao, Gang (2015-05-04). 941: 546:Zeitschrift fĂĽr anorganische und allgemeine Chemie 264: 237: 214: 191: 160: 1350: 795:"Superconductivity in Evaporated Tungsten Films" 792: 1028:FEDERER, J. I.; STEELE, R. M. (February 1965). 906:Journal of Physical and Chemical Reference Data 899: 356:Liu, Jiaxing; Barmak, Katayun (February 2016). 712:""β-Tungsten" as a Product of Oxide Reduction" 709: 399: 74:, and this leads to potential applications in 1027: 902:"Electrical Resistivity of Selected Elements" 624: 490: 406:-tungsten: a promising metal for spintronics" 1159:Journal of Vacuum Science & Technology A 1153:Barmak, Katayun; Liu, Jiaxing (2017-11-01). 793:Basavaiah, S.; Pollack, S. R. (1968-04-15). 1318: 988: 860: 710:Mannella, G.; Hougen, J. O. (August 1956). 1336: 1295: 1152: 810: 642: 508: 460: 373: 355: 861:Petroff, P.M.; Reed, W.A. (March 1974). 107:state, and thus the structure is a true 18: 753: 1351: 625:Hägg, G.; Schönberg, N. (1954-04-01). 1148: 1146: 1067: 1065: 1063: 937: 935: 832: 830: 749: 747: 745: 300:while α-W is a thin film conductor. 760:Materials Science and Engineering: A 666: 664: 662: 581: 579: 577: 575: 486: 484: 482: 480: 410:Journal of Physics: Condensed Matter 395: 393: 351: 349: 347: 345: 127:β-W has a cubic A15 structure with 13: 1143: 1060: 932: 827: 742: 627:"'β-Tungsten' as a tungsten oxide" 316:by means of the spin Hall effect. 14: 1375: 838:"mp-11334: W (Cubic, Pm-3n, 223)" 716:The Journal of Physical Chemistry 659: 572: 477: 390: 342: 312:of adjacent magnetic layers into 292:and the giant spin Hall effect. 754:Shen, Y.G; Mai, Y.W (May 2000). 1312: 1263: 1224: 1185: 1117:Journal of Electronic Materials 1104: 1021: 982: 948:The Journal of Chemical Physics 893: 854: 786: 90:metallic deposit formed on the 703: 618: 533: 436: 319: 149: 78:random access memory devices. 1: 772:10.1016/s0921-5093(00)00745-0 449:Journal of Materials Research 375:10.1016/j.actamat.2015.11.049 335: 283: 276:of β-W is 5.036 Ă…, while the 161:{\displaystyle Pm{\bar {3}}n} 879:10.1016/0040-6090(74)90092-3 280:calculated value is 5.09 Ă…. 122: 46:widely observed in tungsten 16:Metastable phase of tungsten 7: 10: 1380: 1198:Journal of Applied Physics 1078:Journal of Applied Physics 677:Journal of Applied Physics 592:Metallurgical Transactions 81: 644:10.1107/s0365110x54000989 330:physical vapor deposition 558:10.1002/zaac.19311980111 422:10.1088/1361-648x/aacc08 1276:Applied Physics Letters 1237:Applied Physics Letters 995:Applied Physics Letters 799:Applied Physics Letters 497:Applied Physics Letters 168:, which belongs to the 631:Acta Crystallographica 306:spin–orbit interaction 290:electrical resistivity 266: 239: 216: 193: 162: 28: 267: 240: 217: 194: 163: 22: 462:10.1557/jmr.2017.296 253: 226: 203: 180: 134: 728:10.1021/j150542a035 170:Frank–Kasper phases 52:body-centered cubic 1129:10.1007/bf02652968 604:10.1007/bf02642939 328:, an atom-by-atom 326:sputter deposition 265:{\displaystyle 6c} 262: 238:{\displaystyle 2a} 235: 215:{\displaystyle 6c} 212: 192:{\displaystyle 2a} 189: 158: 29: 1338:10.1063/1.5021009 1288:10.1063/1.5131768 1243:(24): 3231–3233. 1171:10.1116/1.5003628 1090:10.1063/5.0087436 1040:(4971): 587–588. 1007:10.1063/1.4919867 960:10.1063/1.4995261 842:Materials Project 812:10.1063/1.1651982 689:10.1063/1.1662611 519:10.1063/1.4753947 274:lattice parameter 175:Wyckoff positions 152: 64:thermal annealing 1371: 1343: 1342: 1340: 1316: 1310: 1309: 1299: 1267: 1261: 1260: 1249:10.1063/1.111318 1228: 1222: 1221: 1210:10.1063/1.354842 1189: 1183: 1182: 1150: 1141: 1140: 1108: 1102: 1101: 1069: 1058: 1057: 1046:10.1038/205587b0 1025: 1019: 1018: 986: 980: 979: 939: 930: 929: 918:10.1063/1.555723 912:(4): 1069–1096. 897: 891: 890: 867:Thin Solid Films 858: 852: 851: 849: 848: 834: 825: 824: 814: 790: 784: 783: 766:(1–2): 176–183. 751: 740: 739: 722:(8): 1148–1149. 707: 701: 700: 683:(6): 2545–2554. 668: 657: 656: 646: 622: 616: 615: 583: 570: 569: 537: 531: 530: 512: 488: 475: 474: 464: 440: 434: 433: 397: 388: 387: 377: 353: 271: 269: 268: 263: 244: 242: 241: 236: 221: 219: 218: 213: 198: 196: 195: 190: 167: 165: 164: 159: 154: 153: 145: 76:magnetoresistive 68:spin Hall effect 40:metastable phase 27:of beta-tungsten 1379: 1378: 1374: 1373: 1372: 1370: 1369: 1368: 1349: 1348: 1347: 1346: 1317: 1313: 1268: 1264: 1229: 1225: 1190: 1186: 1151: 1144: 1109: 1105: 1070: 1061: 1026: 1022: 987: 983: 940: 933: 898: 894: 859: 855: 846: 844: 836: 835: 828: 791: 787: 752: 743: 708: 704: 669: 660: 623: 619: 584: 573: 538: 534: 489: 478: 441: 437: 398: 391: 362:Acta Materialia 354: 343: 338: 322: 286: 254: 251: 250: 248: 227: 224: 223: 204: 201: 200: 181: 178: 177: 144: 143: 135: 132: 131: 125: 116:superconducting 84: 17: 12: 11: 5: 1377: 1367: 1366: 1361: 1345: 1344: 1311: 1262: 1223: 1204:(2): 988–995. 1184: 1142: 1123:(8): 961–967. 1103: 1084:(12): 125301. 1059: 1020: 1001:(18): 182403. 981: 954:(15): 152709. 931: 892: 853: 826: 805:(8): 259–260. 785: 741: 702: 658: 637:(4): 351–352. 617: 598:(1): 155–161. 571: 552:(1): 116–140. 532: 503:(12): 122404. 476: 435: 416:(30): 305802. 389: 340: 339: 337: 334: 321: 318: 285: 282: 261: 258: 246: 234: 231: 211: 208: 188: 185: 157: 151: 148: 142: 139: 124: 121: 111:of tungsten. 83: 80: 15: 9: 6: 4: 3: 2: 1376: 1365: 1362: 1360: 1357: 1356: 1354: 1339: 1334: 1331:(3): 035321. 1330: 1326: 1322: 1315: 1307: 1303: 1298: 1293: 1289: 1285: 1282:(2): 021901. 1281: 1277: 1273: 1266: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1227: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1188: 1180: 1176: 1172: 1168: 1165:(6): 061516. 1164: 1160: 1156: 1149: 1147: 1138: 1134: 1130: 1126: 1122: 1118: 1114: 1107: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1068: 1066: 1064: 1055: 1051: 1047: 1043: 1039: 1035: 1031: 1024: 1016: 1012: 1008: 1004: 1000: 996: 992: 985: 977: 973: 969: 965: 961: 957: 953: 949: 945: 938: 936: 927: 923: 919: 915: 911: 907: 903: 896: 888: 884: 880: 876: 872: 868: 864: 857: 843: 839: 833: 831: 822: 818: 813: 808: 804: 800: 796: 789: 781: 777: 773: 769: 765: 761: 757: 750: 748: 746: 737: 733: 729: 725: 721: 717: 713: 706: 698: 694: 690: 686: 682: 678: 674: 667: 665: 663: 654: 650: 645: 640: 636: 632: 628: 621: 613: 609: 605: 601: 597: 593: 589: 582: 580: 578: 576: 567: 563: 559: 555: 551: 547: 543: 536: 528: 524: 520: 516: 511: 506: 502: 498: 494: 487: 485: 483: 481: 472: 468: 463: 458: 454: 450: 446: 439: 431: 427: 423: 419: 415: 411: 407: 405: 396: 394: 385: 381: 376: 371: 367: 363: 359: 352: 350: 348: 346: 341: 333: 331: 327: 317: 315: 311: 310:magnetization 307: 301: 299: 293: 291: 281: 279: 275: 259: 256: 232: 229: 209: 206: 186: 183: 176: 171: 155: 146: 140: 137: 130: 120: 117: 112: 110: 106: 101: 97: 93: 89: 79: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 32:Beta-tungsten 26: 21: 1328: 1325:AIP Advances 1324: 1314: 1279: 1275: 1265: 1240: 1236: 1226: 1201: 1197: 1187: 1162: 1158: 1120: 1116: 1106: 1081: 1077: 1037: 1033: 1023: 998: 994: 984: 951: 947: 909: 905: 895: 873:(1): 73–81. 870: 866: 856: 845:. Retrieved 841: 802: 798: 788: 763: 759: 719: 715: 705: 680: 676: 634: 630: 620: 595: 591: 549: 545: 535: 500: 496: 455:(1): 68–80. 452: 448: 438: 413: 409: 403: 365: 361: 323: 302: 294: 287: 126: 113: 96:electrolysis 85: 72:spin current 35: 31: 30: 1297:11094/83934 368:: 223–227. 320:Preparation 129:space group 1364:Allotropes 1353:Categories 847:2022-12-13 336:References 314:precession 284:Properties 48:thin films 1306:0003-6951 1257:0003-6951 1218:0021-8979 1179:0734-2101 1137:0361-5235 1098:0021-8979 1054:0028-0836 1015:0003-6951 968:0021-9606 926:0047-2689 887:0040-6090 821:0003-6951 780:0921-5093 736:0022-3654 697:0021-8979 653:0365-110X 612:0026-086X 566:0863-1786 527:0003-6951 510:1208.1711 471:0884-2914 430:0953-8984 384:1359-6454 150:¯ 123:Structure 109:allotrope 100:phosphate 88:dendritic 25:unit cell 1359:Tungsten 976:29055319 298:resistor 44:tungsten 105:valence 92:cathode 82:History 38:) is a 1304:  1255:  1216:  1177:  1135:  1096:  1052:  1034:Nature 1013:  974:  966:  924:  885:  819:  778:  734:  695:  651:  610:  564:  525:  469:  428:  382:  94:after 505:arXiv 1302:ISSN 1253:ISSN 1214:ISSN 1175:ISSN 1133:ISSN 1094:ISSN 1050:ISSN 1011:ISSN 972:PMID 964:ISSN 922:ISSN 883:ISSN 817:ISSN 776:ISSN 732:ISSN 693:ISSN 649:ISSN 608:ISSN 562:ISSN 523:ISSN 467:ISSN 426:ISSN 380:ISSN 199:and 23:The 1333:doi 1292:hdl 1284:doi 1280:116 1245:doi 1206:doi 1167:doi 1125:doi 1086:doi 1082:131 1042:doi 1038:205 1003:doi 999:106 956:doi 952:147 914:doi 875:doi 807:doi 768:doi 764:284 724:doi 685:doi 639:doi 600:doi 554:doi 550:198 515:doi 501:101 457:doi 418:doi 370:doi 366:104 278:DFT 98:of 60:A15 42:of 36:β-W 1355:: 1327:. 1323:. 1300:. 1290:. 1278:. 1274:. 1251:. 1241:64 1239:. 1235:. 1212:. 1202:74 1200:. 1196:. 1173:. 1163:35 1161:. 1157:. 1145:^ 1131:. 1121:24 1119:. 1115:. 1092:. 1080:. 1076:. 1062:^ 1048:. 1036:. 1032:. 1009:. 997:. 993:. 970:. 962:. 950:. 946:. 934:^ 920:. 910:13 908:. 904:. 881:. 871:21 869:. 865:. 840:. 829:^ 815:. 803:12 801:. 797:. 774:. 762:. 758:. 744:^ 730:. 720:60 718:. 714:. 691:. 681:44 679:. 675:. 661:^ 647:. 633:. 629:. 606:. 594:. 590:. 574:^ 560:. 548:. 544:. 521:. 513:. 499:. 495:. 479:^ 465:. 453:33 451:. 447:. 424:. 414:30 412:. 408:. 392:^ 378:. 364:. 360:. 344:^ 247:12 56:A2 1341:. 1335:: 1329:8 1308:. 1294:: 1286:: 1259:. 1247:: 1220:. 1208:: 1181:. 1169:: 1139:. 1127:: 1100:. 1088:: 1056:. 1044:: 1017:. 1005:: 978:. 958:: 928:. 916:: 889:. 877:: 850:. 823:. 809:: 782:. 770:: 738:. 726:: 699:. 687:: 655:. 641:: 635:7 614:. 602:: 596:5 568:. 556:: 529:. 517:: 507:: 473:. 459:: 432:. 420:: 404:β 402:" 386:. 372:: 260:c 257:6 233:a 230:2 210:c 207:6 187:a 184:2 156:n 147:3 141:m 138:P 54:( 34:(

Index


unit cell
metastable phase
tungsten
thin films
body-centered cubic
A2
A15
thermal annealing
spin Hall effect
spin current
magnetoresistive
dendritic
cathode
electrolysis
phosphate
valence
allotrope
superconducting
space group
Frank–Kasper phases
Wyckoff positions
lattice parameter
DFT
electrical resistivity
resistor
spin–orbit interaction
magnetization
precession
sputter deposition

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑