Knowledge

Accommodation (vertebrate eye)

Source đź“ť

440:—Ronald A. Schachar has proposed in 1992 what has been called a "rather bizarre geometric theory" which claims that focus by the human lens is associated with increased tension on the lens via the equatorial zonules; that when the ciliary muscle contracts, equatorial zonular tension is increased, causing the central surfaces of the crystalline lens to steepen, the central thickness of the lens to increase (anterior-posterior diameter), and the peripheral surfaces of the lens to flatten. While the tension on equatorial zonules is increased during accommodation, the anterior and posterior zonules are simultaneously relaxing. The increased equatorial zonular tension keeps the lens stable and flattens the peripheral lens surface during accommodation. As a consequence, gravity does not affect the amplitude of accommodation and primary 132: 309:, MRI and physiological investigations it is becoming apparent the lens itself is not responding entirely passively to the surrounding ciliary muscle but may be able to change its overall refractive index through mechanisms involving water dynamics in the lens still to be clarified. The accompanying micrograph shows wrinkled fibers from a relaxed sheep lens after it is removed from the animal indicating shortening of the lens fibers during near focus accommodation. The age related changes in the human lens may also be related to changes in the water dynamics in the lens. 3012: 244:
muscles in the ciliary body. In this model the ligaments may pull to varying degrees on the lens at the equator using the radial muscles, while the ligaments offset from the equator to the front and back are relaxed to varying degrees by contracting the circular muscles. These multiple actions operating on the elastic lens allows it to change lens shape at the front more subtly. Not only changing focus, but also correcting for lens aberrations that might otherwise result from the changing shape while better fitting mathematical modeling.
357: 631: 265: 281:
Allvar Gullstrand spoke on "How I found the intracapsular mechanism of accommodation" and this aspect of lens focusing continues to be investigated. Young spent time searching for the nerves that could stimulate the lens to contract without success. Since that time it has become clear the lens is not a simple muscle stimulated by a nerve so the 1909 Helmholtz model took precedence. Pre-twentieth century investigators did not have the benefit of many later discoveries and techniques. Membrane proteins such as
236: 639: 20: 256:
front can then reform its shape between the suspensory ligaments in a similar way to a slack chain hanging between two poles might change its curve when the poles are moved closer together. This model requires precise fluid movement of the lens front only rather than trying to change the shape of the lens as a whole. While this concept may be involved in the focusing it has been shown by Scheimpflug photography that the rear of the lens also changes shape in the living eye.
148: 273: 103: 323: 166: 28: 153: 151: 149: 152: 701:, the lens is not attached to the outer surface of the eyeball at all. There is no aqueous humor in these fish, and the vitreous body simply presses the lens against the surface of the cornea. To focus its eyes, a lamprey flattens the cornea using muscles outside of the eye and pushes the lens backwards. 655:, the ciliary body which supports the lens via suspensory ligaments also touches the lens with a number of pads on its inner surface. These pads compress and release the lens to modify its shape while focusing on objects at different distances; the suspensory ligaments usually perform this function in 373:
contraction. This process can occur in as little as 224 ± 30 milliseconds in bright light. The amplitude of accommodation declines with age. By the fifth decade of life the accommodative amplitude can decline so that the near point of the eye is more remote than the reading distance. When this occurs
202:
What is less well understood is how the subtle, precise and very quick changes in lens shape are made. Direct experimental proof of any lens model is necessarily difficult as the vertebrate lens is transparent and only functions well in the living animals. When considering vertebrates, aspects of all
186:
The small difference in refractive index between water and the hydrated cornea means fish and amphibians need to bend the light more using the internal structures of the eye. Therefore, eyes evolved in water have a mechanism involving changing the distance between a rigid rounder more refractive lens
646:
Aquatic animals include some that also thrive in the air so focusing mechanisms vary more than in those that are only land based. Some whales and seals are able to focus above and below water having two areas of retina with high numbers of rods and cones rather than one as in humans. Having two high
454:
proposes that the lens, zonule and anterior vitreous comprise a diaphragm between the anterior and vitreous chambers of the eye. Ciliary muscle contraction initiates a pressure gradient between the vitreous and aqueous compartments that support the anterior lens shape. It is in this lens shape that
398:
is large; i.e. in dim light. The age-related decline in accommodation occurs almost universally to less than 2 dioptres by the time a person reaches 45 to 50 years, by which time most of the population will have noticed a decrease in their ability to focus on close objects and hence require glasses
243:
Schachar has proposed a model for land based vertebrates that was not well received. The theory allows mathematical modeling to more accurately reflect the way the lens focuses while also taking into account the complexities in the suspensory ligaments and the presence of radial as well as circular
459:
occurs. The anterior capsule and the zonule form a trampoline shape or hammock shaped surface that is totally reproducible depending on the circular dimensions, i.e. the diameter of the ciliary body (MĂĽeller's muscle). The ciliary body thus directs the shape like the pylons of a suspension bridge,
289:
which allow electrical coupling of cells are also prevalent. Electron microscopy and immunofluorescent microscopy show fiber cells to be highly variable in structure and composition. Magnetic resonance imaging confirms a layering in the lens that may allow for different refractive plans within it.
143:
involving water, air and often both. The eyes are therefor required to bend light different amounts leading to different mechanisms of focus being used in different environments. The air/cornea interface involves a larger difference in refractive index than hydrated structures within the eye. As a
547:
is the condition where amplitude of accommodation of a person is lesser compared to physiological limits for their age. Premature sclerosis of lens or ciliary muscle weaknesses due to systemic or local cases may cause accommodative insufficiency. Accommodative insufficiency is further categorised
280:
When Thomas Young proposed the changing of the human lens's shape as the mechanism for focal accommodation in 1801 he thought the lens may be a muscle capable of contraction. This type of model is termed intracapsular accommodation as it relies on activity within the lens. In a 1911 Nobel lecture
227:
being pulled tight by the pressure of the eyeball. At short focal distance the ciliary muscle contracts, stretching the ciliary body and relieving some of the tension on the suspensory ligaments, allowing the elastic lens to become more spherical, increasing refractive power. Changing focus to an
255:
demands less tension on the ligaments suspending the lens. Rather than the lens as a whole being stretched thinner for distance vision and allowed to relax for near focus, contraction of the circular ciliary muscles results in the lens having less hydrostatic pressure against its front. The lens
157:
3D reconstruction based on measurements taken from a 20 year old human male focusing from 26mm to infinity (4.85 dioptre change). Side & back views shown. Most image distortions near the center are due to model being limited to 512 faces to make up the lens. Peripheral distortions are also
524:
There are many types of accommodation anomalies. It can be broadly classified into two, decreased accommodation and increased accommodation. Decreased accommodation may occur due to physiological (presbyopia), pharmacological (cycloplegia) or pathological. Excessive accommodation and spasm of
111:
Focusing the light scattered by objects in a three dimensional environment into a two dimensional collection of individual bright points of light requires the light to be bent. To get a good image of these points of light on a defined area requires a precise systematic bending of light called
712:
which is superficially similar structure and function to a vertebrate eye, including accommodation, while differing in basic ways such as having a two part lens and no cornea. The fundamental requirements of optics must be filled by all eyes with lenses using the tissues at their disposal so
203:
models may play varying roles in lens focus. The models can be broadly divided into two camps. Those models that stress the importance of external forces acting on a more passively elastic lens and other models that include forces that may be generated by the lens internally.
170: 169: 168: 171: 364:
The young human eye can change focus from distance (infinity) to as near as 6.5 cm from the eye. This dramatic change in focal power of the eye of approximately 15 dioptres (the reciprocal of focal length in metres) occurs as a consequence of a reduction in
228:
object at a greater distance requires a thinner less curved lens. This is achieved by relaxing some of the sphincter-like ciliary muscles allowing the ciliarly body to spring back, pulling harder on the lens making it less curved and thinner, so increasing the
536:, physiological insufficiency of accommodation due to age related changes in lens (decreased elasticity and increased hardness) and ciliary muscle power is the commonest form of accommodative dysfunction. It will cause gradual decrease in near vision. 106:
The path of light through the eye calculated using four refractive indexes, cornea and lens curvatures approximating components of real eyes. Note objects in some size ranges and distances do not require the light path to bend noticeably to achieve
595:
is also known as accommodative inertia. In this condition there will be difficulty in changing accommodation from one point to other. There may be difficulty in adjusting focus from distance from near. It is a comparatively rare condition.
908:(English translation edited by JPC Southall. The Optical Society of America. From the third German Edition of Handbuch der Physiologischen Optik (1909), Leopold Voss, Leipzig. Dover reprint ed.). New York, NY: Dover Publications Inc. 434:. When viewing a near object, the ciliary muscles contract (resisting the outward pressure on the sclera) causing the lens zonules to slacken which allows the lens to spring back into a thicker, more convex, form. 674:, the suspensory ligaments are replaced by a membrane, including a small muscle at the underside of the lens. This muscle pulls the lens forward from its relaxed position when focusing on nearby objects. In 1977:
Chen, Ai Hong; O'Leary, Daniel J.; Howell, Edwin R. (2000). "Near visual function in young children. Part I: near point of convergence. Part II: amplitude of accommodation. Part III: near heterophoria".
150: 1892:
Jones, C.E.; Atchison, D.A.; Meder, R.; Pope, J.M. (August 2005). "Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI)".
556:
Ill-sustained accommodation is a condition similar to accommodative insufficiency. In this, range of accommodation will be normal, but after excessive near work accommodative power will decrease.
1440:
Broekhuyse, R. M.; Kuhlmann, E. D.; Stols, A. L. (September 1976). "Lens membranes II. Isolation and characterization of the main intrinsic polypeptide (MIP) of bovine lens fiber membranes".
682:, and serves to pull the lens backwards from the relaxed position to focus on distant objects. While amphibians move the lens forward, as do cartilaginous fish, the muscles involved are not 455:
the mechanically reproducible state of a steep radius of curvature in the center of the lens with slight flattening of the peripheral anterior lens, i.e. the shape, in cross section, of a
1773:
Donaldson, Paul J.; Chen, Yadi; Petrova, Rosica S.; Grey, Angus C.; Lim, Julie C. (December 2022). "Regulation of lens water content: Effects on the physiological optics of the lens".
219:
contracts rounding the lens to focus near and this model was popularized by Helmholtz in 1909. The model may be summarized like this. Normally the lens is held under tension by its
622:
occurs when an individual uses more than normal accommodation for performing certain near work. Modern definitions simply regard it as an inability to relax accommodation readily.
199:
Varying forms of direct experimental proof outlined in this article show that most non-aquatic vertebrates achieve focus, at least in part, by changing the shapes of their lenses.
167: 1730:
Vaghefi, E; Pontre, BP; Jacobs, MD; Donaldson, PJ (August 2011). "Visualizing ocular lens fluid dynamics using MRI: manipulation of steady state water content and water fluxes".
399:
for reading or bifocal lenses. Accommodation decreases to about 1 dioptre at the age of 70 years. The dependency of accommodation amplitude on age is graphically summarized by
360:
Duane's classical curves showing the amplitude or width of accommodation as changing with age. Mean (B) and approximate lower (A) and upper (C) standard deviations are shown.
1207:
Knaus, Katherine R.; Hipsley, AnnMarie; Blemker, Silvia S. (June 2021). "The action of ciliary muscle contraction on accommodation of the lens explored with a 3D model".
268:
Tracing of Scheimpflug photographs of 20 year old human lens being thicker focusing near and thinner when focusing far. Internal layering of the lens is also significant
232:. There is a problem with the Helmholtz model in that despite mathematical models being tried none has come close enough to working using only the Helmholtz mechanisms. 139:
Due to the nature of optics the focused image on the retina is always inverted relative to the object. Different animals live in different environments having different
713:
superficially eyes all tend to look similar. It is the way optical requirements are met using different cell types and structural mechanisms that varies among animals.
390:(nearsighted and require an optical correction for distance or far vision), will find that they see better at near without their distance correction; and those who are 607:
also known as ciliary spasm is a condition of abnormally excessive accommodation which is out of voluntary control of the person. Vision may be blurred due to induced
341: 430:
and suspensory ligaments to pull on the lens, flattening it. The source of the tension is the pressure that the vitreous and aqueous humours exert outwards onto the
667:, the lens is fixed in shape, and focusing is instead achieved by moving the lens forwards or backwards within the eye using a muscle called the retractor lentus. 568:). It may occur due to ciliary muscle paralysis or occulomotor nerve paralysis. Parasympatholytic drugs like atropine will also cause paralysis of accommodation. 1857:
Moffat, BA; Landman, KA; Truscott, RJ; Sweeney, MH; Pope, JM (December 1999). "Age-related changes in the kinetics of water transport in normal human lenses".
1106:
Schachar, Ronald A. (22 September 2015). "Human Accommodative Ciliary Muscle Configuration Changes Are Consistent With Schachar's Mechanism of Accommodation".
144:
result, animals living in air have most of the bending of light achieved at the air/cornea interface with the lens being involved in finer focus of the image.
179:
Generally mammals, birds and reptiles living in air vary their eyes' optical power by subtly and precisely changing the shape of the elastic lens using the
175:
The previous video of the eye lens changing shape with focus is placed into context as the lens in this video is placed into the context of a virtual eye.
1623:
Hermans, EA; Dubbelman, M; Van der Heijde, R; Heethaar, RM (December 2008). "Equivalent refractive index of the human lens upon accommodative response".
1687:
Stahnke, T.; Hadlich, S.; Wree, A.; Guthoff, R.; Stachs, O.; Langner, S. (16 December 2016). "Magnetresonanzmikroskopie des Akkommodationsapparats".
1057:
Shao, Yilei; Tao, Aizhu; Jiang, Hong; Mao, Xinjie; Zhong, Jianguang; Shen, Meixiao; Lu, Fan; Xu, Zhe; Karp, Carol L.; Wang, Jianhua (1 June 2015).
1288:
Hermans, Erik A.; Pouwels, Petra J. W.; Dubbelman, Michiel; Kuijer, Joost P. A.; van der Heijde, Rob G. L.; Heethaar, Rob M. (1 January 2009).
394:(farsighted) will find that they may need a correction for both distance and near vision. Note that these effects are most noticeable when the 2079:
Baumeister, M.; Kohnen, T. (June 2008). "Akkommodation und Presbyopie: Teil 1: Physiologie der Akkommodation und Entwicklung der Presbyopie".
1561:
Gruijters, WT; Kistler, J; Bullivant, S (October 1987). "Formation, distribution and dissociation of intercellular junctions in the lens".
2758: 2628:
Jagger, W. S; Sands, P. J (1 August 1999). "A wide-angle gradient index optical model of the crystalline lens and eye of the octopus".
1290:"Constant Volume of the Human Lens and Decrease in Surface Area of the Capsular Bag during Accommodation: An MRI and Scheimpflug Study" 971:
Schachar, Ronald A.; Bax, Andrew J. (June 2001). "Mechanism of human accommodation as analyzed by nonlinear finite element analysis".
576:
If there is amplitude of accommodation between the eyes differ 0.5 dioptre or more, it is considered as unequal. Organic diseases,
642:
Bony fish eye. Note the harder more spherical lens than in land based animals and a none circular muscle to pull the lens backward
512:) between how much convergence takes place because of accommodation (AC/A ratio, CA/C ratio). Abnormalities with this can lead to 2612: 2533: 2469: 2431: 2166: 215:
in a lecture on the 27th Nov 1800. Others such as Helmholtz and Huxley refined the model in the mid-1800s explaining how the
1526:
Kuszak, J; Alcala, J; Maisel, H (December 1980). "The surface morphology of embryonic and adult chick lens-fiber cells".
294:
of human lens varies from approximately 1.406 in the central layers down to 1.386 in less dense layers of the lens. This
131: 31:
Two horse lenses suspended on water by cling wrap with four approximately parallel lasers directed through them. The 1
2499: 1674: 2986: 74: 2751: 795: 790: 690:, there are two muscles, one above and one below the lens, while other amphibians have only the lower muscle. 2361: 842:"Focusing by shape change in the lens of the eye: a commentary on Young (1801) 'On the mechanism of the eye'" 564:
In paralysis of accommodation, amplitude of accommodation is either markedly reduced or completely absent (
1592:
Gruijters, WT (July 1989). "A non-connexon protein (MIP) is involved in eye lens gap-junction formation".
505:
of the eye, and thus reduce the amount of accommodation needed to bring the image in focus on the retina.
647:
resolution area of retina presumably allows two axis of vision one for above and one for below water. In
544: 444:
shifts in the negative direction during accommodation. The theory has not found much independent support.
2387:
Wang, B.; Ciuffreda, K. J. (2006). "Depth-of-Focus of the Human Eye: Theory and Clinical Implications".
2744: 765: 332: 497:, the functional role of the pupillary constriction remains less clear. Arguably, it may increase the 2941: 2771: 125: 285:
which allow water to flow into and out of cells are the most abundant membrane protein in the lens.
3055: 3047: 2730: 780: 592: 482: 212: 2826: 2911: 2726: 2020:
That value follows from the maximum accommodative power and can be calculated as 100 cm/15 dpt.
3132: 2861: 704:
While not vertebrate, brief mention is made here of the convergent evolution of vertebrate and
678:, by contrast, a muscle projects from a vascular structure in the floor of the eye, called the 604: 509: 2325:
Coleman, DJ; Fish, SK (September 2001). "Presbyopia, accommodation, and the mature catenary".
1818:"Hyposmotic stress causes ATP release in a discrete zone within the outer cortex of rat lens" 755: 634:
Diving bird (Cormorant) lens focusing can be up to 80 dioptres for clearer underwater vision.
416: 306: 295: 2821: 1180:
Schachar, RA (March 1994). "Zonular function: a new hypothesis with clinical implications".
191:
rather than subtly changing the shape of the lens itself using circularly arranged muscles.
65:—the maximum distance from the eye for which a clear image of an object can be seen, to the 3081: 2946: 2921: 2886: 1412: 619: 490: 441: 382:(i.e., do not require optical correction for distance vision) will need an optical aid for 8: 2991: 2851: 2846: 2811: 3001: 2460:
Khurana, AK (September 2008). "Asthenopia, anomalies of accommodation and convergence".
2127: 1416: 1027: 846:
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
3127: 3011: 2881: 2856: 2836: 2653: 2580: 2302: 2285: 2218: 2184:"Wavefront aberration changes caused by a gradient of increasing accommodation stimuli" 2183: 2139: 2056: 2031: 1959: 1917: 1834: 1817: 1798: 1755: 1712: 1648: 1381: 1369: 1232: 1083: 1058: 1039: 996: 945: 920: 866: 841: 683: 671: 451: 383: 252: 27: 3032: 2641: 2400: 2338: 1955: 1475:
Mulders, SM; Preston, GM; Deen, PM; Guggino, WB; van Os, CH; Agre, P (14 April 1995).
61:
on an object as its distance varies. In this, distances vary for individuals from the
3086: 2906: 2841: 2694: 2645: 2608: 2572: 2529: 2495: 2465: 2427: 2404: 2342: 2307: 2266: 2258: 2254: 2223: 2205: 2162: 2131: 2096: 2061: 2003: 1995: 1991: 1909: 1874: 1839: 1802: 1790: 1786: 1747: 1704: 1670: 1652: 1640: 1605: 1574: 1543: 1508: 1457: 1453: 1373: 1338: 1311: 1267: 1263: 1236: 1224: 1189: 1162: 1154: 1123: 1088: 1031: 988: 950: 871: 785: 470: 337: 2657: 2584: 2143: 1963: 1716: 1385: 1043: 1000: 3096: 2966: 2936: 2926: 2891: 2767: 2684: 2637: 2562: 2396: 2334: 2297: 2250: 2213: 2195: 2123: 2088: 2051: 2043: 1987: 1951: 1940:"Studies in Monocular and Binocular Accommodation with their Clinical Applications" 1921: 1901: 1866: 1829: 1782: 1759: 1739: 1696: 1632: 1597: 1566: 1535: 1498: 1488: 1449: 1420: 1365: 1301: 1259: 1216: 1115: 1078: 1070: 1023: 980: 940: 936: 932: 861: 853: 760: 513: 291: 140: 1732:
American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
3137: 3101: 2981: 2976: 2961: 2876: 2796: 2047: 1905: 1636: 814: 630: 400: 224: 264: 2996: 2971: 2951: 2931: 2831: 2806: 2555:
The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology
1743: 1220: 709: 660: 498: 427: 424: 420: 370: 366: 229: 216: 159: 58: 2241:
Coleman, D. Jackson (June 1970). "Unified Model for Accommodative Mechanism".
2092: 1250:
Coleman, D. Jackson (June 1970). "Unified Model for Accommodative Mechanism".
984: 493:. While it is well understood that proper convergence is necessary to prevent 460:
but does not need to support an equatorial traction force to flatten the lens.
356: 120:
formed from millions of these points of light is what animals see using their
3116: 2871: 2816: 2715: 2262: 2209: 1999: 1425: 1400: 1356:
Huggert, Arne (27 May 2009). "The Intracapsular Mechanism of Accommodation".
1331:
Klinische Monatsblätter für Augenheilkunde und für augenärztliche Fortbildung
1158: 299: 54: 2689: 2672: 2528:(2nd ed.). St. Louis Mo.: Butterworth Heinemann/Elsevier. p. 112. 1493: 1476: 3122: 2896: 2866: 2736: 2698: 2649: 2576: 2408: 2346: 2227: 2100: 2065: 2007: 1913: 1878: 1870: 1843: 1794: 1751: 1708: 1644: 1539: 1377: 1342: 1315: 1228: 1127: 1092: 1059:"Age-Related Changes in the Anterior Segment Biometry During Accommodation" 992: 921:"The force of contraction of the human ciliary muscle during accommodation" 875: 857: 743: 608: 477:. The combination of these three movements (accommodation, convergence and 180: 69:—the minimum distance for a clear image. Accommodation usually acts like a 2311: 2270: 2135: 1700: 1609: 1578: 1547: 1512: 1271: 1193: 1142: 1119: 1074: 1035: 638: 235: 2916: 2524:
William J., Benjamin (2006). "Accommodation, the Pupil, and Presbyopia".
2200: 1601: 1570: 1461: 1306: 1289: 1166: 954: 770: 705: 577: 565: 2602: 893:(5th ed.). London and New York: MACMILLAN AND CO. pp. 256–258. 3039: 2956: 2901: 2786: 1503: 775: 533: 379: 375: 276:
Wrinkled lens fibers in picture below compared to straight fibers above
272: 117: 113: 66: 47: 1622: 1283: 1281: 135:
Virtual eye showing the contribution to focus of different components.
19: 3063: 2801: 2720: 2567: 2550: 966: 964: 733: 727: 664: 581: 391: 282: 62: 1939: 1816:
Suzuki-Kerr, H; Walker, KL; Han, MH; Lim, JC; Donaldson, PJ (2022).
302:
of the lens. As more is learned about mammalian lens structure from
102: 3091: 2791: 2607:. Philadelphia, PA: Holt-Saunders International. pp. 463–464. 1278: 502: 494: 456: 286: 248: 961: 415:—The most widely held theory of accommodation is that proposed by 698: 694: 675: 648: 519: 220: 194: 3026: 2671:
Schaeffel, F.; Murphy, C.J.; Howland, H.C. (15 November 1999).
2426:(2nd ed.). St. Louis Mo.: Butterworth Heinemann/Elsevier. 738: 656: 478: 431: 387: 188: 121: 70: 1143:"The zonular insertion: a scanning electron microscopic study" 35:
cm spaced grid indicates a near focus focal length of around 6
1477:"Water channel properties of major intrinsic protein of lens" 1287: 721: 474: 395: 211:
The model of a shape changing lens of humans was proposed by
158:
present in animal lenses though are typically covered by the
1856: 1729: 419:
in 1855. When viewing a far object, the circularly arranged
124:. Very even systematic curvature of parts of the cornea and 2114:
Atchison, David A. (1995). "Accommodation and presbyopia".
687: 652: 1401:"Gullstrand Intracapsular Accommodation Mechanism Revised" 1014:
Atchison, DA (July 1995). "Accommodation and presbyopia".
128:
produces this systematic bending of light onto the retina.
1686: 1560: 1474: 87:
Changing the position of the lens relative to the retina.
50: 2422:
William J., Benjamin (2006). "Fusion and binocularity".
1772: 1815: 1439: 2670: 1891: 2673:"Accommodation in the cuttlefish (Sepia officinalis)" 2286:"On the hydraulic suspension theory of accommodation" 2182:
Zhou, X-Y; Wang, L; Zhou, X-T; Yu, Z-Q (2014-10-24).
1976: 2490:
Duke, Elder's (1969). "Anomalies of accommodation".
525:
accommodation are types of increased accommodation.
469:
When humans accommodate to a near object, they also
2603:Romer, Alfred Sherwood; Parsons, Thomas S. (1977). 1206: 464: 1525: 2549:Mass, Alla M.; Supin, Alexander YA. (June 2007). 23:Minimum (top) and maximum accommodation (bottom). 3114: 2078: 1294:Investigative Ophthalmology & Visual Science 1147:Investigative Ophthalmology & Visual Science 1108:Investigative Ophthalmology & Visual Science 1063:Investigative Ophthalmology & Visual Science 1056: 406: 2455: 2453: 2451: 2449: 2447: 2445: 2443: 2181: 584:may be responsible for unequal accommodation. 551: 539: 520:Anomalies of accommodation described in humans 195:Land based animals and the shape changing lens 2752: 2485: 2483: 2481: 2386: 2159:The Mechanism of Accommodation and Presbyopia 559: 77:, but it can also be consciously controlled. 2766: 2464:(2nd ed.). Elsevier. pp. 100–107. 2462:Theory and practice of optics and refraction 1970: 80:The main ways animals may change focus are: 2627: 2551:"Adaptive features of aquatic mammals' eye" 2440: 2362:"EyeRounds.org: Tutorial: Binocular Vision" 2324: 2029: 1209:Biomechanics and Modeling in Mechanobiology 970: 587: 2759: 2745: 2523: 2478: 2421: 1689:Klinische Monatsblätter fĂĽr Augenheilkunde 722:Disorders of and relating to accommodation 2729:at the U.S. National Library of Medicine 2688: 2566: 2548: 2519: 2517: 2515: 2513: 2511: 2301: 2217: 2199: 2055: 2032:"Effects of Age on Dynamic Accommodation" 1833: 1591: 1502: 1492: 1424: 1398: 1305: 1082: 944: 903: 865: 599: 90:Changing the axial length of the eyeball. 2156: 2113: 1933: 1931: 1179: 1140: 1105: 1013: 708:. The most complex Molluscan eye is the 637: 629: 571: 378:. Once presbyopia occurs, those who are 355: 271: 263: 234: 164: 146: 130: 101: 26: 18: 2459: 2415: 2283: 2240: 1355: 1249: 614: 3115: 2508: 918: 888: 97: 2740: 2598: 2596: 2594: 2359: 1937: 1928: 1016:Ophthalmic & Physiological Optics 2489: 1775:Progress in Retinal and Eye Research 1399:LĂłpez-Gil, Norberto (3 March 2022). 839: 316: 2494:(8th ed.). London: Churchill. 2128:10.1046/j.1475-1313.1995.9500020e.x 2116:Ophthalmic and Physiological Optics 1980:Ophthalmic and Physiological Optics 1481:The Journal of Biological Chemistry 1328: 1028:10.1046/j.1475-1313.1995.9500020e.x 13: 2723:—"Presbyopia: Cause and Treatment" 2591: 2161:. The Hague: Kugler Publications. 1669:, 2nd ed. (1987), Addison Wesley, 1370:10.1111/j.1755-3768.1964.tb03627.x 625: 259: 251:" model of lens focus proposed by 206: 187:and the retina using less uniform 14: 3149: 2708: 2401:10.1016/j.survophthal.2005.11.003 2243:American Journal of Ophthalmology 2030:Lockhart, T. E.; Shi, W. (2010). 1944:American Journal of Ophthalmology 1252:American Journal of Ophthalmology 693:In the simplest vertebrates, the 93:Changing the shape of the cornea. 3010: 2360:Bhola, Rahul (23 January 2006). 1992:10.1046/j.1475-1313.2000.00498.x 1787:10.1016/j.preteyeres.2022.101152 906:Treatise on physiological optics 891:Lessons in Elementary Physiology 465:Induced effects of accommodation 321: 75:accommodation-convergence reflex 2677:Journal of Experimental Biology 2664: 2621: 2542: 2380: 2353: 2318: 2277: 2234: 2175: 2150: 2107: 2072: 2023: 2014: 1885: 1850: 1809: 1766: 1723: 1680: 1659: 1616: 1585: 1554: 1528:The American Journal of Anatomy 1519: 1468: 1433: 1392: 1349: 1322: 1243: 1200: 1173: 1134: 919:Fisher, R. F. (1 August 1977). 796:Positive relative accommodation 791:Negative relative accommodation 473:their eyes and constrict their 84:Changing the shape of the lens. 1141:Streeten, B. W. (April 1977). 1099: 1050: 1007: 937:10.1113/jphysiol.1977.sp011938 912: 897: 882: 833: 807: 481:) is under the control of the 1: 2642:10.1016/S0042-6989(99)00012-7 2339:10.1016/s0161-6420(01)00691-1 1956:10.1016/s0002-9394(22)90793-7 801: 686:in either type of animal. In 528: 508:There is a measurable ratio ( 312: 57:to maintain a clear image or 2526:Borish's clinical refraction 2424:Borish's Clinical Refraction 2255:10.1016/0002-9394(70)91057-3 2048:10.1080/00140139.2010.489968 1906:10.1016/j.visres.2005.03.008 1637:10.1097/OPX.0b013e31818e8d57 1625:Optometry and Vision Science 1454:10.1016/0014-4835(76)90135-4 1264:10.1016/0002-9394(70)91057-3 407:Theories on how humans focus 239:Schachar model of lens focus 46:is the process by which the 7: 716: 552:Ill-sustained accommodation 548:into different categories. 545:Accommodative insufficiency 540:Accommodative insufficiency 330:It has been suggested that 10: 3154: 2492:The practice of refraction 1744:10.1152/ajpregu.00173.2011 1596:. 93 ( Pt 3) (3): 509–13. 1221:10.1007/s10237-021-01417-9 904:Helmholtz, H. von (1962). 766:Amplitude of accommodation 560:Paralysis of accommodation 485:and is referred to as the 333:Amplitude of accommodation 3074: 3019: 3008: 2779: 2093:10.1007/s00347-008-1761-8 1938:Duane, Alexander (1922). 1859:Experimental Eye Research 1565:. 88 ( Pt 3) (3): 351–9. 1442:Experimental Eye Research 985:10.1007/s12019-996-0006-5 925:The Journal of Physiology 889:Huxley, Thomas H (1871). 840:Land, M (19 April 2015). 347:Proposed since July 2024. 3048:Ascending and Descending 2731:Medical Subject Headings 2157:Schachar, R. A. (2012). 1426:10.3390/photonics9030152 781:Edinger-Westphal nucleus 749: 593:Accommodative infacility 588:Accommodative infacility 483:Edinger-Westphal nucleus 73:, including part of the 2690:10.1242/jeb.202.22.3127 2389:Survey of Ophthalmology 2290:Trans Am Ophthalmol Soc 1594:Journal of Cell Science 1563:Journal of Cell Science 1494:10.1074/jbc.270.15.9010 1182:Annals of Ophthalmology 728:Accommodative esotropia 307:Scheimpflug photography 16:Focusing ability of eye 2366:webeye.ophth.uiowa.edu 1871:10.1006/exer.1999.0747 1540:10.1002/aja.1001590406 858:10.1098/rstb.2014.0308 643: 635: 605:Spasm of accommodation 600:Spasm of accommodation 361: 277: 269: 240: 176: 162: 136: 108: 40: 24: 1701:10.1055/s-0042-118599 1120:10.1167/iovs.15-17452 1075:10.1167/iovs.15-16825 973:Comprehensive Therapy 756:Accommodation in fish 641: 633: 572:Unequal accommodation 423:relaxes allowing the 417:Hermann von Helmholtz 403:'s classical curves. 359: 275: 267: 238: 174: 156: 134: 105: 30: 22: 3082:Accidental viewpoint 2727:Ocular+Accommodation 2368:. University of Iowa 2284:Coleman, DJ (1986). 2201:10.1038/eye.2014.244 1602:10.1242/jcs.93.3.509 1571:10.1242/jcs.88.3.351 1358:Acta Ophthalmologica 1307:10.1167/iovs.08-2124 620:Accommodative excess 615:Accommodative excess 491:accommodation reflex 442:spherical aberration 340:into this section. ( 221:suspending ligaments 2987:Vertical–horizontal 2605:The Vertebrate Body 1417:2022Photo...9..152L 1329:PAU, H (1952). "". 510:Matthiessen's ratio 369:tension induced by 98:Focusing mechanisms 3087:Auditory illusions 2882:Impossible trident 672:cartilaginous fish 644: 636: 452:D. Jackson Coleman 362: 278: 270: 241: 177: 163: 141:refractive indexes 137: 109: 41: 25: 3110: 3109: 3102:Temporal illusion 3097:Tactile illusions 3067:(2015 photograph) 2768:Optical illusions 2683:(22): 3127–3134. 2636:(17): 2841–2852. 2614:978-0-03-910284-5 2535:978-0-7506-7524-6 2471:978-81-312-1132-8 2433:978-0-7506-7524-6 2168:978-90-6299-233-1 2081:Der Ophthalmologe 1900:(18): 2352–2366. 1695:(12): 1320–1323. 786:Mandelbaum Effect 680:falciform process 354: 353: 349: 172: 154: 3145: 3014: 2967:Schroeder stairs 2942:Peripheral drift 2937:Penrose triangle 2761: 2754: 2747: 2738: 2737: 2703: 2702: 2692: 2668: 2662: 2661: 2625: 2619: 2618: 2600: 2589: 2588: 2570: 2568:10.1002/ar.20529 2546: 2540: 2539: 2521: 2506: 2505: 2487: 2476: 2475: 2457: 2438: 2437: 2419: 2413: 2412: 2384: 2378: 2377: 2375: 2373: 2357: 2351: 2350: 2322: 2316: 2315: 2305: 2281: 2275: 2274: 2249:(6): 1063–1079. 2238: 2232: 2231: 2221: 2203: 2179: 2173: 2172: 2154: 2148: 2147: 2111: 2105: 2104: 2076: 2070: 2069: 2059: 2027: 2021: 2018: 2012: 2011: 1974: 1968: 1967: 1935: 1926: 1925: 1889: 1883: 1882: 1854: 1848: 1847: 1837: 1822:Molecular Vision 1813: 1807: 1806: 1770: 1764: 1763: 1727: 1721: 1720: 1684: 1678: 1663: 1657: 1656: 1620: 1614: 1613: 1589: 1583: 1582: 1558: 1552: 1551: 1523: 1517: 1516: 1506: 1496: 1472: 1466: 1465: 1437: 1431: 1430: 1428: 1396: 1390: 1389: 1353: 1347: 1346: 1326: 1320: 1319: 1309: 1285: 1276: 1275: 1258:(6): 1063–1079. 1247: 1241: 1240: 1204: 1198: 1197: 1177: 1171: 1170: 1138: 1132: 1131: 1103: 1097: 1096: 1086: 1069:(6): 3522–3530. 1054: 1048: 1047: 1011: 1005: 1004: 968: 959: 958: 948: 916: 910: 909: 901: 895: 894: 886: 880: 879: 869: 837: 831: 830: 828: 826: 811: 761:Adaptation (eye) 514:binocular vision 501:by reducing the 386:; those who are 345: 325: 324: 317: 292:refractive index 173: 155: 38: 34: 3153: 3152: 3148: 3147: 3146: 3144: 3143: 3142: 3113: 3112: 3111: 3106: 3070: 3020:Popular culture 3015: 3006: 2977:Spinning dancer 2797:Ambiguous image 2775: 2765: 2711: 2706: 2669: 2665: 2630:Vision Research 2626: 2622: 2615: 2601: 2592: 2547: 2543: 2536: 2522: 2509: 2502: 2488: 2479: 2472: 2458: 2441: 2434: 2420: 2416: 2385: 2381: 2371: 2369: 2358: 2354: 2323: 2319: 2282: 2278: 2239: 2235: 2180: 2176: 2169: 2155: 2151: 2112: 2108: 2077: 2073: 2028: 2024: 2019: 2015: 1975: 1971: 1950:(11): 865–877. 1936: 1929: 1894:Vision Research 1890: 1886: 1855: 1851: 1814: 1810: 1771: 1767: 1728: 1724: 1685: 1681: 1665:Hecht, Eugene. 1664: 1660: 1631:(12): 1179–84. 1621: 1617: 1590: 1586: 1559: 1555: 1524: 1520: 1487:(15): 9010–16. 1473: 1469: 1438: 1434: 1397: 1393: 1354: 1350: 1327: 1323: 1286: 1279: 1248: 1244: 1205: 1201: 1178: 1174: 1139: 1135: 1104: 1100: 1055: 1051: 1012: 1008: 969: 962: 917: 913: 902: 898: 887: 883: 838: 834: 824: 822: 819:www.bio.vobs.at 813: 812: 808: 804: 752: 724: 719: 628: 626:Aquatic animals 617: 602: 590: 574: 562: 554: 542: 531: 522: 467: 409: 374:the patient is 350: 326: 322: 315: 262: 260:Internal forces 209: 207:External forces 197: 165: 147: 100: 36: 32: 17: 12: 11: 5: 3151: 3141: 3140: 3135: 3130: 3125: 3108: 3107: 3105: 3104: 3099: 3094: 3089: 3084: 3078: 3076: 3072: 3071: 3069: 3068: 3060: 3059:(1961 drawing) 3052: 3051:(1960 drawing) 3044: 3036: 3029: 3023: 3021: 3017: 3016: 3009: 3007: 3005: 3004: 2999: 2994: 2989: 2984: 2979: 2974: 2972:Shepard tables 2969: 2964: 2959: 2954: 2949: 2944: 2939: 2934: 2932:Penrose stairs 2929: 2924: 2919: 2914: 2909: 2904: 2899: 2894: 2889: 2884: 2879: 2874: 2869: 2864: 2859: 2854: 2849: 2844: 2839: 2834: 2829: 2827:Checker shadow 2824: 2819: 2814: 2809: 2807:Autostereogram 2804: 2799: 2794: 2789: 2783: 2781: 2777: 2776: 2764: 2763: 2756: 2749: 2741: 2735: 2734: 2724: 2710: 2709:External links 2707: 2705: 2704: 2663: 2620: 2613: 2590: 2561:(6): 701–715. 2541: 2534: 2507: 2500: 2477: 2470: 2439: 2432: 2414: 2379: 2352: 2333:(9): 1544–51. 2317: 2276: 2233: 2194:(1): 115–121. 2174: 2167: 2149: 2122:(4): 255–212. 2106: 2087:(6): 597–610. 2071: 2042:(7): 892–903. 2022: 2013: 1986:(3): 185–198. 1969: 1927: 1884: 1849: 1808: 1765: 1738:(2): R335-42. 1722: 1679: 1658: 1615: 1584: 1553: 1534:(4): 395–410. 1518: 1467: 1448:(3): 365–371. 1432: 1391: 1364:(2): 389–397. 1348: 1321: 1300:(1): 281–289. 1277: 1242: 1215:(3): 879–894. 1199: 1172: 1153:(4): 364–375. 1133: 1098: 1049: 1006: 979:(2): 122–132. 960: 911: 896: 881: 832: 805: 803: 800: 799: 798: 793: 788: 783: 778: 773: 768: 763: 758: 751: 748: 747: 746: 741: 736: 730: 723: 720: 718: 715: 710:Cephalopod eye 706:Molluscan eyes 661:vision in fish 627: 624: 616: 613: 601: 598: 589: 586: 580:or functional 573: 570: 561: 558: 553: 550: 541: 538: 530: 527: 521: 518: 499:depth of field 466: 463: 462: 461: 445: 435: 421:ciliary muscle 408: 405: 371:ciliary muscle 352: 351: 329: 327: 320: 314: 311: 296:index gradient 261: 258: 230:focal distance 217:ciliary muscle 208: 205: 196: 193: 160:iris (anatomy) 99: 96: 95: 94: 91: 88: 85: 15: 9: 6: 4: 3: 2: 3150: 3139: 3136: 3134: 3133:Ophthalmology 3131: 3129: 3126: 3124: 3121: 3120: 3118: 3103: 3100: 3098: 3095: 3093: 3090: 3088: 3085: 3083: 3080: 3079: 3077: 3073: 3066: 3065: 3061: 3058: 3057: 3053: 3050: 3049: 3045: 3042: 3041: 3037: 3035: 3034: 3030: 3028: 3025: 3024: 3022: 3018: 3013: 3003: 3000: 2998: 2995: 2993: 2990: 2988: 2985: 2983: 2980: 2978: 2975: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2948: 2945: 2943: 2940: 2938: 2935: 2933: 2930: 2928: 2925: 2923: 2920: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2900: 2898: 2895: 2893: 2890: 2888: 2885: 2883: 2880: 2878: 2875: 2873: 2870: 2868: 2865: 2863: 2862:Fraser spiral 2860: 2858: 2855: 2853: 2850: 2848: 2845: 2843: 2840: 2838: 2835: 2833: 2830: 2828: 2825: 2823: 2820: 2818: 2815: 2813: 2810: 2808: 2805: 2803: 2800: 2798: 2795: 2793: 2790: 2788: 2785: 2784: 2782: 2778: 2773: 2769: 2762: 2757: 2755: 2750: 2748: 2743: 2742: 2739: 2732: 2728: 2725: 2722: 2718: 2717: 2713: 2712: 2700: 2696: 2691: 2686: 2682: 2678: 2674: 2667: 2659: 2655: 2651: 2647: 2643: 2639: 2635: 2631: 2624: 2616: 2610: 2606: 2599: 2597: 2595: 2586: 2582: 2578: 2574: 2569: 2564: 2560: 2556: 2552: 2545: 2537: 2531: 2527: 2520: 2518: 2516: 2514: 2512: 2503: 2501:0-7000-1410-1 2497: 2493: 2486: 2484: 2482: 2473: 2467: 2463: 2456: 2454: 2452: 2450: 2448: 2446: 2444: 2435: 2429: 2425: 2418: 2410: 2406: 2402: 2398: 2394: 2390: 2383: 2367: 2363: 2356: 2348: 2344: 2340: 2336: 2332: 2328: 2327:Ophthalmology 2321: 2313: 2309: 2304: 2299: 2295: 2291: 2287: 2280: 2272: 2268: 2264: 2260: 2256: 2252: 2248: 2244: 2237: 2229: 2225: 2220: 2215: 2211: 2207: 2202: 2197: 2193: 2189: 2185: 2178: 2170: 2164: 2160: 2153: 2145: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2110: 2102: 2098: 2094: 2090: 2086: 2083:(in German). 2082: 2075: 2067: 2063: 2058: 2053: 2049: 2045: 2041: 2037: 2033: 2026: 2017: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1981: 1973: 1965: 1961: 1957: 1953: 1949: 1945: 1941: 1934: 1932: 1923: 1919: 1915: 1911: 1907: 1903: 1899: 1895: 1888: 1880: 1876: 1872: 1868: 1864: 1860: 1853: 1845: 1841: 1836: 1831: 1827: 1823: 1819: 1812: 1804: 1800: 1796: 1792: 1788: 1784: 1780: 1776: 1769: 1761: 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1726: 1718: 1714: 1710: 1706: 1702: 1698: 1694: 1690: 1683: 1676: 1675:0-201-11609-X 1672: 1668: 1662: 1654: 1650: 1646: 1642: 1638: 1634: 1630: 1626: 1619: 1611: 1607: 1603: 1599: 1595: 1588: 1580: 1576: 1572: 1568: 1564: 1557: 1549: 1545: 1541: 1537: 1533: 1529: 1522: 1514: 1510: 1505: 1500: 1495: 1490: 1486: 1482: 1478: 1471: 1463: 1459: 1455: 1451: 1447: 1443: 1436: 1427: 1422: 1418: 1414: 1410: 1406: 1402: 1395: 1387: 1383: 1379: 1375: 1371: 1367: 1363: 1359: 1352: 1344: 1340: 1336: 1332: 1325: 1317: 1313: 1308: 1303: 1299: 1295: 1291: 1284: 1282: 1273: 1269: 1265: 1261: 1257: 1253: 1246: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1203: 1195: 1191: 1187: 1183: 1176: 1168: 1164: 1160: 1156: 1152: 1148: 1144: 1137: 1129: 1125: 1121: 1117: 1113: 1109: 1102: 1094: 1090: 1085: 1080: 1076: 1072: 1068: 1064: 1060: 1053: 1045: 1041: 1037: 1033: 1029: 1025: 1022:(4): 255–72. 1021: 1017: 1010: 1002: 998: 994: 990: 986: 982: 978: 974: 967: 965: 956: 952: 947: 942: 938: 934: 930: 926: 922: 915: 907: 900: 892: 885: 877: 873: 868: 863: 859: 855: 851: 847: 843: 836: 820: 816: 810: 806: 797: 794: 792: 789: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 762: 759: 757: 754: 753: 745: 742: 740: 737: 735: 731: 729: 726: 725: 714: 711: 707: 702: 700: 696: 691: 689: 685: 681: 677: 673: 668: 666: 662: 658: 654: 650: 640: 632: 623: 621: 612: 610: 606: 597: 594: 585: 583: 579: 569: 567: 557: 549: 546: 537: 535: 526: 517: 515: 511: 506: 504: 500: 496: 492: 488: 484: 480: 476: 472: 458: 453: 449: 446: 443: 439: 436: 433: 429: 426: 422: 418: 414: 411: 410: 404: 402: 397: 393: 389: 385: 381: 377: 372: 368: 358: 348: 343: 339: 335: 334: 328: 319: 318: 310: 308: 305: 301: 300:optical power 298:enhances the 297: 293: 288: 284: 274: 266: 257: 254: 250: 245: 237: 233: 231: 226: 222: 218: 214: 204: 200: 192: 190: 184: 182: 161: 145: 142: 133: 129: 127: 123: 119: 115: 104: 92: 89: 86: 83: 82: 81: 78: 76: 72: 68: 64: 60: 56: 55:optical power 52: 49: 45: 44:Accommodation 29: 21: 3062: 3054: 3046: 3038: 3033:Trompe-l'Ĺ“il 3031: 2897:Lilac chaser 2867:Gravity hill 2714: 2680: 2676: 2666: 2633: 2629: 2623: 2604: 2558: 2554: 2544: 2525: 2491: 2461: 2423: 2417: 2395:(1): 75–85. 2392: 2388: 2382: 2372:11 September 2370:. Retrieved 2365: 2355: 2330: 2326: 2320: 2293: 2289: 2279: 2246: 2242: 2236: 2191: 2187: 2177: 2158: 2152: 2119: 2115: 2109: 2084: 2080: 2074: 2039: 2035: 2025: 2016: 1983: 1979: 1972: 1947: 1943: 1897: 1893: 1887: 1865:(6): 663–9. 1862: 1858: 1852: 1825: 1821: 1811: 1778: 1774: 1768: 1735: 1731: 1725: 1692: 1688: 1682: 1666: 1661: 1628: 1624: 1618: 1593: 1587: 1562: 1556: 1531: 1527: 1521: 1484: 1480: 1470: 1445: 1441: 1435: 1408: 1404: 1394: 1361: 1357: 1351: 1337:(2): 224–6. 1334: 1330: 1324: 1297: 1293: 1255: 1251: 1245: 1212: 1208: 1202: 1185: 1181: 1175: 1150: 1146: 1136: 1114:(10): 6075. 1111: 1107: 1101: 1066: 1062: 1052: 1019: 1015: 1009: 976: 972: 931:(1): 51–74. 928: 924: 914: 905: 899: 890: 884: 849: 845: 835: 825:11 September 823:. Retrieved 818: 809: 744:Pseudomyopia 703: 692: 679: 669: 645: 618: 609:pseudomyopia 603: 591: 575: 563: 555: 543: 532: 523: 507: 486: 468: 447: 437: 412: 363: 346: 331: 303: 279: 246: 242: 213:Thomas Young 210: 201: 198: 185: 181:ciliary body 178: 138: 110: 79: 43: 42: 3043:(1864 book) 2947:Poggendorff 2922:Oppel-Kundt 2917:Necker cube 2912:MĂĽller-Lyer 2887:Irradiation 1828:: 245–256. 1504:2066/216433 1188:(2): 36–8. 821:(in German) 771:Cycloplegia 578:head trauma 566:cycloplegia 384:near vision 3117:Categories 3040:Spectropia 2957:Rubin vase 2907:McCollough 2902:Mach bands 2852:Ehrenstein 2847:Ebbinghaus 2812:Barberpole 2787:Afterimage 2296:: 846–68. 2036:Ergonomics 1781:: 101152. 1411:(3): 152. 802:References 776:Cyclospasm 665:amphibians 534:Presbyopia 529:Presbyopia 516:problems. 487:near triad 380:emmetropic 376:presbyopic 313:Human eyes 283:aquaporins 118:real image 114:refraction 67:near point 48:vertebrate 3128:Optometry 3092:Illusions 3064:The dress 3056:Waterfall 2857:Flash lag 2837:Cornsweet 2822:CafĂ© wall 2802:Ames room 2780:Illusions 2721:eMedicine 2263:0002-9394 2210:0950-222X 2000:0275-5408 1803:254243790 1677:. p. 178. 1653:205907383 1405:Photonics 1237:231704221 1159:0146-0404 734:hyperopia 582:amblyopia 413:Helmholtz 392:hyperopic 287:Connexins 63:far point 2842:Delboeuf 2792:Ambigram 2699:10539961 2658:17808919 2650:10492814 2585:39925190 2577:17516421 2409:16414364 2347:11535447 2228:25341432 2144:24282106 2101:18594896 2066:20582770 2008:10897340 1964:43172462 1914:15979462 1879:10620395 1844:36284672 1795:36470825 1752:21593426 1717:78808282 1709:27984837 1645:19050472 1386:37325357 1378:14213923 1343:14955961 1316:18676625 1229:33491156 1128:26393665 1093:26030106 1044:24282106 1001:71369369 993:11430259 876:25750232 852:(1666). 717:See also 695:lampreys 676:teleosts 649:reptiles 503:aperture 495:diplopia 471:converge 457:catenary 448:Catenary 438:Schachar 249:catenary 53:changes 3075:Related 3002:Zöllner 2992:White's 2927:Orbison 2892:Jastrow 2716:oph/723 2312:3590482 2303:1298753 2271:5423772 2219:4289835 2136:7667018 2057:2908311 1922:8894700 1835:9514545 1760:9525037 1610:2691517 1579:3448099 1548:7223675 1513:7536742 1413:Bibcode 1272:5423772 1194:8010701 1084:4464043 1036:7667018 946:1353417 867:4360117 815:"Augen" 732:Latent 699:hagfish 684:similar 659:. With 657:mammals 428:zonules 367:zonular 342:Discuss 304:in situ 253:Coleman 225:capsule 189:muscles 122:retinas 3138:Vision 3027:Op art 2982:Ternus 2962:Sander 2877:Hering 2817:Bezold 2733:(MeSH) 2697:  2656:  2648:  2611:  2583:  2575:  2532:  2498:  2468:  2430:  2407:  2345:  2310:  2300:  2269:  2261:  2226:  2216:  2208:  2165:  2142:  2134:  2099:  2064:  2054:  2006:  1998:  1962:  1920:  1912:  1877:  1842:  1832:  1801:  1793:  1758:  1750:  1715:  1707:  1673:  1667:Optics 1651:  1643:  1608:  1577:  1546:  1511:  1462:976377 1460:  1384:  1376:  1341:  1314:  1270:  1235:  1227:  1192:  1167:844993 1165:  1157:  1126:  1091:  1081:  1042:  1034:  999:  991:  955:915798 953:  943:  874:  864:  739:Myopia 479:miosis 475:pupils 432:sclera 388:myopic 338:merged 116:. The 107:focus. 71:reflex 37:  33:  2997:Wundt 2952:Ponzo 2832:Chubb 2654:S2CID 2581:S2CID 2140:S2CID 1960:S2CID 1918:S2CID 1799:S2CID 1756:S2CID 1713:S2CID 1649:S2CID 1382:S2CID 1233:S2CID 1040:S2CID 997:S2CID 750:Other 688:frogs 653:birds 489:, or 401:Duane 396:pupil 247:The " 59:focus 2872:Grid 2772:list 2695:PMID 2646:PMID 2609:ISBN 2573:PMID 2530:ISBN 2496:ISBN 2466:ISBN 2428:ISBN 2405:PMID 2374:2020 2343:PMID 2308:PMID 2267:PMID 2259:ISSN 2224:PMID 2206:ISSN 2163:ISBN 2132:PMID 2097:PMID 2062:PMID 2004:PMID 1996:ISSN 1910:PMID 1875:PMID 1840:PMID 1791:PMID 1748:PMID 1705:PMID 1671:ISBN 1641:PMID 1606:PMID 1575:PMID 1544:PMID 1509:PMID 1458:PMID 1374:PMID 1339:PMID 1312:PMID 1268:PMID 1225:PMID 1190:PMID 1163:PMID 1155:ISSN 1124:PMID 1089:PMID 1032:PMID 989:PMID 951:PMID 872:PMID 827:2020 697:and 663:and 651:and 425:lens 290:The 223:and 126:lens 3123:Eye 2719:at 2685:doi 2681:202 2638:doi 2563:doi 2559:290 2397:doi 2335:doi 2331:108 2298:PMC 2251:doi 2214:PMC 2196:doi 2188:Eye 2124:doi 2089:doi 2085:105 2052:PMC 2044:doi 1988:doi 1952:doi 1902:doi 1867:doi 1830:PMC 1783:doi 1740:doi 1736:301 1697:doi 1693:233 1633:doi 1598:doi 1567:doi 1536:doi 1532:159 1499:hdl 1489:doi 1485:270 1450:doi 1421:doi 1366:doi 1335:121 1302:doi 1260:doi 1217:doi 1116:doi 1079:PMC 1071:doi 1024:doi 981:doi 941:PMC 933:doi 929:270 862:PMC 854:doi 850:370 670:In 336:be 51:eye 3119:: 2693:. 2679:. 2675:. 2652:. 2644:. 2634:39 2632:. 2593:^ 2579:. 2571:. 2557:. 2553:. 2510:^ 2480:^ 2442:^ 2403:. 2393:51 2391:. 2364:. 2341:. 2329:. 2306:. 2294:84 2292:. 2288:. 2265:. 2257:. 2247:69 2245:. 2222:. 2212:. 2204:. 2192:29 2190:. 2186:. 2138:. 2130:. 2120:15 2118:. 2095:. 2060:. 2050:. 2040:53 2038:. 2034:. 2002:. 1994:. 1984:20 1982:. 1958:. 1946:. 1942:. 1930:^ 1916:. 1908:. 1898:45 1896:. 1873:. 1863:69 1861:. 1838:. 1826:28 1824:. 1820:. 1797:. 1789:. 1779:95 1777:. 1754:. 1746:. 1734:. 1711:. 1703:. 1691:. 1647:. 1639:. 1629:85 1627:. 1604:. 1573:. 1542:. 1530:. 1507:. 1497:. 1483:. 1479:. 1456:. 1446:23 1444:. 1419:. 1407:. 1403:. 1380:. 1372:. 1362:42 1360:. 1333:. 1310:. 1298:50 1296:. 1292:. 1280:^ 1266:. 1256:69 1254:. 1231:. 1223:. 1213:20 1211:. 1186:26 1184:. 1161:. 1151:16 1149:. 1145:. 1122:. 1112:56 1110:. 1087:. 1077:. 1067:56 1065:. 1061:. 1038:. 1030:. 1020:15 1018:. 995:. 987:. 977:27 975:. 963:^ 949:. 939:. 927:. 923:. 870:. 860:. 848:. 844:. 817:. 611:. 183:. 39:cm 2774:) 2770:( 2760:e 2753:t 2746:v 2701:. 2687:: 2660:. 2640:: 2617:. 2587:. 2565:: 2538:. 2504:. 2474:. 2436:. 2411:. 2399:: 2376:. 2349:. 2337:: 2314:. 2273:. 2253:: 2230:. 2198:: 2171:. 2146:. 2126:: 2103:. 2091:: 2068:. 2046:: 2010:. 1990:: 1966:. 1954:: 1948:5 1924:. 1904:: 1881:. 1869:: 1846:. 1805:. 1785:: 1762:. 1742:: 1719:. 1699:: 1655:. 1635:: 1612:. 1600:: 1581:. 1569:: 1550:. 1538:: 1515:. 1501:: 1491:: 1464:. 1452:: 1429:. 1423:: 1415:: 1409:9 1388:. 1368:: 1345:. 1318:. 1304:: 1274:. 1262:: 1239:. 1219:: 1196:. 1169:. 1130:. 1118:: 1095:. 1073:: 1046:. 1026:: 1003:. 983:: 957:. 935:: 878:. 856:: 829:. 450:— 344:)

Index



vertebrate
eye
optical power
focus
far point
near point
reflex
accommodation-convergence reflex

refraction
real image
retinas
lens

refractive indexes
iris (anatomy)
ciliary body
muscles
Thomas Young
ciliary muscle
suspending ligaments
capsule
focal distance

catenary
Coleman

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑