Knowledge

Osgood curve

Source đź“ť

27: 154:
and space-filling curves to obtain an Osgood curve. For instance, Knopp's construction involves recursively splitting triangles into pairs of smaller triangles, meeting at a shared vertex, by removing triangular wedges. When each level of this construction removes the same fraction of the area of its
30:
Example of an Osgood curve, constructed by recursively removing wedges from triangles. The wedge angles shrink exponentially, as does the fraction of area removed in each level, leaving nonzero area in the final
163:. Instead, reducing the fraction of area removed per level, rapidly enough to leave a constant fraction of the area unremoved, produces an Osgood curve. 399: 134:, who found a curve that has positive area in every neighborhood of each of its points, based on an earlier construction of 463:, American Mathematical Society Colloquium Publications, vol. 30, American Mathematical Society, New York, p. 157, 552: 468: 167: 130:). Both examples have positive area in parts of the curve, but zero area in other parts; this flaw was corrected by 20: 488: 103: 52: 138:. Knopp's example has the additional advantage that its area can be made arbitrarily close to the area of its 328: 280:
Balcerzak, M.; Kharazishvili, A. (1999), "On uncountable unions and intersections of measurable sets",
579: 175: 326:
Lance, Timothy; Thomas, Edward (1991), "Arcs with positive measure and a space-filling curve",
135: 458: 232: 605: 36: 312:(1917), "Einheitliche Erzeugung und Darstellung der Kurven von Peano, Osgood und von Koch", 562: 509: 478: 446: 357: 301: 171: 75:
is defined to be an Osgood curve when it is non-self-intersecting (that is, it is either a
525: 430: 8: 394: 115: 95: 91: 60: 56: 513: 434: 345: 99: 413: 548: 517: 464: 418: 166:
Another way to construct an Osgood curve is to form a two-dimensional version of the
156: 540: 521: 497: 426: 408: 381: 337: 289: 84: 558: 505: 474: 442: 353: 297: 83:) and it has positive area. More formally, it must have positive two-dimensional 72: 365: 160: 123: 544: 293: 610: 599: 422: 454: 182:
and totally disconnected subset of the plane is a subset of a Jordan curve.
309: 76: 486:
Sagan, Hans (1993), "A geometrization of Lebesgue's space-filling curve",
179: 139: 501: 438: 349: 80: 386: 534: 51:. Despite its area, it is not possible for such a curve to cover any 341: 257: 151: 150:
It is possible to modify the recursive construction of certain
26: 369: 44: 48: 231:, Section 8.3, The Osgood Curves of SierpĂ­nski and Knopp, 279: 263: 102:, covering all of the points of the plane, or of any 98:. However, they cannot be space-filling curves: by 114:The first examples of Osgood curves were found by 400:Transactions of the American Mathematical Society 174:point set with non-zero area, and then apply the 597: 106:of the plane, would lead to self-intersections. 191: 23:relating stress to strain in material science. 374:Bulletin de la SociĂ©tĂ© MathĂ©matique de France 66: 16:Non-self-intersecting curve of positive area 539:, Universitext, New York: Springer-Verlag, 397:(1903), "A Jordan Curve of Positive Area", 325: 248: 412: 385: 364: 220: 218: 127: 25: 598: 393: 119: 532: 485: 308: 252: 244: 228: 224: 215: 209: 131: 453: 264:Balcerzak & Kharazishvili (1999) 197: 13: 577: 14: 622: 581:Knopp's Osgood Curve Construction 571: 414:10.1090/S0002-9947-1903-1500628-5 584:, Wolfram Demonstrations Project 314:Archiv der Mathematik und Physik 59:. Osgood curves are named after 145: 489:The Mathematical Intelligencer 238: 203: 1: 329:American Mathematical Monthly 282:Georgian Mathematical Journal 272: 19:Not to be confused with the 7: 370:"Sur le problème des aires" 155:triangles, the result is a 55:, distinguishing them from 43:is a non-self-intersecting 10: 627: 109: 18: 545:10.1007/978-1-4612-0871-6 249:Lance & Thomas (1991) 178:according to which every 168:Smith–Volterra–Cantor set 67:Definition and properties 185: 294:10.1023/A:1022102312024 116:William Fogg Osgood 104:two-dimensional region 53:two-dimensional region 32: 37:mathematical analysis 29: 536:Space-filling curves 533:Sagan, Hans (1994), 176:Denjoy–Riesz theorem 172:totally disconnected 96:space-filling curves 57:space-filling curves 21:Ramberg–Osgood curve 92:Hausdorff dimension 90:Osgood curves have 61:William Fogg Osgood 502:10.1007/BF03024322 395:Osgood, William F. 124:Henri Lebesgue 47:that has positive 33: 387:10.24033/bsmf.694 136:WacĹ‚aw SierpiĹ„ski 618: 592: 591: 589: 578:Dickau, Robert, 565: 528: 481: 449: 416: 390: 389: 360: 321: 304: 267: 261: 255: 242: 236: 233:pp. 136–140 222: 213: 207: 201: 195: 85:Lebesgue measure 626: 625: 621: 620: 619: 617: 616: 615: 596: 595: 587: 585: 574: 569: 555: 471: 460:Length and Area 342:10.2307/2323941 275: 270: 262: 258: 243: 239: 223: 216: 208: 204: 196: 192: 188: 148: 112: 100:Netto's theorem 73:Euclidean plane 71:A curve in the 69: 24: 17: 12: 11: 5: 624: 614: 613: 608: 594: 593: 573: 572:External links 570: 568: 567: 553: 530: 483: 469: 451: 407:(1): 107–112, 391: 362: 336:(2): 124–127, 323: 306: 288:(3): 201–212, 276: 274: 271: 269: 268: 256: 237: 214: 202: 189: 187: 184: 161:Koch snowflake 157:CesĂ ro fractal 147: 144: 111: 108: 68: 65: 15: 9: 6: 4: 3: 2: 623: 612: 609: 607: 604: 603: 601: 583: 582: 576: 575: 564: 560: 556: 554:0-387-94265-3 550: 546: 542: 538: 537: 531: 527: 523: 519: 515: 511: 507: 503: 499: 495: 491: 490: 484: 480: 476: 472: 470:9780821846216 466: 462: 461: 456: 452: 448: 444: 440: 436: 432: 428: 424: 420: 415: 410: 406: 402: 401: 396: 392: 388: 383: 379: 376:(in French), 375: 371: 367: 363: 359: 355: 351: 347: 343: 339: 335: 331: 330: 324: 319: 315: 311: 307: 303: 299: 295: 291: 287: 283: 278: 277: 265: 260: 254: 250: 246: 241: 234: 230: 226: 221: 219: 211: 206: 199: 194: 190: 183: 181: 177: 173: 169: 164: 162: 158: 153: 143: 141: 137: 133: 129: 125: 121: 117: 107: 105: 101: 97: 93: 88: 86: 82: 78: 74: 64: 62: 58: 54: 50: 46: 42: 38: 28: 22: 606:Plane curves 586:, retrieved 580: 535: 496:(4): 37–43, 493: 487: 459: 404: 398: 377: 373: 366:Lebesgue, H. 333: 327: 317: 313: 285: 281: 259: 253:Sagan (1993) 245:Knopp (1917) 240: 229:Sagan (1994) 225:Knopp (1917) 210:Sagan (1994) 205: 193: 165: 159:such as the 149: 146:Construction 132:Knopp (1917) 113: 89: 77:Jordan curve 70: 41:Osgood curve 40: 34: 455:RadĂł, Tibor 380:: 197–203, 198:RadĂł (1948) 140:convex hull 600:Categories 588:20 October 526:0795.54022 431:34.0533.02 273:References 94:two, like 81:Jordan arc 518:122497728 423:0002-9947 320:: 103–115 310:Knopp, K. 457:(1948), 368:(1903), 212:, p. 131 152:fractals 563:1299533 510:1240667 479:0024511 447:1500628 439:1986455 358:1089456 350:2323941 302:1679442 180:bounded 126: ( 118: ( 110:History 561:  551:  524:  516:  508:  477:  467:  445:  437:  429:  421:  356:  348:  300:  122:) and 31:curve. 514:S2CID 435:JSTOR 346:JSTOR 186:Notes 79:or a 45:curve 39:, an 611:Area 590:2013 549:ISBN 465:ISBN 419:ISSN 170:, a 128:1903 120:1903 49:area 541:doi 522:Zbl 498:doi 427:JFM 409:doi 382:doi 338:doi 290:doi 35:In 602:: 559:MR 557:, 547:, 520:, 512:, 506:MR 504:, 494:15 492:, 475:MR 473:, 443:MR 441:, 433:, 425:, 417:, 403:, 378:31 372:, 354:MR 352:, 344:, 334:98 332:, 318:26 316:, 298:MR 296:, 284:, 251:; 247:; 227:; 217:^ 142:. 87:. 63:. 566:. 543:: 529:. 500:: 482:. 450:. 411:: 405:4 384:: 361:. 340:: 322:. 305:. 292:: 286:6 266:. 235:. 200:.

Index

Ramberg–Osgood curve

mathematical analysis
curve
area
two-dimensional region
space-filling curves
William Fogg Osgood
Euclidean plane
Jordan curve
Jordan arc
Lebesgue measure
Hausdorff dimension
space-filling curves
Netto's theorem
two-dimensional region
William Fogg Osgood
1903
Henri Lebesgue
1903
Knopp (1917)
Wacław Sierpiński
convex hull
fractals
CesĂ ro fractal
Koch snowflake
Smith–Volterra–Cantor set
totally disconnected
Denjoy–Riesz theorem
bounded

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑