Knowledge

Microfluidics

Source 📝

186:, at least one boundary of the system is removed, exposing the fluid to air or another interface (i.e. liquid). Advantages of open microfluidics include accessibility to the flowing liquid for intervention, larger liquid-gas surface area, and minimized bubble formation. Another advantage of open microfluidics is the ability to integrate open systems with surface-tension driven fluid flow, which eliminates the need for external pumping methods such as peristaltic or syringe pumps. Open microfluidic devices are also easy and inexpensive to fabricate by milling, thermoforming, and hot embossing. In addition, open microfluidics eliminates the need to glue or bond a cover for devices, which could be detrimental to capillary flows. Examples of open microfluidics include open-channel microfluidics, rail-based microfluidics, 483:
fields. This causes the magnetic particles to be quickly pushed from side to side within the droplet and results in the mixing of the microdroplet contents. This eliminates the need for tedious engineering considerations that are necessary for traditional, channel-based droplet mixing. Other research has also shown that the label-free separation of cells may be possible by suspending cells in a paramagnetic fluid and taking advantage of the magneto-Archimedes effect. While this does eliminate the complexity of particle functionalization, more research is needed to fully understand the magneto-Archimedes phenomenon and how it can be used to this end. This is not an exhaustive list of the various applications of microfluidic-assisted magnetophoresis; the above examples merely highlight the versatility of this
874:
proteins. This reduction in reagent volumes allows for new experiments like single-cell protein analysis, which due to size limitations of prior devices, previously came with great difficulty. The coupling of HPLC-chip devices with other spectrometry methods like mass-spectrometry allow for enhanced confidence in identification of desired species, like proteins. Microfluidic chips have also been created with internal delay-lines that allow for gradient generation to further improve HPLC, which can reduce the need for further separations. Some other practical applications of integrated HPLC chips include the determination of drug presence in a person through their hair and the labeling of peptides through reverse phase liquid chromatography.
973:
droplets that is achievable. Using microfluidics for emulsions is also more energy efficient compared to homogenization in which “only 5% of the supplied energy is used to generate the emulsion, with the rest dissipated as heat” . Although these methods have benefits, they currently lack the ability to be produced at large scale that is needed for commercialization. Microfluidics are also used in research as they allow for innovation in food chemistry and food processing. An example in food engineering research is a novel micro-3D-printed device fabricated to research production of droplets for potential food processing industry use, particularly in work with enhancing emulsions.
325:
dimensions, the pore structure, wettability and geometry of the microfluidic devices can be controlled while the viscosity and evaporation rate of the liquid play a further significant role. Many such devices feature hydrophobic barriers on hydrophilic paper that passively transport aqueous solutions to outlets where biological reactions take place. Paper-based microfluidics are considered as portable point-of-care biosensors used in a remote setting where advanced medical diagnostic tools are not accessible. Current applications include portable glucose detection and environmental testing, with hopes of reaching areas that lack advanced medical diagnostic tools.
224:
separation, but they are less suitable for tasks requiring a high degree of flexibility or fluid manipulations. These closed-channel systems are inherently difficult to integrate and scale because the parameters that govern flow field vary along the flow path making the fluid flow at any one location dependent on the properties of the entire system. Permanently etched microstructures also lead to limited reconfigurability and poor fault tolerance capability. Computer-aided design automation approaches for continuous-flow microfluidics have been proposed in recent years to alleviate the design effort and to solve the scalability problems.
977:
as nitrate, preservatives, or antibiotics in meat by a colorimetric reaction that can be detected with a smartphone. These methods are being researched because they use less reactants, space, and time compared to traditional techniques such as liquid chromatography. ÎŒPADs also make home detection tests possible, which is of interest to those with allergies and intolerances. In addition to paper-based methods, research demonstrates droplet-based microfluidics shows promise in drastically shortening the time necessary to confirm viable bacterial contamination in agricultural waters in the domestic and international food industry.
289:. Le Pesant et al. pioneered the use of electrocapillary forces to move droplets on a digital track. The "fluid transistor" pioneered by Cytonix also played a role. The technology was subsequently commercialised by Duke University. By using discrete unit-volume droplets, a microfluidic function can be reduced to a set of repeated basic operations, i.e., moving one unit of fluid over one unit of distance. This "digitisation" method facilitates the use of a hierarchical and cell-based approach for microfluidic biochip design. Therefore, digital microfluidics offers a flexible and scalable system architecture as well as high 20: 848:
PMMA, and glass) is advantageous, although material integrity must be considered under specific harsh conditions. Through the usage of fiber optic coupling, the device can be isolated from instrumentation, preventing irradiative damage and minimizing the exposure of lab personnel to potentially harmful radiation, something not possible on the lab scale nor with the previous standard of analysis. The shrinkage of the device also allows for lower amounts of analyte to be used, decreasing the amount of waste generated and exposure to hazardous materials.
865:
detection from certain machines like those that measure fluorescence. More recent designs have fully integrated HPLC columns into microfluidic chips. The main advantage of integrating HPLC columns into microfluidic devices is the smaller form factor that can be achieved, which allows for additional features to be combined within one microfluidic chip. Integrated chips can also be fabricated from multiple different materials, including glass and polyimide which are quite different from the standard material of
893:(typically nanoliters or picoliters) without any physical contact. This technology focuses acoustic energy into a fluid sample to eject droplets as small as a millionth of a millionth of a litre (picoliter = 10 litre). ADE technology is a very gentle process, and it can be used to transfer proteins, high molecular weight DNA and live cells without damage or loss of viability. This feature makes the technology suitable for a wide variety of applications including 267:
growing substantially in past decades. Microdroplets allow for handling miniature volumes (ÎŒL to fL) of fluids conveniently, provide better mixing, encapsulation, sorting, and sensing, and suit high throughput experiments. Exploiting the benefits of droplet-based microfluidics efficiently requires a deep understanding of droplet generation to perform various logical operations such as droplet manipulation, droplet sorting, droplet merging, and droplet breakup.
9831: 228: 1273: 1259: 9819: 254: 9107: 108: 379:. Critical dimensions down to 1 ÎŒm are easily fabricated, and with a bit more effort and expense, feature sizes below 100 nm can be patterned reliably as well. This enables the inexpensive production of pores integrated in a microfluidic circuit where the pore diameters can reach sizes of order 100 nm, with a concomitant reduction in the minimum particle diameters by several orders of magnitude. 7209: 3038: 99:. Micropumps supply fluids in a continuous manner or are used for dosing. Microvalves determine the flow direction or the mode of movement of pumped liquids. Often, processes normally carried out in a lab are miniaturised on a single chip, which enhances efficiency and mobility, and reduces sample and reagent volumes. 87:, in the form of capillary flow modifying elements, akin to flow resistors and flow accelerators. In some applications, external actuation means are additionally used for a directed transport of the media. Examples are rotary drives applying centrifugal forces for the fluid transport on the passive chips. 972:
Food processing requires the ability to enable shelf stability in foods, such as emulsions or additions of preservatives. Techniques such as droplet microfluidics are used to create emulsions that are more controlled and complex than those created by traditional homogenization due to the precision of
838:
spectroscopy, which allows for the analysis of more complex mixtures which contain several actinides at different oxidation states. Measurements made with these methods have been validated at the bulk level for industrial tests, and are observed to have a much lower variance at the micro-scale. This
266:
Droplet-based microfluidics is a subcategory of microfluidics in contrast with continuous microfluidics; droplet-based microfluidics manipulates discrete volumes of fluids in immiscible phases with low Reynolds number and laminar flow regimes. Interest in droplet-based microfluidics systems has been
976:
Paper and droplet microfluidics allow for devices that can detect small amounts of unwanted bacteria or chemicals, making them useful in food safety and analysis. Paper-based microfluidic devices are often referred to as microfluidic paper-based analytical devices (ÎŒPADs) and can detect such things
927:
are interested in measuring the chemical composition of extraplanetary bodies. Because of their small size and wide-ranging functionality, microfluidic devices are uniquely suited for these remote sample analyses. From an extraterrestrial sample, the organic content can be assessed using microchip
495:
Microfluidic structures include micropneumatic systems, i.e. microsystems for the handling of off-chip fluids (liquid pumps, gas valves, etc.), and microfluidic structures for the on-chip handling of nanoliter (nl) and picoliter (pl) volumes. To date, the most successful commercial application of
258: 869:
used in many different droplet-based microfluidic devices. This is an important feature because different applications of HPLC microfluidic chips may call for different pressures. PDMS fails in comparison for high-pressure uses compared to glass and polyimide. High versatility of HPLC integration
342:
is passed through a small (~100 ÎŒm diameter) pore, so that an electrical signal is generated that is directly proportional to the ratio of the particle volume to the pore volume. The physics behind this is relatively simple, described in a classic paper by DeBlois and Bean, and the implementation
1123:
sample with high accuracy. To improve this strategy, the microfluidic program with a sequential manner of drug cocktails, coupled with fluorescent barcodes, is more efficient. Another advanced strategy is detecting growth rates of single-cell by using suspended microchannel resonators, which can
847:
Through the application of the PhLOC, flexibility and safety of operational methods are increased. Since the analysis of spent nuclear fuel involves extremely harsh conditions, the application of disposable and rapidly produced devices (Based on castable and/or engravable materials such as PDMS,
173:
Microfluidic flows need only be constrained by geometrical length scale – the modalities and methods used to achieve such a geometrical constraint are highly dependent on the targeted application. Traditionally, microfluidic flows have been generated inside closed channels with the channel cross
873:
The potential applications surrounding integrated HPLC columns within microfluidic devices have proven expansive over the last 10–15 years. The integration of such columns allows for experiments to be run where materials were in low availability or very expensive, like in biological analysis of
843:
at the micro-scale for U(IV). Through the development of a spectrophotometric approach to analyzing spent fuel, an on-line method for measurement of reactant quantities is created, increasing the rate at which samples can be analyzed and thus decreasing the size of deviations detectable within
613:
Antibiotic resistance: microfluidic devices can be used as heterogeneous environments for microorganisms. In a heterogeneous environment, it is easier for a microorganism to evolve. This can be useful for testing the acceleration of evolution of a microorganism / for testing the development of
482:
Conversely, microfluidic-assisted magnetophoresis may be used to facilitate efficient mixing within microdroplets or plugs. To accomplish this, microdroplets are injected with paramagnetic nanoparticles and are flowed through a straight channel which passes through rapidly alternating magnetic
864:
HPLC in the field of microfluidics comes in two different forms. Early designs included running liquid through the HPLC column then transferring the eluted liquid to microfluidic chips and attaching HPLC columns to the microfluidic chip directly. The early methods had the advantage of easier
293:
capability. Moreover, because each droplet can be controlled independently, these systems also have dynamic reconfigurability, whereby groups of unit cells in a microfluidic array can be reconfigured to change their functionality during the concurrent execution of a set of bioassays. Although
223:
mechanisms. Continuous-flow microfluidic operation is the mainstream approach because it is easy to implement and less sensitive to protein fouling problems. Continuous-flow devices are adequate for many well-defined and simple biochemical applications, and for certain tasks such as chemical
255: 990:
Personalized cancer treatment is a tuned method based on the patient's diagnosis and background. Microfluidic technology offers sensitive detection with higher throughput, as well as reduced time and costs. For personalized cancer treatment, tumor composition and drug sensitivities are very
324:
Paper-based microfluidic devices fill a growing niche for portable, cheap, and user-friendly medical diagnostic systems. Paper based microfluidics rely on the phenomenon of capillary penetration in porous media. To tune fluid penetration in porous substrates such as paper in two and three
479:. Once the magnetic particles are functionalized, they are dispersed in a cell mixture where they bind to only the cells of interest. The resulting cell/particle mixture can then be flowed through a microfluidic device with a magnetic field to separate the targeted cells from the rest. 855:
process successfully being demonstrated at the micro-scale. Likewise, the microfluidic technology developed for the analysis of spent nuclear fuel is predicted to expand horizontally to analysis of other actinide, lanthanides, and transition metals with little to no modification.
6867: 257: 3556: 202:
through narrow channels or porous media predominantly by accelerating or hindering fluid flow in capillary elements. In paper based microfluidics, capillary elements can be achieved through the simple variation of section geometry. In general, the actuation of
3815:
Lewpiriyawong N, Kandaswamy K, Yang C, Ivanov V, Stocker R (December 2011). "Microfluidic characterization and continuous separation of cells and particles using conducting poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis".
568:
Microfluidic technology has led to the creation of powerful tools for biologists to control the complete cellular environment, leading to new questions and discoveries. Many diverse advantages of this technology for microbiology are listed below:
1246:
of glass, minimized Joule heating effects, making the system highly efficient and fast. Such innovations highlight the potential of microfluidic devices in analytical chemistry, particularly in applications requiring quick and precise analyses.
333:
One application area that has seen significant academic effort and some commercial effort is in the area of particle detection in fluids. Particle detection of small fluid-borne particles down to about 1 ÎŒm in diameter is typically done using a
1010:
technology in which droplets are transported in a reusable capillary and alternately flow through two areas maintained at different constant temperatures and fluorescence detection. It can be efficient with a low contamination risk to detect
4006:
Weiss AC, KrĂŒger K, Besford QA, Schlenk M, Kempe K, Förster S, Caruso F (January 2019). "In Situ Characterization of Protein Corona Formation on Silica Microparticles Using Confocal Laser Scanning Microscopy Combined with Microfluidics".
366:
The limit on the pore size in traditional RPS Coulter counters is set by the method used to make the pores, which while a trade secret, most likely uses traditional mechanical methods. This is where microfluidics can have an impact: The
6655:
Zhu KY, Leung KW, Ting AK, Wong ZC, Ng WY, Choi RC, et al. (March 2012). "Microfluidic chip based nano liquid chromatography coupled to tandem mass spectrometry for the determination of abused drugs and metabolites in human hair".
164:
High specificity of chemical and physical properties (concentration, pH, temperature, shear force, etc.) can also be ensured resulting in more uniform reaction conditions and higher grade products in single and multi-step reactions.
302:). Many lab-on-a-chip applications have been demonstrated within the digital microfluidics paradigm using electrowetting. However, recently other techniques for droplet manipulation have also been demonstrated using magnetic force, 411:
One major area of application for microfluidic devices is the separation and sorting of different fluids or cell types. Recent developments in the microfluidics field have seen the integration of microfluidic devices with
870:
ensures robustness by avoiding connections and fittings between the column and chip. The ability to build off said designs in the future allows the field of microfluidics to continue expanding its potential applications.
294:
droplets are manipulated in confined microfluidic channels, since the control on droplets is not independent, it should not be confused as "digital microfluidics". One common actuation method for digital microfluidics is
7123:
Stockton AM, Tjin CC, Huang GL, Benhabib M, Chiesl TN, Mathies RA (November 2010). "Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: aldehydes and ketones".
6987:
Chiesl TN, Chu WK, Stockton AM, Amashukeli X, Grunthaner F, Mathies RA (April 2009). "Enhanced amine and amino acid analysis using Pacific Blue and the Mars Organic Analyzer microchip capillary electrophoresis system".
839:
approach has been found to have molar extinction coefficients (UV-Vis) in line with known literature values over a comparatively large concentration span for 150 ÎŒL via elongation of the measurement channel, and obeys
794:
By rectifying the motion of individual swimming bacteria, microfluidic structures can be used to extract mechanical motion from a population of motile bacterial cells. This way, bacteria-powered rotors can be built.
23:
NIST researchers have combined a glass slide, plastic sheets and double-sided tape to create an inexpensive and simple-to-build microfluidic device for exposing an array of cells to different concentrations of a
7757:
Hajji I, Serra M, Geremie L, Ferrante I, Renault R, Viovy JL, Descroix S, Ferraro D (2020). "Droplet microfluidic platform for fast and continuous-flow RT-qPCR analysis devoted to cancer diagnosis application".
968:
are used in the realm of food science in a variety of categories. Research in nutrition, food processing, and food safety benefit from microfluidic technique because experiments can be done with less reagents.
7210:"The extraction of intracrystalline biomarkers and other organic compounds from sulphate minerals using a microfluidic format – a feasibility study for remote fossil-life detection using a microfluidic H-cell" 6916:
van Dinther AM, Schroën CG, Vergeldt FJ, van der Sman RG, Boom RM (May 2012). "Suspension flow in microfluidic devices--a review of experimental techniques focussing on concentration and velocity gradients".
9754: 1088:, which can be a method to capture more biological information in a single analysis. For example, it can be used to test the cell survival rate of 40 different drugs or drug combinations. Tumor‐derived 830:), the Photonics Lab on a Chip (PhLOC) is becoming an increasingly popular tool for the analysis of actinides and nitrates in spent nuclear waste. The PhLOC is based on the simultaneous application of 6378:
Kim JY, Cho SW, Kang DK, Edel JB, Chang SI, deMello AJ, O'Hare D (September 2012). "Lab-chip HPLC with integrated droplet-based microfluidics for separation and high frequency compartmentalisation".
394: 8489:
Grosselin K, Durand A, Marsolier J, Poitou A, Marangoni E, Nemati F, et al. (June 2019). "High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer".
1039:
patients is essential for determining post-surgery treatment. A simple microfluidic chamber, coated with a carefully formulated extracellular matrix mixture is used for cells obtained from tumor
2671:
Chokkalingam V, Tel J, Wimmers F, Liu X, Semenov S, Thiele J, et al. (December 2013). "Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics".
733:, by generating a spatial mosaic of patches of opportunity distributed in space and time. The patchy nature of these fluidic landscapes allows for the study of adapting bacterial cells in a 256: 7080:
Stockton AM, Tjin CC, Chiesl TN, Mathies RA (July 2011). "Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: carboxylic acids".
130:, energy dissipation, and fluidic resistance start to dominate the system. Microfluidics studies how these behaviours change, and how they can be worked around, or exploited for new uses. 6699:
Polat AN, Kraiczek K, Heck AJ, Raijmakers R, Mohammed S (November 2012). "Fully automated isotopic dimethyl labeling and phosphopeptide enrichment using a microfluidic HPLC phosphochip".
6577:
Hardouin J, Duchateau M, Joubert-Caron R, Caron M (2006). "Usefulness of an integrated microfluidic device (HPLC-Chip-MS) to enhance confidence in protein identification by proteomics".
281:
Alternatives to the above closed-channel continuous-flow systems include novel open structures, where discrete, independently controllable droplets are manipulated on a substrate using
6448:
Gerhardt RF, Peretzki AJ, Piendl SK, Belder D (December 2017). "Seamless Combination of High-Pressure Chip-HPLC and Droplet Microfluidics on an Integrated Microfluidic Glass Chip".
8940: 4263:
Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE (December 2006). "Combined microfluidic-micromagnetic separation of living cells in continuous flow".
1147:), and are essential for multiple anti-cancer drugs and toxicity tests. This strategy can be improved by increasing the throughput and production of spheroids. For example, one 6413:
Ochoa A, Álvarez-Bohórquez E, Castillero E, Olguin LF (May 2017). "Detection of Enzyme Inhibitors in Crude Natural Extracts Using Droplet-Based Microfluidics Coupled to HPLC".
6325:"Photonic Lab-on-a-Chip analytical systems for nuclear applications: optical performance and UV–Vis–IR material characterization after chemical exposure and gamma irradiation" 2340:
Bouaidat S, Hansen O, Bruus H, Berendsen C, Bau-Madsen NK, Thomsen P, et al. (August 2005). "Surface-directed capillary system; theory, experiments and applications".
915:
can use laminar flow to separate the fuel and its oxidant to control the interaction of the two fluids without the physical barrier that conventional fuel cells require.
174:
section being in the order of 10 ÎŒm x 10 ÎŒm. Each of these methods has its own associated techniques to maintain robust fluid flow which have matured over several years.
6807: 7573:
Harmon JB, Gray HK, Young CC, Schwab KJ (2020) Microfluidic droplet application for bacterial surveillance in fresh-cut produce wash waters. PLoS ONE 15(6): e0233239.
956:. These analyses coupled together could allow powerful detection of the key components of life, and hopefully inform our search for functioning extraterrestrial life. 8154:"An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer" 7701:"Determination of norfloxacin residues in foods by exploiting the coffee-ring effect and paper-based microfluidics device coupling with smartphone-based detection" 6952:
Mora MF, Greer F, Stockton AM, Bryant S, Willis PA (November 2011). "Toward total automation of microfluidics for extraterrestial [sic] in situ analysis".
6507:
Vollmer M, Hörth P, Rozing G, Couté Y, Grimm R, Hochstrasser D, Sanchez JC (March 2006). "Multi-dimensional HPLC/MS of the nucleolar proteome using HPLC-chip/MS".
6105:
Mattio, Elodie; Caleyron, Audrey; Miguirditchian, Manuel; Lines, Amanda M.; Bryan, Samuel A.; Lackey, Hope E.; Rodriguez-Ruiz, Isaac; Lamadie, Fabrice (May 2022).
771:
and the ability to evolve / develop resistance to antibiotics in small populations of microorganisms and in a short period of time. These microorganisms including
3853:"A flow focusing microfluidic device with an integrated Coulter particle counter for production, counting and size characterization of monodisperse microbubbles" 3341: 827: 823: 6173:"Spectroscopic monitoring of spent nuclear fuel reprocessing streams: an evaluation of spent fuel solutions via Raman, visible, and near-infrared spectroscopy" 182:
The behavior of fluids and their control in open microchannels was pioneered around 2005 and applied in air-to-liquid sample collection and chromatography. In
5236:
Yetisen AK, Jiang L, Cooper JR, Qin Y, Palanivelu R, Zohar Y (May 2011). "A microsystem-based assay for studying pollen tube guidance in plant reproduction".
1599:
Chokkalingam V, Weidenhof B, KrÀmer M, Maier WF, Herminghaus S, Seemann R (July 2010). "Optimized droplet-based microfluidics scheme for sol-gel reactions".
6033:
Nelson, Gilbert L.; Lackey, Hope E.; Bello, Job M.; Felmy, Heather M.; Bryan, Hannah B.; Lamadie, Fabrice; Bryan, Samuel A.; Lines, Amanda M. (2021-01-26).
1155:
produces 500 spheroids per chip. These spheroids can be cultured longer in different surroundings to analyze and monitor. The other advanced technology is
500:. Additionally, microfluidic manufacturing advances mean that makers can produce the devices in low-cost plastics and automatically verify part quality. 1963:
Kaigala GV, Lovchik RD, Delamarche E (November 2012). "Microfluidics in the "open space" for performing localized chemistry on biological interfaces".
9368: 428:
active substances towards it, effectively separating the magnetic and non-magnetic components of the fluid. This technique can be readily utilized in
8781: 1092:
can be isolated from urine and detected by an integrated double‐filtration microfluidic device; they also can be isolated from blood and detected by
576:
Cellular aging: microfluidic devices such as the "mother machine" allow tracking of thousands of individual cells for many generations until they die
810:
Microfluidic flow enables fast sample throughput, automated imaging of large sample populations, as well as 3D capabilities. or superresolution.
359:
falls below the reliably detectable limit, set mostly by the size of the pore in which the analyte passes and the input noise of the first-stage
35:(10 to 10 liters) using small channels with sizes ten to hundreds micrometres. It is a multidisciplinary field that involves molecular analysis, 702:, cell separation, in particular, blood cell separation, protein analysis, cell manipulation and analysis including cell viability analysis and 5993:"Combination of optical spectroscopy and chemometric techniques—a possible way for on-line monitoring of spent nuclear fuel (SNF) reprocessing" 5304:
Bontoux N, Dauphinot L, Potier MC (2009). "Elaborating Lab-on-a-Chips for Single-cell Transcriptome Analysis". In Herold KE, Rasooly A (eds.).
448:. Therefore, before packaging, milk can be flowed through channels with magnetic gradients as a means of purifying out the metal contaminants. 83:
Typically microfluidic systems transport, mix, separate, or otherwise process fluids. Various applications rely on passive fluid control using
5498:
Seymour JR, SimĂł R, Ahmed T, Stocker R (July 2010). "Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web".
190:, and thread-based microfluidics. Disadvantages to open systems include susceptibility to evaporation, contamination, and limited flow rate. 9306: 634:, which is a piece of glass, plastic or silicon substrate, on which pieces of DNA (probes) are affixed in a microscopic array. Similar to a 7364:"Enhancement of the stability of chlorophyll using chlorophyll-encapsulated polycaprolactone microparticles based on droplet microfluidics" 4786:
Jing G, Polaczyk A, Oerther DB, Papautsky I (2007). "Development of a microfluidic biosensor for detection of environmental mycobacteria".
3203:
Shemesh J, Bransky A, Khoury M, Levenberg S (October 2010). "Advanced microfluidic droplet manipulation based on piezoelectric actuation".
819: 7167:
Mora MF, Stockton AM, Willis PA (2015). "Analysis of thiols by microchip capillary electrophoresis for in situ planetary investigations".
4639:
Cheng JJ, Nicaise SM, Berggren KK, Gradečak S (January 2016). "Dimensional Tailoring of Hydrothermally Grown Zinc Oxide Nanowire Arrays".
3684:
Uram JD, Ke K, Hunt AJ, Mayer M (March 2006). "Label-free affinity assays by rapid detection of immune complexes in submicrometer pores".
9749: 8949: 3026: 585:
Force measurements of adherent cells or confined chromosomes: objects trapped in a microfluidic device can be directly manipulated using
5844:
Ferraro P, Miccio L, Grilli S, Finizio A, De Nicola S, Vespini V (2008). "Manipulating Thin Liquid Films for Tunable Microlens Arrays".
4930:
Yliperttula M, Chung BG, Navaladi A, Manbachi A, Urtti A (October 2008). "High-throughput screening of cell responses to biomaterials".
2913:
Xi HD, Zheng H, Guo W, Gañån-Calvo AM, Ai Y, Tsao CW, et al. (February 2017). "Active droplet sorting in microfluidics: a review".
8534:"Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections" 553:. In addition, microfluidics-based devices, capable of continuous sampling and real-time testing of air/water samples for biochemical 9153: 7477:"Microfluidic investigation of the coalescence susceptibility of pea protein-stabilised emulsions: Effect of protein oxidation level" 2645:"Data associated with 'Combined flow-focus and self-assembly routes for the formation of lipid stabilized oil-shelled microbubbles'" 451:
Other, more research-oriented applications of microfluidic-assisted magnetophoresis are numerous and are generally targeted towards
235:
Process monitoring capabilities in continuous-flow systems can be achieved with highly sensitive microfluidic flow sensors based on
420:. This can be accomplished by sending a fluid containing at least one magnetic component through a microfluidic channel that has a 371:-based production of microfluidic devices, or more likely the production of reusable molds for making microfluidic devices using a 7852:"Potential clinical significance of plasma-based KRAS mutation analysis using the COLD-PCR/TaqMan(Âź) -MGB probe genotyping method" 355:(RPS); Coulter counting is a trademark term. However, the RPS method does not work well for particles below 1 ÎŒm diameter, as the 9378: 149:) can become very low. A key consequence is co-flowing fluids do not necessarily mix in the traditional sense, as flow becomes 6743: 851:
Expansion of the PhLOC to miniaturize research of the full nuclear fuel cycle is currently being evaluated, with steps of the
9791: 9087: 9064: 9045: 9026: 9007: 6814: 5937: 5338: 5313: 5288: 4719: 4691: 2435: 2383:
Kachel S, Zhou Y, Scharfer P, Vrančić C, Petrich W, Schabel W (February 2014). "Evaporation from open microchannel grooves".
2191:
TruckenmĂŒller R, Rummler Z, Schaller T, Schomburg WK (2002-06-13). "Low-cost thermoforming of micro fluidic analysis chips".
1583: 4163:
Alnaimat F, Dagher S, Mathew B, Hilal-Alnqbi A, Khashan S (November 2018). "Microfluidics Based Magnetophoresis: A Review".
4112:
Dibaji S, Rezai P (2020-06-01). "Triplex Inertia-Magneto-Elastic (TIME) sorting of microparticles in non-Newtonian fluids".
2524: 2470:
Konda A, Morin SA (June 2017). "Flow-directed synthesis of spatially variant arrays of branched zinc oxide mesostructures".
1031:, to enhance detection of the mutative gene ratio. In addition, accurate prediction of postoperative disease progression in 1321: 835: 9383: 7524:
Zhang, Jia; Xu, Wenhua; Xu, Fengying; Lu, Wangwang; Hu, Liuyun; Zhou, Jianlin; Zhang, Chen; Jiang, Zhuo (February 2021).
7362:
Hsiao, Ching-Ju; Lin, Jui-Fen; Wen, Hsin-Yi; Lin, Yu-Mei; Yang, Chih-Hui; Huang, Keng-Shiang; Shaw, Jei-Fu (2020-02-15).
3902:"AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes" 389: 3279:
Liu M, Suo S, Wu J, Gan Y, Ah Hanaor D, Chen CQ (March 2019). "Tailoring porous media for controllable capillary flow".
2418:
Ogawa M, Higashi K, Miki N (August 2015). "Development of hydrogel microtubes for microbe culture in open environment".
455:
separation. The general way this is accomplished involves several steps. First, a paramagnetic substance (usually micro/
9476: 9311: 8978: 7901:"Live-cell phenotypic-biomarker microfluidic assay for the risk stratification of cancer patients via machine learning" 2037:
Li C, Boban M, Tuteja A (April 2017). "Open-channel, water-in-oil emulsification in paper-based microfluidic devices".
1550: 6278:"Uranium(VI) On-Chip Microliter Concentration Measurements in a Highly Extended UV–Visible Absorbance Linearity Range" 4346:"The Fabrication and Application Mechanism of Microfluidic Systems for High Throughput Biomedical Screening: A Review" 424:
positioned along the length of the channel. This creates a magnetic field inside the microfluidic channel which draws
8097:"Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility" 7184: 4883:"Microcirculation within grooved substrates regulates cell positioning and cell docking inside microfluidic channels" 3351: 3263: 2600: 1900: 1222:
and D. Jed. Harrison. They created a planar glass chip incorporating a sample injector and separation channels using
1058: 8890:
Chossat JB, Park YL, Wood RJ, Duchaine V (September 2013). "A Soft Strain Sensor Based on Ionic and Metal Liquids".
2718: 1472: 1428:
Terry SC, Jerman JH, Angell JB (December 1979). "A gas chromatographic air analyzer fabricated on a silicon wafer".
998:, or the severity and progression of the disease can be predicted based on the atypical presence of specific cells. 6220:"Online Monitoring of Solutions Within Microfluidic Chips: Simultaneous Raman and UV–Vis Absorption Spectroscopies" 4442:
Akiyama Y, Morishima K (2011-04-18). "Label-free cell aggregate formation based on the magneto-Archimedes effect".
729:
and connecting them by dispersal corridors. The resulting landscapes can be used as physical implementations of an
1636:"Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system" 9823: 9769: 7268:
Neethirajan, Suresh; Kobayashi, Isao; Nakajima, Mitsutoshi; Wu, Dan; Nandagopal, Saravanan; Lin, Francis (2011).
2948:
Niu X, Gulati S, Edel JB, deMello AJ (November 2008). "Pillar-induced droplet merging in microfluidic circuits".
6035:"Enabling Microscale Processing: Combined Raman and Absorbance Spectroscopy for Microfluidic On-Line Monitoring" 9209: 9173: 3764:
Sen YH, Karnik R (May 2009). "Investigating the translocation of lambda-DNA molecules through PDMS nanopores".
1301: 471:
unique to the cell type of interest and subsequently functionalizing magnetic particles with the complementary
236: 6107:"Microfluidic In-Situ Spectrophotometric Approaches to Tackle Actinides Analysis in Multiple Oxidation States" 3554:, Wallace H. Coulter, "Means for counting particles suspended in a fluid", published Oct. 20, 1953 9797: 9373: 9146: 7475:
Hinderink, Emma B. A.; Kaade, Wael; Sagis, Leonard; Schroën, Karin; Berton-Carabin, Claire C. (2020-05-01).
1753:"A micromachined interface for airborne sample-to-liquid transfer and its application in a biosensor system" 3516:
DeBlois RW, Bean CP (1970). "Counting and sizing of submicron particles by the resistive pulse technique".
582:
Precise spatiotemporal concentration gradients by incorporating multiple chemical inputs to a single device
399: with the accompanying commercialization of this technology. This method has been termed microfluidic 382:
As a result, there has been some university-based development of microfluidic particle counting and sizing
343:
first described in Coulter's original patent. This is the method used to e.g. size and count erythrocytes (
126:
The behaviour of fluids at the microscale can differ from "macrofluidic" behaviour in that factors such as
9122: 8793: 7644:
Ko, Chien-Hsuan; Liu, Chan-Chiung; Chen, Kuan-Hong; Sheu, Fuu; Fu, Lung-Ming; Chen, Szu-Jui (2021-05-30).
5279:
Fan H, Das C, Chen H (2009). "Two-Dimensional Electrophoresis in a Chip". In Herold KE, Rasooly A (eds.).
2083:
Casavant BP, Berthier E, Theberge AB, Berthier J, Montanez-Sauri SI, Bischel LL, et al. (June 2013).
592:
Confining cells and exerting controlled forces by coupling with external force-generation methods such as
432:
settings where the fluid at hand already contains magnetically active material. For example, a handful of
9713: 9204: 6789: 2291:
Young EW, Berthier E, Guckenberger DJ, Sackmann E, Lamers C, Meyvantsson I, et al. (February 2011).
1291: 1286: 1243: 1179: 1148: 1116: 1007: 999: 248: 8580:
Yetisen AK, Akram MS, Lowe CR (June 2013). "Paper-based microfluidic point-of-care diagnostic devices".
6323:
Mattio, Elodie; Lamadie, Fabrice; Rodriguez-Ruiz, Isaac; Cames, Beatrice; Charton, Sophie (2020-02-01).
2420:
2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
9424: 9280: 6620:
Brennen RA, Yin H, Killeen KP (December 2007). "Microfluidic gradient formation for nanoflow chip LC".
4397:"Label-free manipulation via the magneto-Archimedes effect: fundamentals, methodology and applications" 3050:
Lee J, Kim CJ (June 2000). "Surface-tension-driven microactuation based on continuous electrowetting".
2510: 1478: 1306: 1159:, and it can be used to simulate several organs to determine the drug metabolism and activity based on 43:. It has practical applications in the design of systems that process low volumes of fluids to achieve 7645: 7590: 7363: 6171:
Bryan, S. A.; Levitskaia, Tatiana G.; Johnsen, A. M.; Orton, C. R.; Peterson, J. M. (September 2011).
3551: 1917: 9877: 9803: 7317:"Microfluidics assisted tragacanth gum based sub-micron curcumin suspension and its characterization" 6172: 5992: 5598:
Angelani L, Di Leonardo R, Ruocco G (January 2009). "Self-starting micromotors in a bacterial bath".
2719:"Self-synchronizing Pairwise Production of Monodisperse Droplets by Microfluidic Step Emulsification" 1346: 1316: 1211: 1020: 929: 882: 758: 691: 523: 319: 187: 48: 8914: 8211:"Electrochemical Detection of Tumor-Derived Extracellular Vesicles on Nanointerdigitated Electrodes" 5066:
Pelletier J, Halvorsen K, Ha BY, Paparcone R, Sandler SJ, Woldringh CL, et al. (October 2012).
2825: 2629: 262:
High frame rate video showing microbubble pinch-off formation in a flow-focusing microfluidic device
9759: 9604: 9536: 9414: 9139: 7589:
Trofimchuk, Evan; Hu, Yaxi; Nilghaz, Azadeh; Hua, Marti Z.; Sun, Selina; Lu, Xiaonan (2020-06-30).
6866:
Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WT (August 2010).
5659:
Di Leonardo R, Angelani L, Dell'arciprete D, Ruocco G, Iebba V, Schippa S, et al. (May 2010).
4735:
Barrett MP, Cooper JM, Regnault C, Holm SH, Beech JP, Tegenfeldt JO, Hochstetter A (October 2017).
3025:
Le Pesant et al., Electrodes for a device operating by electrically controlled fluid displacement,
429: 7700: 5415:"Microfluidics-based single cell analysis reveals drug-dependent motility changes in trypanosomes" 538:
operations such as detection, as well as sample pre-treatment and sample preparation on one chip.
9867: 9862: 9744: 9616: 9199: 1714:"Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels" 1575: 1527: 400: 352: 6831:
Beebe DJ, Mensing GA, Walker GM (2002). "Physics and applications of microfluidics in biology".
4604:
Pawell RS, Taylor RA, Morris KV, Barber TJ (2015). "Automating microfluidic part verification".
4208:"Engineering magnetic nanoparticles and their integration with microfluidics for cell isolation" 413: 9872: 9857: 9785: 9701: 9504: 9469: 9358: 9326: 9257: 8942:
Columba S: a scalable co-layout design automation tool for microfluidic large-scale integration
8909: 7803:"Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets" 6868:"Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology" 5199:"3-dimensional electrode patterning within a microfluidic channel using metal ion implantation" 4504:
DeMello AJ (July 2006). "Control and detection of chemical reactions in microfluidic systems".
2983:
Samie M, Salari A, Shafii MB (May 2013). "Breakup of microdroplets in asymmetric T junctions".
2820: 1132: 1125: 1119:
devices have the potential to screen different drugs or combinations of drugs, directly on the
1081: 1077: 1073: 1066: 1051: 1047: 642:
is a miniature array where a multitude of different capture agents, most frequently monoclonal
8662:
Seemann R, Brinkmann M, Pfohl T, Herminghaus S (January 2012). "Droplet based microfluidics".
8323:
Eduati F, Utharala R, Madhavan D, Neumann UP, Longerich T, Cramer T, et al. (June 2018).
1675:"Three-Dimensional–Printed Laboratory-on-a-Chip With Microelectronics and Silicon Integration" 9764: 9718: 9262: 8380:
Stevens MM, Maire CL, Chou N, Murakami MA, Knoff DS, Kikuchi Y, et al. (November 2016).
5789:"Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates" 4881:
Manbachi A, Shrivastava S, Cioffi M, Chung BG, Moretti M, Demirci U, et al. (May 2008).
3951:"Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis" 1089: 1062: 1016: 695: 667: 356: 303: 286: 276: 91:
refers to the defined manipulation of the working fluid by active (micro) components such as
7171:. Methods in Molecular Biology. Vol. 1274. New York, NY: Humana Press. pp. 43–52. 6484: 6106: 1829:
Jacksén J, Frisk T, Redeby T, Parmar V, van der Wijngaart W, Stemme G, Emmer A (July 2007).
1107:
for drugs, it is often necessary to distinguish cancerous cells from non-cancerous cells. A
807:. Examples of optofluidic devices are tunable microlens arrays and optofluidic microscopes. 722:, a nano/micro fabricated fluidic landscape can be constructed by building local patches of 646:, are deposited on a chip surface; they are used to determine the presence and/or amount of 9524: 9509: 9434: 8901: 8892: 8852: 8819: 8723: 8671: 8626: 8445: 8382:"Drug sensitivity of single cancer cells is predicted by changes in mass accumulation rate" 8336: 8279: 8222: 8165: 8108: 7899:
Manak MS, Varsanik JS, Hogan BJ, Whitfield MJ, Su WR, Joshi N, et al. (October 2018).
7767: 7221: 7089: 7036: 6844: 6586: 6336: 6118: 5962: 5800: 5741: 5682: 5617: 5507: 5367: 5245: 5148: 5079: 4837: 4795: 4648: 4513: 4451: 4219: 4121: 3962: 3738: 3642: 3583: 3525: 3482: 3298: 3159: 2992: 2812: 2730: 2200: 2096: 1437: 1378: 1191: 1103:
Tumor materials can directly be used for detection through microfluidic devices. To screen
866: 840: 746: 738: 601: 220: 8948:. Proceedings of the 55th Annual Design Automation Conference. p. 163. Archived from 6766: 6542:
Reichmuth DS, Shepodd TJ, Kirby BJ (May 2005). "Microchip HPLC of peptides and proteins".
5455:
Ahmed T, Shimizu TS, Stocker R (November 2010). "Microfluidics for bacterial chemotaxis".
3471:"Smartphone Detection of Escherichia coli From Field Water Samples on Paper Microfluidics" 111:
Silicone rubber and glass microfluidic devices. Top: a photograph of the devices. Bottom:
8: 9734: 9708: 9566: 9553: 9514: 9393: 9363: 8810: 8743:
Yetisen AK, Volpatti LR (July 2014). "Patent protection and licensing in microfluidics".
8708: 7591:"Development of paper-based microfluidic device for the determination of nitrite in meat" 6492:. 7th lnternatonal Conference on Miniaturized Chemical and Blochemlcal Analysts Systems. 5413:
Hochstetter A, Stellamanns E, Deshpande S, Uppaluri S, Engstler M, Pfohl T (April 2015).
4967:"Proliferation characteristics of cells cultured under periodic versus static conditions" 1791: 1752: 1713: 906: 9112: 8905: 8856: 8823: 8727: 8683: 8675: 8630: 8449: 8340: 8283: 8226: 8169: 8112: 7948:
Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V, Ozkumur E, et al. (March 2014).
7771: 7225: 7093: 7040: 6590: 6340: 6277: 6122: 6034: 5966: 5804: 5745: 5686: 5621: 5511: 5371: 5257: 5249: 5152: 5083: 4841: 4799: 4652: 4517: 4455: 4223: 4125: 3966: 3742: 3646: 3587: 3529: 3486: 3302: 3163: 2996: 2816: 2734: 2293:"Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays" 2204: 2100: 1831:"Off-line integration of CE and MALDI-MS using a closed-open-closed microchannel system" 1441: 1382: 51:. Microfluidics emerged in the beginning of the 1980s and is used in the development of 9688: 9499: 9076: 8989:
Hidden in Plain Sight: The History, Science, and Engineering of Microfluidic Technology
8927: 8873: 8840: 8768: 8695: 8650: 8605: 8514: 8466: 8433: 8406: 8381: 8357: 8324: 8300: 8267: 8243: 8210: 8186: 8153: 8129: 8096: 8072: 8047: 8023: 7998: 7974: 7949: 7925: 7900: 7876: 7851: 7827: 7802: 7783: 7736: 7681: 7626: 7553: 7506: 7454: 7399: 7344: 7245: 7149: 7062: 6898: 6724: 6681: 6360: 6255: 6200: 6150: 6078: 6012: 5897: 5872: 5826: 5764: 5729: 5705: 5672: 5660: 5641: 5607: 5575: 5550: 5531: 5390: 5355: 5261: 5171: 5138: 5126: 5102: 5067: 5040: 5015: 4991: 4966: 4907: 4882: 4858: 4825: 4763: 4736: 4621: 4581: 4556: 4537: 4424: 4372: 4345: 4288: 4240: 4207: 4188: 4145: 4086: 4062:"Recent advances and current challenges in magnetophoresis based micro magnetofluidics" 4061: 4042: 3983: 3950: 3926: 3901: 3877: 3852: 3797: 3666: 3498: 3446: 3421: 3402: 3322: 3288: 3228: 3180: 3147: 3128: 3075: 2895: 2846: 2785: 2696: 2617: 2563: 2449: 2365: 2317: 2292: 2268: 2243: 2224: 2168: 2143: 2119: 2084: 2062: 1860: 1694: 1568: 1453: 1410: 831: 818:
Due to the increase in safety concerns and operating costs of common analytic methods (
730: 579:
Microenvironmental control: ranging from mechanical environment to chemical environment
542: 484: 307: 183: 8831: 8209:
Mathew DG, Beekman P, Lemay SG, Zuilhof H, Le Gac S, van der Wiel WG (February 2020).
8095:
Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, et al. (July 2014).
7801:
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. (May 2015).
7049: 7024: 6219: 5953:
Lu CH, PĂ©gard NC, Fleischer JW (22 April 2013). "Flow-based structured illumination".
3630: 3148:"Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves" 1790:
Frisk T, Sandström N, Eng L, van der Wijngaart W, MÄnsson P, Stemme G (October 2008).
444:
products. Conveniently, in the case of milk, many of these metal contaminants exhibit
338:, in which electrical signals are generated when a weakly-conducting fluid such as in 9739: 9548: 9462: 9083: 9060: 9041: 9022: 9003: 8974: 8878: 8760: 8687: 8654: 8642: 8597: 8553: 8518: 8506: 8471: 8411: 8362: 8305: 8248: 8191: 8134: 8077: 8028: 7979: 7930: 7881: 7832: 7787: 7740: 7728: 7720: 7685: 7673: 7665: 7630: 7618: 7610: 7557: 7545: 7510: 7498: 7458: 7446: 7438: 7403: 7391: 7383: 7348: 7336: 7297: 7289: 7249: 7237: 7190: 7180: 7141: 7105: 7054: 7005: 6969: 6934: 6890: 6848: 6716: 6673: 6637: 6602: 6559: 6524: 6465: 6430: 6395: 6364: 6352: 6305: 6297: 6259: 6247: 6239: 6192: 6154: 6142: 6134: 6082: 6070: 6062: 6054: 6016: 5933: 5920:
PĂ©gard NC, Fleischer JW (2012). "3D microfluidic microscopy using a tilted channel".
5902: 5818: 5769: 5710: 5633: 5580: 5523: 5480: 5437: 5395: 5334: 5309: 5284: 5218: 5176: 5107: 5045: 4996: 4947: 4912: 4863: 4768: 4715: 4687: 4664: 4586: 4529: 4467: 4428: 4416: 4377: 4326: 4280: 4245: 4180: 4149: 4137: 4091: 4034: 3988: 3931: 3882: 3833: 3789: 3711: 3658: 3611: 3606: 3571: 3470: 3451: 3406: 3394: 3347: 3314: 3259: 3220: 3185: 3120: 3067: 3008: 2965: 2930: 2887: 2838: 2777: 2688: 2596: 2542:
Tseng TM, Li M, Freitas DN, McAuley T, Li B, Ho TY, Araci IE, Schlichtmann U (2018).
2487: 2441: 2431: 2400: 2357: 2322: 2273: 2228: 2216: 2212: 2173: 2124: 2054: 2019: 1980: 1940: 1896: 1852: 1811: 1772: 1733: 1655: 1616: 1579: 1546: 1414: 1402: 1394: 1278: 1231: 715: 534:, and in chemical synthesis. The basic idea of microfluidic biochips is to integrate 504: 372: 285:. Following the analogy of digital microelectronics, this approach is referred to as 36: 8992: 8931: 8609: 7525: 7153: 7066: 6902: 6728: 6218:
Nelson, Gilbert L.; Lines, Amanda M.; Bello, Job M.; Bryan, Samuel A. (2019-09-27).
6204: 5830: 5645: 5535: 5265: 4625: 4292: 4192: 4046: 3502: 3367:
Loo J, Ho A, Turner A, Mak WC (2019). "Integrated Printed Microfluidic Biosensors".
3326: 3079: 2899: 2789: 2700: 2567: 2369: 2144:"Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices" 1864: 1698: 1457: 1111:
based on the capacity of cells to pass small constrictions can sort the cell types,
9663: 9658: 9429: 9301: 8919: 8868: 8860: 8827: 8772: 8752: 8731: 8699: 8679: 8634: 8589: 8545: 8533: 8498: 8461: 8453: 8401: 8393: 8352: 8344: 8295: 8287: 8268:"Microfluidic cytometric analysis of cancer cell transportability and invasiveness" 8238: 8230: 8181: 8173: 8124: 8116: 8067: 8059: 8018: 8010: 7969: 7961: 7950:"Microfluidic, marker-free isolation of circulating tumor cells from blood samples" 7920: 7912: 7871: 7863: 7822: 7814: 7775: 7712: 7661: 7657: 7606: 7602: 7541: 7537: 7526:"Microfluidic droplet formation in co-flow devices fabricated by micro 3D printing" 7488: 7430: 7379: 7375: 7328: 7281: 7229: 7172: 7133: 7097: 7044: 6997: 6961: 6926: 6882: 6840: 6751: 6708: 6685: 6665: 6629: 6594: 6551: 6516: 6457: 6422: 6387: 6344: 6289: 6231: 6184: 6126: 6046: 6004: 5991:
Kirsanov, D.; Babain, V.; Agafonova-Moroz, M.; Lumpov, A.; Legin, A. (2012-03-01).
5970: 5925: 5892: 5884: 5853: 5808: 5759: 5749: 5700: 5690: 5629: 5625: 5570: 5562: 5515: 5472: 5464: 5429: 5385: 5375: 5253: 5210: 5166: 5156: 5097: 5087: 5035: 5027: 4986: 4978: 4939: 4902: 4894: 4853: 4845: 4803: 4758: 4748: 4656: 4613: 4576: 4568: 4541: 4521: 4459: 4408: 4367: 4357: 4318: 4272: 4235: 4227: 4172: 4129: 4081: 4073: 4024: 4016: 3978: 3970: 3921: 3913: 3872: 3864: 3825: 3801: 3781: 3773: 3746: 3701: 3693: 3670: 3650: 3601: 3591: 3533: 3490: 3441: 3433: 3384: 3376: 3306: 3251: 3232: 3212: 3175: 3167: 3132: 3110: 3102: 3059: 3000: 2957: 2922: 2877: 2850: 2830: 2769: 2738: 2680: 2648: 2588: 2555: 2544:"Columba 2.0: A Co-Layout Synthesis Tool for Continuous-Flow Microfluidic Biochips" 2479: 2453: 2423: 2392: 2349: 2312: 2304: 2263: 2255: 2208: 2163: 2155: 2114: 2104: 2066: 2046: 2011: 1972: 1932: 1888: 1842: 1803: 1764: 1725: 1686: 1647: 1608: 1445: 1386: 1326: 586: 468: 464: 348: 141:) some interesting and sometimes unintuitive properties appear. In particular, the 40: 19: 7646:"Microfluidic colorimetric analysis system for sodium benzoate detection in foods" 7493: 7476: 5068:"Physical manipulation of the Escherichia coli chromosome reveals its soft nature" 3572:"Characterization of individual polynucleotide molecules using a membrane channel" 3380: 9678: 9668: 9653: 9589: 9178: 9162: 8939:
Tseng TM, Li M, Freitas DN, Mongersun A, Araci IE, Ho TY, Schlichtmann U (2018).
8234: 7417:
He, Shan; Joseph, Nikita; Feng, Shilun; Jellicoe, Matt; Raston, Colin L. (2020).
6461: 6426: 6293: 6050: 4660: 2882: 2865: 2528: 2015: 1690: 1508: 1235: 1175: 1156: 1152: 1136: 1085: 1036: 764: 683: 597: 344: 335: 290: 142: 127: 84: 7176: 5414: 2644: 964:
Microfluidic techniques such as droplet microfluidics, paper microfluidics, and
9835: 9673: 9576: 9519: 9316: 9285: 9234: 9183: 8808:
Angell JB, Terry SC, Barth PW (April 1983). "Silicon Micromechanical Devices".
8457: 8348: 7818: 7574: 7316: 6348: 6235: 5929: 5734:
Proceedings of the National Academy of Sciences of the United States of America
5665:
Proceedings of the National Academy of Sciences of the United States of America
5360:
Proceedings of the National Academy of Sciences of the United States of America
5131:
Proceedings of the National Academy of Sciences of the United States of America
5072:
Proceedings of the National Academy of Sciences of the United States of America
4943: 4824:
Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S (June 2010).
4231: 4133: 3974: 3576:
Proceedings of the National Academy of Sciences of the United States of America
3422:"Patterned paper as a platform for inexpensive, low-volume, portable bioassays" 3310: 3004: 2746: 2592: 2089:
Proceedings of the National Academy of Sciences of the United States of America
1999: 1674: 1264: 1223: 1144: 1069: 776: 734: 635: 627: 497: 467:
to target the cell type of interest. This can be accomplished by identifying a
452: 417: 295: 282: 154: 112: 8923: 8735: 8502: 8325:"A microfluidics platform for combinatorial drug screening on cancer biopsies" 7916: 7779: 7332: 7233: 6930: 6712: 6669: 6130: 4982: 4849: 4807: 4617: 4276: 3777: 3494: 3255: 3216: 3093:
Zhang Y, Nguyen NT (March 2017). "Magnetic digital microfluidics – a review".
2582: 2559: 2427: 2259: 1230:
in just a few seconds, achieving high separation efficiencies with up to 6800
9851: 9648: 9594: 9558: 8557: 8152:
Liang LG, Kong MQ, Zhou S, Sheng YF, Wang P, Yu T, et al. (April 2017).
7724: 7669: 7614: 7549: 7502: 7442: 7387: 7340: 7293: 7241: 7058: 6356: 6324: 6301: 6243: 6196: 6138: 6058: 5857: 5787:
Grilli S, Miccio L, Vespini V, Finizio A, De Nicola S, Ferraro P (May 2008).
5198: 4753: 4471: 4420: 4141: 3596: 3071: 2548:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
2220: 1635: 1398: 1366: 1311: 1202:
to select the personalized anti-cancer drugs and prevent the cancer relapse.
1187: 1120: 1108: 1054: 1032: 965: 703: 687: 659: 639: 546: 445: 385: 60: 9755:
Matrix-assisted laser desorption ionization-time of flight mass spectrometer
8120: 7716: 5754: 5695: 5519: 5380: 5161: 5092: 2834: 2109: 1449: 1171:... to analyze the relationship between drugs and human organ surroundings. 682:
In addition to microarrays, biochips have been designed for two-dimensional
9638: 9599: 9531: 9388: 8882: 8764: 8691: 8646: 8601: 8510: 8475: 8415: 8366: 8309: 8266:
Liu Z, Lee Y, Jang JH, Li Y, Han X, Yokoi K, et al. (September 2015).
8252: 8195: 8138: 8081: 8063: 8032: 7983: 7965: 7934: 7885: 7836: 7732: 7677: 7622: 7450: 7395: 7301: 7194: 7145: 7137: 7109: 7009: 6973: 6938: 6894: 6886: 6852: 6720: 6677: 6641: 6606: 6563: 6528: 6520: 6469: 6434: 6399: 6309: 6251: 6188: 6146: 6074: 6008: 5906: 5822: 5773: 5714: 5658: 5637: 5584: 5527: 5484: 5441: 5399: 5222: 5180: 5111: 5049: 5000: 4951: 4916: 4867: 4772: 4668: 4590: 4533: 4490: 4381: 4330: 4284: 4249: 4184: 4095: 4038: 4020: 3992: 3935: 3886: 3837: 3793: 3715: 3697: 3662: 3455: 3437: 3398: 3318: 3224: 3189: 3171: 3124: 3012: 2969: 2934: 2891: 2842: 2781: 2692: 2491: 2445: 2404: 2361: 2326: 2277: 2177: 2128: 2058: 2023: 1984: 1976: 1944: 1936: 1856: 1847: 1830: 1815: 1776: 1737: 1659: 1620: 1406: 1341: 1239: 1160: 1104: 1097: 1093: 924: 804: 719: 456: 339: 150: 44: 8617:
Whitesides GM (July 2006). "The origins and the future of microfluidics".
7101: 5197:
Choi JW, Rosset S, Niklaus M, Adleman JR, Shea H, Psaltis D (March 2010).
4176: 3615: 2244:"Hot embossing for fabrication of a microfluidic 3D cell culture platform" 1892: 1210:
One significant advancement in the field is the development of integrated
741:
of these bacterial systems in these synthetic ecosystems allows for using
9611: 9543: 7867: 5813: 5788: 4737:"Microfluidics-Based Approaches to the Isolation of African Trypanosomes" 4557:"Manufacturing and wetting low-cost microfluidic cell separation devices" 3729:
Saleh O, Sohn LL (2003). "An artificial nanopore for molecular sensing".
3706: 2760:
Teh SY, Lin R, Hung LH, Lee AP (February 2008). "Droplet microfluidics".
1219: 1205: 1140: 923:
To understand the prospects for life to exist elsewhere in the universe,
671: 593: 562: 512: 368: 204: 199: 138: 8638: 8549: 8014: 7418: 5566: 5476: 5014:
Chung BG, Manbachi A, Saadi W, Lin F, Jeon NL, Khademhosseini A (2007).
4525: 4029: 3785: 3115: 1482: 1390: 1043:
after 72 hours of growth and a thorough evaluation of cells by imaging.
932:
and selective fluorescent dyes. These devices are capable of detecting
9696: 9643: 9633: 9628: 9331: 9252: 8756: 8593: 7434: 7285: 7269: 6391: 6276:
RodrĂ­guez-Ruiz, Isaac; Lamadie, Fabrice; Charton, Sophie (2018-02-20).
5888: 5468: 5433: 5412: 4412: 4396: 4362: 3868: 3631:"DNA molecules and configurations in a solid-state nanopore microscope" 3106: 2926: 2803:
Prakash M, Gershenfeld N (February 2007). "Microfluidic bubble logic".
2684: 2483: 2396: 2159: 2050: 1474:
Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
1336: 1227: 1215: 1139:
can be used to analyze spheroids for different cancer systems (such as
1112: 941: 933: 912: 894: 886: 768: 742: 643: 631: 531: 527: 460: 145:(which compares the effect of the momentum of a fluid to the effect of 134: 115: 96: 8864: 8841:"Liposome production by microfluidics: potential and limiting factors" 8291: 8177: 7001: 6965: 6915: 6633: 6555: 6412: 6066: 5974: 4572: 4463: 4206:
Unni M, Zhang J, George TJ, Segal MS, Fan ZH, Rinaldi C (March 2020).
4077: 3917: 3829: 3750: 3629:
Li J, Gershow M, Stein D, Brandin E, Golovchenko JA (September 2003).
3537: 3389: 3063: 2742: 2308: 2142:
Guckenberger DJ, de Groot TE, Wan AM, Beebe DJ, Young EW (June 2015).
694:
amplification. Other applications include various electrophoresis and
227: 9623: 9439: 8397: 6598: 5214: 4898: 4322: 2961: 2773: 2543: 2353: 2190: 1807: 1768: 1729: 1651: 1612: 1331: 1199: 995: 783: 723: 558: 425: 376: 360: 216: 158: 146: 92: 9021:. Richland, Washington, USA: Pacific Northwest National Laboratory. 7699:
Trofimchuk, Evan; Nilghaz, Azadeh; Sun, Selina; Lu, Xiaonan (2020).
7315:
Verma, Kiran; Tarafdar, Ayon; Badgujar, Prarabdh C. (January 2021).
7208:
Bowden SA, Wilson R, Taylor C, Cooper JM, Parnell J (January 2007).
6865: 6483:
Killeen K, Yin H, Sobek D, Brennen R, Van de Goor T (October 2003).
5354:
Keymer JE, Galajda P, Muldoon C, Park S, Austin RH (November 2006).
3949:
Gnyawali V, Strohm EM, Wang JZ, Tsai SS, Kolios MC (February 2019).
3654: 2000:"Capillary Coatings: Flow and Drying Dynamics in Open Microchannels" 1751:
Frisk T, Rönnholm D, van der Wijngaart W, Stemme G (December 2006).
1750: 1135:, to help to test anticancer drugs. Microfluidic devices with 2D or 198:
Continuous flow microfluidics rely on the control of a steady state
9485: 9321: 9244: 8434:"Multiscale cytometry and regulation of 3D cell cultures on a chip" 7850:
Liu P, Liang H, Xue L, Yang C, Liu Y, Zhou K, Jiang X (July 2012).
6576: 5990: 3293: 1998:
Lade, R. K.; Jochem, K. S.; Macosko, C. W.; Francis, L. F. (2018).
1296: 1258: 1195: 1084:
are isolated from blood by a microfluidic device, and are cultured
1012: 945: 772: 663: 550: 476: 351:) for standard blood analysis. The generic term for this method is 208: 56: 9131: 5677: 5612: 5143: 5125:
Amir A, Babaeipour F, McIntosh DB, Nelson DR, Jun S (April 2014).
1789: 1272: 994:
A patient's drug response can be predicted based on the status of
985: 786:
by facilitating the creation of durotactic (stiffness) gradients.
779:, responsible for regulating much of the oceans' biogeochemistry. 618:
Some of these areas are further elaborated in the sections below:
239:
technology, which offers resolutions down to the nanoliter range.
9584: 8048:"Isolation of rare cells from cell mixtures by dielectrophoresis" 6104: 5728:
Sokolov A, Apodaca MM, Grzybowski BA, Aranson IS (January 2010).
3814: 3570:
Kasianowicz JJ, Brandin E, Branton D, Deamer DW (November 1996).
3145: 2290: 1183: 937: 726: 647: 508: 472: 8661: 6322: 5127:"Bending forces plastically deform growing bacterial cell walls" 5031: 4929: 4728: 4395:
Gao QH, Zhang WM, Zou HX, Li WB, Yan H, Peng ZK, Meng G (2019).
4162: 3146:
Shilton RJ, Travagliati M, Beltram F, Cecchini M (August 2014).
2652: 2082: 1598: 859: 767:
gradients makes microfluidics the ideal tool to study motility,
107: 9272: 9226: 8839:
Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C (May 2016).
7270:"Microfluidics for food, agriculture and biosystems industries" 5727: 3569: 3419: 1168: 1040: 1028: 949: 890: 554: 421: 52: 32: 8488: 7267: 7023:
Kaiser RI, Stockton AM, Kim YS, Jensen EC, Mathies RA (2013).
6793: 5871:
PĂ©gard NC, Toth ML, Driscoll M, Fleischer JW (December 2014).
5331:
Lab-on-a-Chip Technology: Biomolecular Separation and Analysis
5306:
Lab-on-a-Chip Technology: Biomolecular Separation and Analysis
5281:
Lab-on-a-Chip Technology: Biomolecular Separation and Analysis
4880: 4712:
Lab-on-a-Chip Technology: Biomolecular Separation and Analysis
4304: 4302: 2716: 63:
technology, micro-propulsion, and micro-thermal technologies.
9409: 8322: 8046:
Gascoyne PR, Noshari J, Anderson TJ, Becker FF (April 2009).
8045: 5329:
Cady NC (2009). "Microchip-based PCR Amplification Systems".
5065: 4965:
Gilbert DF, Mofrad SA, Friedrich O, Wiest J (February 2019).
3202: 1916:
Pfohl T, Mugele F, Seemann R, Herminghaus S (December 2003).
1915: 953: 852: 651: 535: 515: 441: 433: 6447: 6275: 5124: 5016:"A gradient-generating microfluidic device for cell biology" 4785: 4638: 3851:
Rickel JM, Dixon AJ, Klibanov AL, Hossack JA (August 2018).
2339: 2141: 1711: 119: 9454: 9419: 7898: 7419:"Application of microfluidic technology in food processing" 7025:"On the Formation of Dipeptides in Interstellar Model Ices" 6986: 6698: 6170: 5870: 4964: 4299: 1672: 1226:
techniques. This setup allowed for the rapid separation of
1024: 1003: 803:
The merger of microfluidics and optics is typical known as
437: 436:
can find their way into certain consumable liquids, namely
375:
process, is limited to sizes much smaller than traditional
299: 212: 8432:
Sart S, Tomasi RF, Amselem G, Baroud CN (September 2017).
7474: 5843: 5786: 5549:
Galajda P, Keymer J, Chaikin P, Austin R (December 2007).
5548: 3850: 3420:
Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007).
1705: 8208: 7947: 7756: 7263: 7261: 7259: 7122: 7079: 5597: 4734: 4005: 2670: 2382: 1673:
Thomas DJ, McCall C, Tehrani Z, Claypole TC (June 2017).
699: 655: 519: 503:
Advances in microfluidics technology are revolutionizing
157:; molecular transport between them must often be through 8379: 7207: 5356:"Bacterial metapopulations in nanofabricated landscapes" 5353: 5196: 4603: 4554: 2866:"Particle Manipulation Methods in Droplet Microfluidics" 2864:
Tenje M, Fornell A, Ohlin M, Nilsson J (February 2018).
2863: 2712: 2710: 2507:
Electrokinetically Driven Microfluidics and Nanofluidics
1997: 1962: 1828: 1633: 1182:, which operates by combining droplet‐based single cell 406: 9000:
Lab-on-a-Chip Technology: Fabrication and Microfluidics
8938: 8889: 8838: 8431: 7800: 7022: 6951: 6790:"Fuel Cell Initiative at MnIT Microfluidics Laboratory" 6506: 5497: 4823: 4684:
Lab-on-a-Chip Technology: Fabrication and Microfluidics
4309:
Pamme N (January 2006). "Magnetism and microfluidics".
1792:"An integrated QCM-based narcotics sensing microsystem" 1164: 1076:
can also be detected by using the acidification of the
763:
The ability to create precise and carefully controlled
7698: 7588: 7256: 6482: 6032: 5303: 3948: 3245: 1882: 1502: 1206:
Advancements in Capillary Electrophoresis (CE) Systems
775:
and the broad range of organisms that form the marine
168: 66:
Typically, micro means one of the following features:
31:
refers to a system that manipulates a small amount of
8709:"Microfluidics: Fluid physics at the nanoliter scale" 7584: 7582: 7314: 6541: 6217: 5235: 5013: 3628: 2912: 2707: 2541: 1627: 8094: 7470: 7468: 7416: 4344:
Song K, Li G, Zu X, Du Z, Liu L, Hu Z (March 2020).
4262: 4205: 4107: 4105: 2947: 2242:
Jeon JS, Chung S, Kamm RD, Charest JL (April 2011).
2241: 1712:
Melin J, van der Wijngaart W, Stemme G (June 2005).
1634:
Shestopalov I, Tice JD, Ismagilov RF (August 2004).
1254: 7996: 6792:. Michigan Technological University. Archived from 5454: 4555:Pawell RS, Inglis DW, Barber TJ, Taylor RA (2013). 4059: 3196: 328: 9075: 8532:Fan, Zhonghui H.; Harrison, D. Jed. (1994-01-01). 8151: 7579: 7166: 6830: 5551:"A wall of funnels concentrates swimming bacteria" 3550: 2802: 2465: 2463: 1783: 1567: 877: 813: 782:Microfluidics has also greatly aided the study of 7465: 6767:"Building a Better Fuel Cell Using Microfluidics" 6619: 6496:. Squaw Valley, Callfornla USA. pp. 481–484. 5952: 4102: 3899: 2982: 2717:Chokkalingam V, Herminghaus S, Seemann R (2008). 1744: 1427: 102: 9849: 9057:Microfluidic devices for biomedical applications 9035: 8807: 8579: 6654: 6329:Journal of Radioanalytical and Nuclear Chemistry 4548: 4441: 3250:. John Wiley & Sons, Inc. pp. 229–256. 2417: 1883:Berthier J, Brakke KA, Berthier E (2016-08-01). 1822: 193: 8782:"Microfluidics and the future of drug research" 8742: 7849: 6486:Chip-LC/MS: HPLC-MS using polymer microfluidics 5919: 5061: 5059: 4819: 4817: 3683: 3339: 2666: 2664: 2662: 2584:MEMS flow sensors for nano-fluidic applications 2460: 1176:chromatin immunoprecipitation (ChiP)‐Sequencing 986:Microfluidics for personalized cancer treatment 670:has been described as a means for carrying out 9307:Radio-frequency microelectromechanical systems 7361: 6377: 4497: 4487:Fundamentals and Applications of Microfluidics 3366: 2193:Journal of Micromechanics and Microengineering 242: 9470: 9147: 8997: 7643: 7169:Microchip Capillary Electrophoresis Protocols 6692: 6648: 6613: 6570: 6535: 6500: 6441: 6406: 6371: 4484: 4394: 2759: 2036: 1918:"Trends in microfluidics with complex fluids" 1367:"The origins and the future of microfluidics" 860:High Performance Liquid Chromatography (HPLC) 541:An emerging application area for biochips is 219:, or by combinations of capillary forces and 8706: 8265: 7997:Warburg O, Wind F, Negelein E (March 1927). 7575:https://doi.org/10.1371/journal.pone.0233239 5118: 5056: 4814: 4060:Munaz A, Shiddiky MJ, Nguyen NT (May 2018). 2659: 1592: 1131:Microfluidics devices also can simulate the 1080:and the difference in membrane capacitance. 662:is that they are neither reconfigurable nor 573:General single cell studies including growth 313: 133:At small scales (channel size of around 100 9750:Matrix-assisted laser desorption ionization 8531: 7569: 7567: 7523: 5730:"Swimming bacteria power microscopic gears" 4932:European Journal of Pharmaceutical Sciences 4114:Journal of Magnetism and Magnetic Materials 4111: 3515: 3278: 3092: 626:Early biochips were based on the idea of a 9818: 9477: 9463: 9154: 9140: 8616: 5278: 4705: 4703: 4343: 3246:Berthier J, Brakke KA, Berthier E (2016). 2469: 1540: 1503:Karniadakis GM, Beskok A, Aluru N (2005). 1496: 1364: 621: 507:procedures for enzymatic analysis (e.g., 9322:Biological microelectromechanical systems 8913: 8872: 8465: 8405: 8356: 8299: 8242: 8185: 8128: 8071: 8022: 7973: 7924: 7875: 7826: 7492: 7048: 6919:Advances in Colloid and Interface Science 6579:Rapid Communications in Mass Spectrometry 5896: 5812: 5763: 5753: 5704: 5694: 5676: 5611: 5574: 5389: 5379: 5170: 5160: 5142: 5101: 5091: 5039: 4990: 4906: 4857: 4762: 4752: 4580: 4371: 4361: 4239: 4085: 4028: 3982: 3925: 3876: 3763: 3728: 3705: 3605: 3595: 3445: 3388: 3292: 3179: 3114: 3052:Journal of Microelectromechanical Systems 3039:NSF Award Search: Advanced Search Results 2881: 2824: 2642: 2316: 2267: 2167: 2118: 2108: 1846: 1059:epithelial cell adhesion molecule (EpCAM) 600:, or controlled deformation of the PDMS ( 487:in both current and future applications. 9073: 7564: 6764: 5297: 4212:Journal of Colloid and Interface Science 3468: 3281:Journal of Colloid and Interface Science 2504: 1565: 610:Plant on a chip and plant tissue culture 490: 270: 252: 226: 106: 18: 6833:Annual Review of Biomedical Engineering 6271: 6269: 6166: 6164: 4700: 4675: 4503: 1559: 709: 9850: 9054: 8786:Journal of Undergraduate Life Sciences 8427: 8425: 7999:"The Metabolism of Tumors in the Body" 7752: 7750: 6845:10.1146/annurev.bioeng.4.112601.125916 6701:Analytical and Bioanalytical Chemistry 6658:Analytical and Bioanalytical Chemistry 6100: 6098: 6096: 6094: 6092: 6028: 6026: 5986: 5984: 5322: 4709: 4681: 4478: 4009:ACS Applied Materials & Interfaces 3900:Lewpiriyawong N, Yang C (March 2012). 3766:Analytical and Bioanalytical Chemistry 3272: 3049: 2636: 2422:. Vol. 2015. pp. 5896–5899. 789: 9792:European Molecular Biology Laboratory 9458: 9135: 9016: 8968: 7856:Experimental and Therapeutic Medicine 7214:International Journal of Astrobiology 5192: 5190: 4308: 2498: 2078: 2076: 1958: 1956: 1954: 1878: 1876: 1874: 1545:. Amazon Digital Services LLC - Kdp. 1521: 1470: 1430:IEEE Transactions on Electron Devices 407:Microfluidic-assisted magnetophoresis 177: 8779: 6744:"Water Management in PEM Fuel Cells" 6741: 6266: 6161: 5328: 3343:Complex Fluid-Flows in Microfluidics 1515: 1464: 1322:Microfluidic modulation spectroscopy 1190:antibodies, possibly to explore the 980: 677: 9161: 8422: 7747: 6089: 6023: 5981: 5272: 4826:"Robust growth of Escherichia coli" 4710:Herold KE (2009). Rasooly A (ed.). 4682:Herold KE (2009). Rasooly A (ed.). 3462: 3413: 3239: 1365:Whitesides, George M. (July 2006). 1124:predict drug sensitivities of rare 1046:Microfluidics is also suitable for 630:, e.g., the GeneChip DNAarray from 169:Various kinds of microfluidic flows 13: 9312:Microoptoelectromechanical systems 8567: 6808:"NASA Astrobiology Strategy, 2015" 5873:"Flow-scanning optical tomography" 5187: 3333: 2753: 2580: 2073: 1951: 1871: 1057:analysis. Beads conjugate to anti‐ 416:: the migration of particles by a 207:is implemented either by external 14: 9889: 8832:10.1038/scientificamerican0483-44 8003:The Journal of General Physiology 7760:Sensors and Actuators B: Chemical 6787: 6748:Stanford Microfluidics Laboratory 5922:Biomedical Optics and 3-D Imaging 5020:Journal of Visualized Experiments 4788:Sensors and Actuators B: Chemical 3340:Galindo-Rosales FJ (2017-05-26). 1174:A recent strategy is single-cell 1023:method can be used to detect the 589:or other force-generating methods 9830: 9829: 9817: 9105: 9036:Jenkins G, Mansfield CD (2012). 8572: 8525: 8482: 8373: 8316: 8259: 8202: 8145: 8088: 8039: 7990: 7941: 7892: 7843: 7794: 7692: 7637: 7517: 7410: 7355: 7308: 7201: 7160: 7116: 7073: 7016: 6980: 6945: 6909: 6859: 6824: 6800: 6781: 6758: 6735: 6476: 6316: 6211: 5946: 5913: 5864: 5837: 5780: 5721: 5652: 5591: 5542: 1271: 1257: 752: 714:By combining microfluidics with 329:Particle detection microfluidics 9770:Chromosome conformation capture 5491: 5448: 5406: 5347: 5229: 5007: 4958: 4923: 4874: 4779: 4632: 4597: 4435: 4388: 4337: 4256: 4199: 4156: 4053: 3999: 3942: 3893: 3844: 3808: 3757: 3722: 3677: 3622: 3563: 3544: 3509: 3469:Park TS, Yoon JY (2015-03-01). 3360: 3139: 3086: 3043: 3032: 3019: 2976: 2941: 2906: 2857: 2796: 2574: 2535: 2517: 2411: 2376: 2333: 2284: 2235: 2184: 2135: 2030: 1991: 1909: 1666: 1096:with a two‐level amplification 959: 918: 878:Acoustic droplet ejection (ADE) 814:Photonics Lab on a Chip (PhLOC) 9174:Microelectromechanical systems 8664:Reports on Progress in Physics 7662:10.1016/j.foodchem.2020.128773 7607:10.1016/j.foodchem.2020.126396 7542:10.1016/j.jfoodeng.2020.110212 7380:10.1016/j.foodchem.2019.125300 5630:10.1103/PhysRevLett.102.048104 4606:Microfluidics and Nanofluidics 1534: 1421: 1358: 1302:Induced-charge electrokinetics 1094:electrochemical sensing method 1048:circulating tumor cells (CTCs) 698:applications for proteins and 310:, mechanical actuation, etc. 103:Microscale behaviour of fluids 70:Small volumes (ÎŒL, nL, pL, fL) 1: 9798:National Institutes of Health 9078:Introduction to Microfluidics 8998:Herold KE, Rasooly A (2009). 8707:Squires TM, Quake SR (2005). 8684:10.1088/0034-4885/75/1/016601 7905:Nature Biomedical Engineering 7494:10.1016/j.foodhyd.2019.105610 6509:Journal of Separation Science 5258:10.1088/0960-1317/21/5/054018 4485:Nguyen NT, Wereley S (2006). 3381:10.1016/j.tibtech.2019.03.009 1570:Introduction to Microfluidics 1352: 900: 650:in biological samples, e.g., 211:sources, external mechanical 194:Continuous-flow microfluidics 9484: 9098: 8235:10.1021/acs.nanolett.9b02741 6462:10.1021/acs.analchem.7b04331 6427:10.1021/acs.analchem.6b04988 6294:10.1021/acs.analchem.7b05162 6051:10.1021/acs.analchem.0c04225 4661:10.1021/acs.nanolett.5b04625 2883:10.1021/acs.analchem.7b01333 2016:10.1021/acs.langmuir.8b00811 1691:10.1097/POC.0000000000000132 1163:mimicking, as well as mimic 561:, can serve as an always-on 118:of a serpentine channel ~15 7: 9714:Structure-based drug design 9055:Li X, Zhou Y, eds. (2013). 8973:. Oxford University Press. 7530:Journal of Food Engineering 7177:10.1007/978-1-4939-2353-3_4 7050:10.1088/0004-637X/765/2/111 1543:Principles of Microfluidics 1292:Droplet-based microfluidics 1287:Advanced Simulation Library 1250: 545:, especially the immediate 249:Droplet-based microfluidics 243:Droplet-based microfluidics 10: 9894: 9281:Digital micromirror device 9002:. Caister Academic Press. 8792:(1): 66–69. Archived from 8458:10.1038/s41467-017-00475-x 8349:10.1038/s41467-018-04919-w 7819:10.1016/j.cell.2015.05.002 6349:10.1007/s10967-019-06992-x 6236:10.1021/acssensors.9b00736 6157:– via Sage Journals. 5930:10.1364/BIOMED.2012.BM4B.4 5661:"Bacterial ratchet motors" 5333:. Caister Academic Press. 5308:. Caister Academic Press. 5283:. Caister Academic Press. 4944:10.1016/j.ejps.2008.04.012 4714:. Caister Academic Press. 4686:. Caister Academic Press. 4232:10.1016/j.jcis.2019.12.092 4134:10.1016/j.jmmm.2020.166620 3975:10.1038/s41598-018-37771-5 3311:10.1016/j.jcis.2018.12.068 3005:10.1103/PhysRevE.87.053003 2593:10.1109/MEMSYS.2000.838611 2587:. IEEE. pp. 745–750. 2511:Cambridge University Press 2213:10.1088/0960-1317/12/4/304 1479:Cambridge University Press 1307:Integrated fluidic circuit 1149:droplet-based microfluidic 1117:Droplet‐based microfluidic 904: 756: 607:Electric field integration 390:Excessive citations inline 317: 274: 246: 9813: 9804:Wellcome Sanger Institute 9778: 9727: 9687: 9575: 9492: 9402: 9351: 9344: 9294: 9271: 9243: 9225: 9218: 9192: 9169: 9019:Advances in Microfluidics 8971:Theoretical Microfluidics 8924:10.1109/JSEN.2013.2263797 8736:10.1103/RevModPhys.77.977 8716:Reviews of Modern Physics 8503:10.1038/s41588-019-0424-9 7917:10.1038/s41551-018-0285-z 7780:10.1016/j.snb.2019.127171 7333:10.1016/j.lwt.2020.110269 7234:10.1017/S147355040600351X 7029:The Astrophysical Journal 6931:10.1016/j.cis.2012.02.003 6713:10.1007/s00216-012-6395-7 6670:10.1007/s00216-012-5711-6 6131:10.1177/00037028211063916 5846:Optics and Photonics News 4983:10.1007/s10616-018-0263-z 4850:10.1016/j.cub.2010.04.045 4808:10.1016/j.snb.2006.07.029 4618:10.1007/s10404-014-1464-1 4277:10.1007/s10544-006-0033-0 3778:10.1007/s00216-008-2529-3 3495:10.1109/JSEN.2014.2367039 3256:10.1002/9781118720936.ch7 3217:10.1007/s10544-010-9445-y 2560:10.1109/TCAD.2017.2760628 2428:10.1109/EMBC.2015.7319733 2260:10.1007/s10544-010-9496-0 2085:"Suspended microfluidics" 1524:Theoretical Microfluidics 1347:Paper-based microfluidics 1317:Microfluidic cell culture 1212:capillary electrophoresis 930:capillary electrophoresis 883:Acoustic droplet ejection 798: 759:Microfluidic cell culture 524:polymerase chain reaction 347:) as well as leukocytes ( 320:Paper-based microfluidics 314:Paper-based microfluidics 49:high-throughput screening 16:Interdisciplinary science 9760:Microfluidic-based tools 9605:Human Connectome Project 9537:Human Microbiome Project 9415:Shallow trench isolation 9038:Microfluidic Diagnostics 8961: 5858:10.1364/OPN.19.12.000034 4754:10.3390/pathogens6040047 3597:10.1073/pnas.93.24.13770 2505:Chang HC, Yeo L (2009). 1505:Microflows and Nanoflows 745:to address questions in 215:, integrated mechanical 9745:Electrospray ionization 9617:Human Epigenome Project 9200:Interdigital transducer 9059:. Woodhead Publishing. 8121:10.1126/science.1253533 7717:10.1111/1750-3841.15039 7705:Journal of Food Science 6765:Tretkoff E (May 2005). 6380:Chemical Communications 5955:Applied Physics Letters 5755:10.1073/pnas.0913015107 5696:10.1073/pnas.0910426107 5600:Physical Review Letters 5555:Journal of Bacteriology 5520:10.1126/science.1188418 5381:10.1073/pnas.0607971103 5162:10.1073/pnas.1317497111 5093:10.1073/pnas.1208689109 4444:Applied Physics Letters 4265:Biomedical Microdevices 3369:Trends in Biotechnology 3205:Biomedical Microdevices 3027:U.S. Pat. No. 4,569,575 2835:10.1126/science.1136907 2723:Applied Physics Letters 2647:. University of Leeds. 2248:Biomedical Microdevices 2110:10.1073/pnas.1302566110 1576:Oxford University Press 1528:Oxford University Press 1450:10.1109/T-ED.1979.19791 897:and cell-based assays. 889:to move low volumes of 622:DNA chips (microarrays) 401:resistive pulse sensing 395:considered for deletion 353:resistive pulse sensing 9786:DNA Data Bank of Japan 9702:Human proteome project 9505:Computational genomics 9359:Surface micromachining 9258:Scratch drive actuator 8064:10.1002/elps.200800373 7966:10.1038/nprot.2014.044 7138:10.1002/elps.201000424 6887:10.1002/anie.200906653 6521:10.1002/jssc.200500334 6189:10.1524/ract.2011.1865 6009:10.1524/ract.2012.1901 5238:J. Micromech. Microeng 4021:10.1021/acsami.8b14307 3698:10.1002/anie.200502862 3438:10.1002/anie.200603817 3172:10.1002/adma.201400091 1977:10.1002/anie.201201798 1937:10.1002/cphc.200300847 1848:10.1002/elps.200600735 1238:, possible due to the 1133:tumor microenvironment 1090:extracellular vesicles 1078:tumor microenvironment 1070:isolation chip (iCHIP) 614:antibiotic resistance. 469:transmembranal protein 304:surface acoustic waves 263: 232: 123: 76:Low energy consumption 25: 9765:Isotope affinity tags 9719:Expression proteomics 9017:Kelly R, ed. (2012). 8438:Nature Communications 8329:Nature Communications 7102:10.1089/ast.2011.0634 4177:10.1002/tcr.201800018 2643:Churchman AH (2018). 1893:10.1002/9781118720936 1541:Shkolnikov V (2019). 1218:, as demonstrated by 905:Further information: 696:liquid chromatography 668:Digital microfluidics 496:microfluidics is the 491:Key application areas 357:signal-to-noise ratio 287:digital microfluidics 277:Digital microfluidics 271:Digital microfluidics 261: 230: 110: 22: 9525:Human Genome Project 9510:Comparative genomics 9435:Silicon on insulator 8893:IEEE Sensors Journal 8538:Analytical Chemistry 8386:Nature Biotechnology 7868:10.3892/etm.2012.566 6990:Analytical Chemistry 6954:Analytical Chemistry 6622:Analytical Chemistry 6544:Analytical Chemistry 6450:Analytical Chemistry 6415:Analytical Chemistry 6282:Analytical Chemistry 6111:Applied Spectroscopy 6039:Analytical Chemistry 5814:10.1364/OE.16.008084 3818:Analytical Chemistry 3475:IEEE Sensors Journal 2870:Analytical Chemistry 2297:Analytical Chemistry 1008:droplet microfluidic 747:evolutionary biology 739:evolutionary ecology 710:Evolutionary biology 602:Polydimethylsiloxane 557:and other dangerous 526:and high-throughput 485:separation technique 89:Active microfluidics 9735:2-D electrophoresis 9709:Call-map proteomics 9567:Structural genomics 9554:Population genomics 9515:Functional genomics 9394:3D microfabrication 9364:Bulk micromachining 9074:Tabeling P (2006). 8906:2013ISenJ..13.3405C 8857:2016NatSR...625876C 8824:1983SciAm.248d..44A 8811:Scientific American 8728:2005RvMP...77..977S 8676:2012RPPh...75a6601S 8639:10.1038/nature05058 8631:2006Natur.442..368W 8550:10.1021/ac00073a029 8450:2017NatCo...8..469S 8341:2018NatCo...9.2434E 8284:2015NatSR...514272L 8227:2020NanoL..20..820M 8170:2017NatSR...746224L 8113:2014Sci...345..216Y 8015:10.1085/jgp.8.6.519 7772:2020SeAcB.30327171H 7423:Food & Function 7226:2007IJAsB...6...27B 7094:2011AsBio..11..519S 7041:2013ApJ...765..111K 6591:2006RCMS...20.3236H 6456:(23): 13030–13037. 6341:2020JRNC..323..965M 6123:2022ApSpe..76..580M 5967:2013ApPhL.102p1115L 5924:. pp. BM4B.4. 5805:2008OExpr..16.8084G 5746:2010PNAS..107..969S 5687:2010PNAS..107.9541D 5622:2009PhRvL.102d8104A 5567:10.1128/JB.01033-07 5512:2010Sci...329..342S 5457:Integrative Biology 5372:2006PNAS..10317290K 5366:(46): 17290–17295. 5250:2011JMiMi..21e4018Y 5153:2014PNAS..111.5778A 5084:2012PNAS..109E2649P 5078:(40): E2649–E2656. 4842:2010CBio...20.1099W 4800:2007SeAcB.123..614J 4653:2016NanoL..16..753C 4526:10.1038/nature05062 4518:2006Natur.442..394D 4456:2011ApPhL..98p3702A 4224:2020JCIS..564..204U 4126:2020JMMM..50366620D 3967:2019NatSR...9.1585G 3912:(1): 12807–128079. 3743:2003NanoL...3...37S 3647:2003NatMa...2..611L 3588:1996PNAS...9313770K 3582:(24): 13770–13773. 3530:1970RScI...41..909D 3487:2015ISenJ..15.1902P 3303:2019JCIS..539..379L 3164:2014AdM....26.4941S 2997:2013PhRvE..87e3003S 2817:2007Sci...315..832P 2735:2008ApPhL..93y4101C 2205:2002JMiMi..12..375T 2101:2013PNAS..11010111C 2095:(25): 10111–10116. 1971:(45): 11224–11240. 1566:Tabeling P (2005). 1442:1979ITED...26.1880T 1391:10.1038/nature05058 1383:2006Natur.442..368W 1192:tumor heterogeneity 907:Electroosmotic pump 790:Cellular biophysics 666:after manufacture. 565:for early warning. 434:metallic impurities 79:Microdomain effects 9689:Structural biology 9500:Cognitive genomics 9369:HAR micromachining 8991:(MIT Press, 2022) 8845:Scientific Reports 8757:10.1039/C4LC00399C 8594:10.1039/C3LC50169H 8272:Scientific Reports 8158:Scientific Reports 7481:Food Hydrocolloids 7435:10.1039/d0fo01278e 7286:10.1039/c0lc00230e 6392:10.1039/c2cc33774f 5889:10.1039/C4LC00701H 5469:10.1039/C0IB00049C 5463:(11–12): 604–629. 5434:10.1039/C5LC00124B 4413:10.1039/C8MH01616J 4401:Materials Horizons 4363:10.3390/mi11030297 3955:Scientific Reports 3869:10.1039/C8LC00496J 3248:Open Microfluidics 3152:Advanced Materials 3107:10.1039/c7lc00025a 2927:10.1039/C6LC01435F 2685:10.1039/C3LC50945A 2525:"fluid transistor" 2484:10.1039/C7NR02655B 2397:10.1039/c3lc50892g 2160:10.1039/c5lc00234f 2051:10.1039/c7lc00114b 1885:Open Microfluidics 1234:. The use of high 1232:theoretical plates 1063:positive selection 731:adaptive landscape 543:clinical pathology 461:paramagnetic fluid 308:optoelectrowetting 264: 233: 231:micro fluid sensor 184:open microfluidics 178:Open microfluidics 124: 47:, automation, and 26: 9845: 9844: 9740:Mass spectrometer 9549:Personal genomics 9452: 9451: 9448: 9447: 9340: 9339: 9089:978-0-19-856864-3 9066:978-0-85709-697-5 9047:978-1-62703-133-2 9028:978-953-510-106-2 9009:978-1-904455-46-2 8955:on April 9, 2023. 8865:10.1038/srep25876 8751:(13): 2217–2225. 8625:(7101): 368–373. 8588:(12): 2210–2251. 8392:(11): 1161–1167. 8292:10.1038/srep14272 8178:10.1038/srep46224 8107:(6193): 216–220. 7132:(22): 3642–3649. 7002:10.1021/ac8023334 6966:10.1021/ac202095k 6960:(22): 8636–8641. 6881:(34): 5846–5868. 6875:Angewandte Chemie 6634:10.1021/ac0712805 6628:(24): 9302–9309. 6585:(21): 3236–3244. 6556:10.1021/ac048358r 6386:(73): 9144–9146. 6177:Radiochimica Acta 5997:Radiochimica Acta 5975:10.1063/1.4802091 5939:978-1-55752-942-8 5883:(23): 4447–4450. 5799:(11): 8084–8093. 5671:(21): 9541–9545. 5561:(23): 8704–8707. 5506:(5989): 342–345. 5340:978-1-904455-47-9 5315:978-1-904455-47-9 5290:978-1-904455-47-9 5137:(16): 5778–5783. 4836:(12): 1099–1103. 4721:978-1-904455-47-9 4693:978-1-904455-46-2 4573:10.1063/1.4821315 4512:(7101): 394–402. 4464:10.1063/1.3581883 4171:(11): 1596–1612. 4078:10.1063/1.5035388 3918:10.1063/1.3682049 3863:(17): 2653–2664. 3830:10.1021/ac202137y 3824:(24): 9579–9585. 3751:10.1021/nl0255202 3692:(14): 2281–2285. 3686:Angewandte Chemie 3538:10.1063/1.1684724 3518:Rev. Sci. Instrum 3426:Angewandte Chemie 3375:(10): 1104–1120. 3158:(29): 4941–4946. 3064:10.1109/84.846697 2985:Physical Review E 2956:(11): 1837–1841. 2811:(5813): 832–835. 2743:10.1063/1.3050461 2679:(24): 4740–4744. 2478:(24): 8393–8400. 2437:978-1-4244-9271-8 2309:10.1021/ac102897h 2154:(11): 2364–2378. 2010:(26): 7624–7639. 1965:Angewandte Chemie 1931:(12): 1291–1298. 1841:(14): 2458–2465. 1802:(10): 1648–1657. 1763:(12): 1504–1509. 1607:(13): 1700–1705. 1585:978-0-19-856864-3 1471:Kirby BJ (2010). 1377:(7101): 368–373. 1279:Technology portal 1109:microfluidic chip 981:Future directions 716:landscape ecology 678:Molecular biology 563:"bio-smoke alarm" 505:molecular biology 349:white blood cells 259: 37:molecular biology 9885: 9878:Gas technologies 9833: 9832: 9821: 9820: 9664:Pharmacogenomics 9659:Pharmacogenetics 9479: 9472: 9465: 9456: 9455: 9430:Photolithography 9349: 9348: 9302:Millipede memory 9263:Thermal actuator 9223: 9222: 9193:Basic structures 9156: 9149: 9142: 9133: 9132: 9109: 9108: 9093: 9081: 9070: 9051: 9040:. Humana Press. 9032: 9013: 8984: 8969:Bruus H (2008). 8956: 8954: 8947: 8935: 8917: 8900:(9): 3405–3414. 8886: 8876: 8835: 8804: 8802: 8801: 8776: 8739: 8713: 8703: 8658: 8613: 8562: 8561: 8529: 8523: 8522: 8497:(6): 1060–1066. 8486: 8480: 8479: 8469: 8429: 8420: 8419: 8409: 8398:10.1038/nbt.3697 8377: 8371: 8370: 8360: 8320: 8314: 8313: 8303: 8263: 8257: 8256: 8246: 8206: 8200: 8199: 8189: 8149: 8143: 8142: 8132: 8092: 8086: 8085: 8075: 8058:(8): 1388–1398. 8043: 8037: 8036: 8026: 7994: 7988: 7987: 7977: 7954:Nature Protocols 7945: 7939: 7938: 7928: 7896: 7890: 7889: 7879: 7847: 7841: 7840: 7830: 7813:(5): 1202–1214. 7798: 7792: 7791: 7754: 7745: 7744: 7696: 7690: 7689: 7641: 7635: 7634: 7586: 7577: 7571: 7562: 7561: 7521: 7515: 7514: 7496: 7472: 7463: 7462: 7429:(7): 5726–5737. 7414: 7408: 7407: 7359: 7353: 7352: 7312: 7306: 7305: 7280:(9): 1574–1586. 7265: 7254: 7253: 7205: 7199: 7198: 7164: 7158: 7157: 7120: 7114: 7113: 7077: 7071: 7070: 7052: 7020: 7014: 7013: 6996:(7): 2537–2544. 6984: 6978: 6977: 6949: 6943: 6942: 6913: 6907: 6906: 6872: 6863: 6857: 6856: 6828: 6822: 6821: 6819: 6813:. Archived from 6812: 6804: 6798: 6797: 6785: 6779: 6778: 6762: 6756: 6755: 6754:on 28 June 2008. 6750:. Archived from 6739: 6733: 6732: 6707:(8): 2507–2512. 6696: 6690: 6689: 6664:(9): 2805–2815. 6652: 6646: 6645: 6617: 6611: 6610: 6599:10.1002/rcm.2725 6574: 6568: 6567: 6550:(9): 2997–3000. 6539: 6533: 6532: 6504: 6498: 6497: 6491: 6480: 6474: 6473: 6445: 6439: 6438: 6421:(9): 4889–4896. 6410: 6404: 6403: 6375: 6369: 6368: 6320: 6314: 6313: 6288:(4): 2456–2460. 6273: 6264: 6263: 6230:(9): 2288–2295. 6215: 6209: 6208: 6168: 6159: 6158: 6102: 6087: 6086: 6045:(3): 1643–1651. 6030: 6021: 6020: 5988: 5979: 5978: 5950: 5944: 5943: 5917: 5911: 5910: 5900: 5868: 5862: 5861: 5841: 5835: 5834: 5816: 5784: 5778: 5777: 5767: 5757: 5725: 5719: 5718: 5708: 5698: 5680: 5656: 5650: 5649: 5615: 5595: 5589: 5588: 5578: 5546: 5540: 5539: 5495: 5489: 5488: 5452: 5446: 5445: 5428:(8): 1961–1968. 5419: 5410: 5404: 5403: 5393: 5383: 5351: 5345: 5344: 5326: 5320: 5319: 5301: 5295: 5294: 5276: 5270: 5269: 5233: 5227: 5226: 5215:10.1039/B917719A 5194: 5185: 5184: 5174: 5164: 5146: 5122: 5116: 5115: 5105: 5095: 5063: 5054: 5053: 5043: 5011: 5005: 5004: 4994: 4962: 4956: 4955: 4927: 4921: 4920: 4910: 4899:10.1039/B718212K 4878: 4872: 4871: 4861: 4821: 4812: 4811: 4783: 4777: 4776: 4766: 4756: 4732: 4726: 4725: 4707: 4698: 4697: 4679: 4673: 4672: 4636: 4630: 4629: 4601: 4595: 4594: 4584: 4561:Biomicrofluidics 4552: 4546: 4545: 4501: 4495: 4494: 4482: 4476: 4475: 4439: 4433: 4432: 4407:(7): 1359–1379. 4392: 4386: 4385: 4375: 4365: 4341: 4335: 4334: 4323:10.1039/B513005K 4306: 4297: 4296: 4260: 4254: 4253: 4243: 4203: 4197: 4196: 4160: 4154: 4153: 4109: 4100: 4099: 4089: 4066:Biomicrofluidics 4057: 4051: 4050: 4032: 4015:(2): 2459–2469. 4003: 3997: 3996: 3986: 3946: 3940: 3939: 3929: 3906:Biomicrofluidics 3897: 3891: 3890: 3880: 3848: 3842: 3841: 3812: 3806: 3805: 3761: 3755: 3754: 3726: 3720: 3719: 3709: 3681: 3675: 3674: 3635:Nature Materials 3626: 3620: 3619: 3609: 3599: 3567: 3561: 3560: 3559: 3555: 3548: 3542: 3541: 3513: 3507: 3506: 3466: 3460: 3459: 3449: 3432:(8): 1318–1320. 3417: 3411: 3410: 3392: 3364: 3358: 3357: 3337: 3331: 3330: 3296: 3276: 3270: 3269: 3243: 3237: 3236: 3200: 3194: 3193: 3183: 3143: 3137: 3136: 3118: 3090: 3084: 3083: 3047: 3041: 3036: 3030: 3029:, Feb. 11, 1986. 3023: 3017: 3016: 2980: 2974: 2973: 2962:10.1039/b813325e 2945: 2939: 2938: 2910: 2904: 2903: 2885: 2876:(3): 1434–1443. 2861: 2855: 2854: 2828: 2800: 2794: 2793: 2774:10.1039/B715524G 2757: 2751: 2750: 2745:. Archived from 2714: 2705: 2704: 2668: 2657: 2656: 2640: 2634: 2633: 2627: 2623: 2621: 2613: 2611: 2609: 2578: 2572: 2571: 2554:(8): 1588–1601. 2539: 2533: 2532: 2531:on July 8, 2011. 2527:. Archived from 2521: 2515: 2514: 2502: 2496: 2495: 2467: 2458: 2457: 2415: 2409: 2408: 2380: 2374: 2373: 2354:10.1039/b502207j 2337: 2331: 2330: 2320: 2303:(4): 1408–1417. 2288: 2282: 2281: 2271: 2239: 2233: 2232: 2188: 2182: 2181: 2171: 2139: 2133: 2132: 2122: 2112: 2080: 2071: 2070: 2045:(8): 1436–1441. 2034: 2028: 2027: 1995: 1989: 1988: 1960: 1949: 1948: 1922: 1913: 1907: 1906: 1880: 1869: 1868: 1850: 1826: 1820: 1819: 1808:10.1039/b800487k 1787: 1781: 1780: 1769:10.1039/B612526N 1748: 1742: 1741: 1730:10.1039/b501781e 1709: 1703: 1702: 1670: 1664: 1663: 1652:10.1039/b403378g 1631: 1625: 1624: 1613:10.1039/b926976b 1596: 1590: 1589: 1573: 1563: 1557: 1556: 1538: 1532: 1531: 1522:Bruus H (2007). 1519: 1513: 1512: 1500: 1494: 1493: 1491: 1490: 1481:. Archived from 1468: 1462: 1461: 1425: 1419: 1418: 1362: 1327:Microphysiometry 1281: 1276: 1275: 1267: 1262: 1261: 1214:(CE) systems on 1157:organs‐on‐a‐chip 1137:3D cell cultures 885:uses a pulse of 654:. A drawback of 587:optical tweezers 522:analysis (e.g., 498:inkjet printhead 398: 298:-on-dielectric ( 260: 85:capillary forces 41:microelectronics 9893: 9892: 9888: 9887: 9886: 9884: 9883: 9882: 9848: 9847: 9846: 9841: 9809: 9774: 9723: 9683: 9679:Transcriptomics 9669:Systems biology 9654:Paleopolyploidy 9590:Cheminformatics 9571: 9488: 9483: 9453: 9444: 9398: 9336: 9290: 9267: 9239: 9214: 9188: 9179:Microtechnology 9165: 9163:Microtechnology 9160: 9130: 9129: 9128: 9110: 9106: 9101: 9096: 9090: 9067: 9048: 9029: 9010: 8987:Folch, Albert. 8981: 8964: 8959: 8952: 8945: 8915:10.1.1.640.4976 8799: 8797: 8780:Chen K (2011). 8722:(3): 977–1026. 8711: 8575: 8570: 8568:Further reading 8565: 8530: 8526: 8491:Nature Genetics 8487: 8483: 8430: 8423: 8378: 8374: 8321: 8317: 8264: 8260: 8207: 8203: 8150: 8146: 8093: 8089: 8052:Electrophoresis 8044: 8040: 7995: 7991: 7946: 7942: 7911:(10): 761–772. 7897: 7893: 7848: 7844: 7799: 7795: 7755: 7748: 7697: 7693: 7642: 7638: 7587: 7580: 7572: 7565: 7522: 7518: 7473: 7466: 7415: 7411: 7360: 7356: 7313: 7309: 7266: 7257: 7206: 7202: 7187: 7165: 7161: 7126:Electrophoresis 7121: 7117: 7078: 7074: 7021: 7017: 6985: 6981: 6950: 6946: 6914: 6910: 6870: 6864: 6860: 6829: 6825: 6817: 6810: 6806: 6805: 6801: 6786: 6782: 6763: 6759: 6740: 6736: 6697: 6693: 6653: 6649: 6618: 6614: 6575: 6571: 6540: 6536: 6505: 6501: 6489: 6481: 6477: 6446: 6442: 6411: 6407: 6376: 6372: 6321: 6317: 6274: 6267: 6216: 6212: 6169: 6162: 6103: 6090: 6031: 6024: 5989: 5982: 5951: 5947: 5940: 5918: 5914: 5869: 5865: 5842: 5838: 5785: 5781: 5726: 5722: 5657: 5653: 5596: 5592: 5547: 5543: 5496: 5492: 5453: 5449: 5417: 5411: 5407: 5352: 5348: 5341: 5327: 5323: 5316: 5302: 5298: 5291: 5277: 5273: 5234: 5230: 5195: 5188: 5123: 5119: 5064: 5057: 5012: 5008: 4963: 4959: 4928: 4924: 4879: 4875: 4830:Current Biology 4822: 4815: 4784: 4780: 4733: 4729: 4722: 4708: 4701: 4694: 4680: 4676: 4637: 4633: 4602: 4598: 4553: 4549: 4502: 4498: 4483: 4479: 4440: 4436: 4393: 4389: 4342: 4338: 4307: 4300: 4261: 4257: 4204: 4200: 4165:Chemical Record 4161: 4157: 4110: 4103: 4058: 4054: 4004: 4000: 3947: 3943: 3898: 3894: 3849: 3845: 3813: 3809: 3762: 3758: 3727: 3723: 3682: 3678: 3655:10.1038/nmat965 3627: 3623: 3568: 3564: 3557: 3549: 3545: 3514: 3510: 3467: 3463: 3418: 3414: 3365: 3361: 3354: 3338: 3334: 3277: 3273: 3266: 3244: 3240: 3201: 3197: 3144: 3140: 3101:(6): 994–1008. 3091: 3087: 3048: 3044: 3037: 3033: 3024: 3020: 2981: 2977: 2946: 2942: 2911: 2907: 2862: 2858: 2826:10.1.1.673.2864 2801: 2797: 2758: 2754: 2715: 2708: 2669: 2660: 2641: 2637: 2625: 2624: 2615: 2614: 2607: 2605: 2603: 2581:Wu, S. (2000). 2579: 2575: 2540: 2536: 2523: 2522: 2518: 2503: 2499: 2468: 2461: 2438: 2416: 2412: 2381: 2377: 2338: 2334: 2289: 2285: 2240: 2236: 2189: 2185: 2140: 2136: 2081: 2074: 2035: 2031: 1996: 1992: 1961: 1952: 1920: 1914: 1910: 1903: 1881: 1872: 1835:Electrophoresis 1827: 1823: 1788: 1784: 1749: 1745: 1710: 1706: 1671: 1667: 1632: 1628: 1597: 1593: 1586: 1564: 1560: 1553: 1539: 1535: 1520: 1516: 1509:Springer Verlag 1501: 1497: 1488: 1486: 1469: 1465: 1426: 1422: 1363: 1359: 1355: 1277: 1270: 1263: 1256: 1253: 1236:electric fields 1208: 1153:3D cell culture 1098:enzymatic assay 1061:antibodies for 1037:prostate cancer 1027:mutations with 988: 983: 962: 925:astrobiologists 921: 909: 903: 880: 862: 816: 801: 792: 765:chemoattractant 761: 755: 712: 684:electrophoresis 680: 624: 598:optical tweezer 493: 414:magnetophoresis 409: 383: 345:red blood cells 336:Coulter counter 331: 322: 316: 291:fault-tolerance 279: 273: 253: 251: 245: 196: 180: 171: 143:Reynolds number 128:surface tension 105: 17: 12: 11: 5: 9891: 9881: 9880: 9875: 9870: 9868:Nanotechnology 9865: 9863:Fluid dynamics 9860: 9843: 9842: 9840: 9839: 9827: 9814: 9811: 9810: 9808: 9807: 9801: 9795: 9789: 9782: 9780: 9776: 9775: 9773: 9772: 9767: 9762: 9757: 9752: 9747: 9742: 9737: 9731: 9729: 9728:Research tools 9725: 9724: 9722: 9721: 9716: 9711: 9706: 9705: 9704: 9693: 9691: 9685: 9684: 9682: 9681: 9676: 9674:Toxicogenomics 9671: 9666: 9661: 9656: 9651: 9646: 9641: 9636: 9631: 9626: 9621: 9620: 9619: 9609: 9608: 9607: 9597: 9592: 9587: 9581: 9579: 9577:Bioinformatics 9573: 9572: 9570: 9569: 9564: 9556: 9551: 9546: 9541: 9540: 9539: 9529: 9528: 9527: 9520:Genome project 9517: 9512: 9507: 9502: 9496: 9494: 9490: 9489: 9482: 9481: 9474: 9467: 9459: 9450: 9449: 9446: 9445: 9443: 9442: 9437: 9432: 9427: 9422: 9417: 9412: 9406: 9404: 9400: 9399: 9397: 9396: 9391: 9386: 9381: 9376: 9371: 9366: 9361: 9355: 9353: 9346: 9342: 9341: 9338: 9337: 9335: 9334: 9329: 9324: 9319: 9317:Microphotonics 9314: 9309: 9304: 9298: 9296: 9292: 9291: 9289: 9288: 9286:Optical switch 9283: 9277: 9275: 9269: 9268: 9266: 9265: 9260: 9255: 9249: 9247: 9241: 9240: 9238: 9237: 9235:Microbolometer 9231: 9229: 9220: 9216: 9215: 9213: 9212: 9207: 9202: 9196: 9194: 9190: 9189: 9187: 9186: 9184:Micromachinery 9181: 9176: 9170: 9167: 9166: 9159: 9158: 9151: 9144: 9136: 9111: 9104: 9103: 9102: 9100: 9097: 9095: 9094: 9088: 9071: 9065: 9052: 9046: 9033: 9027: 9014: 9008: 8995: 8985: 8980:978-0199235094 8979: 8965: 8963: 8960: 8958: 8957: 8936: 8887: 8836: 8805: 8777: 8740: 8704: 8659: 8614: 8576: 8574: 8571: 8569: 8566: 8564: 8563: 8544:(1): 177–184. 8524: 8481: 8421: 8372: 8315: 8258: 8221:(2): 820–828. 8201: 8144: 8087: 8038: 8009:(6): 519–530. 7989: 7960:(3): 694–710. 7940: 7891: 7862:(1): 109–112. 7842: 7793: 7746: 7711:(3): 736–743. 7691: 7650:Food Chemistry 7636: 7595:Food Chemistry 7578: 7563: 7516: 7464: 7409: 7368:Food Chemistry 7354: 7307: 7255: 7200: 7185: 7159: 7115: 7088:(6): 519–528. 7072: 7015: 6979: 6944: 6908: 6858: 6823: 6820:on 2016-12-22. 6799: 6796:on 2008-03-05. 6780: 6757: 6734: 6691: 6647: 6612: 6569: 6534: 6515:(4): 499–509. 6499: 6475: 6440: 6405: 6370: 6335:(2): 965–973. 6315: 6265: 6210: 6183:(9): 563–572. 6160: 6117:(5): 580–589. 6088: 6022: 6003:(3): 185–188. 5980: 5961:(16): 161115. 5945: 5938: 5912: 5863: 5836: 5793:Optics Express 5779: 5740:(3): 969–974. 5720: 5651: 5590: 5541: 5490: 5447: 5405: 5346: 5339: 5321: 5314: 5296: 5289: 5271: 5228: 5209:(6): 783–788. 5186: 5117: 5055: 5006: 4977:(1): 443–452. 4971:Cytotechnology 4957: 4938:(3): 151–160. 4922: 4893:(5): 747–754. 4873: 4813: 4794:(1): 614–621. 4778: 4727: 4720: 4699: 4692: 4674: 4647:(1): 753–759. 4631: 4612:(4): 657–665. 4596: 4547: 4496: 4477: 4450:(16): 163702. 4434: 4387: 4336: 4298: 4271:(4): 299–308. 4255: 4198: 4155: 4101: 4052: 3998: 3941: 3892: 3843: 3807: 3772:(2): 437–446. 3756: 3721: 3676: 3641:(9): 611–615. 3621: 3562: 3543: 3524:(7): 909–916. 3508: 3461: 3412: 3359: 3352: 3332: 3271: 3264: 3238: 3211:(5): 907–914. 3195: 3138: 3085: 3058:(2): 171–180. 3042: 3031: 3018: 2975: 2940: 2921:(5): 751–771. 2905: 2856: 2795: 2768:(2): 198–220. 2752: 2749:on 2013-01-13. 2729:(25): 254101. 2706: 2658: 2635: 2626:|website= 2601: 2573: 2534: 2516: 2497: 2459: 2436: 2410: 2391:(4): 771–778. 2375: 2348:(8): 827–836. 2332: 2283: 2254:(2): 325–333. 2234: 2199:(4): 375–379. 2183: 2134: 2072: 2029: 1990: 1950: 1908: 1901: 1870: 1821: 1782: 1743: 1724:(6): 682–686. 1704: 1665: 1646:(4): 316–321. 1626: 1591: 1584: 1558: 1552:978-1790217281 1551: 1533: 1514: 1495: 1463: 1436:(12): 1880–6. 1420: 1356: 1354: 1351: 1350: 1349: 1344: 1339: 1334: 1329: 1324: 1319: 1314: 1309: 1304: 1299: 1294: 1289: 1283: 1282: 1268: 1265:Biology portal 1252: 1249: 1224:micromachining 1207: 1204: 1184:RNA sequencing 1145:ovarian cancer 1019:droplet‐based 987: 984: 982: 979: 961: 958: 920: 917: 902: 899: 879: 876: 861: 858: 844:reprocessing. 815: 812: 800: 797: 791: 788: 777:microbial loop 757:Main article: 754: 751: 735:metapopulation 711: 708: 690:analysis, and 679: 676: 660:protein arrays 636:DNA microarray 628:DNA microarray 623: 620: 616: 615: 611: 608: 605: 590: 583: 580: 577: 574: 492: 489: 465:functionalized 463:) needs to be 418:magnetic field 408: 405: 330: 327: 318:Main article: 315: 312: 296:electrowetting 283:electrowetting 275:Main article: 272: 269: 247:Main article: 244: 241: 221:electrokinetic 195: 192: 179: 176: 170: 167: 113:Phase contrast 104: 101: 81: 80: 77: 74: 71: 15: 9: 6: 4: 3: 2: 9890: 9879: 9876: 9874: 9873:Biotechnology 9871: 9869: 9866: 9864: 9861: 9859: 9858:Microfluidics 9856: 9855: 9853: 9838: 9837: 9828: 9826: 9825: 9816: 9815: 9812: 9805: 9802: 9799: 9796: 9793: 9790: 9787: 9784: 9783: 9781: 9779:Organizations 9777: 9771: 9768: 9766: 9763: 9761: 9758: 9756: 9753: 9751: 9748: 9746: 9743: 9741: 9738: 9736: 9733: 9732: 9730: 9726: 9720: 9717: 9715: 9712: 9710: 9707: 9703: 9700: 9699: 9698: 9695: 9694: 9692: 9690: 9686: 9680: 9677: 9675: 9672: 9670: 9667: 9665: 9662: 9660: 9657: 9655: 9652: 9650: 9649:Nutrigenomics 9647: 9645: 9642: 9640: 9637: 9635: 9632: 9630: 9627: 9625: 9622: 9618: 9615: 9614: 9613: 9610: 9606: 9603: 9602: 9601: 9598: 9596: 9595:Chemogenomics 9593: 9591: 9588: 9586: 9583: 9582: 9580: 9578: 9574: 9568: 9565: 9563: 9561: 9557: 9555: 9552: 9550: 9547: 9545: 9542: 9538: 9535: 9534: 9533: 9530: 9526: 9523: 9522: 9521: 9518: 9516: 9513: 9511: 9508: 9506: 9503: 9501: 9498: 9497: 9495: 9491: 9487: 9480: 9475: 9473: 9468: 9466: 9461: 9460: 9457: 9441: 9438: 9436: 9433: 9431: 9428: 9426: 9423: 9421: 9418: 9416: 9413: 9411: 9408: 9407: 9405: 9401: 9395: 9392: 9390: 9387: 9385: 9382: 9380: 9377: 9375: 9372: 9370: 9367: 9365: 9362: 9360: 9357: 9356: 9354: 9350: 9347: 9343: 9333: 9330: 9328: 9327:Microfluidics 9325: 9323: 9320: 9318: 9315: 9313: 9310: 9308: 9305: 9303: 9300: 9299: 9297: 9293: 9287: 9284: 9282: 9279: 9278: 9276: 9274: 9270: 9264: 9261: 9259: 9256: 9254: 9251: 9250: 9248: 9246: 9242: 9236: 9233: 9232: 9230: 9228: 9224: 9221: 9217: 9211: 9208: 9206: 9203: 9201: 9198: 9197: 9195: 9191: 9185: 9182: 9180: 9177: 9175: 9172: 9171: 9168: 9164: 9157: 9152: 9150: 9145: 9143: 9138: 9137: 9134: 9126: 9125: 9124: 9123:Microfluidics 9118: 9114: 9091: 9085: 9082:. Oxford UP. 9080: 9079: 9072: 9068: 9062: 9058: 9053: 9049: 9043: 9039: 9034: 9030: 9024: 9020: 9015: 9011: 9005: 9001: 8996: 8994: 8993:online review 8990: 8986: 8982: 8976: 8972: 8967: 8966: 8951: 8944: 8943: 8937: 8933: 8929: 8925: 8921: 8916: 8911: 8907: 8903: 8899: 8895: 8894: 8888: 8884: 8880: 8875: 8870: 8866: 8862: 8858: 8854: 8850: 8846: 8842: 8837: 8833: 8829: 8825: 8821: 8817: 8813: 8812: 8806: 8796:on 2012-03-31 8795: 8791: 8787: 8783: 8778: 8774: 8770: 8766: 8762: 8758: 8754: 8750: 8746: 8745:Lab on a Chip 8741: 8737: 8733: 8729: 8725: 8721: 8717: 8710: 8705: 8701: 8697: 8693: 8689: 8685: 8681: 8677: 8673: 8670:(1): 016601. 8669: 8665: 8660: 8656: 8652: 8648: 8644: 8640: 8636: 8632: 8628: 8624: 8620: 8615: 8611: 8607: 8603: 8599: 8595: 8591: 8587: 8583: 8582:Lab on a Chip 8578: 8577: 8573:Review papers 8559: 8555: 8551: 8547: 8543: 8539: 8535: 8528: 8520: 8516: 8512: 8508: 8504: 8500: 8496: 8492: 8485: 8477: 8473: 8468: 8463: 8459: 8455: 8451: 8447: 8443: 8439: 8435: 8428: 8426: 8417: 8413: 8408: 8403: 8399: 8395: 8391: 8387: 8383: 8376: 8368: 8364: 8359: 8354: 8350: 8346: 8342: 8338: 8334: 8330: 8326: 8319: 8311: 8307: 8302: 8297: 8293: 8289: 8285: 8281: 8277: 8273: 8269: 8262: 8254: 8250: 8245: 8240: 8236: 8232: 8228: 8224: 8220: 8216: 8212: 8205: 8197: 8193: 8188: 8183: 8179: 8175: 8171: 8167: 8163: 8159: 8155: 8148: 8140: 8136: 8131: 8126: 8122: 8118: 8114: 8110: 8106: 8102: 8098: 8091: 8083: 8079: 8074: 8069: 8065: 8061: 8057: 8053: 8049: 8042: 8034: 8030: 8025: 8020: 8016: 8012: 8008: 8004: 8000: 7993: 7985: 7981: 7976: 7971: 7967: 7963: 7959: 7955: 7951: 7944: 7936: 7932: 7927: 7922: 7918: 7914: 7910: 7906: 7902: 7895: 7887: 7883: 7878: 7873: 7869: 7865: 7861: 7857: 7853: 7846: 7838: 7834: 7829: 7824: 7820: 7816: 7812: 7808: 7804: 7797: 7789: 7785: 7781: 7777: 7773: 7769: 7765: 7761: 7753: 7751: 7742: 7738: 7734: 7730: 7726: 7722: 7718: 7714: 7710: 7706: 7702: 7695: 7687: 7683: 7679: 7675: 7671: 7667: 7663: 7659: 7655: 7651: 7647: 7640: 7632: 7628: 7624: 7620: 7616: 7612: 7608: 7604: 7600: 7596: 7592: 7585: 7583: 7576: 7570: 7568: 7559: 7555: 7551: 7547: 7543: 7539: 7535: 7531: 7527: 7520: 7512: 7508: 7504: 7500: 7495: 7490: 7486: 7482: 7478: 7471: 7469: 7460: 7456: 7452: 7448: 7444: 7440: 7436: 7432: 7428: 7424: 7420: 7413: 7405: 7401: 7397: 7393: 7389: 7385: 7381: 7377: 7373: 7369: 7365: 7358: 7350: 7346: 7342: 7338: 7334: 7330: 7326: 7322: 7318: 7311: 7303: 7299: 7295: 7291: 7287: 7283: 7279: 7275: 7274:Lab on a Chip 7271: 7264: 7262: 7260: 7251: 7247: 7243: 7239: 7235: 7231: 7227: 7223: 7219: 7215: 7211: 7204: 7196: 7192: 7188: 7186:9781493923526 7182: 7178: 7174: 7170: 7163: 7155: 7151: 7147: 7143: 7139: 7135: 7131: 7127: 7119: 7111: 7107: 7103: 7099: 7095: 7091: 7087: 7083: 7076: 7068: 7064: 7060: 7056: 7051: 7046: 7042: 7038: 7034: 7030: 7026: 7019: 7011: 7007: 7003: 6999: 6995: 6991: 6983: 6975: 6971: 6967: 6963: 6959: 6955: 6948: 6940: 6936: 6932: 6928: 6924: 6920: 6912: 6904: 6900: 6896: 6892: 6888: 6884: 6880: 6876: 6869: 6862: 6854: 6850: 6846: 6842: 6838: 6834: 6827: 6816: 6809: 6803: 6795: 6791: 6784: 6776: 6772: 6768: 6761: 6753: 6749: 6745: 6742:Santiago JG. 6738: 6730: 6726: 6722: 6718: 6714: 6710: 6706: 6702: 6695: 6687: 6683: 6679: 6675: 6671: 6667: 6663: 6659: 6651: 6643: 6639: 6635: 6631: 6627: 6623: 6616: 6608: 6604: 6600: 6596: 6592: 6588: 6584: 6580: 6573: 6565: 6561: 6557: 6553: 6549: 6545: 6538: 6530: 6526: 6522: 6518: 6514: 6510: 6503: 6495: 6494:Proc MicroTAS 6488: 6487: 6479: 6471: 6467: 6463: 6459: 6455: 6451: 6444: 6436: 6432: 6428: 6424: 6420: 6416: 6409: 6401: 6397: 6393: 6389: 6385: 6381: 6374: 6366: 6362: 6358: 6354: 6350: 6346: 6342: 6338: 6334: 6330: 6326: 6319: 6311: 6307: 6303: 6299: 6295: 6291: 6287: 6283: 6279: 6272: 6270: 6261: 6257: 6253: 6249: 6245: 6241: 6237: 6233: 6229: 6225: 6221: 6214: 6206: 6202: 6198: 6194: 6190: 6186: 6182: 6178: 6174: 6167: 6165: 6156: 6152: 6148: 6144: 6140: 6136: 6132: 6128: 6124: 6120: 6116: 6112: 6108: 6101: 6099: 6097: 6095: 6093: 6084: 6080: 6076: 6072: 6068: 6064: 6060: 6056: 6052: 6048: 6044: 6040: 6036: 6029: 6027: 6018: 6014: 6010: 6006: 6002: 5998: 5994: 5987: 5985: 5976: 5972: 5968: 5964: 5960: 5956: 5949: 5941: 5935: 5931: 5927: 5923: 5916: 5908: 5904: 5899: 5894: 5890: 5886: 5882: 5878: 5877:Lab on a Chip 5874: 5867: 5859: 5855: 5851: 5847: 5840: 5832: 5828: 5824: 5820: 5815: 5810: 5806: 5802: 5798: 5794: 5790: 5783: 5775: 5771: 5766: 5761: 5756: 5751: 5747: 5743: 5739: 5735: 5731: 5724: 5716: 5712: 5707: 5702: 5697: 5692: 5688: 5684: 5679: 5674: 5670: 5666: 5662: 5655: 5647: 5643: 5639: 5635: 5631: 5627: 5623: 5619: 5614: 5609: 5606:(4): 048104. 5605: 5601: 5594: 5586: 5582: 5577: 5572: 5568: 5564: 5560: 5556: 5552: 5545: 5537: 5533: 5529: 5525: 5521: 5517: 5513: 5509: 5505: 5501: 5494: 5486: 5482: 5478: 5474: 5470: 5466: 5462: 5458: 5451: 5443: 5439: 5435: 5431: 5427: 5423: 5422:Lab on a Chip 5416: 5409: 5401: 5397: 5392: 5387: 5382: 5377: 5373: 5369: 5365: 5361: 5357: 5350: 5342: 5336: 5332: 5325: 5317: 5311: 5307: 5300: 5292: 5286: 5282: 5275: 5267: 5263: 5259: 5255: 5251: 5247: 5244:(5): 054018. 5243: 5239: 5232: 5224: 5220: 5216: 5212: 5208: 5204: 5203:Lab on a Chip 5200: 5193: 5191: 5182: 5178: 5173: 5168: 5163: 5158: 5154: 5150: 5145: 5140: 5136: 5132: 5128: 5121: 5113: 5109: 5104: 5099: 5094: 5089: 5085: 5081: 5077: 5073: 5069: 5062: 5060: 5051: 5047: 5042: 5037: 5033: 5029: 5025: 5021: 5017: 5010: 5002: 4998: 4993: 4988: 4984: 4980: 4976: 4972: 4968: 4961: 4953: 4949: 4945: 4941: 4937: 4933: 4926: 4918: 4914: 4909: 4904: 4900: 4896: 4892: 4888: 4887:Lab on a Chip 4884: 4877: 4869: 4865: 4860: 4855: 4851: 4847: 4843: 4839: 4835: 4831: 4827: 4820: 4818: 4809: 4805: 4801: 4797: 4793: 4789: 4782: 4774: 4770: 4765: 4760: 4755: 4750: 4746: 4742: 4738: 4731: 4723: 4717: 4713: 4706: 4704: 4695: 4689: 4685: 4678: 4670: 4666: 4662: 4658: 4654: 4650: 4646: 4642: 4635: 4627: 4623: 4619: 4615: 4611: 4607: 4600: 4592: 4588: 4583: 4578: 4574: 4570: 4566: 4562: 4558: 4551: 4543: 4539: 4535: 4531: 4527: 4523: 4519: 4515: 4511: 4507: 4500: 4492: 4488: 4481: 4473: 4469: 4465: 4461: 4457: 4453: 4449: 4445: 4438: 4430: 4426: 4422: 4418: 4414: 4410: 4406: 4402: 4398: 4391: 4383: 4379: 4374: 4369: 4364: 4359: 4355: 4351: 4350:Micromachines 4347: 4340: 4332: 4328: 4324: 4320: 4316: 4312: 4311:Lab on a Chip 4305: 4303: 4294: 4290: 4286: 4282: 4278: 4274: 4270: 4266: 4259: 4251: 4247: 4242: 4237: 4233: 4229: 4225: 4221: 4217: 4213: 4209: 4202: 4194: 4190: 4186: 4182: 4178: 4174: 4170: 4166: 4159: 4151: 4147: 4143: 4139: 4135: 4131: 4127: 4123: 4119: 4115: 4108: 4106: 4097: 4093: 4088: 4083: 4079: 4075: 4072:(3): 031501. 4071: 4067: 4063: 4056: 4048: 4044: 4040: 4036: 4031: 4026: 4022: 4018: 4014: 4010: 4002: 3994: 3990: 3985: 3980: 3976: 3972: 3968: 3964: 3960: 3956: 3952: 3945: 3937: 3933: 3928: 3923: 3919: 3915: 3911: 3907: 3903: 3896: 3888: 3884: 3879: 3874: 3870: 3866: 3862: 3858: 3857:Lab on a Chip 3854: 3847: 3839: 3835: 3831: 3827: 3823: 3819: 3811: 3803: 3799: 3795: 3791: 3787: 3783: 3779: 3775: 3771: 3767: 3760: 3752: 3748: 3744: 3740: 3736: 3732: 3725: 3717: 3713: 3708: 3707:2027.42/50668 3703: 3699: 3695: 3691: 3687: 3680: 3672: 3668: 3664: 3660: 3656: 3652: 3648: 3644: 3640: 3636: 3632: 3625: 3617: 3613: 3608: 3603: 3598: 3593: 3589: 3585: 3581: 3577: 3573: 3566: 3553: 3547: 3539: 3535: 3531: 3527: 3523: 3519: 3512: 3504: 3500: 3496: 3492: 3488: 3484: 3480: 3476: 3472: 3465: 3457: 3453: 3448: 3443: 3439: 3435: 3431: 3427: 3423: 3416: 3408: 3404: 3400: 3396: 3391: 3386: 3382: 3378: 3374: 3370: 3363: 3355: 3353:9783319595931 3349: 3345: 3344: 3336: 3328: 3324: 3320: 3316: 3312: 3308: 3304: 3300: 3295: 3290: 3286: 3282: 3275: 3267: 3265:9781118720936 3261: 3257: 3253: 3249: 3242: 3234: 3230: 3226: 3222: 3218: 3214: 3210: 3206: 3199: 3191: 3187: 3182: 3177: 3173: 3169: 3165: 3161: 3157: 3153: 3149: 3142: 3134: 3130: 3126: 3122: 3117: 3112: 3108: 3104: 3100: 3096: 3095:Lab on a Chip 3089: 3081: 3077: 3073: 3069: 3065: 3061: 3057: 3053: 3046: 3040: 3035: 3028: 3022: 3014: 3010: 3006: 3002: 2998: 2994: 2991:(5): 053003. 2990: 2986: 2979: 2971: 2967: 2963: 2959: 2955: 2951: 2950:Lab on a Chip 2944: 2936: 2932: 2928: 2924: 2920: 2916: 2915:Lab on a Chip 2909: 2901: 2897: 2893: 2889: 2884: 2879: 2875: 2871: 2867: 2860: 2852: 2848: 2844: 2840: 2836: 2832: 2827: 2822: 2818: 2814: 2810: 2806: 2799: 2791: 2787: 2783: 2779: 2775: 2771: 2767: 2763: 2762:Lab on a Chip 2756: 2748: 2744: 2740: 2736: 2732: 2728: 2724: 2720: 2713: 2711: 2702: 2698: 2694: 2690: 2686: 2682: 2678: 2674: 2673:Lab on a Chip 2667: 2665: 2663: 2654: 2650: 2646: 2639: 2631: 2619: 2604: 2602:0-7803-5273-4 2598: 2594: 2590: 2586: 2585: 2577: 2569: 2565: 2561: 2557: 2553: 2549: 2545: 2538: 2530: 2526: 2520: 2512: 2508: 2501: 2493: 2489: 2485: 2481: 2477: 2473: 2466: 2464: 2455: 2451: 2447: 2443: 2439: 2433: 2429: 2425: 2421: 2414: 2406: 2402: 2398: 2394: 2390: 2386: 2385:Lab on a Chip 2379: 2371: 2367: 2363: 2359: 2355: 2351: 2347: 2343: 2342:Lab on a Chip 2336: 2328: 2324: 2319: 2314: 2310: 2306: 2302: 2298: 2294: 2287: 2279: 2275: 2270: 2265: 2261: 2257: 2253: 2249: 2245: 2238: 2230: 2226: 2222: 2218: 2214: 2210: 2206: 2202: 2198: 2194: 2187: 2179: 2175: 2170: 2165: 2161: 2157: 2153: 2149: 2148:Lab on a Chip 2145: 2138: 2130: 2126: 2121: 2116: 2111: 2106: 2102: 2098: 2094: 2090: 2086: 2079: 2077: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2039:Lab on a Chip 2033: 2025: 2021: 2017: 2013: 2009: 2005: 2001: 1994: 1986: 1982: 1978: 1974: 1970: 1966: 1959: 1957: 1955: 1946: 1942: 1938: 1934: 1930: 1926: 1919: 1912: 1904: 1902:9781118720936 1898: 1894: 1890: 1886: 1879: 1877: 1875: 1866: 1862: 1858: 1854: 1849: 1844: 1840: 1836: 1832: 1825: 1817: 1813: 1809: 1805: 1801: 1797: 1796:Lab on a Chip 1793: 1786: 1778: 1774: 1770: 1766: 1762: 1758: 1757:Lab on a Chip 1754: 1747: 1739: 1735: 1731: 1727: 1723: 1719: 1718:Lab on a Chip 1715: 1708: 1700: 1696: 1692: 1688: 1685:(2): 97–101. 1684: 1680: 1679:Point of Care 1676: 1669: 1661: 1657: 1653: 1649: 1645: 1641: 1640:Lab on a Chip 1637: 1630: 1622: 1618: 1614: 1610: 1606: 1602: 1601:Lab on a Chip 1595: 1587: 1581: 1577: 1572: 1571: 1562: 1554: 1548: 1544: 1537: 1529: 1525: 1518: 1510: 1506: 1499: 1485:on 2019-04-28 1484: 1480: 1476: 1475: 1467: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1424: 1416: 1412: 1408: 1404: 1400: 1396: 1392: 1388: 1384: 1380: 1376: 1372: 1368: 1361: 1357: 1348: 1345: 1343: 1340: 1338: 1335: 1333: 1330: 1328: 1325: 1323: 1320: 1318: 1315: 1313: 1312:Lab-on-a-chip 1310: 1308: 1305: 1303: 1300: 1298: 1295: 1293: 1290: 1288: 1285: 1284: 1280: 1274: 1269: 1266: 1260: 1255: 1248: 1245: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1203: 1201: 1197: 1193: 1189: 1185: 1181: 1177: 1172: 1170: 1166: 1162: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1129: 1127: 1122: 1121:primary tumor 1118: 1114: 1110: 1106: 1105:primary cells 1101: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1068: 1064: 1060: 1056: 1055:liquid biopsy 1053: 1049: 1044: 1042: 1038: 1034: 1030: 1029:TaqMan probes 1026: 1022: 1018: 1014: 1009: 1005: 1001: 997: 992: 978: 974: 970: 967: 966:lab-on-a-chip 957: 955: 951: 947: 944:, and simple 943: 939: 935: 931: 926: 916: 914: 911:Microfluidic 908: 898: 896: 892: 888: 884: 875: 871: 868: 857: 854: 849: 845: 842: 837: 833: 829: 825: 821: 811: 808: 806: 796: 787: 785: 780: 778: 774: 770: 766: 760: 753:Cell behavior 750: 748: 744: 740: 736: 732: 728: 725: 721: 717: 707: 705: 704:microorganism 701: 697: 693: 689: 688:transcriptome 685: 675: 673: 669: 665: 661: 657: 653: 649: 645: 641: 640:protein array 637: 633: 629: 619: 612: 609: 606: 603: 599: 595: 591: 588: 584: 581: 578: 575: 572: 571: 570: 566: 564: 560: 556: 552: 549:diagnosis of 548: 547:point-of-care 544: 539: 537: 533: 529: 525: 521: 517: 514: 510: 506: 501: 499: 488: 486: 480: 478: 474: 470: 466: 462: 458: 457:nanoparticles 454: 449: 447: 446:paramagnetism 443: 439: 435: 431: 427: 423: 419: 415: 404: 402: 396: 392: 391: 387: 380: 378: 374: 370: 364: 362: 358: 354: 350: 346: 341: 337: 326: 321: 311: 309: 305: 301: 297: 292: 288: 284: 278: 268: 250: 240: 238: 229: 225: 222: 218: 214: 210: 206: 201: 191: 189: 185: 175: 166: 162: 160: 156: 152: 148: 144: 140: 136: 131: 129: 121: 117: 114: 109: 100: 98: 94: 90: 86: 78: 75: 72: 69: 68: 67: 64: 62: 61:lab-on-a-chip 58: 54: 50: 46: 42: 38: 34: 30: 29:Microfluidics 21: 9834: 9822: 9644:Microbiomics 9639:Metabolomics 9600:Connectomics 9559: 9532:Metagenomics 9389:Wire bonding 9219:Applications 9210:Microchannel 9121: 9120: 9119:profile for 9116: 9077: 9056: 9037: 9018: 8999: 8988: 8970: 8950:the original 8941: 8897: 8891: 8848: 8844: 8818:(4): 44–55. 8815: 8809: 8798:. Retrieved 8794:the original 8789: 8785: 8748: 8744: 8719: 8715: 8667: 8663: 8622: 8618: 8585: 8581: 8541: 8537: 8527: 8494: 8490: 8484: 8441: 8437: 8389: 8385: 8375: 8332: 8328: 8318: 8278:(1): 14272. 8275: 8271: 8261: 8218: 8215:Nano Letters 8214: 8204: 8164:(1): 46224. 8161: 8157: 8147: 8104: 8100: 8090: 8055: 8051: 8041: 8006: 8002: 7992: 7957: 7953: 7943: 7908: 7904: 7894: 7859: 7855: 7845: 7810: 7806: 7796: 7763: 7759: 7708: 7704: 7694: 7653: 7649: 7639: 7598: 7594: 7533: 7529: 7519: 7484: 7480: 7426: 7422: 7412: 7371: 7367: 7357: 7324: 7320: 7310: 7277: 7273: 7220:(1): 27–36. 7217: 7213: 7203: 7168: 7162: 7129: 7125: 7118: 7085: 7082:Astrobiology 7081: 7075: 7032: 7028: 7018: 6993: 6989: 6982: 6957: 6953: 6947: 6922: 6918: 6911: 6878: 6874: 6861: 6836: 6832: 6826: 6815:the original 6802: 6794:the original 6783: 6774: 6770: 6760: 6752:the original 6747: 6737: 6704: 6700: 6694: 6661: 6657: 6650: 6625: 6621: 6615: 6582: 6578: 6572: 6547: 6543: 6537: 6512: 6508: 6502: 6493: 6485: 6478: 6453: 6449: 6443: 6418: 6414: 6408: 6383: 6379: 6373: 6332: 6328: 6318: 6285: 6281: 6227: 6223: 6213: 6180: 6176: 6114: 6110: 6042: 6038: 6000: 5996: 5958: 5954: 5948: 5921: 5915: 5880: 5876: 5866: 5849: 5845: 5839: 5796: 5792: 5782: 5737: 5733: 5723: 5668: 5664: 5654: 5603: 5599: 5593: 5558: 5554: 5544: 5503: 5499: 5493: 5477:1721.1/66851 5460: 5456: 5450: 5425: 5421: 5408: 5363: 5359: 5349: 5330: 5324: 5305: 5299: 5280: 5274: 5241: 5237: 5231: 5206: 5202: 5134: 5130: 5120: 5075: 5071: 5023: 5019: 5009: 4974: 4970: 4960: 4935: 4931: 4925: 4890: 4886: 4876: 4833: 4829: 4791: 4787: 4781: 4744: 4740: 4730: 4711: 4683: 4677: 4644: 4641:Nano Letters 4640: 4634: 4609: 4605: 4599: 4567:(5): 56501. 4564: 4560: 4550: 4509: 4505: 4499: 4491:Artech House 4486: 4480: 4447: 4443: 4437: 4404: 4400: 4390: 4353: 4349: 4339: 4317:(1): 24–38. 4314: 4310: 4268: 4264: 4258: 4215: 4211: 4201: 4168: 4164: 4158: 4117: 4113: 4069: 4065: 4055: 4030:11343/219876 4012: 4008: 4001: 3958: 3954: 3944: 3909: 3905: 3895: 3860: 3856: 3846: 3821: 3817: 3810: 3786:1721.1/51892 3769: 3765: 3759: 3737:(1): 37–38. 3734: 3730: 3724: 3689: 3685: 3679: 3638: 3634: 3624: 3579: 3575: 3565: 3546: 3521: 3517: 3511: 3478: 3474: 3464: 3429: 3425: 3415: 3372: 3368: 3362: 3346:. Springer. 3342: 3335: 3284: 3280: 3274: 3247: 3241: 3208: 3204: 3198: 3155: 3151: 3141: 3116:10072/344389 3098: 3094: 3088: 3055: 3051: 3045: 3034: 3021: 2988: 2984: 2978: 2953: 2949: 2943: 2918: 2914: 2908: 2873: 2869: 2859: 2808: 2804: 2798: 2765: 2761: 2755: 2747:the original 2726: 2722: 2676: 2672: 2638: 2606:. Retrieved 2583: 2576: 2551: 2547: 2537: 2529:the original 2519: 2506: 2500: 2475: 2471: 2419: 2413: 2388: 2384: 2378: 2345: 2341: 2335: 2300: 2296: 2286: 2251: 2247: 2237: 2196: 2192: 2186: 2151: 2147: 2137: 2092: 2088: 2042: 2038: 2032: 2007: 2003: 1993: 1968: 1964: 1928: 1925:ChemPhysChem 1924: 1911: 1884: 1838: 1834: 1824: 1799: 1795: 1785: 1760: 1756: 1746: 1721: 1717: 1707: 1682: 1678: 1668: 1643: 1639: 1629: 1604: 1600: 1594: 1569: 1561: 1542: 1536: 1523: 1517: 1504: 1498: 1487:. Retrieved 1483:the original 1473: 1466: 1433: 1429: 1423: 1374: 1370: 1360: 1342:uFluids@Home 1244:conductivity 1240:thermal mass 1209: 1188:DNA‐barcoded 1173: 1130: 1102: 1045: 993: 989: 975: 971: 963: 960:Food science 922: 919:Astrobiology 910: 881: 872: 863: 850: 846: 817: 809: 805:optofluidics 802: 793: 781: 762: 737:system. The 720:nanofluidics 713: 681: 625: 617: 567: 540: 502: 494: 481: 450: 426:magnetically 410: 388: 381: 365: 340:saline water 332: 323: 280: 265: 234: 197: 181: 172: 163: 153:rather than 132: 125: 88: 82: 65: 55:printheads, 45:multiplexing 28: 27: 9612:Epigenomics 9544:Pangenomics 9379:Lithography 8335:(1): 2434. 6839:: 261–286. 6224:ACS Sensors 5032:10.3791/271 4218:: 204–215. 3961:(1): 1585. 3481:(3): 1902. 3287:: 379–387. 2653:10.5518/153 1337:Microvalves 1228:amino acids 1220:Z. Hugh Fan 1151:device for 1141:lung cancer 991:important. 942:fatty acids 934:amino acids 706:capturing. 672:Digital PCR 594:Stokes flow 369:lithography 205:liquid flow 200:liquid flow 188:paper-based 139:micrometers 116:micrographs 97:microvalves 9852:Categories 9697:Proteomics 9634:Lipidomics 9629:Immunomics 9374:Deposition 9332:Micropower 9253:Comb drive 9205:Cantilever 8800:2011-08-30 8444:(1): 469. 7766:: 127171. 7656:: 128773. 7601:: 126396. 7536:: 110212. 7487:: 105610. 7374:: 125300. 7327:: 110269. 7035:(2): 111. 5852:(12): 34. 5026:(7): 271. 4356:(3): 297. 4120:: 166620. 3552:US 2656508 3390:1826/15985 3294:2106.03526 2608:24 January 1489:2010-02-13 1353:References 1332:Micropumps 1216:microchips 1113:metastases 996:biomarkers 913:fuel cells 901:Fuel cells 895:proteomics 887:ultrasound 841:Beer's Law 836:UV-Vis-NIR 769:chemotaxis 743:biophysics 644:antibodies 632:Affymetrix 532:proteomics 528:sequencing 440:and other 430:industrial 217:micropumps 135:nanometers 93:micropumps 73:Small size 9624:Glycomics 9440:Smart cut 9345:Processes 9245:Actuators 9099:Education 8910:CiteSeerX 8851:: 25876. 8655:205210989 8558:0003-2700 8519:171094979 7788:208705450 7741:211023292 7725:1750-3841 7686:228100279 7670:0308-8146 7631:211160645 7615:0308-8146 7558:224841971 7550:0260-8774 7511:212935489 7503:0268-005X 7459:220059922 7443:2042-6496 7404:201219877 7388:0308-8146 7349:224875232 7341:0023-6438 7294:1473-0197 7250:123048038 7242:1475-3006 7059:0004-637X 6925:: 23–34. 6788:Allen J. 6365:209441127 6357:1588-2780 6302:0003-2700 6260:201275176 6244:2379-3694 6197:0033-8230 6155:246488502 6139:0003-7028 6083:229323758 6059:0003-2700 6017:101475605 5678:0910.2899 5613:0812.2375 5144:1305.5843 4747:(4): 47. 4741:Pathogens 4472:0003-6951 4429:133309954 4421:2051-6347 4150:213233645 4142:0304-8853 3731:Nano Lett 3407:119536401 3072:1057-7157 2821:CiteSeerX 2628:ignored ( 2618:cite book 2472:Nanoscale 2229:250860338 2221:0960-1317 1415:205210989 1399:0028-0836 1200:phenotype 1035: or 946:aldehydes 784:durotaxis 724:bacterial 559:pathogens 393:is being 377:machining 361:amplifier 159:diffusion 155:turbulent 147:viscosity 57:DNA chips 24:chemical. 9836:Category 9562:genomics 9486:Genomics 9425:Lift-off 9403:Specific 9273:Switches 8932:14492585 8883:27194474 8765:24825780 8692:22790308 8647:16871203 8610:17745196 8602:23652632 8511:31152164 8476:28883466 8416:27723727 8367:29934552 8310:26404901 8253:31536360 8196:28436447 8139:25013076 8082:19306266 8033:19872213 7984:24577360 7935:30854249 7886:23060932 7837:26000488 7733:32017096 7678:33302108 7623:32066068 7451:32584365 7396:31562927 7302:21431239 7195:25673481 7154:34503284 7146:20967779 7110:21790324 7067:45120615 7010:19245228 6974:21972965 6939:22405541 6903:18609389 6895:20572214 6853:12117759 6771:APS News 6729:32545802 6721:22975804 6678:22281681 6642:17997523 6607:17016832 6564:15859622 6529:16583688 6470:29096060 6435:28374582 6400:22871959 6310:29327582 6252:31434479 6205:95632074 6147:35108115 6075:33337856 5907:25256716 5831:15923737 5823:18545521 5774:20080560 5715:20457936 5646:33943502 5638:19257480 5585:17890308 5536:12511973 5528:20647471 5485:20967322 5442:25756872 5400:17090676 5266:12989263 5223:20221568 5181:24711421 5112:22984156 5050:18989442 5001:30515656 4952:18586092 4917:18432345 4868:20537537 4773:28981471 4669:26708095 4626:96793921 4591:24404077 4534:16871207 4382:32168977 4331:16372066 4293:14534776 4285:17003962 4250:31911225 4193:47016122 4185:29888856 4096:29983837 4047:58555221 4039:30600987 3993:30733497 3936:22662074 3887:30070301 3838:22035423 3794:19050856 3716:16506296 3663:12942073 3503:34581378 3456:17211899 3399:30992149 3327:58553777 3319:30594833 3225:20559875 3190:24677370 3125:28220916 3080:25996316 3013:23767616 2970:18941682 2935:28197601 2900:46777312 2892:29188994 2843:17289994 2790:18158748 2782:18231657 2701:46363431 2693:24185478 2568:49893963 2492:28604901 2446:26737633 2405:24345870 2370:18125405 2362:16027933 2327:21261280 2278:21113663 2178:25906246 2129:23729815 2059:28322402 2024:29787270 2004:Langmuir 1985:23111955 1945:14714376 1865:16337938 1857:17577881 1816:18813386 1777:17203153 1738:15915262 1699:58306257 1660:15269797 1621:20405061 1458:21971431 1407:16871203 1297:Fluidics 1251:See also 1196:genotype 1180:droplets 1050:and non- 938:peptides 773:bacteria 664:scalable 648:proteins 604:) device 551:diseases 477:antibody 403:(MRPS). 386:template 209:pressure 9585:Biochip 9384:Etching 9352:General 9227:Sensors 9113:Scholia 8902:Bibcode 8874:4872163 8853:Bibcode 8820:Bibcode 8773:8669721 8724:Bibcode 8700:5206697 8672:Bibcode 8627:Bibcode 8467:5589863 8446:Bibcode 8407:5142231 8358:6015045 8337:Bibcode 8301:4585905 8280:Bibcode 8244:7020140 8223:Bibcode 8187:5402302 8166:Bibcode 8130:4358808 8109:Bibcode 8101:Science 8073:3754902 8024:2140820 7975:4179254 7926:6407716 7877:3460285 7828:4481139 7768:Bibcode 7222:Bibcode 7090:Bibcode 7037:Bibcode 6777:(5): 3. 6686:7748546 6587:Bibcode 6337:Bibcode 6119:Bibcode 6067:1783814 5963:Bibcode 5898:5859944 5801:Bibcode 5765:2824308 5742:Bibcode 5706:2906854 5683:Bibcode 5618:Bibcode 5576:2168927 5508:Bibcode 5500:Science 5391:1635019 5368:Bibcode 5246:Bibcode 5172:4000856 5149:Bibcode 5103:3479577 5080:Bibcode 5041:2565846 4992:6368509 4908:2668874 4859:2902570 4838:Bibcode 4796:Bibcode 4764:5750571 4649:Bibcode 4582:3785532 4542:4421580 4514:Bibcode 4452:Bibcode 4373:7143183 4241:7023483 4220:Bibcode 4122:Bibcode 4087:6013300 3984:6367457 3963:Bibcode 3927:3365326 3878:6566100 3802:7442686 3739:Bibcode 3671:7521907 3643:Bibcode 3616:8943010 3584:Bibcode 3526:Bibcode 3483:Bibcode 3447:3804133 3299:Bibcode 3233:5298534 3181:4173126 3160:Bibcode 3133:5013542 2993:Bibcode 2851:5882836 2813:Bibcode 2805:Science 2731:Bibcode 2454:4089852 2318:3052265 2269:3117225 2201:Bibcode 2169:4439323 2120:3690848 2097:Bibcode 2067:5046916 1438:Bibcode 1379:Bibcode 1194:by the 1161:vessels 1086:on-chip 1065:in the 1017:digital 950:ketones 828:ICP-OES 824:ICP-AAS 727:habitat 513:lactate 509:glucose 473:antigen 373:molding 151:laminar 137:to 500 9493:Fields 9115:has a 9086:  9063:  9044:  9025:  9006:  8977:  8930:  8912:  8881:  8871:  8771:  8763:  8698:  8690:  8653:  8645:  8619:Nature 8608:  8600:  8556:  8517:  8509:  8474:  8464:  8414:  8404:  8365:  8355:  8308:  8298:  8251:  8241:  8194:  8184:  8137:  8127:  8080:  8070:  8031:  8021:  7982:  7972:  7933:  7923:  7884:  7874:  7835:  7825:  7786:  7739:  7731:  7723:  7684:  7676:  7668:  7629:  7621:  7613:  7556:  7548:  7509:  7501:  7457:  7449:  7441:  7402:  7394:  7386:  7347:  7339:  7300:  7292:  7248:  7240:  7193:  7183:  7152:  7144:  7108:  7065:  7057:  7008:  6972:  6937:  6901:  6893:  6851:  6727:  6719:  6684:  6676:  6640:  6605:  6562:  6527:  6468:  6433:  6398:  6363:  6355:  6308:  6300:  6258:  6250:  6242:  6203:  6195:  6153:  6145:  6137:  6081:  6073:  6065:  6057:  6015:  5936:  5905:  5895:  5829:  5821:  5772:  5762:  5713:  5703:  5644:  5636:  5583:  5573:  5534:  5526:  5483:  5440:  5398:  5388:  5337:  5312:  5287:  5264:  5221:  5179:  5169:  5110:  5100:  5048:  5038:  4999:  4989:  4950:  4915:  4905:  4866:  4856:  4771:  4761:  4718:  4690:  4667:  4624:  4589:  4579:  4540:  4532:  4506:Nature 4470:  4427:  4419:  4380:  4370:  4329:  4291:  4283:  4248:  4238:  4191:  4183:  4148:  4140:  4094:  4084:  4045:  4037:  3991:  3981:  3934:  3924:  3885:  3875:  3836:  3800:  3792:  3714:  3669:  3661:  3614:  3604:  3558:  3501:  3454:  3444:  3405:  3397:  3350:  3325:  3317:  3262:  3231:  3223:  3188:  3178:  3131:  3123:  3078:  3070:  3011:  2968:  2933:  2898:  2890:  2849:  2841:  2823:  2788:  2780:  2699:  2691:  2599:  2566:  2490:  2452:  2444:  2434:  2403:  2368:  2360:  2325:  2315:  2276:  2266:  2227:  2219:  2176:  2166:  2127:  2117:  2065:  2057:  2022:  1983:  1943:  1899:  1863:  1855:  1814:  1775:  1736:  1697:  1658:  1619:  1582:  1549:  1456:  1413:  1405:  1397:  1371:Nature 1169:oxygen 1041:biopsy 1033:breast 954:thiols 952:, and 891:fluids 826:, and 820:ICP-MS 799:Optics 555:toxins 516:assays 422:magnet 53:inkjet 39:, and 33:fluids 9800:(USA) 9560:Socio 9410:LOCOS 9295:Other 9117:topic 8962:Books 8953:(PDF) 8946:(PDF) 8928:S2CID 8769:S2CID 8712:(PDF) 8696:S2CID 8651:S2CID 8606:S2CID 8515:S2CID 7784:S2CID 7737:S2CID 7682:S2CID 7627:S2CID 7554:S2CID 7507:S2CID 7455:S2CID 7400:S2CID 7345:S2CID 7246:S2CID 7150:S2CID 7063:S2CID 6899:S2CID 6871:(PDF) 6818:(PDF) 6811:(PDF) 6725:S2CID 6682:S2CID 6490:(PDF) 6361:S2CID 6256:S2CID 6201:S2CID 6151:S2CID 6079:S2CID 6013:S2CID 5827:S2CID 5673:arXiv 5642:S2CID 5608:arXiv 5532:S2CID 5418:(PDF) 5262:S2CID 5139:arXiv 4622:S2CID 4538:S2CID 4425:S2CID 4289:S2CID 4189:S2CID 4146:S2CID 4043:S2CID 3798:S2CID 3667:S2CID 3607:19421 3499:S2CID 3403:S2CID 3323:S2CID 3289:arXiv 3229:S2CID 3129:S2CID 3076:S2CID 2896:S2CID 2847:S2CID 2786:S2CID 2697:S2CID 2564:S2CID 2450:S2CID 2366:S2CID 2225:S2CID 2063:S2CID 1921:(PDF) 1861:S2CID 1695:S2CID 1454:S2CID 1411:S2CID 1186:with 1006:is a 853:PUREX 832:Raman 652:blood 536:assay 459:or a 442:dairy 384:â€čThe 213:pumps 122:wide. 9824:List 9806:(UK) 9794:(EU) 9788:(JP) 9420:LIGA 9084:ISBN 9061:ISBN 9042:ISBN 9023:ISBN 9004:ISBN 8975:ISBN 8879:PMID 8761:PMID 8688:PMID 8643:PMID 8598:PMID 8554:ISSN 8507:PMID 8472:PMID 8412:PMID 8363:PMID 8306:PMID 8249:PMID 8192:PMID 8135:PMID 8078:PMID 8029:PMID 7980:PMID 7931:PMID 7882:PMID 7833:PMID 7807:Cell 7729:PMID 7721:ISSN 7674:PMID 7666:ISSN 7619:PMID 7611:ISSN 7546:ISSN 7499:ISSN 7447:PMID 7439:ISSN 7392:PMID 7384:ISSN 7337:ISSN 7298:PMID 7290:ISSN 7238:ISSN 7191:PMID 7181:ISBN 7142:PMID 7106:PMID 7055:ISSN 7006:PMID 6970:PMID 6935:PMID 6891:PMID 6849:PMID 6717:PMID 6674:PMID 6638:PMID 6603:PMID 6560:PMID 6525:PMID 6466:PMID 6431:PMID 6396:PMID 6353:ISSN 6306:PMID 6298:ISSN 6248:PMID 6240:ISSN 6193:ISSN 6143:PMID 6135:ISSN 6071:PMID 6063:OSTI 6055:ISSN 5934:ISBN 5903:PMID 5819:PMID 5770:PMID 5711:PMID 5634:PMID 5581:PMID 5524:PMID 5481:PMID 5438:PMID 5396:PMID 5335:ISBN 5310:ISBN 5285:ISBN 5219:PMID 5177:PMID 5108:PMID 5046:PMID 4997:PMID 4948:PMID 4913:PMID 4864:PMID 4769:PMID 4716:ISBN 4688:ISBN 4665:PMID 4587:PMID 4530:PMID 4468:ISSN 4417:ISSN 4378:PMID 4327:PMID 4281:PMID 4246:PMID 4181:PMID 4138:ISSN 4092:PMID 4035:PMID 3989:PMID 3932:PMID 3883:PMID 3834:PMID 3790:PMID 3712:PMID 3659:PMID 3612:PMID 3452:PMID 3395:PMID 3348:ISBN 3315:PMID 3260:ISBN 3221:PMID 3186:PMID 3121:PMID 3068:ISSN 3009:PMID 2966:PMID 2931:PMID 2888:PMID 2839:PMID 2778:PMID 2689:PMID 2630:help 2610:2024 2597:ISBN 2488:PMID 2442:PMID 2432:ISBN 2401:PMID 2358:PMID 2323:PMID 2274:PMID 2217:ISSN 2174:PMID 2125:PMID 2055:PMID 2020:PMID 1981:PMID 1941:PMID 1897:ISBN 1853:PMID 1812:PMID 1773:PMID 1734:PMID 1656:PMID 1617:PMID 1580:ISBN 1547:ISBN 1403:PMID 1395:ISSN 1242:and 1198:and 1143:and 1126:CTCs 1082:CTCs 1074:CTCs 1067:CTCs 1052:CTCs 1025:KRAS 1015:. A 1013:Her2 1004:qPCR 1000:Drop 867:PDMS 834:and 718:and 658:and 638:, a 511:and 453:cell 438:milk 300:EWOD 237:MEMS 8920:doi 8869:PMC 8861:doi 8828:doi 8816:248 8753:doi 8732:doi 8680:doi 8635:doi 8623:442 8590:doi 8546:doi 8499:doi 8462:PMC 8454:doi 8402:PMC 8394:doi 8353:PMC 8345:doi 8296:PMC 8288:doi 8239:PMC 8231:doi 8182:PMC 8174:doi 8125:PMC 8117:doi 8105:345 8068:PMC 8060:doi 8019:PMC 8011:doi 7970:PMC 7962:doi 7921:PMC 7913:doi 7872:PMC 7864:doi 7823:PMC 7815:doi 7811:161 7776:doi 7764:303 7713:doi 7658:doi 7654:345 7603:doi 7599:316 7538:doi 7534:290 7489:doi 7485:102 7431:doi 7376:doi 7372:306 7329:doi 7325:135 7321:LWT 7282:doi 7230:doi 7173:doi 7134:doi 7098:doi 7045:doi 7033:765 6998:doi 6962:doi 6927:doi 6923:173 6883:doi 6841:doi 6709:doi 6705:404 6666:doi 6662:402 6630:doi 6595:doi 6552:doi 6517:doi 6458:doi 6423:doi 6388:doi 6345:doi 6333:323 6290:doi 6232:doi 6185:doi 6127:doi 6047:doi 6005:doi 6001:100 5971:doi 5959:102 5926:doi 5893:PMC 5885:doi 5854:doi 5809:doi 5760:PMC 5750:doi 5738:107 5701:PMC 5691:doi 5669:107 5626:doi 5604:102 5571:PMC 5563:doi 5559:189 5516:doi 5504:329 5473:hdl 5465:doi 5430:doi 5386:PMC 5376:doi 5364:103 5254:doi 5211:doi 5167:PMC 5157:doi 5135:111 5098:PMC 5088:doi 5076:109 5036:PMC 5028:doi 4987:PMC 4979:doi 4940:doi 4903:PMC 4895:doi 4854:PMC 4846:doi 4804:doi 4792:123 4759:PMC 4749:doi 4657:doi 4614:doi 4577:PMC 4569:doi 4522:doi 4510:442 4460:doi 4409:doi 4368:PMC 4358:doi 4319:doi 4273:doi 4236:PMC 4228:doi 4216:564 4173:doi 4130:doi 4118:503 4082:PMC 4074:doi 4025:hdl 4017:doi 3979:PMC 3971:doi 3922:PMC 3914:doi 3873:PMC 3865:doi 3826:doi 3782:hdl 3774:doi 3770:394 3747:doi 3702:hdl 3694:doi 3651:doi 3602:PMC 3592:doi 3534:doi 3491:doi 3442:PMC 3434:doi 3385:hdl 3377:doi 3307:doi 3285:539 3252:doi 3213:doi 3176:PMC 3168:doi 3111:hdl 3103:doi 3060:doi 3001:doi 2958:doi 2923:doi 2878:doi 2831:doi 2809:315 2770:doi 2739:doi 2681:doi 2649:doi 2589:doi 2556:doi 2480:doi 2424:doi 2393:doi 2350:doi 2313:PMC 2305:doi 2264:PMC 2256:doi 2209:doi 2164:PMC 2156:doi 2115:PMC 2105:doi 2093:110 2047:doi 2012:doi 1973:doi 1933:doi 1889:doi 1843:doi 1804:doi 1765:doi 1726:doi 1687:doi 1648:doi 1609:doi 1446:doi 1387:doi 1375:442 1178:in 1021:PCR 700:DNA 692:PCR 656:DNA 530:), 520:DNA 518:), 475:or 95:or 9854:: 8926:. 8918:. 8908:. 8898:13 8896:. 8877:. 8867:. 8859:. 8847:. 8843:. 8826:. 8814:. 8788:. 8784:. 8767:. 8759:. 8749:14 8747:. 8730:. 8720:77 8718:. 8714:. 8694:. 8686:. 8678:. 8668:75 8666:. 8649:. 8641:. 8633:. 8621:. 8604:. 8596:. 8586:13 8584:. 8552:. 8542:66 8540:. 8536:. 8513:. 8505:. 8495:51 8493:. 8470:. 8460:. 8452:. 8440:. 8436:. 8424:^ 8410:. 8400:. 8390:34 8388:. 8384:. 8361:. 8351:. 8343:. 8331:. 8327:. 8304:. 8294:. 8286:. 8274:. 8270:. 8247:. 8237:. 8229:. 8219:20 8217:. 8213:. 8190:. 8180:. 8172:. 8160:. 8156:. 8133:. 8123:. 8115:. 8103:. 8099:. 8076:. 8066:. 8056:30 8054:. 8050:. 8027:. 8017:. 8005:. 8001:. 7978:. 7968:. 7956:. 7952:. 7929:. 7919:. 7907:. 7903:. 7880:. 7870:. 7858:. 7854:. 7831:. 7821:. 7809:. 7805:. 7782:. 7774:. 7762:. 7749:^ 7735:. 7727:. 7719:. 7709:85 7707:. 7703:. 7680:. 7672:. 7664:. 7652:. 7648:. 7625:. 7617:. 7609:. 7597:. 7593:. 7581:^ 7566:^ 7552:. 7544:. 7532:. 7528:. 7505:. 7497:. 7483:. 7479:. 7467:^ 7453:. 7445:. 7437:. 7427:11 7425:. 7421:. 7398:. 7390:. 7382:. 7370:. 7366:. 7343:. 7335:. 7323:. 7319:. 7296:. 7288:. 7278:11 7276:. 7272:. 7258:^ 7244:. 7236:. 7228:. 7216:. 7212:. 7189:. 7179:. 7148:. 7140:. 7130:31 7128:. 7104:. 7096:. 7086:11 7084:. 7061:. 7053:. 7043:. 7031:. 7027:. 7004:. 6994:81 6992:. 6968:. 6958:83 6956:. 6933:. 6921:. 6897:. 6889:. 6879:49 6877:. 6873:. 6847:. 6835:. 6775:14 6773:. 6769:. 6746:. 6723:. 6715:. 6703:. 6680:. 6672:. 6660:. 6636:. 6626:79 6624:. 6601:. 6593:. 6583:20 6581:. 6558:. 6548:77 6546:. 6523:. 6513:29 6511:. 6464:. 6454:89 6452:. 6429:. 6419:89 6417:. 6394:. 6384:48 6382:. 6359:. 6351:. 6343:. 6331:. 6327:. 6304:. 6296:. 6286:90 6284:. 6280:. 6268:^ 6254:. 6246:. 6238:. 6226:. 6222:. 6199:. 6191:. 6181:99 6179:. 6175:. 6163:^ 6149:. 6141:. 6133:. 6125:. 6115:76 6113:. 6109:. 6091:^ 6077:. 6069:. 6061:. 6053:. 6043:93 6041:. 6037:. 6025:^ 6011:. 5999:. 5995:. 5983:^ 5969:. 5957:. 5932:. 5901:. 5891:. 5881:14 5879:. 5875:. 5850:19 5848:. 5825:. 5817:. 5807:. 5797:16 5795:. 5791:. 5768:. 5758:. 5748:. 5736:. 5732:. 5709:. 5699:. 5689:. 5681:. 5667:. 5663:. 5640:. 5632:. 5624:. 5616:. 5602:. 5579:. 5569:. 5557:. 5553:. 5530:. 5522:. 5514:. 5502:. 5479:. 5471:. 5459:. 5436:. 5426:15 5424:. 5420:. 5394:. 5384:. 5374:. 5362:. 5358:. 5260:. 5252:. 5242:25 5240:. 5217:. 5207:10 5205:. 5201:. 5189:^ 5175:. 5165:. 5155:. 5147:. 5133:. 5129:. 5106:. 5096:. 5086:. 5074:. 5070:. 5058:^ 5044:. 5034:. 5022:. 5018:. 4995:. 4985:. 4975:71 4973:. 4969:. 4946:. 4936:35 4934:. 4911:. 4901:. 4889:. 4885:. 4862:. 4852:. 4844:. 4834:20 4832:. 4828:. 4816:^ 4802:. 4790:. 4767:. 4757:. 4743:. 4739:. 4702:^ 4663:. 4655:. 4645:16 4643:. 4620:. 4610:18 4608:. 4585:. 4575:. 4563:. 4559:. 4536:. 4528:. 4520:. 4508:. 4489:. 4466:. 4458:. 4448:98 4446:. 4423:. 4415:. 4403:. 4399:. 4376:. 4366:. 4354:11 4352:. 4348:. 4325:. 4313:. 4301:^ 4287:. 4279:. 4267:. 4244:. 4234:. 4226:. 4214:. 4210:. 4187:. 4179:. 4169:18 4167:. 4144:. 4136:. 4128:. 4116:. 4104:^ 4090:. 4080:. 4070:12 4068:. 4064:. 4041:. 4033:. 4023:. 4013:11 4011:. 3987:. 3977:. 3969:. 3957:. 3953:. 3930:. 3920:. 3908:. 3904:. 3881:. 3871:. 3861:18 3859:. 3855:. 3832:. 3822:83 3820:. 3796:. 3788:. 3780:. 3768:. 3745:. 3733:. 3710:. 3700:. 3690:45 3688:. 3665:. 3657:. 3649:. 3637:. 3633:. 3610:. 3600:. 3590:. 3580:93 3578:. 3574:. 3532:. 3522:41 3520:. 3497:. 3489:. 3479:15 3477:. 3473:. 3450:. 3440:. 3430:46 3428:. 3424:. 3401:. 3393:. 3383:. 3373:37 3371:. 3321:. 3313:. 3305:. 3297:. 3283:. 3258:. 3227:. 3219:. 3209:12 3207:. 3184:. 3174:. 3166:. 3156:26 3154:. 3150:. 3127:. 3119:. 3109:. 3099:17 3097:. 3074:. 3066:. 3054:. 3007:. 2999:. 2989:87 2987:. 2964:. 2952:. 2929:. 2919:17 2917:. 2894:. 2886:. 2874:90 2872:. 2868:. 2845:. 2837:. 2829:. 2819:. 2807:. 2784:. 2776:. 2764:. 2737:. 2727:93 2725:. 2721:. 2709:^ 2695:. 2687:. 2677:13 2675:. 2661:^ 2622:: 2620:}} 2616:{{ 2595:. 2562:. 2552:37 2550:. 2546:. 2509:. 2486:. 2474:. 2462:^ 2448:. 2440:. 2430:. 2399:. 2389:14 2387:. 2364:. 2356:. 2344:. 2321:. 2311:. 2301:83 2299:. 2295:. 2272:. 2262:. 2252:13 2250:. 2246:. 2223:. 2215:. 2207:. 2197:12 2195:. 2172:. 2162:. 2152:15 2150:. 2146:. 2123:. 2113:. 2103:. 2091:. 2087:. 2075:^ 2061:. 2053:. 2043:17 2041:. 2018:. 2008:34 2006:. 2002:. 1979:. 1969:51 1967:. 1953:^ 1939:. 1927:. 1923:. 1895:. 1887:. 1873:^ 1859:. 1851:. 1839:28 1837:. 1833:. 1810:. 1798:. 1794:. 1771:. 1759:. 1755:. 1732:. 1720:. 1716:. 1693:. 1683:16 1681:. 1677:. 1654:. 1642:. 1638:. 1615:. 1605:10 1603:. 1578:. 1574:. 1526:. 1507:. 1477:. 1452:. 1444:. 1434:26 1432:. 1409:. 1401:. 1393:. 1385:. 1373:. 1369:. 1167:, 1165:pH 1128:. 1115:. 1100:. 1072:. 948:, 940:, 936:, 822:, 749:. 686:, 674:. 596:, 397:.â€ș 363:. 306:, 161:. 120:ÎŒm 59:, 9478:e 9471:t 9464:v 9155:e 9148:t 9141:v 9127:. 9092:. 9069:. 9050:. 9031:. 9012:. 8983:. 8934:. 8922:: 8904:: 8885:. 8863:: 8855:: 8849:6 8834:. 8830:: 8822:: 8803:. 8790:5 8775:. 8755:: 8738:. 8734:: 8726:: 8702:. 8682:: 8674:: 8657:. 8637:: 8629:: 8612:. 8592:: 8560:. 8548:: 8521:. 8501:: 8478:. 8456:: 8448:: 8442:8 8418:. 8396:: 8369:. 8347:: 8339:: 8333:9 8312:. 8290:: 8282:: 8276:5 8255:. 8233:: 8225:: 8198:. 8176:: 8168:: 8162:7 8141:. 8119:: 8111:: 8084:. 8062:: 8035:. 8013:: 8007:8 7986:. 7964:: 7958:9 7937:. 7915:: 7909:2 7888:. 7866:: 7860:4 7839:. 7817:: 7790:. 7778:: 7770:: 7743:. 7715:: 7688:. 7660:: 7633:. 7605:: 7560:. 7540:: 7513:. 7491:: 7461:. 7433:: 7406:. 7378:: 7351:. 7331:: 7304:. 7284:: 7252:. 7232:: 7224:: 7218:6 7197:. 7175:: 7156:. 7136:: 7112:. 7100:: 7092:: 7069:. 7047:: 7039:: 7012:. 7000:: 6976:. 6964:: 6941:. 6929:: 6905:. 6885:: 6855:. 6843:: 6837:4 6731:. 6711:: 6688:. 6668:: 6644:. 6632:: 6609:. 6597:: 6589:: 6566:. 6554:: 6531:. 6519:: 6472:. 6460:: 6437:. 6425:: 6402:. 6390:: 6367:. 6347:: 6339:: 6312:. 6292:: 6262:. 6234:: 6228:4 6207:. 6187:: 6129:: 6121:: 6085:. 6049:: 6019:. 6007:: 5977:. 5973:: 5965:: 5942:. 5928:: 5909:. 5887:: 5860:. 5856:: 5833:. 5811:: 5803:: 5776:. 5752:: 5744:: 5717:. 5693:: 5685:: 5675:: 5648:. 5628:: 5620:: 5610:: 5587:. 5565:: 5538:. 5518:: 5510:: 5487:. 5475:: 5467:: 5461:2 5444:. 5432:: 5402:. 5378:: 5370:: 5343:. 5318:. 5293:. 5268:. 5256:: 5248:: 5225:. 5213:: 5183:. 5159:: 5151:: 5141:: 5114:. 5090:: 5082:: 5052:. 5030:: 5024:7 5003:. 4981:: 4954:. 4942:: 4919:. 4897:: 4891:8 4870:. 4848:: 4840:: 4810:. 4806:: 4798:: 4775:. 4751:: 4745:6 4724:. 4696:. 4671:. 4659:: 4651:: 4628:. 4616:: 4593:. 4571:: 4565:7 4544:. 4524:: 4516:: 4493:. 4474:. 4462:: 4454:: 4431:. 4411:: 4405:6 4384:. 4360:: 4333:. 4321:: 4315:6 4295:. 4275:: 4269:8 4252:. 4230:: 4222:: 4195:. 4175:: 4152:. 4132:: 4124:: 4098:. 4076:: 4049:. 4027:: 4019:: 3995:. 3973:: 3965:: 3959:9 3938:. 3916:: 3910:6 3889:. 3867:: 3840:. 3828:: 3804:. 3784:: 3776:: 3753:. 3749:: 3741:: 3735:3 3718:. 3704:: 3696:: 3673:. 3653:: 3645:: 3639:2 3618:. 3594:: 3586:: 3540:. 3536:: 3528:: 3505:. 3493:: 3485:: 3458:. 3436:: 3409:. 3387:: 3379:: 3356:. 3329:. 3309:: 3301:: 3291:: 3268:. 3254:: 3235:. 3215:: 3192:. 3170:: 3162:: 3135:. 3113:: 3105:: 3082:. 3062:: 3056:9 3015:. 3003:: 2995:: 2972:. 2960:: 2954:8 2937:. 2925:: 2902:. 2880:: 2853:. 2833:: 2815:: 2792:. 2772:: 2766:8 2741:: 2733:: 2703:. 2683:: 2655:. 2651:: 2632:) 2612:. 2591:: 2570:. 2558:: 2513:. 2494:. 2482:: 2476:9 2456:. 2426:: 2407:. 2395:: 2372:. 2352:: 2346:5 2329:. 2307:: 2280:. 2258:: 2231:. 2211:: 2203:: 2180:. 2158:: 2131:. 2107:: 2099:: 2069:. 2049:: 2026:. 2014:: 1987:. 1975:: 1947:. 1935:: 1929:4 1905:. 1891:: 1867:. 1845:: 1818:. 1806:: 1800:8 1779:. 1767:: 1761:6 1740:. 1728:: 1722:5 1701:. 1689:: 1662:. 1650:: 1644:4 1623:. 1611:: 1588:. 1555:. 1530:. 1511:. 1492:. 1460:. 1448:: 1440:: 1417:. 1389:: 1381:: 1002:-

Index

Microfluidic device
fluids
molecular biology
microelectronics
multiplexing
high-throughput screening
inkjet
DNA chips
lab-on-a-chip
capillary forces
micropumps
microvalves

Phase contrast
micrographs
ÎŒm
surface tension
nanometers
micrometers
Reynolds number
viscosity
laminar
turbulent
diffusion
open microfluidics
paper-based
liquid flow
liquid flow
pressure
pumps

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑