Knowledge

Bipartite graph

Source đź“ť

36: 25: 71: 1601: 1464:
type it should check that these two vertices have different colors. If they do not, then the path in the forest from ancestor to descendant, together with the miscolored edge, form an odd cycle, which is returned from the algorithm together with the result that the graph is not bipartite. However, if the algorithm terminates without detecting an odd cycle of this type, then every edge must be properly colored, and the algorithm returns the coloring together with the result that the graph is bipartite.
51: 794:, in such a way that two vertices are adjacent if and only if the corresponding bitvectors differ in a single position. A bipartition may be formed by separating the vertices whose bitvectors have an even number of ones from the vertices with an odd number of ones. Trees and squaregraphs form examples of median graphs, and every median graph is a partial cube. 1381:(a graph in which there may be two or more edges between the same two vertices) may be interpreted as a hypergraph in which some hyperedges have equal sets of endpoints, and represented by a bipartite graph that does not have multiple adjacencies and in which the vertices on one side of the bipartition all have 1901:
are examples of this. A Tanner graph is a bipartite graph in which the vertices on one side of the bipartition represent digits of a codeword, and the vertices on the other side represent combinations of digits that are expected to sum to zero in a codeword without errors. A factor graph is a closely
874:
plus the size of a maximum matching equals the number of vertices. Combining this equality with KĹ‘nig's theorem leads to the facts that, in bipartite graphs, the size of the minimum edge cover is equal to the size of the maximum independent set, and the size of the minimum edge cover plus the size of
902:
of bipartite graphs is less trivial, and is another restatement of KĹ‘nig's theorem. This was one of the results that motivated the initial definition of perfect graphs. Perfection of the complements of line graphs of perfect graphs is yet another restatement of KĹ‘nig's theorem, and perfection of the
1921:
is a mathematical modeling tool used in analysis and simulations of concurrent systems. A system is modeled as a bipartite directed graph with two sets of nodes: A set of "place" nodes that contain resources, and a set of "event" nodes which generate and/or consume resources. There are additional
1471:
in place of depth-first search. Again, each node is given the opposite color to its parent in the search forest, in breadth-first order. If, when a vertex is colored, there exists an edge connecting it to a previously-colored vertex with the same color, then this edge together with the paths in the
1463:
consisting of the edges connecting vertices to their parents, but it may not properly color some of the non-forest edges. In a depth-first search forest, one of the two endpoints of every non-forest edge is an ancestor of the other endpoint, and when the depth first search discovers an edge of this
926:. The bipartite graphs, line graphs of bipartite graphs, and their complements form four out of the five basic classes of perfect graphs used in the proof of the strong perfect graph theorem. It follows that any subgraph of a bipartite graph is also bipartite because it cannot gain an odd cycle. 1922:
constraints on the nodes and edges that constrain the behavior of the system. Petri nets utilize the properties of bipartite directed graphs and other properties to allow mathematical proofs of the behavior of systems while also allowing easy implementation of simulations of the system.
619:) railway optimization problem, in which the input is a schedule of trains and their stops, and the goal is to find a set of train stations as small as possible such that every train visits at least one of the chosen stations. This problem can be modeled as a 1197:
is the problem of finding a simple bipartite graph with the degree sequence being two given lists of natural numbers. (Trailing zeros may be ignored since they are trivially realized by adding an appropriate number of isolated vertices to the digraph.)
603:
between two different classes of objects, bipartite graphs very often arise naturally. For instance, a graph of football players and clubs, with an edge between a player and a club if the player has played for that club, is a natural example of an
626:
A third example is in the academic field of numismatics. Ancient coins are made using two positive impressions of the design (the obverse and reverse). The charts numismatists produce to represent the production of coins are bipartite graphs.
1937:. Corresponding to the geometric property of points and lines that every two lines meet in at most one point and every two points be connected with a single line, Levi graphs necessarily do not contain any cycles of length four, so their 1189:
bipartite graphs have the same degree sequence. However, the degree sequence does not, in general, uniquely identify a bipartite graph; in some cases, non-isomorphic bipartite graphs may have the same degree sequence.
1392:(on a given number of labeled vertices, allowing self-loops) and balanced bipartite graphs, with the same number of vertices on both sides of the bipartition. For, the adjacency matrix of a directed graph with 1306:
is a combinatorial structure that, like an undirected graph, has vertices and edges, but in which the edges may be arbitrary sets of vertices rather than having to have exactly two endpoints. A bipartite graph
1059: 1298:
that has a one for each pair of adjacent vertices and a zero for nonadjacent vertices. Biadjacency matrices may be used to describe equivalences between bipartite graphs, hypergraphs, and directed graphs.
1669:
problem is the algorithmic problem of deleting as few edges as possible to make a graph bipartite and is also an important problem in graph modification algorithmics. This problem is also
336:
red, each edge has endpoints of differing colors, as is required in the graph coloring problem. In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a
1476:
forms an odd cycle. If the algorithm terminates without finding an odd cycle in this way, then it must have found a proper coloring, and can safely conclude that the graph is bipartite.
3091:
Guo, Jiong; Gramm, Jens; HĂĽffner, Falk; Niedermeier, Rolf; Wernicke, Sebastian (2006), "Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization",
1721: 1662:
set. In the illustration, every odd cycle in the graph contains the blue (the bottommost) vertices, so removing those vertices kills all odd cycles and leaves a bipartite graph.
1584: 1183: 918:
resembling that of bipartite graphs: a graph is bipartite if and only if it has no odd cycle as a subgraph, and a graph is perfect if and only if it has no odd cycle or its
1296: 340:: after one node is colored blue and another red, the third vertex of the triangle is connected to vertices of both colors, preventing it from being assigned either color. 1546: 1424: 727: 385: 2013:, a type of Steiner tree problem instance in which the terminals form an independent set, allowing approximation algorithms that generalize those for bipartite graphs 1848: 1343: 1246: 533: 487: 962: 1810: 1790: 1501: 1102: 1082: 585: 557: 445: 425: 405: 334: 314: 290: 270: 239: 219: 199: 179: 151: 131: 890:
of every bipartite graph, and the complement of the line graph of every bipartite graph, are all perfect. Perfection of bipartite graphs is easy to see (their
623:
problem in a bipartite graph that has a vertex for each train and each station and an edge for each pair of a station and a train that stops at that station.
1646:, meaning that there is an algorithm whose running time can be bounded by a polynomial function of the size of the graph multiplied by a larger function of 1455:. The main idea is to assign to each vertex the color that differs from the color of its parent in the depth-first search forest, assigning colors in a 1765:. In many cases, matching problems are simpler to solve on bipartite graphs than on non-bipartite graphs, and many matching algorithms such as the 1658:. Hence, to delete vertices from a graph in order to obtain a bipartite graph, one needs to "hit all odd cycle", or find a so-called odd cycle 1447:
It is possible to test whether a graph is bipartite, and to return either a two-coloring (if it is bipartite) or an odd cycle (if it is not) in
2257:
Judaea and Rome in Coins 65 BCE – 135 CE: Papers Presented at the International Conference hosted by Spink, 13th – 14th September 2010
974: 3137:, p. 463: "Nonbipartite matching problems are more difficult to solve because they do not reduce to standard network flow problems." 2019:, a graph in which the vertices can be partitioned into two subsets, one of which is independent and the other of which is a clique 2255:
Bracey, Robert (2012), "On the graphical interpretation of Herod's year 3 coins", in Jacobson, David M.; Kokkinos, Nikos (eds.),
1863: 2908: 2288: 2240: 2057: 1207: 2467: 2318: 1874: 859: 1377:
of the corresponding hypergraphs. As a special case of this correspondence between bipartite graphs and hypergraphs, any
1859: 3333: 3295: 3256: 2775: 2651: 2621: 2587: 2537: 2461: 2212: 2182: 2148: 2096: 3010: 915: 3198: 3321: 1510:, it is possible to test whether the graph is bipartite and return either a two-coloring or an odd cycle in time 1604:
A graph with an odd cycle transversal of size 2: removing the two blue bottom vertices leaves a bipartite graph.
2671: 2492: 2384: 2278: 111: 2063: 489:
notation is helpful in specifying one particular bipartition that may be of importance in an application. If
3422: 3362: 3325: 2813: 2294:. This result has sometimes been called the "two color theorem"; Soifer credits it to a famous 1879 paper of 2049: 1194: 2679: 2675: 1982: 1064:
The degree sequence of a bipartite graph is the pair of lists each containing the degrees of the two parts
911: 99: 1676: 903:
line graphs themselves is a restatement of an earlier theorem of KĹ‘nig, that every bipartite graph has an
3357: 2808: 2607: 2207:, Structural Analysis in the Social Sciences, vol. 8, Cambridge University Press, pp. 299–302, 2168: 1766: 1659: 1551: 1388:
A similar reinterpretation of adjacency matrices may be used to show a one-to-one correspondence between
1114: 652: 3043: 1855: 1812:
of jobs, with not all people suitable for all jobs. This situation can be modeled as a bipartite graph
3352: 2235:, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, pp. 20–21, 3417: 1890: 1670: 919: 899: 883: 3060: 2708: 3397: 1934: 1643: 1255: 667: 55: 3119:
Ahuja, Ravindra K.; Magnanti, Thomas L.; Orlin, James B. (1993), "12. Assignments and Matchings",
663:, in which every inner face consists of 4 edges and every inner vertex has four or more neighbors. 3412: 2832: 1991:, a bipartite graph whose vertices can be ordered so that the vertex neighborhoods are contiguous 1758: 1746: 1740: 863: 609: 337: 2803: 1513: 3055: 2703: 1988: 1956: 1877:
is a structural decomposition of bipartite graphs that is useful in finding maximum matchings.
1473: 1431: 1403: 866:
plus the size of the maximum matching is equal to the number of vertices. In any graph without
688: 600: 346: 3285: 3246: 2765: 2641: 2611: 2577: 2202: 2172: 2138: 245:
of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length
3315: 2684: 2527: 2010: 1815: 1608: 1595: 1382: 1310: 1213: 935: 838: 564: 492: 454: 158: 103: 2761: 941: 3077: 2984: 2886: 2853: 2513: 2022: 1962: 1938: 1867: 1655: 1468: 1430:
vertices on each side of its bipartition. In this construction, the bipartite graph is the
851: 817: 246: 2740: 2429:, Theorem 2.1.3, p. 8. Asratian et al. attribute this characterization to a 1916 paper by 1373:. Under this correspondence, the biadjacency matrices of bipartite graphs are exactly the 8: 2532:, Cambridge Mathematical Library (2nd ed.), Cambridge University Press, p. 53, 2382:; Gavlas, H. (2004), "Cycle systems in the complete bipartite graph minus a one-factor", 1950: 1933:
are a form of bipartite graph used to model the incidences between points and lines in a
1926: 834:, minimal subsets of edges whose removal increases the number of components of the graph. 635: 154: 3026: 3006: 2988: 2962: 2890: 2721: 2693: 2637: 2345: 2327: 2299: 2085: 1994: 1858:
provides a characterization of the bipartite graphs which allow perfect matchings. The
1795: 1775: 1486: 1480: 1456: 1452: 1087: 1067: 965: 871: 831: 570: 542: 430: 410: 390: 319: 299: 275: 255: 224: 204: 184: 164: 136: 116: 35: 3311: 1459:
of the depth-first-search forest. This will necessarily provide a two-coloring of the
3380: 3329: 3291: 3252: 2894: 2860: 2771: 2725: 2647: 2617: 2583: 2533: 2505: 2457: 2284: 2236: 2208: 2198: 2178: 2144: 2092: 2053: 1972: 1186: 24: 3384: 2582:, Discrete Mathematics And Its Applications (2nd ed.), CRC Press, p. 568, 2349: 1426:, which can then be reinterpreted as the adjacency matrix of a bipartite graph with 70: 3167: 3100: 3065: 3016: 2972: 2872: 2841: 2713: 2667: 2553: 2501: 2430: 2393: 2337: 2274: 2228: 2177:, Discrete Mathematics And Its Applications, vol. 53, CRC Press, p. 223, 1854:
describes a way of simultaneously satisfying all job-seekers and filling all jobs;
1851: 1754: 1374: 923: 891: 855: 824: 773: 563:
bipartite graph. If all vertices on the same side of the bipartition have the same
3030: 1600: 3373: 3073: 2992: 2980: 2882: 2849: 2509: 2490:
Woodall, D. R. (1990), "A proof of McKee's Eulerian-bipartite characterization",
2448: 2434: 1976: 1959:, a way of transforming any graph into a bipartite graph by doubling its vertices 1762: 1750: 1507: 1460: 867: 779: 588: 448: 1953:, the minimum number of complete bipartite graphs whose union is the given graph 3105: 2950: 2717: 2603: 2397: 2375: 2313: 2260: 2164: 2134: 1903: 1389: 895: 813: 620: 293: 3069: 2091:, Cambridge Tracts in Mathematics, vol. 131, Cambridge University Press, 3406: 3147: 2927: 1886: 904: 879: 862:. An alternative and equivalent form of this theorem is that the size of the 107: 75: 2976: 2931: 2025:
on the maximum number of edges in a bipartite graph with forbidden subgraphs
1985:, a weighting technique for compressing information about bipartite networks 3151: 2877: 2845: 2827: 2295: 2004: 2000: 1997:, a generalization of bipartite graphs to more than two subsets of vertices 1898: 1894: 1753:
algorithms are known for many algorithmic problems on matchings, including
1654:
comes from the fact that a graph is bipartite if and only if it has no odd
1503: 1397: 1249: 830:
A graph is bipartite if and only if every edge belongs to an odd number of
787: 783: 648: 87: 3046:; Smith, Kaleigh; Vetta, Adrian (2004), "Finding odd cycle transversals", 3021: 2316:(2010), "Combinatorics and geometry of finite and infinite squaregraphs", 1769:
for maximum cardinality matching work correctly only on bipartite inputs.
2379: 2016: 1911: 1612: 1448: 769: 660: 641: 616: 536: 83: 50: 1749:
in a graph is a subset of its edges, no two of which share an endpoint.
3209: 3012:
Proceedings of the 10th ACM Symposium on Theory of Computing (STOC '78)
2646:, Graduate Texts in Mathematics, vol. 184, Springer, p. 165, 1966: 1930: 1378: 1303: 887: 656: 2967: 2341: 3389: 2698: 2083:
Asratian, Armen S.; Denley, Tristan M. J.; Häggkvist, Roland (1998),
1918: 1615: 791: 3171: 2043: 772:, formed from complete bipartite graphs by removing the edges of a 615:
Another example where bipartite graphs appear naturally is in the (
2953:(2009), "Testing bipartiteness of geometric intersection graphs", 2332: 1472:
breadth-first search forest connecting its two endpoints to their
1850:
where an edge connects each job-seeker with each suitable job. A
823:
A graph is bipartite if and only if it is 2-colorable, (i.e. its
808:
Bipartite graphs may be characterized in several different ways:
2830:; Miller, Zevi (1980), "Bigraphs versus digraphs via matrices", 2666: 1642:
would cause the resulting graph to be bipartite. The problem is
1054:{\displaystyle \sum _{v\in V}\deg v=\sum _{u\in U}\deg u=|E|\,.} 768:
edges. Closely related to the complete bipartite graphs are the
3369: 3187:, Application 12.1 Bipartite Personnel Assignment, pp. 463–464. 790:
are bipartite. In these graphs, the vertices may be labeled by
2374: 1201: 875:
the minimum vertex cover is equal to the number of vertices.
655:
all have even length is bipartite. Special cases of this are
447:
denoting the edges of the graph. If a bipartite graph is not
3248:
Error Correction Coding: Mathematical Methods and Algorithms
934:
For a vertex, the number of adjacent vertices is called the
3199:"Are Medical Students Meeting Their (Best Possible) Match?" 1907: 451:, it may have more than one bipartition; in this case, the 3090: 2003:, a generalization of bipartite graphs in which every two 1757:(finding a matching that uses as many edges as possible), 387:
to denote a bipartite graph whose partition has the parts
2857:. Brualdi et al. credit the idea for this equivalence to 2417:. See especially Chapter 5, "Partial Cubes", pp. 127–181. 2221: 1862:
applies graph matching methods to solve this problem for
296:
of the graph with two colors: if one colors all nodes in
3378: 3370:
Information System on Graph Classes and their Inclusions
3009:(1978), "Node-and edge-deletion NP-complete problems", 2789: 2426: 2362: 2116: 2082: 3158:
algorithm for maximum matchings in bipartite graphs",
1679: 907:
using a number of colors equal to its maximum degree.
3284:
Cassandras, Christos G.; Lafortune, Stephane (2007),
2748:
Lecture notes: Introduction to Graph Theory, Math 345
2311: 1818: 1798: 1778: 1554: 1516: 1489: 1406: 1313: 1258: 1216: 1117: 1090: 1070: 977: 944: 845: 691: 573: 545: 495: 457: 433: 413: 393: 349: 322: 302: 278: 258: 227: 207: 187: 167: 139: 119: 1467:
Alternatively, a similar procedure may be used with
3283: 3121:
Network Flows: Theory, Algorithms, and Applications
2825: 3184: 3134: 3118: 3084: 2999: 2084: 1842: 1804: 1784: 1715: 1578: 1540: 1495: 1418: 1337: 1290: 1240: 1177: 1096: 1076: 1053: 956: 721: 579: 551: 527: 481: 439: 419: 399: 379: 328: 308: 284: 264: 233: 213: 193: 173: 145: 125: 3232: 2858: 2204:Social Network Analysis: Methods and Applications 3404: 3398:Bipartite graphs in systems biology and medicine 2915:(3rd ed.), Addison Wesley, pp. 109–111 2801: 2616:, Courier Dover Publications, pp. 189–190, 2446: 2433:. For infinite graphs, this result requires the 2007:between the same two points have the same parity 1885:Bipartite graphs are extensively used in modern 1792:of people are all seeking jobs from among a set 3036: 2926: 2143:(3rd ed.), Cengage Learning, p. 363, 2035: 3042: 2602: 2197: 2163: 1548:, even though the graph itself may have up to 644:with an even number of vertices are bipartite. 630:More abstract examples include the following: 2636: 2450:Digraphs: Theory, Algorithms and Applications 3146: 2913:Algorithms in Java, Part 5: Graph Algorithms 2682:(2006), "The strong perfect graph theorem", 2552: 2447:Bang-Jensen, Jørgen; Gutin, Gregory (2001), 1104:. For example, the complete bipartite graph 2575: 2410: 2227: 2133: 1731:is the number of edges in the input graph. 1345:may be used to model a hypergraph in which 1202:Relation to hypergraphs and directed graphs 44:Example of a bipartite graph without cycles 3005: 1880: 1357:contains an edge from a hypergraph vertex 1349:is the set of vertices of the hypergraph, 878:Another class of related results concerns 3104: 3059: 3020: 2966: 2907: 2876: 2863:(1958), "Coverings of bipartite graphs", 2707: 2697: 2331: 2248: 2112: 2110: 2108: 1047: 535:, that is, if the two subsets have equal 3310: 3196: 2949: 2576:Gross, Jonathan L.; Yellen, Jay (2005), 2233:Invitation to Fixed Parameter Algorithms 1975:, a class of matroids that includes the 1772:As a simple example, suppose that a set 1599: 1589: 1442: 898:size is also two) but perfection of the 837:A graph is bipartite if and only if the 69: 49: 3290:(2nd ed.), Springer, p. 224, 3093:Journal of Computer and System Sciences 2790:Asratian, Denley & Häggkvist (1998) 2770:(2nd ed.), Elsevier, p. 281, 2489: 2427:Asratian, Denley & Häggkvist (1998) 2363:Asratian, Denley & Häggkvist (1998) 2117:Asratian, Denley & Häggkvist (1998) 2087:Bipartite Graphs and their Applications 2041: 1965:, a generalization of bipartiteness to 16:Graph divided into two independent sets 3405: 3287:Introduction to Discrete Event Systems 3251:, John Wiley & Sons, p. 638, 2760: 2456:(1st ed.), Springer, p. 25, 2273: 2254: 2105: 3379: 2525: 2283:, Springer-Verlag, pp. 136–137, 2129: 2127: 2125: 1727:is the number of edges to delete and 1716:{\textstyle O\left(2^{k}m^{2}\right)} 1634:, whether there exists a set of  3271: 3244: 2767:Combinatorial Problems and Exercises 2319:SIAM Journal on Discrete Mathematics 2140:Mathematics: A Discrete Introduction 608:, a type of bipartite graph used in 1906:used for probabilistic decoding of 1579:{\displaystyle O\left(n^{2}\right)} 1178:{\displaystyle (5,5,5),(3,3,3,3,3)} 803: 13: 3317:Configurations of Points and Lines 3185:Ahuja, Magnanti & Orlin (1993) 3135:Ahuja, Magnanti & Orlin (1993) 2122: 1860:National Resident Matching Program 968:for a bipartite graph states that 846:KĹ‘nig's theorem and perfect graphs 14: 3434: 3345: 3123:, Prentice Hall, pp. 461–509 2738: 2579:Graph Theory and Its Applications 1618:problem that asks, given a graph 850:In bipartite graphs, the size of 812:An undirected graph is bipartite 2938:, Addison Wesley, pp. 94–97 2298:containing a false proof of the 1875:Dulmage–Mendelsohn decomposition 916:forbidden graph characterization 34: 23: 3322:Graduate Studies in Mathematics 3304: 3277: 3265: 3238: 3233:Dulmage & Mendelsohn (1958) 3226: 3190: 3178: 3140: 3128: 3112: 2943: 2920: 2901: 2865:Canadian Journal of Mathematics 2819: 2795: 2783: 2754: 2732: 2660: 2630: 2596: 2569: 2546: 2519: 2483: 2473:from the original on 2023-01-02 2440: 2420: 2404: 2368: 2356: 2305: 2066:from the original on 2011-04-09 2955:ACM Transactions on Algorithms 2613:A First Course in Graph Theory 2556:(1931), "Gráfok Ă©s mátrixok", 2280:The Mathematical Coloring Book 2267: 2191: 2157: 2076: 1837: 1819: 1535: 1520: 1506:or other simple shapes in the 1353:is the set of hyperedges, and 1332: 1314: 1284: 1276: 1268: 1260: 1235: 1217: 1172: 1142: 1136: 1118: 1043: 1035: 886:of every bipartite graph, the 716: 698: 521: 513: 505: 497: 476: 458: 374: 356: 1: 3326:American Mathematical Society 3197:Robinson, Sara (April 2003), 2050:Graduate Texts in Mathematics 2029: 1437: 1291:{\displaystyle |U|\times |V|} 1195:bipartite realization problem 938:of the vertex and is denoted 882:: every bipartite graph, the 798: 2558:Matematikai Ă©s Fizikai Lapok 2506:10.1016/0012-365X(90)90380-Z 2411:Ovchinnikov, Sergei (2011), 2312:Bandelt, H.-J.; Chepoi, V.; 1983:Bipartite network projection 1673:, and can be solved in time 1638:vertices whose removal from 914:, the perfect graphs have a 912:strong perfect graph theorem 854:is equal to the size of the 827:is less than or equal to 2). 7: 3358:Encyclopedia of Mathematics 3048:Operations Research Letters 2809:Encyclopedia of Mathematics 2201:; Faust, Katherine (1994), 1944: 1893:received from the channel. 1734: 1369:is one of the endpoints of 816:it does not contain an odd 594: 10: 3439: 3106:10.1016/j.jcss.2006.02.001 2802:A. A. Sapozhenko (2001) , 2718:10.4007/annals.2006.164.51 2398:10.1016/j.disc.2003.11.021 1738: 1593: 1541:{\displaystyle O(n\log n)} 841:of the graph is symmetric. 737:are disjoint sets of size 3160:SIAM Journal on Computing 3070:10.1016/j.orl.2003.10.009 2750:, Simon Fraser University 2042:Diestel, Reinard (2005), 1671:fixed-parameter tractable 1644:fixed-parameter tractable 1419:{\displaystyle n\times n} 929: 749:connects every vertex in 722:{\displaystyle G=(U,V,E)} 380:{\displaystyle G=(U,V,E)} 2415:, Universitext, Springer 668:complete bipartite graph 106:can be divided into two 56:complete bipartite graph 3208:(3): 36, archived from 2977:10.1145/1497290.1497291 2833:Journal of Graph Theory 1917:In computer science, a 1889:, especially to decode 1881:Additional applications 1856:Hall's marriage theorem 1843:{\displaystyle (P,J,E)} 1767:Hopcroft–Karp algorithm 1759:maximum weight matching 1741:Matching (graph theory) 1434:of the directed graph. 1338:{\displaystyle (U,V,E)} 1241:{\displaystyle (U,V,E)} 864:maximum independent set 685:is the bipartite graph 610:social network analysis 528:{\displaystyle |U|=|V|} 482:{\displaystyle (U,V,E)} 316:blue, and all nodes in 292:may be thought of as a 241:are usually called the 3245:Moon, Todd K. (2005), 2878:10.4153/CJM-1958-052-0 2846:10.1002/jgt.3190040107 2529:Algebraic Graph Theory 2526:Biggs, Norman (1994), 2174:Chromatic Graph Theory 2135:Scheinerman, Edward R. 1989:Convex bipartite graph 1957:Bipartite double cover 1844: 1806: 1786: 1717: 1605: 1580: 1542: 1497: 1474:lowest common ancestor 1432:bipartite double cover 1420: 1339: 1292: 1242: 1179: 1098: 1078: 1055: 958: 957:{\displaystyle \deg v} 723: 581: 553: 529: 483: 441: 421: 401: 381: 330: 310: 286: 266: 235: 215: 195: 175: 147: 127: 79: 67: 3022:10.1145/800133.804355 2826:Brualdi, Richard A.; 2685:Annals of Mathematics 2011:Quasi-bipartite graph 1941:must be six or more. 1845: 1807: 1787: 1718: 1652:odd cycle transversal 1609:Odd cycle transversal 1603: 1596:Odd cycle transversal 1590:Odd cycle transversal 1581: 1543: 1498: 1443:Testing bipartiteness 1421: 1361:to a hypergraph edge 1340: 1293: 1243: 1210:of a bipartite graph 1180: 1099: 1079: 1056: 959: 753:with all vertices in 724: 678:vertices, denoted by 582: 554: 530: 484: 442: 422: 402: 382: 331: 311: 287: 267: 236: 216: 196: 176: 148: 128: 73: 53: 3423:Parity (mathematics) 3015:, pp. 253–264, 2493:Discrete Mathematics 2385:Discrete Mathematics 2023:Zarankiewicz problem 1963:Bipartite hypergraph 1864:U.S. medical student 1816: 1796: 1776: 1677: 1552: 1514: 1487: 1469:breadth-first search 1404: 1396:vertices can be any 1311: 1256: 1214: 1115: 1111:has degree sequence 1088: 1068: 975: 942: 852:minimum vertex cover 745:, respectively, and 689: 571: 543: 493: 455: 431: 411: 391: 347: 320: 300: 276: 256: 225: 205: 185: 165: 137: 117: 3007:Yannakakis, Mihalis 2643:Modern Graph Theory 1979:of bipartite graphs 1951:Bipartite dimension 1927:projective geometry 1481:intersection graphs 757:. It follows that 606:affiliation network 3381:Weisstein, Eric W. 3353:"Graph, bipartite" 2300:four color theorem 2199:Wasserman, Stanley 1995:Multipartite graph 1868:hospital residency 1840: 1802: 1782: 1713: 1667:edge bipartization 1606: 1576: 1538: 1493: 1457:preorder traversal 1453:depth-first search 1416: 1375:incidence matrices 1335: 1288: 1238: 1208:biadjacency matrix 1175: 1094: 1074: 1051: 1021: 993: 966:degree sum formula 954: 872:minimum edge cover 719: 577: 549: 525: 479: 437: 417: 397: 377: 326: 306: 282: 262: 231: 211: 191: 171: 143: 123: 80: 68: 3385:"Bipartite Graph" 3324:, vol. 103, 3148:Hopcroft, John E. 2909:Sedgewick, Robert 2861:Mendelsohn, N. S. 2668:Chudnovsky, Maria 2342:10.1137/090760301 2290:978-0-387-74640-1 2275:Soifer, Alexander 2242:978-0-19-856607-6 2229:Niedermeier, Rolf 2059:978-3-642-14278-9 1973:Bipartite matroid 1805:{\displaystyle J} 1785:{\displaystyle P} 1496:{\displaystyle n} 1097:{\displaystyle V} 1077:{\displaystyle U} 1006: 978: 910:According to the 894:is two and their 868:isolated vertices 580:{\displaystyle G} 552:{\displaystyle G} 440:{\displaystyle E} 420:{\displaystyle V} 400:{\displaystyle U} 343:One often writes 329:{\displaystyle V} 309:{\displaystyle U} 285:{\displaystyle V} 265:{\displaystyle U} 234:{\displaystyle V} 214:{\displaystyle U} 194:{\displaystyle V} 174:{\displaystyle U} 153:, that is, every 146:{\displaystyle V} 126:{\displaystyle U} 3430: 3418:Bipartite graphs 3394: 3393: 3366: 3340: 3338: 3312:GrĂĽnbaum, Branko 3308: 3302: 3300: 3281: 3275: 3269: 3263: 3261: 3242: 3236: 3230: 3224: 3222: 3221: 3220: 3214: 3203: 3194: 3188: 3182: 3176: 3174: 3152:Karp, Richard M. 3144: 3138: 3132: 3126: 3124: 3116: 3110: 3109: 3108: 3099:(8): 1386–1396, 3088: 3082: 3080: 3063: 3040: 3034: 3033: 3024: 3003: 2997: 2995: 2970: 2947: 2941: 2939: 2936:Algorithm Design 2924: 2918: 2916: 2905: 2899: 2897: 2880: 2859:Dulmage, A. L.; 2856: 2823: 2817: 2816: 2799: 2793: 2787: 2781: 2780: 2758: 2752: 2751: 2745: 2736: 2730: 2728: 2711: 2701: 2664: 2658: 2656: 2634: 2628: 2626: 2600: 2594: 2592: 2573: 2567: 2565: 2550: 2544: 2542: 2523: 2517: 2516: 2487: 2481: 2480: 2479: 2478: 2472: 2455: 2444: 2438: 2424: 2418: 2416: 2413:Graphs and Cubes 2408: 2402: 2400: 2378:; Debowsky, M.; 2372: 2366: 2360: 2354: 2352: 2335: 2326:(4): 1399–1440, 2309: 2303: 2293: 2271: 2265: 2264: 2263:, pp. 65–84 2252: 2246: 2245: 2225: 2219: 2217: 2195: 2189: 2187: 2161: 2155: 2153: 2131: 2120: 2114: 2103: 2101: 2090: 2080: 2074: 2073: 2072: 2071: 2039: 1977:graphic matroids 1866:job-seekers and 1852:perfect matching 1849: 1847: 1846: 1841: 1811: 1809: 1808: 1803: 1791: 1789: 1788: 1783: 1755:maximum matching 1722: 1720: 1719: 1714: 1712: 1708: 1707: 1706: 1697: 1696: 1585: 1583: 1582: 1577: 1575: 1571: 1570: 1547: 1545: 1544: 1539: 1502: 1500: 1499: 1494: 1429: 1425: 1423: 1422: 1417: 1395: 1372: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1342: 1341: 1336: 1297: 1295: 1294: 1289: 1287: 1279: 1271: 1263: 1247: 1245: 1244: 1239: 1184: 1182: 1181: 1176: 1103: 1101: 1100: 1095: 1083: 1081: 1080: 1075: 1060: 1058: 1057: 1052: 1046: 1038: 1020: 992: 963: 961: 960: 955: 924:induced subgraph 892:chromatic number 870:the size of the 856:maximum matching 825:chromatic number 804:Characterization 780:Hypercube graphs 774:perfect matching 728: 726: 725: 720: 586: 584: 583: 578: 558: 556: 555: 550: 534: 532: 531: 526: 524: 516: 508: 500: 488: 486: 485: 480: 446: 444: 443: 438: 426: 424: 423: 418: 406: 404: 403: 398: 386: 384: 383: 378: 335: 333: 332: 327: 315: 313: 312: 307: 291: 289: 288: 283: 271: 269: 268: 263: 240: 238: 237: 232: 220: 218: 217: 212: 200: 198: 197: 192: 180: 178: 177: 172: 152: 150: 149: 144: 132: 130: 129: 124: 112:independent sets 38: 27: 3438: 3437: 3433: 3432: 3431: 3429: 3428: 3427: 3403: 3402: 3374:bipartite graph 3351: 3348: 3343: 3336: 3309: 3305: 3298: 3282: 3278: 3270: 3266: 3259: 3243: 3239: 3231: 3227: 3218: 3216: 3212: 3201: 3195: 3191: 3183: 3179: 3172:10.1137/0202019 3145: 3141: 3133: 3129: 3117: 3113: 3089: 3085: 3061:10.1.1.112.6357 3041: 3037: 3004: 3000: 2951:Eppstein, David 2948: 2944: 2925: 2921: 2906: 2902: 2824: 2820: 2800: 2796: 2788: 2784: 2778: 2759: 2755: 2743: 2737: 2733: 2709:10.1.1.111.7265 2672:Robertson, Neil 2665: 2661: 2654: 2635: 2631: 2624: 2604:Chartrand, Gary 2601: 2597: 2590: 2574: 2570: 2551: 2547: 2540: 2524: 2520: 2488: 2484: 2476: 2474: 2470: 2464: 2453: 2445: 2441: 2435:axiom of choice 2425: 2421: 2409: 2405: 2373: 2369: 2361: 2357: 2310: 2306: 2291: 2272: 2268: 2261:Spink & Son 2253: 2249: 2243: 2226: 2222: 2215: 2196: 2192: 2185: 2165:Chartrand, Gary 2162: 2158: 2151: 2132: 2123: 2115: 2106: 2099: 2081: 2077: 2069: 2067: 2060: 2040: 2036: 2032: 1947: 1883: 1817: 1814: 1813: 1797: 1794: 1793: 1777: 1774: 1773: 1763:stable marriage 1751:Polynomial time 1743: 1737: 1702: 1698: 1692: 1688: 1687: 1683: 1678: 1675: 1674: 1630:) and a number 1598: 1592: 1566: 1562: 1558: 1553: 1550: 1549: 1515: 1512: 1511: 1508:Euclidean plane 1488: 1485: 1484: 1461:spanning forest 1445: 1440: 1427: 1405: 1402: 1401: 1393: 1390:directed graphs 1370: 1366: 1362: 1358: 1354: 1350: 1346: 1312: 1309: 1308: 1283: 1275: 1267: 1259: 1257: 1254: 1253: 1215: 1212: 1211: 1204: 1116: 1113: 1112: 1110: 1089: 1086: 1085: 1069: 1066: 1065: 1042: 1034: 1010: 982: 976: 973: 972: 943: 940: 939: 932: 860:KĹ‘nig's theorem 848: 806: 801: 762: 690: 687: 686: 683: 599:When modelling 597: 572: 569: 568: 544: 541: 540: 520: 512: 504: 496: 494: 491: 490: 456: 453: 452: 432: 429: 428: 412: 409: 408: 392: 389: 388: 348: 345: 344: 321: 318: 317: 301: 298: 297: 277: 274: 273: 257: 254: 253: 226: 223: 222: 206: 203: 202: 186: 183: 182: 166: 163: 162: 138: 135: 134: 118: 115: 114: 92:bipartite graph 48: 47: 46: 45: 41: 40: 39: 30: 29: 28: 17: 12: 11: 5: 3436: 3426: 3425: 3420: 3415: 3413:Graph families 3401: 3400: 3395: 3376: 3367: 3347: 3346:External links 3344: 3342: 3341: 3334: 3328:, p. 28, 3303: 3296: 3276: 3264: 3257: 3237: 3225: 3189: 3177: 3166:(4): 225–231, 3139: 3127: 3111: 3083: 3054:(4): 299–301, 3035: 2998: 2961:(2): Art. 15, 2942: 2928:Kleinberg, Jon 2919: 2900: 2818: 2794: 2782: 2776: 2762:Lovász, LászlĂł 2753: 2731: 2659: 2652: 2629: 2622: 2595: 2588: 2568: 2545: 2538: 2518: 2500:(2): 217–220, 2482: 2462: 2439: 2419: 2403: 2392:(1–3): 37–43, 2376:Archdeacon, D. 2367: 2355: 2304: 2289: 2266: 2247: 2241: 2220: 2213: 2190: 2183: 2156: 2149: 2121: 2104: 2097: 2075: 2058: 2033: 2031: 2028: 2027: 2026: 2020: 2014: 2008: 1998: 1992: 1986: 1980: 1970: 1960: 1954: 1946: 1943: 1904:belief network 1882: 1879: 1839: 1836: 1833: 1830: 1827: 1824: 1821: 1801: 1781: 1739:Main article: 1736: 1733: 1711: 1705: 1701: 1695: 1691: 1686: 1682: 1594:Main article: 1591: 1588: 1574: 1569: 1565: 1561: 1557: 1537: 1534: 1531: 1528: 1525: 1522: 1519: 1492: 1444: 1441: 1439: 1436: 1415: 1412: 1409: 1334: 1331: 1328: 1325: 1322: 1319: 1316: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1237: 1234: 1231: 1228: 1225: 1222: 1219: 1203: 1200: 1174: 1171: 1168: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1120: 1108: 1093: 1073: 1062: 1061: 1050: 1045: 1041: 1037: 1033: 1030: 1027: 1024: 1019: 1016: 1013: 1009: 1005: 1002: 999: 996: 991: 988: 985: 981: 953: 950: 947: 931: 928: 896:maximum clique 880:perfect graphs 847: 844: 843: 842: 835: 828: 821: 814:if and only if 805: 802: 800: 797: 796: 795: 777: 760: 718: 715: 712: 709: 706: 703: 700: 697: 694: 681: 664: 645: 639: 621:dominating set 596: 593: 576: 548: 523: 519: 515: 511: 507: 503: 499: 478: 475: 472: 469: 466: 463: 460: 436: 416: 396: 376: 373: 370: 367: 364: 361: 358: 355: 352: 325: 305: 281: 261: 230: 210: 201:. Vertex sets 190: 170: 142: 122: 43: 42: 33: 32: 31: 22: 21: 20: 19: 18: 15: 9: 6: 4: 3: 2: 3435: 3424: 3421: 3419: 3416: 3414: 3411: 3410: 3408: 3399: 3396: 3392: 3391: 3386: 3382: 3377: 3375: 3371: 3368: 3364: 3360: 3359: 3354: 3350: 3349: 3337: 3335:9780821843086 3331: 3327: 3323: 3319: 3318: 3313: 3307: 3299: 3297:9780387333328 3293: 3289: 3288: 3280: 3273: 3268: 3260: 3258:9780471648000 3254: 3250: 3249: 3241: 3234: 3229: 3215:on 2016-11-18 3211: 3207: 3200: 3193: 3186: 3181: 3173: 3169: 3165: 3161: 3157: 3153: 3149: 3143: 3136: 3131: 3122: 3115: 3107: 3102: 3098: 3094: 3087: 3079: 3075: 3071: 3067: 3062: 3057: 3053: 3049: 3045: 3039: 3032: 3028: 3023: 3018: 3014: 3013: 3008: 3002: 2994: 2990: 2986: 2982: 2978: 2974: 2969: 2968:cs.CG/0307023 2964: 2960: 2956: 2952: 2946: 2937: 2933: 2929: 2923: 2914: 2910: 2904: 2896: 2892: 2888: 2884: 2879: 2874: 2870: 2866: 2862: 2855: 2851: 2847: 2843: 2839: 2835: 2834: 2829: 2828:Harary, Frank 2822: 2815: 2811: 2810: 2805: 2798: 2791: 2786: 2779: 2777:9780080933092 2773: 2769: 2768: 2763: 2757: 2749: 2742: 2739:DeVos, Matt, 2735: 2727: 2723: 2719: 2715: 2710: 2705: 2700: 2695: 2692:(1): 51–229, 2691: 2687: 2686: 2681: 2680:Thomas, Robin 2677: 2676:Seymour, Paul 2673: 2669: 2663: 2655: 2653:9780387984889 2649: 2645: 2644: 2639: 2638:BĂ©la Bollobás 2633: 2625: 2623:9780486483689 2619: 2615: 2614: 2609: 2605: 2599: 2591: 2589:9781584885054 2585: 2581: 2580: 2572: 2563: 2559: 2555: 2549: 2541: 2539:9780521458979 2535: 2531: 2530: 2522: 2515: 2511: 2507: 2503: 2499: 2495: 2494: 2486: 2469: 2465: 2463:9781852332686 2459: 2452: 2451: 2443: 2436: 2432: 2428: 2423: 2414: 2407: 2399: 2395: 2391: 2387: 2386: 2381: 2377: 2371: 2364: 2359: 2351: 2347: 2343: 2339: 2334: 2329: 2325: 2321: 2320: 2315: 2308: 2301: 2297: 2292: 2286: 2282: 2281: 2276: 2270: 2262: 2258: 2251: 2244: 2238: 2234: 2230: 2224: 2216: 2214:9780521387071 2210: 2206: 2205: 2200: 2194: 2186: 2184:9781584888000 2180: 2176: 2175: 2170: 2166: 2160: 2152: 2150:9780840049421 2146: 2142: 2141: 2136: 2130: 2128: 2126: 2118: 2113: 2111: 2109: 2100: 2098:9780521593458 2094: 2089: 2088: 2079: 2065: 2061: 2055: 2051: 2047: 2046: 2038: 2034: 2024: 2021: 2018: 2015: 2012: 2009: 2006: 2005:induced paths 2002: 1999: 1996: 1993: 1990: 1987: 1984: 1981: 1978: 1974: 1971: 1968: 1964: 1961: 1958: 1955: 1952: 1949: 1948: 1942: 1940: 1936: 1935:configuration 1932: 1928: 1923: 1920: 1915: 1913: 1909: 1905: 1900: 1899:Tanner graphs 1896: 1895:Factor graphs 1892: 1888: 1887:coding theory 1878: 1876: 1871: 1869: 1865: 1861: 1857: 1853: 1834: 1831: 1828: 1825: 1822: 1799: 1779: 1770: 1768: 1764: 1760: 1756: 1752: 1748: 1742: 1732: 1730: 1726: 1709: 1703: 1699: 1693: 1689: 1684: 1680: 1672: 1668: 1663: 1661: 1657: 1653: 1649: 1645: 1641: 1637: 1633: 1629: 1625: 1621: 1617: 1614: 1610: 1602: 1597: 1587: 1572: 1567: 1563: 1559: 1555: 1532: 1529: 1526: 1523: 1517: 1509: 1505: 1504:line segments 1490: 1482: 1477: 1475: 1470: 1465: 1462: 1458: 1454: 1450: 1435: 1433: 1413: 1410: 1407: 1399: 1391: 1386: 1384: 1380: 1376: 1365:exactly when 1329: 1326: 1323: 1320: 1317: 1305: 1300: 1280: 1272: 1264: 1251: 1232: 1229: 1226: 1223: 1220: 1209: 1199: 1196: 1191: 1188: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1148: 1145: 1139: 1133: 1130: 1127: 1124: 1121: 1107: 1091: 1071: 1048: 1039: 1031: 1028: 1025: 1022: 1017: 1014: 1011: 1007: 1003: 1000: 997: 994: 989: 986: 983: 979: 971: 970: 969: 967: 951: 948: 945: 937: 927: 925: 921: 917: 913: 908: 906: 905:edge coloring 901: 897: 893: 889: 885: 881: 876: 873: 869: 865: 861: 857: 853: 840: 836: 833: 829: 826: 822: 819: 815: 811: 810: 809: 793: 789: 788:median graphs 785: 784:partial cubes 781: 778: 775: 771: 767: 763: 756: 752: 748: 744: 740: 736: 732: 713: 710: 707: 704: 701: 695: 692: 684: 677: 673: 669: 665: 662: 658: 654: 650: 646: 643: 640: 638:is bipartite. 637: 633: 632: 631: 628: 624: 622: 618: 613: 611: 607: 602: 592: 590: 574: 566: 562: 546: 538: 517: 509: 501: 473: 470: 467: 464: 461: 450: 434: 414: 394: 371: 368: 365: 362: 359: 353: 350: 341: 339: 323: 303: 295: 279: 259: 252:The two sets 250: 248: 244: 228: 208: 188: 168: 160: 156: 140: 120: 113: 109: 105: 101: 97: 93: 89: 85: 78:is bipartite. 77: 76:Heawood graph 72: 65: 61: 57: 52: 37: 26: 3388: 3356: 3316: 3306: 3286: 3279: 3267: 3247: 3240: 3228: 3217:, retrieved 3210:the original 3205: 3192: 3180: 3163: 3159: 3155: 3154:(1973), "An 3142: 3130: 3120: 3114: 3096: 3092: 3086: 3051: 3047: 3038: 3011: 3001: 2958: 2954: 2945: 2935: 2922: 2912: 2903: 2868: 2864: 2840:(1): 51–73, 2837: 2831: 2821: 2807: 2804:"Hypergraph" 2797: 2785: 2766: 2756: 2747: 2734: 2699:math/0212070 2689: 2683: 2662: 2642: 2632: 2612: 2598: 2578: 2571: 2561: 2557: 2554:KĹ‘nig, DĂ©nes 2548: 2528: 2521: 2497: 2491: 2485: 2475:, retrieved 2449: 2442: 2422: 2412: 2406: 2389: 2383: 2370: 2358: 2323: 2317: 2314:Eppstein, D. 2307: 2296:Alfred Kempe 2279: 2269: 2256: 2250: 2232: 2223: 2203: 2193: 2173: 2159: 2139: 2086: 2078: 2068:, retrieved 2052:, Springer, 2045:Graph Theory 2044: 2037: 2001:Parity graph 1924: 1916: 1884: 1872: 1771: 1744: 1728: 1724: 1666: 1664: 1651: 1647: 1639: 1635: 1631: 1627: 1623: 1619: 1607: 1478: 1466: 1446: 1398:(0,1) matrix 1387: 1301: 1250:(0,1) matrix 1205: 1192: 1105: 1063: 933: 909: 877: 849: 807: 770:crown graphs 765: 758: 754: 750: 746: 742: 738: 734: 730: 679: 675: 671: 661:squaregraphs 649:planar graph 642:Cycle graphs 629: 625: 614: 605: 598: 560: 559:is called a 342: 251: 242: 95: 91: 88:graph theory 84:mathematical 81: 63: 59: 3272:Moon (2005) 3044:Reed, Bruce 2932:Tardos, Éva 2871:: 517–534, 2741:"Matchings" 2608:Zhang, Ping 2431:DĂ©nes KĹ‘nig 2169:Zhang, Ping 2017:Split graph 1967:hypergraphs 1931:Levi graphs 1912:turbo codes 1660:transversal 1650:. The name 1616:algorithmic 1613:NP-complete 1449:linear time 900:complements 657:grid graphs 617:NP-complete 537:cardinality 157:connects a 3407:Categories 3219:2012-08-27 2477:2023-01-02 2380:Dinitz, J. 2070:2012-02-27 2030:References 1438:Algorithms 1379:multigraph 1304:hypergraph 1187:Isomorphic 920:complement 888:line graph 884:complement 858:; this is 799:Properties 792:bitvectors 587:is called 181:to one in 3390:MathWorld 3363:EMS Press 3274:, p. 686. 3206:SIAM News 3056:CiteSeerX 2895:123363425 2814:EMS Press 2726:119151552 2704:CiteSeerX 2564:: 116–119 2333:0905.4537 1919:Petri net 1891:codewords 1530:⁡ 1411:× 1273:× 1026:⁡ 1015:∈ 1008:∑ 998:⁡ 987:∈ 980:∑ 949:⁡ 601:relations 589:biregular 449:connected 86:field of 3314:(2009), 2934:(2006), 2911:(2004), 2792:, p. 17. 2764:(2014), 2640:(1998), 2610:(2012), 2468:archived 2365:, p. 11. 2350:10788524 2277:(2008), 2231:(2006), 2171:(2008), 2137:(2012), 2064:archived 1945:See also 1902:related 1747:matching 1735:Matching 1723:, where 1479:For the 1451:, using 1400:of size 1252:of size 839:spectrum 729:, where 595:Examples 561:balanced 338:triangle 294:coloring 108:disjoint 104:vertices 62:= 5 and 3365:, 2001 3078:2057781 2985:2561751 2887:0097069 2854:0558453 2514:1071664 2119:, p. 7. 1586:edges. 567:, then 539:, then 427:, with 98:) is a 96:bigraph 82:In the 3332:  3294:  3255:  3076:  3058:  3031:363248 3029:  2991:  2983:  2893:  2885:  2852:  2774:  2724:  2706:  2650:  2620:  2586:  2536:  2512:  2460:  2348:  2287:  2239:  2211:  2181:  2147:  2095:  2056:  1870:jobs. 1761:, and 1656:cycles 1611:is an 1383:degree 964:. The 936:degree 930:Degree 922:as an 786:, and 651:whose 647:Every 634:Every 565:degree 247:cycles 159:vertex 102:whose 3213:(PDF) 3202:(PDF) 3027:S2CID 2993:60496 2989:S2CID 2963:arXiv 2891:S2CID 2744:(PDF) 2722:S2CID 2694:arXiv 2471:(PDF) 2454:(PDF) 2346:S2CID 2328:arXiv 1939:girth 1385:two. 1248:is a 832:bonds 818:cycle 653:faces 243:parts 100:graph 58:with 3330:ISBN 3292:ISBN 3253:ISBN 2772:ISBN 2648:ISBN 2618:ISBN 2584:ISBN 2534:ISBN 2458:ISBN 2285:ISBN 2237:ISBN 2209:ISBN 2179:ISBN 2145:ISBN 2093:ISBN 2054:ISBN 1910:and 1908:LDPC 1897:and 1873:The 1665:The 1206:The 1193:The 1084:and 764:has 741:and 733:and 674:and 666:The 659:and 636:tree 407:and 272:and 221:and 155:edge 133:and 110:and 94:(or 90:, a 74:The 3168:doi 3101:doi 3066:doi 3017:doi 2973:doi 2873:doi 2842:doi 2714:doi 2690:164 2502:doi 2394:doi 2390:284 2338:doi 1925:In 1622:= ( 1527:log 1483:of 1109:3,5 1023:deg 995:deg 946:deg 761:m,n 682:n,m 670:on 161:in 66:= 3 3409:: 3387:, 3383:, 3372:: 3361:, 3355:, 3320:, 3204:, 3162:, 3150:; 3097:72 3095:, 3074:MR 3072:, 3064:, 3052:32 3050:, 3025:, 2987:, 2981:MR 2979:, 2971:, 2957:, 2930:; 2889:, 2883:MR 2881:, 2869:10 2867:, 2850:MR 2848:, 2836:, 2812:, 2806:, 2746:, 2720:, 2712:, 2702:, 2688:, 2678:; 2674:; 2670:; 2606:; 2562:38 2560:, 2510:MR 2508:, 2498:84 2496:, 2466:, 2388:, 2344:, 2336:, 2324:24 2322:, 2259:, 2167:; 2124:^ 2107:^ 2062:, 2048:, 1929:, 1914:. 1745:A 1302:A 1185:. 782:, 766:mn 612:. 591:. 249:. 54:A 3339:. 3301:. 3262:. 3235:. 3223:. 3175:. 3170:: 3164:2 3156:n 3125:. 3103:: 3081:. 3068:: 3019:: 2996:. 2975:: 2965:: 2959:5 2940:. 2917:. 2898:. 2875:: 2844:: 2838:4 2729:. 2716:: 2696:: 2657:. 2627:. 2593:. 2566:. 2543:. 2504:: 2437:. 2401:. 2396:: 2353:. 2340:: 2330:: 2302:. 2218:. 2188:. 2154:. 2102:. 1969:. 1838:) 1835:E 1832:, 1829:J 1826:, 1823:P 1820:( 1800:J 1780:P 1729:m 1725:k 1710:) 1704:2 1700:m 1694:k 1690:2 1685:( 1681:O 1648:k 1640:G 1636:k 1632:k 1628:E 1626:, 1624:V 1620:G 1573:) 1568:2 1564:n 1560:( 1556:O 1536:) 1533:n 1524:n 1521:( 1518:O 1491:n 1428:n 1414:n 1408:n 1394:n 1371:e 1367:v 1363:e 1359:v 1355:E 1351:V 1347:U 1333:) 1330:E 1327:, 1324:V 1321:, 1318:U 1315:( 1285:| 1281:V 1277:| 1269:| 1265:U 1261:| 1236:) 1233:E 1230:, 1227:V 1224:, 1221:U 1218:( 1173:) 1170:3 1167:, 1164:3 1161:, 1158:3 1155:, 1152:3 1149:, 1146:3 1143:( 1140:, 1137:) 1134:5 1131:, 1128:5 1125:, 1122:5 1119:( 1106:K 1092:V 1072:U 1049:. 1044:| 1040:E 1036:| 1032:= 1029:u 1018:U 1012:u 1004:= 1001:v 990:V 984:v 952:v 820:. 776:. 759:K 755:V 751:U 747:E 743:n 739:m 735:V 731:U 717:) 714:E 711:, 708:V 705:, 702:U 699:( 696:= 693:G 680:K 676:n 672:m 575:G 547:G 522:| 518:V 514:| 510:= 506:| 502:U 498:| 477:) 474:E 471:, 468:V 465:, 462:U 459:( 435:E 415:V 395:U 375:) 372:E 369:, 366:V 363:, 360:U 357:( 354:= 351:G 324:V 304:U 280:V 260:U 229:V 209:U 189:V 169:U 141:V 121:U 64:n 60:m

Index




complete bipartite graph

Heawood graph
mathematical
graph theory
graph
vertices
disjoint
independent sets
edge
vertex
cycles
coloring
triangle
connected
cardinality
degree
biregular
relations
social network analysis
NP-complete
dominating set
tree
Cycle graphs
planar graph
faces
grid graphs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑