Knowledge

Whitehead torsion

Source 📝

164:
of dimension > 4: for simply-connected manifolds, the Whitehead group vanishes, and thus homotopy equivalences and simple homotopy equivalences are the same. The applications are to differentiable manifolds, PL manifolds and topological manifolds. The proofs were first obtained in the
1702: 1580: 1470: 2195: 1950: 1588: 2009: 471: 2593: 1784: 195:
theorem, which is a statement about simply connected manifolds, to non-simply connected manifolds, one must distinguish simple homotopy equivalences and non-simple homotopy equivalences. While an
1236: 660: 314: 144: 1849: 2267: 743: 997: 1372: 613: 399: 1289: 1082: 2658: 250: 2381: 215: > 4 is isomorphic to a cylinder (the corresponding homotopy equivalence can be taken to be a diffeomorphism, PL-isomorphism, or homeomorphism, respectively), the 2329: 2518: 2486: 2416: 53: 785: 2088: 1148: 1113: 904: 807: 510: 353: 2451: 2041: 1884: 93: 1479: 687: 1377: 173:
theory allowed much the same proofs in the differentiable and PL categories. The proofs are much harder in the topological category, requiring the theory of
2093: 1003:
is a generator of the cyclic group of order 5. This example is closely related to the existence of units of infinite order (in particular, the
787:
we have to show that any matrix can be written as a product of elementary matrices times a diagonal matrix; this follows easily from the fact that
2870: 2927: 2822: 576:
elements are 1 and there is at most one non-zero element not on the diagonal. The subgroup generated by elementary matrices is exactly the
564:); concretely, the group of invertible infinite matrices which differ from the identity matrix in only a finite number of coefficients. An 1697:{\displaystyle C_{\mathrm {odd} }:=\bigoplus _{n{\text{ odd}}}C_{n},\qquad C_{\mathrm {even} }:=\bigoplus _{n{\text{ even}}}C_{n}.} 1892: 1955: 408: 2523: 1710: 1174: 1296: 622: 271: 101: 2197:. Now we can apply the definition of the Whitehead torsion for a chain homotopy equivalence and obtain an element in 1793: 2200: 692: 2796: 913: 1318: 3003: 2962: 586: 372: 1241: 3066: 3061: 2721: 1040: 60: 2637: 229: 2910: 2342: 2296: 2914: 843: 2491: 2459: 2389: 26: 765: 2742:. The set of such equivalence classes form a group where the addition is given by taking union of 2046: 1122: 1087: 887: 790: 484: 3071: 1025: 322: 2421: 181:. The restriction to manifolds of dimension greater than four are due to the application of the 1159:
It is a well-known conjecture that the Whitehead group of any torsion-free group should vanish.
2014: 1857: 1575:{\displaystyle (c_{*}+\gamma _{*})_{\mathrm {odd} }:C_{\mathrm {odd} }\to C_{\mathrm {even} }} 69: 2902: 1465:{\displaystyle c_{n+1}\circ \gamma _{n}+\gamma _{n-1}\circ c_{n}=\operatorname {id} _{C_{n}}} 178: 3032: 2991: 2950: 2891: 2843: 2786: 2669: 854: 669: 21: 521: 8: 2791: 2769: 2604: 1017: 537: 216: 3020: 2998: 2979: 2847: 2781: 2660:
vanishes. Moreover, for any element in the Whitehead group there exists an h-cobordism
819: 580:, in other words the smallest normal subgroup such that the quotient by it is abelian. 147: 17: 2817: 867: 565: 317: 2941: 1007:) in the ring of integers of the cyclotomic field generated by fifth roots of unity. 853:; this is the essential ingredient of the 1969 Kirby–Siebenmann structure theory of 3012: 2971: 2936: 2879: 2851: 2831: 830:. This is quite hard to prove, but is important as it is used in the proof that an 810: 577: 158: 3028: 2987: 2946: 2887: 2839: 2883: 2675:
There exists a homotopy theoretic analogue of the s-cobordism theorem. Given a
910:. An example of a non-trivial unit in the group ring arises from the identity 839: 226:-cobordism is a cylinder if and only if the Whitehead torsion of the inclusion 154: 2190:{\displaystyle C_{*}({\tilde {f}}):C_{*}({\tilde {X}})\to C_{*}({\tilde {Y}})} 3055: 2957: 2865: 907: 759: 573: 182: 166: 2907:
Foundational essays on topological manifolds, smoothings, and triangulations
2898: 2813: 1004: 876: 827: 569: 545: 174: 2922: 2616: 863: 189: 3045: 3024: 2983: 2835: 2809: 2676: 823: 513: 170: 56: 689:. Notice that this is the same as the quotient of the reduced K-group 846: 3016: 2975: 402: 161: 2668:
whose Whitehead torsion is the considered element. The proofs use
1016:
is finitely generated, of rank equal to the number of irreducible
866:(or any subgroup of a braid group) is trivial. This was proved by 536:
is defined as the quotient of GL(A) by the subgroup generated by
2520:
be homotopy equivalences of finite connected CW-complexes. Then
1295:-chain complexes. We can assign to the homotopy equivalence its 2331:
be homotopy equivalences of finite connected CW-complexes. If
838:
is a product. It is also the key algebraic result used in the
662:
by the subgroup generated by elementary matrices, elements of
2760:. This group is natural isomorphic to the Whitehead group Wh( 1150:
modulo the group of "trivial units" generated by elements of
850: 835: 1945:{\displaystyle \tau (f)\in \operatorname {Wh} (\pi _{1}(Y))} 849:
of dimension at least 5 which are homotopy equivalent to a
2418:
is a homeomorphism of finite connected CW-complexes, then
222:
states that if the manifolds are not simply-connected, an
2004:{\displaystyle {\tilde {f}}:{\tilde {X}}\to {\tilde {Y}}} 762:
is trivial. Since the group ring of the trivial group is
466:{\displaystyle G\times \{\pm 1\}\to K_{1}(\mathbb {Z} )} 879:
is trivial if and only if it is of order 2, 3, 4, or 6.
2634:
if and only if the Whitehead torsion of the inclusion
2588:{\displaystyle \tau (g\circ f)=g_{*}\tau (f)+\tau (g)} 884:
The Whitehead group of the cyclic group of order 5 is
2640: 2526: 2494: 2462: 2424: 2392: 2345: 2299: 2203: 2096: 2049: 2017: 1958: 1895: 1860: 1796: 1779:{\displaystyle \tau (h_{*}):=\in {\tilde {K}}_{1}(R)} 1713: 1591: 1482: 1380: 1321: 1244: 1177: 1125: 1090: 1043: 916: 890: 793: 768: 695: 672: 625: 589: 487: 411: 375: 325: 274: 232: 104: 72: 29: 3046:
A description of Whitehead torsion is in section two
2768:. The proof of this fact is similar to the proof of 1374:
be any chain contraction of the mapping cone, i.e.,
203:
between simply-connected closed connected manifolds
1231:{\displaystyle \tau (h_{*})\in {\tilde {K}}_{1}(R)} 169:, for differentiable manifolds. The development of 146:. These concepts are named after the mathematician 20:, a field within mathematics, the obstruction to a 2652: 2587: 2512: 2480: 2445: 2410: 2375: 2323: 2261: 2189: 2082: 2035: 2003: 1944: 1878: 1843: 1778: 1696: 1574: 1464: 1366: 1283: 1230: 1142: 1107: 1076: 991: 898: 834:-cobordism of dimension at least 6 whose ends are 801: 779: 737: 681: 654: 607: 504: 465: 393: 347: 308: 244: 138: 87: 47: 2682:, consider the set of all pairs of CW-complexes ( 655:{\displaystyle \operatorname {GL} (\mathbb {Z} )} 3053: 2607:states for a closed connected oriented manifold 309:{\displaystyle \operatorname {Wh} (\pi _{1}(M))} 139:{\displaystyle \operatorname {Wh} (\pi _{1}(Y))} 2909:, Annals of Mathematics Studies, vol. 88, 2897: 2861:Graduate Text in Mathematics 10, Springer, 1973 2818:"The Whitehead group of a polynomial extension" 1886:of connected finite CW-complexes we define the 1844:{\displaystyle (c_{*}+\gamma _{*})_{\rm {odd}}} 153:The Whitehead torsion is important in applying 2871:Proceedings of the London Mathematical Society 2808: 2262:{\displaystyle {\tilde {K}}_{1}(\mathbb {Z} )} 738:{\displaystyle {\tilde {K}}_{1}(\mathbb {Z} )} 2928:Bulletin of the American Mathematical Society 2277:)). This is the Whitehead torsion τ(ƒ) ∈ Wh(π 1084:is isomorphic to the units of the group ring 992:{\displaystyle (1-t-t^{4})(1-t^{2}-t^{3})=1,} 1367:{\displaystyle \gamma _{*}:C_{*}\to C_{*+1}} 1311:) which is a contractible finite based free 427: 418: 2720:) are said to be equivalent, if there is a 2598: 2997: 2960:(1962), "On the structure of manifolds", 2940: 2227: 2051: 1127: 1092: 1058: 892: 795: 770: 719: 636: 489: 447: 1163: 1012:The Whitehead group of any finite group 264:of a connected CW-complex or a manifold 477:, ±1) to the invertible (1,1)-matrix (± 3054: 2921: 2864: 2698:is a homotopy equivalence. Two pairs ( 2043:to the universal covering. It induces 608:{\displaystyle \operatorname {Wh} (G)} 394:{\displaystyle \operatorname {Wh} (G)} 2956: 2868:(1940), "The units of group-rings", 2823:Publications Mathématiques de l'IHÉS 1284:{\displaystyle h_{*}:D_{*}\to E_{*}} 583:In other words, the Whitehead group 548:of the finite-dimensional groups GL( 1077:{\displaystyle K_{1}(\mathbb {Z} )} 13: 2859:A course in simple homotopy theory 2653:{\displaystyle M\hookrightarrow W} 1835: 1832: 1829: 1657: 1654: 1651: 1648: 1604: 1601: 1598: 1566: 1563: 1560: 1557: 1542: 1539: 1536: 1521: 1518: 1515: 1028:. This was proved in 1965 by Bass. 255: 245:{\displaystyle M\hookrightarrow W} 14: 3083: 3039: 3001:(1950), "Simple homotopy types", 2376:{\displaystyle \tau (f)=\tau (g)} 1851:with respect to the given bases. 1238:for a chain homotopy equivalence 1115:under the determinant map, so Wh( 2324:{\displaystyle f,g\colon X\to Y} 1119:) is just the group of units of 1024:minus the number of irreducible 268:is equal to the Whitehead group 3004:American Journal of Mathematics 2963:American Journal of Mathematics 2942:10.1090/S0002-9904-1966-11484-2 1641: 2644: 2582: 2576: 2567: 2561: 2542: 2530: 2513:{\displaystyle g\colon Y\to Z} 2504: 2481:{\displaystyle f\colon X\to Y} 2472: 2434: 2428: 2411:{\displaystyle f\colon X\to Y} 2402: 2370: 2364: 2355: 2349: 2315: 2256: 2253: 2250: 2244: 2231: 2223: 2211: 2184: 2178: 2169: 2156: 2153: 2147: 2138: 2122: 2116: 2107: 2077: 2074: 2068: 2055: 2027: 1995: 1986: 1980: 1965: 1939: 1936: 1930: 1917: 1905: 1899: 1870: 1824: 1797: 1773: 1767: 1755: 1742: 1736: 1730: 1717: 1548: 1510: 1483: 1345: 1268: 1225: 1219: 1207: 1194: 1181: 1137: 1131: 1102: 1096: 1071: 1068: 1062: 1054: 1037:is a finite cyclic group then 977: 945: 942: 917: 732: 729: 723: 715: 703: 649: 646: 640: 632: 602: 596: 499: 493: 460: 457: 451: 443: 430: 388: 382: 342: 336: 303: 300: 294: 281: 236: 133: 130: 124: 111: 82: 76: 48:{\displaystyle f\colon X\to Y} 39: 1: 2925:(1966), "Whitehead torsion", 2802: 2797:Wall's finiteness obstruction 2690:) such that the inclusion of 2288: 2090:-chain homotopy equivalences 906:. This was proved in 1940 by 822:is trivial, a 1964 result of 780:{\displaystyle \mathbb {Z} ,} 2083:{\displaystyle \mathbb {Z} } 1143:{\displaystyle \mathbb {Z} } 1108:{\displaystyle \mathbb {Z} } 899:{\displaystyle \mathbb {Z} } 802:{\displaystyle \mathbb {Z} } 505:{\displaystyle \mathbb {Z} } 185:for removing double points. 7: 2775: 2722:simple homotopy equivalence 2386:Topological invariance: If 1854:For a homotopy equivalence 1476:. We obtain an isomorphism 758:The Whitehead group of the 752: 348:{\displaystyle \pi _{1}(M)} 95:which is an element in the 61:simple homotopy equivalence 10: 3088: 2911:Princeton University Press 2615: > 4 that an 2446:{\displaystyle \tau (f)=0} 2915:University of Tokyo Press 2456:Composition formula: Let 2293:Homotopy invariance: Let 862:The Whitehead group of a 818:The Whitehead group of a 2884:10.1112/plms/s2-46.1.231 2599:Geometric interpretation 2036:{\displaystyle f:X\to Y} 1879:{\displaystyle f:X\to Y} 1026:rational representations 857:of dimension at least 5. 88:{\displaystyle \tau (f)} 1168:At first we define the 2654: 2589: 2514: 2482: 2447: 2412: 2377: 2325: 2263: 2191: 2084: 2037: 2005: 1946: 1880: 1845: 1780: 1698: 1576: 1466: 1368: 1285: 1232: 1144: 1109: 1078: 993: 900: 875:The Whitehead group a 803: 781: 739: 683: 656: 609: 506: 467: 395: 349: 310: 246: 140: 89: 49: 2756:with common subspace 2670:handle decompositions 2655: 2626:and another manifold 2590: 2515: 2483: 2448: 2413: 2378: 2326: 2264: 2192: 2085: 2038: 2006: 1947: 1881: 1846: 1781: 1699: 1577: 1467: 1369: 1291:of finite based free 1286: 1233: 1164:The Whitehead torsion 1145: 1110: 1079: 994: 901: 870:and Sayed K. Roushon. 855:topological manifolds 804: 782: 740: 684: 682:{\displaystyle \pm 1} 657: 610: 507: 468: 401:is defined to be the 396: 350: 311: 247: 179:Laurent C. Siebenmann 141: 90: 50: 2787:Reidemeister torsion 2764:) of the CW-complex 2638: 2524: 2492: 2460: 2422: 2390: 2343: 2339:are homotopic, then 2297: 2269:which we map to Wh(π 2201: 2094: 2047: 2015: 1956: 1893: 1858: 1794: 1711: 1589: 1480: 1378: 1319: 1315:-chain complex. Let 1242: 1175: 1123: 1088: 1041: 1018:real representations 914: 888: 791: 766: 693: 670: 623: 587: 572:: one such that all 485: 409: 373: 323: 272: 230: 188:In generalizing the 102: 70: 27: 22:homotopy equivalence 2999:Whitehead, J. H. C. 2903:Siebenmann, Laurent 2792:s-Cobordism theorem 2770:s-cobordism theorem 2605:s-cobordism theorem 619:is the quotient of 538:elementary matrices 3067:Algebraic K-theory 3062:Geometric topology 2836:10.1007/BF02684690 2782:Algebraic K-theory 2650: 2585: 2510: 2478: 2443: 2408: 2373: 2321: 2259: 2187: 2080: 2033: 2001: 1942: 1876: 1841: 1776: 1694: 1680: 1627: 1572: 1462: 1364: 1281: 1228: 1140: 1105: 1074: 989: 896: 842:classification of 826:, Alex Heller and 820:free abelian group 799: 777: 735: 679: 652: 605: 520:. Recall that the 502: 463: 391: 345: 306: 242: 220:-cobordism theorem 148:J. H. C. Whitehead 136: 85: 45: 18:geometric topology 2913:Princeton, N.J.; 2214: 2181: 2150: 2119: 1998: 1983: 1968: 1888:Whitehead torsion 1790:is the matrix of 1758: 1677: 1666: 1624: 1613: 1210: 1170:Whitehead torsion 868:F. Thomas Farrell 706: 566:elementary matrix 318:fundamental group 65:Whitehead torsion 3079: 3035: 2994: 2953: 2944: 2918: 2894: 2854: 2812:; Heller, Alex; 2659: 2657: 2656: 2651: 2630:is trivial over 2594: 2592: 2591: 2586: 2557: 2556: 2519: 2517: 2516: 2511: 2487: 2485: 2484: 2479: 2452: 2450: 2449: 2444: 2417: 2415: 2414: 2409: 2382: 2380: 2379: 2374: 2330: 2328: 2327: 2322: 2268: 2266: 2265: 2260: 2243: 2242: 2230: 2222: 2221: 2216: 2215: 2207: 2196: 2194: 2193: 2188: 2183: 2182: 2174: 2168: 2167: 2152: 2151: 2143: 2137: 2136: 2121: 2120: 2112: 2106: 2105: 2089: 2087: 2086: 2081: 2067: 2066: 2054: 2042: 2040: 2039: 2034: 2010: 2008: 2007: 2002: 2000: 1999: 1991: 1985: 1984: 1976: 1970: 1969: 1961: 1952:as follows. Let 1951: 1949: 1948: 1943: 1929: 1928: 1885: 1883: 1882: 1877: 1850: 1848: 1847: 1842: 1840: 1839: 1838: 1822: 1821: 1809: 1808: 1785: 1783: 1782: 1777: 1766: 1765: 1760: 1759: 1751: 1729: 1728: 1703: 1701: 1700: 1695: 1690: 1689: 1679: 1678: 1675: 1662: 1661: 1660: 1637: 1636: 1626: 1625: 1622: 1609: 1608: 1607: 1581: 1579: 1578: 1573: 1571: 1570: 1569: 1547: 1546: 1545: 1526: 1525: 1524: 1508: 1507: 1495: 1494: 1471: 1469: 1468: 1463: 1461: 1460: 1459: 1458: 1441: 1440: 1428: 1427: 1409: 1408: 1396: 1395: 1373: 1371: 1370: 1365: 1363: 1362: 1344: 1343: 1331: 1330: 1290: 1288: 1287: 1282: 1280: 1279: 1267: 1266: 1254: 1253: 1237: 1235: 1234: 1229: 1218: 1217: 1212: 1211: 1203: 1193: 1192: 1149: 1147: 1146: 1141: 1130: 1114: 1112: 1111: 1106: 1095: 1083: 1081: 1080: 1075: 1061: 1053: 1052: 998: 996: 995: 990: 976: 975: 963: 962: 941: 940: 905: 903: 902: 897: 895: 844:piecewise linear 811:Euclidean domain 808: 806: 805: 800: 798: 786: 784: 783: 778: 773: 744: 742: 741: 736: 722: 714: 713: 708: 707: 699: 688: 686: 685: 680: 661: 659: 658: 653: 639: 614: 612: 611: 606: 578:derived subgroup 511: 509: 508: 503: 492: 472: 470: 469: 464: 450: 442: 441: 400: 398: 397: 392: 366:is a group, the 354: 352: 351: 346: 335: 334: 315: 313: 312: 307: 293: 292: 251: 249: 248: 243: 159:simply connected 145: 143: 142: 137: 123: 122: 94: 92: 91: 86: 54: 52: 51: 46: 3087: 3086: 3082: 3081: 3080: 3078: 3077: 3076: 3052: 3051: 3042: 3017:10.2307/2372133 2976:10.2307/2372978 2805: 2778: 2755: 2748: 2737: 2730: 2715: 2704: 2639: 2636: 2635: 2601: 2552: 2548: 2525: 2522: 2521: 2493: 2490: 2489: 2461: 2458: 2457: 2423: 2420: 2419: 2391: 2388: 2387: 2344: 2341: 2340: 2298: 2295: 2294: 2291: 2280: 2272: 2238: 2234: 2226: 2217: 2206: 2205: 2204: 2202: 2199: 2198: 2173: 2172: 2163: 2159: 2142: 2141: 2132: 2128: 2111: 2110: 2101: 2097: 2095: 2092: 2091: 2062: 2058: 2050: 2048: 2045: 2044: 2016: 2013: 2012: 2011:be the lift of 1990: 1989: 1975: 1974: 1960: 1959: 1957: 1954: 1953: 1924: 1920: 1894: 1891: 1890: 1859: 1856: 1855: 1828: 1827: 1823: 1817: 1813: 1804: 1800: 1795: 1792: 1791: 1761: 1750: 1749: 1748: 1724: 1720: 1712: 1709: 1708: 1685: 1681: 1674: 1670: 1647: 1646: 1642: 1632: 1628: 1621: 1617: 1597: 1596: 1592: 1590: 1587: 1586: 1556: 1555: 1551: 1535: 1534: 1530: 1514: 1513: 1509: 1503: 1499: 1490: 1486: 1481: 1478: 1477: 1454: 1450: 1449: 1445: 1436: 1432: 1417: 1413: 1404: 1400: 1385: 1381: 1379: 1376: 1375: 1352: 1348: 1339: 1335: 1326: 1322: 1320: 1317: 1316: 1310: 1306: 1302: 1275: 1271: 1262: 1258: 1249: 1245: 1243: 1240: 1239: 1213: 1202: 1201: 1200: 1188: 1184: 1176: 1173: 1172: 1166: 1126: 1124: 1121: 1120: 1091: 1089: 1086: 1085: 1057: 1048: 1044: 1042: 1039: 1038: 971: 967: 958: 954: 936: 932: 915: 912: 911: 891: 889: 886: 885: 794: 792: 789: 788: 769: 767: 764: 763: 755: 718: 709: 698: 697: 696: 694: 691: 690: 671: 668: 667: 635: 624: 621: 620: 588: 585: 584: 540:. The group GL( 527: 488: 486: 483: 482: 446: 437: 433: 410: 407: 406: 374: 371: 370: 368:Whitehead group 330: 326: 324: 321: 320: 288: 284: 273: 270: 269: 262:Whitehead group 258: 256:Whitehead group 231: 228: 227: 165:early 1960s by 118: 114: 103: 100: 99: 97:Whitehead group 71: 68: 67: 28: 25: 24: 12: 11: 5: 3085: 3075: 3074: 3072:Surgery theory 3069: 3064: 3050: 3049: 3041: 3040:External links 3038: 3037: 3036: 2995: 2970:(3): 387–399, 2958:Smale, Stephen 2954: 2935:(3): 358–426, 2919: 2895: 2866:Higman, Graham 2862: 2855: 2804: 2801: 2800: 2799: 2794: 2789: 2784: 2777: 2774: 2753: 2746: 2735: 2728: 2713: 2702: 2649: 2646: 2643: 2600: 2597: 2584: 2581: 2578: 2575: 2572: 2569: 2566: 2563: 2560: 2555: 2551: 2547: 2544: 2541: 2538: 2535: 2532: 2529: 2509: 2506: 2503: 2500: 2497: 2477: 2474: 2471: 2468: 2465: 2442: 2439: 2436: 2433: 2430: 2427: 2407: 2404: 2401: 2398: 2395: 2372: 2369: 2366: 2363: 2360: 2357: 2354: 2351: 2348: 2320: 2317: 2314: 2311: 2308: 2305: 2302: 2290: 2287: 2278: 2270: 2258: 2255: 2252: 2249: 2246: 2241: 2237: 2233: 2229: 2225: 2220: 2213: 2210: 2186: 2180: 2177: 2171: 2166: 2162: 2158: 2155: 2149: 2146: 2140: 2135: 2131: 2127: 2124: 2118: 2115: 2109: 2104: 2100: 2079: 2076: 2073: 2070: 2065: 2061: 2057: 2053: 2032: 2029: 2026: 2023: 2020: 1997: 1994: 1988: 1982: 1979: 1973: 1967: 1964: 1941: 1938: 1935: 1932: 1927: 1923: 1919: 1916: 1913: 1910: 1907: 1904: 1901: 1898: 1875: 1872: 1869: 1866: 1863: 1837: 1834: 1831: 1826: 1820: 1816: 1812: 1807: 1803: 1799: 1775: 1772: 1769: 1764: 1757: 1754: 1747: 1744: 1741: 1738: 1735: 1732: 1727: 1723: 1719: 1716: 1705: 1704: 1693: 1688: 1684: 1673: 1669: 1665: 1659: 1656: 1653: 1650: 1645: 1640: 1635: 1631: 1620: 1616: 1612: 1606: 1603: 1600: 1595: 1568: 1565: 1562: 1559: 1554: 1550: 1544: 1541: 1538: 1533: 1529: 1523: 1520: 1517: 1512: 1506: 1502: 1498: 1493: 1489: 1485: 1457: 1453: 1448: 1444: 1439: 1435: 1431: 1426: 1423: 1420: 1416: 1412: 1407: 1403: 1399: 1394: 1391: 1388: 1384: 1361: 1358: 1355: 1351: 1347: 1342: 1338: 1334: 1329: 1325: 1308: 1304: 1300: 1278: 1274: 1270: 1265: 1261: 1257: 1252: 1248: 1227: 1224: 1221: 1216: 1209: 1206: 1199: 1196: 1191: 1187: 1183: 1180: 1165: 1162: 1161: 1160: 1156: 1155: 1139: 1136: 1133: 1129: 1104: 1101: 1098: 1094: 1073: 1070: 1067: 1064: 1060: 1056: 1051: 1047: 1030: 1029: 1009: 1008: 988: 985: 982: 979: 974: 970: 966: 961: 957: 953: 950: 947: 944: 939: 935: 931: 928: 925: 922: 919: 894: 881: 880: 872: 871: 859: 858: 840:surgery theory 815: 814: 797: 776: 772: 754: 751: 734: 731: 728: 725: 721: 717: 712: 705: 702: 678: 675: 651: 648: 645: 642: 638: 634: 631: 628: 604: 601: 598: 595: 592: 525: 501: 498: 495: 491: 462: 459: 456: 453: 449: 445: 440: 436: 432: 429: 426: 423: 420: 417: 414: 390: 387: 384: 381: 378: 344: 341: 338: 333: 329: 305: 302: 299: 296: 291: 287: 283: 280: 277: 257: 254: 241: 238: 235: 155:surgery theory 135: 132: 129: 126: 121: 117: 113: 110: 107: 84: 81: 78: 75: 44: 41: 38: 35: 32: 9: 6: 4: 3: 2: 3084: 3073: 3070: 3068: 3065: 3063: 3060: 3059: 3057: 3047: 3044: 3043: 3034: 3030: 3026: 3022: 3018: 3014: 3010: 3006: 3005: 3000: 2996: 2993: 2989: 2985: 2981: 2977: 2973: 2969: 2965: 2964: 2959: 2955: 2952: 2948: 2943: 2938: 2934: 2930: 2929: 2924: 2920: 2916: 2912: 2908: 2904: 2900: 2899:Kirby, Robion 2896: 2893: 2889: 2885: 2881: 2877: 2873: 2872: 2867: 2863: 2860: 2856: 2853: 2849: 2845: 2841: 2837: 2833: 2829: 2825: 2824: 2819: 2815: 2814:Swan, Richard 2811: 2807: 2806: 2798: 2795: 2793: 2790: 2788: 2785: 2783: 2780: 2779: 2773: 2771: 2767: 2763: 2759: 2752: 2745: 2741: 2734: 2727: 2723: 2719: 2712: 2708: 2701: 2697: 2693: 2689: 2685: 2681: 2678: 2673: 2671: 2667: 2663: 2647: 2641: 2633: 2629: 2625: 2621: 2618: 2614: 2611:of dimension 2610: 2606: 2596: 2579: 2573: 2570: 2564: 2558: 2553: 2549: 2545: 2539: 2536: 2533: 2527: 2507: 2501: 2498: 2495: 2475: 2469: 2466: 2463: 2454: 2440: 2437: 2431: 2425: 2405: 2399: 2396: 2393: 2384: 2367: 2361: 2358: 2352: 2346: 2338: 2334: 2318: 2312: 2309: 2306: 2303: 2300: 2286: 2284: 2276: 2247: 2239: 2235: 2218: 2208: 2175: 2164: 2160: 2144: 2133: 2129: 2125: 2113: 2102: 2098: 2071: 2063: 2059: 2030: 2024: 2021: 2018: 1992: 1977: 1971: 1962: 1933: 1925: 1921: 1914: 1911: 1908: 1902: 1896: 1889: 1873: 1867: 1864: 1861: 1852: 1818: 1814: 1810: 1805: 1801: 1789: 1770: 1762: 1752: 1745: 1739: 1733: 1725: 1721: 1714: 1691: 1686: 1682: 1671: 1667: 1663: 1643: 1638: 1633: 1629: 1618: 1614: 1610: 1593: 1585: 1584: 1583: 1552: 1531: 1527: 1504: 1500: 1496: 1491: 1487: 1475: 1455: 1451: 1446: 1442: 1437: 1433: 1429: 1424: 1421: 1418: 1414: 1410: 1405: 1401: 1397: 1392: 1389: 1386: 1382: 1359: 1356: 1353: 1349: 1340: 1336: 1332: 1327: 1323: 1314: 1303: := cone 1298: 1294: 1276: 1272: 1263: 1259: 1255: 1250: 1246: 1222: 1214: 1204: 1197: 1189: 1185: 1178: 1171: 1158: 1157: 1153: 1134: 1118: 1099: 1065: 1049: 1045: 1036: 1032: 1031: 1027: 1023: 1019: 1015: 1011: 1010: 1006: 1002: 986: 983: 980: 972: 968: 964: 959: 955: 951: 948: 937: 933: 929: 926: 923: 920: 909: 908:Graham Higman 883: 882: 878: 874: 873: 869: 865: 861: 860: 856: 852: 848: 845: 841: 837: 833: 829: 825: 821: 817: 816: 812: 774: 761: 760:trivial group 757: 756: 750: 748: 726: 710: 700: 676: 673: 665: 643: 629: 626: 618: 599: 593: 590: 581: 579: 575: 574:main diagonal 571: 567: 563: 559: 555: 551: 547: 543: 539: 535: 531: 523: 519: 515: 496: 480: 476: 473:which sends ( 454: 438: 434: 424: 421: 415: 412: 404: 385: 379: 376: 369: 365: 360: 358: 339: 331: 327: 319: 297: 289: 285: 278: 275: 267: 263: 253: 239: 233: 225: 221: 219: 214: 211:of dimension 210: 206: 202: 198: 194: 192: 186: 184: 183:Whitney trick 180: 176: 172: 168: 167:Stephen Smale 163: 160: 156: 151: 149: 127: 119: 115: 108: 105: 98: 79: 73: 66: 62: 58: 42: 36: 33: 30: 23: 19: 3008: 3002: 2967: 2961: 2932: 2926: 2923:Milnor, John 2906: 2875: 2869: 2858: 2827: 2821: 2765: 2761: 2757: 2750: 2743: 2739: 2738:relative to 2732: 2725: 2717: 2710: 2706: 2699: 2695: 2691: 2687: 2683: 2679: 2674: 2665: 2661: 2631: 2627: 2623: 2619: 2612: 2608: 2602: 2455: 2385: 2336: 2332: 2292: 2282: 2274: 1887: 1853: 1787: 1706: 1473: 1312: 1297:mapping cone 1292: 1169: 1167: 1151: 1116: 1034: 1021: 1013: 1005:golden ratio 1000: 877:cyclic group 831: 828:Richard Swan 746: 663: 616: 582: 570:transvection 561: 557: 553: 549: 546:direct limit 541: 533: 532:) of a ring 529: 517: 478: 474: 367: 363: 361: 356: 265: 261: 259: 223: 217: 212: 208: 204: 200: 196: 190: 187: 175:Robion Kirby 152: 96: 64: 57:CW-complexes 15: 3011:(1): 1–57, 2878:: 231–248, 2810:Bass, Hyman 2617:h-cobordism 864:braid group 615:of a group 405:of the map 199:-cobordism 3056:Categories 2857:Cohen, M. 2803:References 2677:CW-complex 2289:Properties 1707:We define 1676: even 824:Hyman Bass 568:here is a 514:group ring 252:vanishes. 193:-cobordism 171:handlebody 55:of finite 2830:: 61–79, 2645:↪ 2574:τ 2559:τ 2554:∗ 2537:∘ 2528:τ 2505:→ 2499:: 2473:→ 2467:: 2426:τ 2403:→ 2397:: 2362:τ 2347:τ 2316:→ 2310:: 2236:π 2212:~ 2179:~ 2165:∗ 2157:→ 2148:~ 2134:∗ 2117:~ 2103:∗ 2060:π 2028:→ 1996:~ 1987:→ 1981:~ 1966:~ 1922:π 1915:⁡ 1909:∈ 1897:τ 1871:→ 1819:∗ 1815:γ 1806:∗ 1756:~ 1746:∈ 1726:∗ 1715:τ 1668:⨁ 1623: odd 1615:⨁ 1549:→ 1505:∗ 1501:γ 1492:∗ 1430:∘ 1422:− 1415:γ 1402:γ 1398:∘ 1354:∗ 1346:→ 1341:∗ 1328:∗ 1324:γ 1277:∗ 1269:→ 1264:∗ 1251:∗ 1208:~ 1198:∈ 1190:∗ 1179:τ 965:− 952:− 930:− 924:− 847:manifolds 704:~ 674:± 630:⁡ 594:⁡ 544:) is the 431:→ 422:± 416:× 380:⁡ 328:π 286:π 279:⁡ 237:↪ 162:manifolds 116:π 109:⁡ 74:τ 40:→ 34:: 2905:(1977), 2816:(1964), 2776:See also 2724:between 2622:between 1786:, where 1472:for all 753:Examples 481:). Here 403:cokernel 59:being a 3033:0035437 3025:2372133 2992:0153022 2984:2372978 2951:0196736 2917:, Tokyo 2892:0002137 2852:4649786 2844:0174605 2709:) and ( 1154:and −1. 556:) → GL( 522:K-group 512:is the 316:of the 157:to non- 63:is its 3031:  3023:  2990:  2982:  2949:  2890:  2850:  2842:  1582:with 999:where 3021:JSTOR 2980:JSTOR 2874:, 2, 2848:S2CID 2694:into 2664:over 851:torus 809:is a 2749:and 2731:and 2603:The 2335:and 2285:)). 836:tori 666:and 560:+1, 260:The 207:and 177:and 3013:doi 2972:doi 2937:doi 2880:doi 2832:doi 1033:If 1020:of 745:by 516:of 362:If 355:of 16:In 3058:: 3029:MR 3027:, 3019:, 3009:72 3007:, 2988:MR 2986:, 2978:, 2968:84 2966:, 2947:MR 2945:, 2933:72 2931:, 2901:; 2888:MR 2886:, 2876:46 2846:, 2840:MR 2838:, 2828:22 2826:, 2820:, 2772:. 2716:, 2705:, 2686:, 2672:. 2595:. 2488:, 2453:. 2383:. 1912:Wh 1734::= 1664::= 1611::= 1447:id 1307:(h 749:. 627:GL 591:Wh 552:, 377:Wh 359:. 276:Wh 150:. 106:Wh 3048:. 3015:: 2974:: 2939:: 2882:: 2834:: 2766:A 2762:A 2758:A 2754:2 2751:X 2747:1 2744:X 2740:A 2736:2 2733:X 2729:1 2726:X 2718:A 2714:2 2711:X 2707:A 2703:1 2700:X 2696:X 2692:A 2688:A 2684:X 2680:A 2666:M 2662:W 2648:W 2642:M 2632:M 2628:N 2624:M 2620:W 2613:n 2609:M 2583:) 2580:g 2577:( 2571:+ 2568:) 2565:f 2562:( 2550:g 2546:= 2543:) 2540:f 2534:g 2531:( 2508:Z 2502:Y 2496:g 2476:Y 2470:X 2464:f 2441:0 2438:= 2435:) 2432:f 2429:( 2406:Y 2400:X 2394:f 2371:) 2368:g 2365:( 2359:= 2356:) 2353:f 2350:( 2337:g 2333:f 2319:Y 2313:X 2307:g 2304:, 2301:f 2283:Y 2281:( 2279:1 2275:Y 2273:( 2271:1 2257:) 2254:] 2251:) 2248:Y 2245:( 2240:1 2232:[ 2228:Z 2224:( 2219:1 2209:K 2185:) 2176:Y 2170:( 2161:C 2154:) 2145:X 2139:( 2130:C 2126:: 2123:) 2114:f 2108:( 2099:C 2078:] 2075:) 2072:Y 2069:( 2064:1 2056:[ 2052:Z 2031:Y 2025:X 2022:: 2019:f 1993:Y 1978:X 1972:: 1963:f 1940:) 1937:) 1934:Y 1931:( 1926:1 1918:( 1906:) 1903:f 1900:( 1874:Y 1868:X 1865:: 1862:f 1836:d 1833:d 1830:o 1825:) 1811:+ 1802:c 1798:( 1788:A 1774:) 1771:R 1768:( 1763:1 1753:K 1743:] 1740:A 1737:[ 1731:) 1722:h 1718:( 1692:. 1687:n 1683:C 1672:n 1658:n 1655:e 1652:v 1649:e 1644:C 1639:, 1634:n 1630:C 1619:n 1605:d 1602:d 1599:o 1594:C 1567:n 1564:e 1561:v 1558:e 1553:C 1543:d 1540:d 1537:o 1532:C 1528:: 1522:d 1519:d 1516:o 1511:) 1497:+ 1488:c 1484:( 1474:n 1456:n 1452:C 1443:= 1438:n 1434:c 1425:1 1419:n 1411:+ 1406:n 1393:1 1390:+ 1387:n 1383:c 1360:1 1357:+ 1350:C 1337:C 1333:: 1313:R 1309:* 1305:* 1301:* 1299:C 1293:R 1273:E 1260:D 1256:: 1247:h 1226:) 1223:R 1220:( 1215:1 1205:K 1195:) 1186:h 1182:( 1152:G 1138:] 1135:G 1132:[ 1128:Z 1117:G 1103:] 1100:G 1097:[ 1093:Z 1072:) 1069:] 1066:G 1063:[ 1059:Z 1055:( 1050:1 1046:K 1035:G 1022:G 1014:G 1001:t 987:, 984:1 981:= 978:) 973:3 969:t 960:2 956:t 949:1 946:( 943:) 938:4 934:t 927:t 921:1 918:( 893:Z 832:s 813:. 796:Z 775:, 771:Z 747:G 733:) 730:] 727:G 724:[ 720:Z 716:( 711:1 701:K 677:1 664:G 650:) 647:] 644:G 641:[ 637:Z 633:( 617:G 603:) 600:G 597:( 562:A 558:n 554:A 550:n 542:A 534:A 530:A 528:( 526:1 524:K 518:G 500:] 497:G 494:[ 490:Z 479:g 475:g 461:) 458:] 455:G 452:[ 448:Z 444:( 439:1 435:K 428:} 425:1 419:{ 413:G 389:) 386:G 383:( 364:G 357:M 343:) 340:M 337:( 332:1 304:) 301:) 298:M 295:( 290:1 282:( 266:M 240:W 234:M 224:h 218:s 213:n 209:N 205:M 201:W 197:h 191:h 134:) 131:) 128:Y 125:( 120:1 112:( 83:) 80:f 77:( 43:Y 37:X 31:f

Index

geometric topology
homotopy equivalence
CW-complexes
simple homotopy equivalence
J. H. C. Whitehead
surgery theory
simply connected
manifolds
Stephen Smale
handlebody
Robion Kirby
Laurent C. Siebenmann
Whitney trick
h-cobordism
s-cobordism theorem
fundamental group
cokernel
group ring
K-group
elementary matrices
direct limit
elementary matrix
transvection
main diagonal
derived subgroup
trivial group
Euclidean domain
free abelian group
Hyman Bass
Richard Swan

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.