Knowledge

Valence bond theory

Source 📝

489:-electrons. Valence bond treatments are restricted to relatively small molecules, largely due to the lack of orthogonality between valence bond orbitals and between valence bond structures, while molecular orbitals are orthogonal. On the other hand, valence bond theory provides a much more accurate picture of the reorganization of electronic charge that takes place when bonds are broken and formed during the course of a chemical reaction. In particular, valence bond theory correctly predicts the dissociation of homonuclear diatomic molecules into separate atoms, while simple molecular orbital theory predicts dissociation into a mixture of atoms and ions. For example, the molecular orbital function for 438:-orbital electrons is a sigma bond, because two spheres are always coaxial. In terms of bond order, single bonds have one sigma bond, double bonds consist of one sigma bond and one pi bond, and triple bonds contain one sigma bond and two pi bonds. However, the atomic orbitals for bonding may be hybrids. Often, the bonding atomic orbitals have a character of several possible types of orbitals. The methods to get an atomic orbital with the proper character for the bonding is called 404: 415: 344:
would become what some have called the bible of modern chemistry. This book helped experimental chemists to understand the impact of quantum theory on chemistry. However, the later edition in 1959 failed to adequately address the problems that appeared to be better understood by molecular orbital
249:
suggested in 1921 that eight and eighteen electrons in a shell form stable configurations. Bury proposed that the electron configurations in transitional elements depended upon the valence electrons in their outer shell. In 1916, Kossel put forth his theory of the
372:, but where a single Lewis structure cannot be written, several valence bond structures are used. Each of these VB structures represents a specific Lewis structure. This combination of valence bond structures is the main point of 528:
An important aspect of the valence bond theory is the condition of maximum overlap, which leads to the formation of the strongest possible bonds. This theory is used to explain the covalent bond formation in many molecules.
493:
is an equal mixture of the covalent and ionic valence bond structures and so predicts incorrectly that the molecule would dissociate into an equal mixture of hydrogen atoms and hydrogen positive and negative ions.
512:, either centered each on one atom to give a classical valence bond picture, or centered on all atoms in the molecule. The resulting energies are more competitive with energies from calculations where 349:
programs. Since the 1980s, the more difficult problems, of implementing valence bond theory into computer programs, have been solved largely, and valence bond theory has seen a resurgence.
285:
equation both derived in 1925. However, for hydrogen alone, in 1927 the Heitler–London theory was formulated which for the first time enabled the calculation of bonding properties of the
1300: 277:
Although there is no mathematical formula either in chemistry or quantum mechanics for the arrangement of electrons in the atom, the hydrogen atom can be described by the
580:
Using modern classical valence bond theory, Patil and Bhanage have shown that the cation-anion interface of protic ionic liquids possesses charge shift bond character.
454:, which does not adhere to the valence bond idea that electron pairs are localized between two specific atoms in a molecule but that they are distributed in sets of 340:
Linus Pauling published in 1931 his landmark paper on valence bond theory: "On the Nature of the Chemical Bond". Building on this article, Pauling's 1939 textbook:
392:
should be in the bond region. Valence bond theory views bonds as weakly coupled orbitals (small overlap). Valence bond theory is typically easier to employ in
188: 333:, this period marks the start of "modern valence bond theory", as contrasted with older valence bond theories, which are essentially electronic theories of 462:
and ionization properties in a straightforward manner, while valence bond theory gives similar results but is more complicated. Valence bond theory views
345:
theory. The impact of valence theory declined during the 1960s and 1970s as molecular orbital theory grew in usefulness as it was implemented in large
1001: 508:
Modern valence bond theory replaces the overlapping atomic orbitals by overlapping valence bond orbitals that are expanded over a large number of
88: 181: 266:
put forward a theory similar to Lewis' only his model assumed complete transfers of electrons between atoms, and was thus a model of
478: 76: 652: 577:
orbital of F, each containing an unpaired electron. Mutual sharing of electrons between H and F results in a covalent bond in HF.
110: 545:
orbitals of the two F atoms, each containing an unpaired electron. Since the nature of the overlapping orbitals are different in H
1336: 1307: 72: 241:
proposed that a chemical bond forms by the interaction of two shared bonding electrons, with the representation of molecules as
122: 118: 1239: 994: 921: 711: 174: 164: 1343: 317:
used the pair bonding ideas of Lewis together with Heitler–London theory to develop two other key concepts in VB theory:
92: 1410: 1032: 627: 987: 126: 1384: 728:
Cooper, David L.; Gerratt, Joseph; Raimondi, Mario (1986). "The electronic structure of the benzene molecule".
1442: 1270: 225:
of the dissociated atoms combine to give individual chemical bonds when a molecule is formed. In contrast,
1478: 156: 368:
atomic orbitals of each atom containing one unpaired electron. A valence bond structure is similar to a
1493: 1483: 939:"Modern ab initio valence bond theory calculations reveal charge shift bonding in protic ionic liquids" 589: 503: 140: 54: 46: 152: 1488: 1260: 1244: 426:
The overlapping atomic orbitals can differ. The two types of overlapping orbitals are sigma and pi.
133: 103: 80: 938: 1219: 451: 226: 210: 148: 61: 50: 1405: 68: 298: 278: 1293: 686: 114: 1377: 1372: 1179: 1174: 594: 509: 485:
structures. In contrast, molecular orbital theory views aromaticity as delocalization of the
439: 373: 322: 318: 1452: 1437: 1145: 878: 833: 784: 737: 643: 513: 246: 31: 22: 8: 1447: 1265: 702:
Walther Kossel, “Uber Molkulbildung als Frage der Atombau”, Ann. Phys., 1916, 49:229–362.
690: 334: 96: 882: 837: 788: 741: 616: 434:
occur when two orbitals overlap when they are parallel. For example, a bond between two
1432: 1389: 894: 851: 802: 753: 1426: 1234: 1027: 958: 917: 669: 623: 455: 214: 855: 757: 950: 898: 886: 841: 806: 792: 745: 661: 517: 408: 346: 313:
and they worked out the details of the theory over the course of the night. Later,
282: 259: 160: 1184: 869:
Harcourt, Richard D. (1987). "The electronic structure of the benzene molecule".
377: 369: 326: 271: 242: 84: 458:
which can extend over the entire molecule. Molecular orbital theory can predict
1127: 1111: 1106: 1022: 294: 263: 222: 1472: 1316: 1200: 1140: 1135: 1116: 1010: 673: 467: 397: 381: 314: 306: 218: 144: 1457: 962: 393: 310: 302: 979: 648:"Langmuir's Theory of the Arrangement of Electrons in Atoms and Molecules" 1101: 1096: 1091: 482: 463: 385: 238: 665: 1083: 1067: 1057: 954: 490: 427: 267: 255: 251: 520:
reference wavefunction. The most recent text is by Shaik and Hiberty.
430:
occur when the orbitals of two shared electrons overlap head-to-head.
1205: 890: 846: 821: 797: 772: 749: 564:
In an HF molecule the covalent bond is formed by the overlap of the 1
459: 389: 202: 647: 1072: 286: 270:. Both Lewis and Kossel structured their bonding models on that of 1062: 937:
Patil, Amol Baliram; Bhanage, Bhalchandra Mahadeo (17 May 2016).
471: 431: 1285: 305:
join together, with plus, minus, and exchange terms, to form a
553:
molecules, the bond strength and bond lengths differ between H
477:. This is essentially still the old idea of resonance between 403: 400:
remain essentially unchanged during the formation of bonds.
376:
theory. Valence bond theory considers that the overlapping
293:
based on quantum mechanical considerations. Specifically,
414: 714:– Key participants in the development of Linus Pauling's 911: 614:
Murrell, J. N.; Kettle, S. F. A.; Tedder, J. M. (1985).
727: 18:
One of two foundational theories of quantum chemistry
613: 536:molecule, the F−F bond is formed by the overlap of 258:), also independently advanced in the same year by 822:"The electronic structure of the benzene molecule" 615: 1470: 820:Messmer, Richard P.; Schultz, Peter A. (1987). 819: 773:"Electronic structure of the benzene molecule" 364:is formed between two atoms by the overlap of 1301: 995: 912:Shaik, Sason S.; Phillipe C. Hiberty (2008). 209:is one of the two basic theories, along with 182: 936: 445: 229:has orbitals that cover the whole molecule. 213:, that were developed to use the methods of 1009: 497: 89:Multi-configurational self-consistent field 1308: 1294: 1002: 988: 407:σ bond between two atoms: localization of 189: 175: 21:"VBT" redirects here. For other uses, see 845: 796: 384:. Because of the overlapping, it is most 914:A Chemist's Guide to Valence Bond Theory 868: 653:Journal of the American Chemical Society 413: 402: 111:Time-dependent density functional theory 73:Semi-empirical quantum chemistry methods 1337:Sickle Cell Anemia, a Molecular Disease 770: 622:(2nd ed.). John Wiley & Sons. 1471: 479:Friedrich August KekulĂ© von Stradonitz 337:couched in pre-wave-mechanical terms. 123:Linearized augmented-plane-wave method 119:Orbital-free density functional theory 1289: 983: 301:(1926) to show how two hydrogen atom 642: 943:Physical Chemistry Chemical Physics 309:. He then called up his associate 93:Quantum chemistry composite methods 13: 1351:How to Live Longer and Feel Better 916:. New Jersey: Wiley-Interscience. 466:properties of molecules as due to 380:of the participating atoms form a 342:On the Nature of the Chemical Bond 77:MĂžller–Plesset perturbation theory 14: 1505: 1411:International League of Humanists 1315: 1033:Introduction to quantum mechanics 532:For example, in the case of the F 450:Valence bond theory complements 329:, author of the noted 1952 book 1385:Pauling Electronegativity Scale 1331:The Nature of the Chemical Bond 930: 905: 716:The Nature of the Chemical Bond 523: 127:Projector augmented wave method 862: 813: 764: 721: 705: 696: 680: 636: 607: 1: 1344:Vitamin C and the Common Cold 600: 211:molecular orbital (MO) theory 165:Korringa–Kohn–Rostoker method 693:, and (Pauling, 1960, p. 5). 7: 583: 398:core orbitals and electrons 357:According to this theory a 299:Schrödinger's wave equation 157:Empty lattice approximation 10: 1510: 590:Modern valence bond theory 504:Modern valence bond theory 501: 232: 141:Nearly free electron model 55:Modern valence bond theory 20: 1443:Intravenous ascorbic acid 1419: 1398: 1360: 1323: 1253: 1227: 1218: 1193: 1167: 1158: 1125: 1081: 1050: 1043: 1018: 516:is introduced based on a 446:Comparison with MO theory 418:Two p-orbitals forming a 352: 134:Electronic band structure 104:Density functional theory 81:Configuration interaction 1220:Molecular orbital theory 691:University City TĂŒbingen 498:Computational approaches 452:molecular orbital theory 227:molecular orbital theory 221:. It focuses on how the 207:valence bond (VB) theory 149:Muffin-tin approximation 62:Molecular orbital theory 51:Generalized valence bond 1406:Linus Pauling Institute 771:Pauling, Linus (1987). 687:University College Cork 153:k·p perturbation theory 568:orbital of H and the 2 423: 411: 297:determined how to use 47:Coulson–Fischer theory 1373:Orbital hybridisation 595:Valence bond programs 417: 406: 325:(1930). According to 323:orbital hybridization 1438:Vitamin C megadosage 514:electron correlation 279:Schrödinger equation 247:Charles Rugeley Bury 32:Electronic structure 23:VBT (disambiguation) 1448:Linus Pauling Award 1368:Valence bond theory 1160:Valence bond theory 949:(23): 15783–15790. 883:1987Natur.329..491H 838:1987Natur.329..492M 789:1987Natur.325..396P 742:1986Natur.323..699C 666:10.1021/ja01440a023 366:half filled valence 252:ionic chemical bond 97:Quantum Monte Carlo 69:Hartree–Fock method 40:Valence bond theory 1479:Chemistry theories 1433:Molecular medicine 955:10.1039/C6CP02819E 456:molecular orbitals 424: 412: 115:Thomas–Fermi model 1494:General chemistry 1484:Quantum chemistry 1466: 1465: 1427:Ava Helen Pauling 1283: 1282: 1279: 1278: 1254:Constituent units 1235:Molecular orbital 1214: 1213: 1194:Constituent units 1154: 1153: 1028:Quantum mechanics 923:978-0-470-03735-5 618:The Chemical Bond 215:quantum mechanics 199: 198: 1501: 1489:Chemical bonding 1310: 1303: 1296: 1287: 1286: 1225: 1224: 1165: 1164: 1146:Exchange-coupled 1048: 1047: 1011:Chemical bonding 1004: 997: 990: 981: 980: 974: 973: 971: 969: 934: 928: 927: 909: 903: 902: 891:10.1038/329491b0 866: 860: 859: 849: 847:10.1038/329492a0 817: 811: 810: 800: 798:10.1038/325396d0 768: 762: 761: 750:10.1038/323699a0 725: 719: 709: 703: 700: 694: 684: 678: 677: 660:(7): 1602–1609. 644:Bury, Charles R. 640: 634: 633: 621: 611: 488: 474: 421: 409:electron density 347:digital computer 283:Matrix Mechanics 260:Gilbert N. Lewis 243:Lewis structures 219:chemical bonding 191: 184: 177: 161:GW approximation 28: 27: 1509: 1508: 1504: 1503: 1502: 1500: 1499: 1498: 1469: 1468: 1467: 1462: 1415: 1394: 1390:Pauling's rules 1356: 1319: 1314: 1284: 1275: 1249: 1210: 1189: 1185:Lewis structure 1150: 1121: 1077: 1039: 1014: 1008: 978: 977: 967: 965: 935: 931: 924: 910: 906: 867: 863: 818: 814: 769: 765: 726: 722: 710: 706: 701: 697: 685: 681: 641: 637: 630: 612: 608: 603: 586: 576: 560: 556: 552: 548: 544: 535: 526: 510:basis functions 506: 500: 486: 472: 448: 419: 396:molecules. The 378:atomic orbitals 370:Lewis structure 355: 327:Charles Coulson 292: 235: 223:atomic orbitals 195: 163: 159: 155: 151: 147: 143: 125: 121: 117: 113: 95: 91: 87: 85:Coupled cluster 83: 79: 75: 71: 53: 49: 26: 19: 12: 11: 5: 1507: 1497: 1496: 1491: 1486: 1481: 1464: 1463: 1461: 1460: 1455: 1450: 1445: 1440: 1435: 1430: 1423: 1421: 1417: 1416: 1414: 1413: 1408: 1402: 1400: 1396: 1395: 1393: 1392: 1387: 1382: 1381: 1380: 1375: 1364: 1362: 1358: 1357: 1355: 1354: 1348: 1340: 1334: 1327: 1325: 1321: 1320: 1313: 1312: 1305: 1298: 1290: 1281: 1280: 1277: 1276: 1274: 1273: 1271:Antibonding MO 1268: 1266:Non-bonding MO 1263: 1257: 1255: 1251: 1250: 1248: 1247: 1242: 1237: 1231: 1229: 1222: 1216: 1215: 1212: 1211: 1209: 1208: 1203: 1197: 1195: 1191: 1190: 1188: 1187: 1182: 1177: 1175:Hybrid orbital 1171: 1169: 1162: 1156: 1155: 1152: 1151: 1149: 1148: 1143: 1138: 1132: 1130: 1123: 1122: 1120: 1119: 1114: 1109: 1104: 1099: 1094: 1088: 1086: 1079: 1078: 1076: 1075: 1070: 1065: 1060: 1054: 1052: 1045: 1044:Types of bonds 1041: 1040: 1038: 1037: 1036: 1035: 1025: 1023:Atomic orbital 1019: 1016: 1015: 1007: 1006: 999: 992: 984: 976: 975: 929: 922: 904: 861: 812: 763: 720: 712:Walter Heitler 704: 695: 679: 635: 628: 605: 604: 602: 599: 598: 597: 592: 585: 582: 572: 558: 554: 550: 546: 540: 533: 525: 522: 502:Main article: 499: 496: 447: 444: 354: 351: 295:Walter Heitler 290: 264:Walther Kossel 245:. The chemist 234: 231: 197: 196: 194: 193: 186: 179: 171: 168: 167: 137: 136: 130: 129: 107: 106: 100: 99: 65: 64: 58: 57: 43: 42: 36: 35: 17: 9: 6: 4: 3: 2: 1506: 1495: 1492: 1490: 1487: 1485: 1482: 1480: 1477: 1476: 1474: 1459: 1456: 1454: 1453:Pauling Field 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1428: 1425: 1424: 1422: 1418: 1412: 1409: 1407: 1404: 1403: 1401: 1397: 1391: 1388: 1386: 1383: 1379: 1376: 1374: 1371: 1370: 1369: 1366: 1365: 1363: 1359: 1352: 1349: 1346: 1345: 1341: 1338: 1335: 1332: 1329: 1328: 1326: 1322: 1318: 1317:Linus Pauling 1311: 1306: 1304: 1299: 1297: 1292: 1291: 1288: 1272: 1269: 1267: 1264: 1262: 1259: 1258: 1256: 1252: 1246: 1243: 1241: 1238: 1236: 1233: 1232: 1230: 1226: 1223: 1221: 1217: 1207: 1204: 1202: 1201:Covalent bond 1199: 1198: 1196: 1192: 1186: 1183: 1181: 1178: 1176: 1173: 1172: 1170: 1166: 1163: 1161: 1157: 1147: 1144: 1142: 1139: 1137: 1134: 1133: 1131: 1129: 1124: 1118: 1115: 1113: 1112:5 (quintuple) 1110: 1108: 1107:4 (quadruple) 1105: 1103: 1100: 1098: 1095: 1093: 1090: 1089: 1087: 1085: 1080: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1055: 1053: 1049: 1046: 1042: 1034: 1031: 1030: 1029: 1026: 1024: 1021: 1020: 1017: 1012: 1005: 1000: 998: 993: 991: 986: 985: 982: 964: 960: 956: 952: 948: 944: 940: 933: 925: 919: 915: 908: 900: 896: 892: 888: 884: 880: 877:(6139): 491. 876: 872: 865: 857: 853: 848: 843: 839: 835: 832:(6139): 492. 831: 827: 823: 816: 808: 804: 799: 794: 790: 786: 783:(6103): 396. 782: 778: 774: 767: 759: 755: 751: 747: 743: 739: 736:(6090): 699. 735: 731: 724: 717: 713: 708: 699: 692: 688: 683: 675: 671: 667: 663: 659: 655: 654: 649: 646:(July 1921). 645: 639: 631: 629:0-471-90759-6 625: 620: 619: 610: 606: 596: 593: 591: 588: 587: 581: 578: 575: 571: 567: 562: 543: 539: 530: 521: 519: 515: 511: 505: 495: 492: 484: 480: 476: 469: 468:spin coupling 465: 461: 457: 453: 443: 441: 440:hybridization 437: 433: 429: 416: 410: 405: 401: 399: 395: 391: 387: 383: 382:chemical bond 379: 375: 371: 367: 363: 360: 350: 348: 343: 338: 336: 332: 328: 324: 320: 316: 315:Linus Pauling 312: 308: 307:covalent bond 304: 303:wavefunctions 300: 296: 288: 284: 280: 275: 273: 269: 268:ionic bonding 265: 261: 257: 253: 248: 244: 240: 230: 228: 224: 220: 216: 212: 208: 204: 192: 187: 185: 180: 178: 173: 172: 170: 169: 166: 162: 158: 154: 150: 146: 145:Tight binding 142: 139: 138: 135: 132: 131: 128: 124: 120: 116: 112: 109: 108: 105: 102: 101: 98: 94: 90: 86: 82: 78: 74: 70: 67: 66: 63: 60: 59: 56: 52: 48: 45: 44: 41: 38: 37: 33: 30: 29: 24: 16: 1458:4674 Pauling 1367: 1350: 1342: 1339:(1949 paper) 1330: 1324:Publications 1159: 1117:6 (sextuple) 1084:multiplicity 966:. Retrieved 946: 942: 932: 913: 907: 874: 870: 864: 829: 825: 815: 780: 776: 766: 733: 729: 723: 715: 707: 698: 682: 657: 651: 638: 617: 609: 579: 573: 569: 565: 563: 541: 537: 531: 527: 524:Applications 518:Hartree–Fock 507: 449: 435: 425: 394:ground state 365: 361: 358: 356: 341: 339: 330: 311:Fritz London 276: 272:Abegg's rule 236: 206: 200: 39: 15: 1347:(1970 book) 1333:(1939 book) 1051:By symmetry 561:molecules. 483:James Dewar 428:Sigma bonds 321:(1928) and 239:G. N. Lewis 217:to explain 1473:Categories 1261:Bonding MO 1245:MO diagram 1102:3 (triple) 1097:2 (double) 1092:1 (single) 601:References 491:dihydrogen 289:molecule H 256:octet rule 1378:Resonance 1206:Lone pair 1180:Resonance 1068:Delta (ÎŽ) 1058:Sigma (σ) 674:0002-7863 390:electrons 374:resonance 319:resonance 237:In 1916, 203:chemistry 1361:Concepts 1228:Concepts 1168:Concepts 963:27229870 856:45218186 758:24349360 584:See also 475:orbitals 464:aromatic 460:magnetic 432:Pi bonds 386:probable 359:covalent 287:hydrogen 281:and the 274:(1904). 1420:Related 1399:Founded 1141:Singlet 1136:Triplet 1073:Phi (φ) 968:25 June 899:4268597 879:Bibcode 834:Bibcode 807:4261220 785:Bibcode 738:Bibcode 470:of the 335:valence 331:Valence 233:History 34:methods 1429:(wife) 1353:(1986) 1063:Pi (π) 1013:theory 961:  920:  897:  871:Nature 854:  826:Nature 805:  777:Nature 756:  730:Nature 672:  626:  422:-bond. 353:Theory 895:S2CID 852:S2CID 803:S2CID 754:S2CID 557:and F 549:and F 388:that 1240:LCAO 1128:spin 970:2022 959:PMID 918:ISBN 670:ISSN 624:ISBN 481:and 362:bond 1126:By 1082:By 951:doi 887:doi 875:329 842:doi 830:329 793:doi 781:325 746:doi 734:323 662:doi 201:In 1475:: 957:. 947:18 945:. 941:. 893:. 885:. 873:. 850:. 840:. 828:. 824:. 801:. 791:. 779:. 775:. 752:. 744:. 732:. 689:, 668:. 658:43 656:. 650:. 442:. 262:. 205:, 1309:e 1302:t 1295:v 1003:e 996:t 989:v 972:. 953:: 926:. 901:. 889:: 881:: 858:. 844:: 836:: 809:. 795:: 787:: 760:. 748:: 740:: 718:. 676:. 664:: 632:. 574:z 570:p 566:s 559:2 555:2 551:2 547:2 542:z 538:p 534:2 487:π 473:π 436:s 420:π 291:2 254:( 190:e 183:t 176:v 25:.

Index

VBT (disambiguation)
Electronic structure
Valence bond theory
Coulson–Fischer theory
Generalized valence bond
Modern valence bond theory
Molecular orbital theory
Hartree–Fock method
Semi-empirical quantum chemistry methods
Mþller–Plesset perturbation theory
Configuration interaction
Coupled cluster
Multi-configurational self-consistent field
Quantum chemistry composite methods
Quantum Monte Carlo
Density functional theory
Time-dependent density functional theory
Thomas–Fermi model
Orbital-free density functional theory
Linearized augmented-plane-wave method
Projector augmented wave method
Electronic band structure
Nearly free electron model
Tight binding
Muffin-tin approximation
k·p perturbation theory
Empty lattice approximation
GW approximation
Korringa–Kohn–Rostoker method
v

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑