Knowledge

Ultraviolet–visible spectroscopy

Source 📝

208: 1102:
well as for the visible (VIS) and near-infrared wavelength regions covering a spectral range from 190 up to 1100 nm. The lamp flashes are focused on a glass fiber which drives the beam of light onto a cuvette containing the sample solution. The beam passes through the sample and specific wavelengths are absorbed by the sample components. The remaining light is collected after the cuvette by a glass fiber and driven into a spectrograph. The spectrograph consists of a diffraction grating that separates the light into the different wavelengths, and a CCD sensor to record the data, respectively. The whole spectrum is thus simultaneously measured, allowing for fast recording.
1040:(CCD). Single photodiode detectors and photomultiplier tubes are used with scanning monochromators, which filter the light so that only light of a single wavelength reaches the detector at one time. The scanning monochromator moves the diffraction grating to "step-through" each wavelength so that its intensity may be measured as a function of wavelength. Fixed monochromators are used with CCDs and photodiode arrays. As both of these devices consist of many detectors grouped into one or two dimensional arrays, they are able to collect light of different wavelengths on different pixels or groups of pixels simultaneously. 615:, its physical slit-width and optical dispersion and the detector of the spectrophotometer. The spectral bandwidth affects the resolution and accuracy of the measurement. A narrower spectral bandwidth provides higher resolution and accuracy, but also requires more time and energy to scan the entire spectrum. A wider spectral bandwidth allows for faster and easier scanning, but may result in lower resolution and accuracy, especially for samples with overlapping absorption peaks. Therefore, choosing an appropriate spectral bandwidth is important for obtaining reliable and precise results. 681:
incorrectly low absorbance. Any instrument will reach a point where an increase in sample concentration will not result in an increase in the reported absorbance, because the detector is simply responding to the stray light. In practice the concentration of the sample or the optical path length must be adjusted to place the unknown absorbance within a range that is valid for the instrument. Sometimes an empirical calibration function is developed, using known concentrations of the sample, to allow measurements into the region where the instrument is becoming non-linear.
317:. The spectrum alone is not, however, a specific test for any given sample. The nature of the solvent, the pH of the solution, temperature, high electrolyte concentrations, and the presence of interfering substances can influence the absorption spectrum. Experimental variations such as the slit width (effective bandwidth) of the spectrophotometer will also alter the spectrum. To apply UV/Vis spectroscopy to analysis, these variables must be controlled or accounted for in order to identify the substances present. 1044: 133: 3728: 2773: 722:. If UV/Vis spectrophotometry is used in quantitative chemical analysis then the results are additionally affected by uncertainty sources arising from the nature of the compounds and/or solutions that are measured. These include spectral interferences caused by absorption band overlap, fading of the color of the absorbing species (caused by decomposition or reaction) and possible composition mismatch between the sample and the calibration solution. 3752: 36: 698:
test that can be used to test for this effect is to vary the path length of the measurement. In the Beer–Lambert law, varying concentration and path length has an equivalent effect—diluting a solution by a factor of 10 has the same effect as shortening the path length by a factor of 10. If cells of different path lengths are available, testing if this relationship holds true is one way to judge if absorption flattening is occurring.
1184:
microscopic samples but are also able to measure the spectra of larger samples with high spatial resolution. As such, they are used in the forensic laboratory to analyze the dyes and pigments in individual textile fibers, microscopic paint chips and the color of glass fragments. They are also used in materials science and biological research and for determining the energy content of coal and petroleum source rock by measuring the
3764: 3740: 2785: 1098:, which blocks one beam at a time. The detector alternates between measuring the sample beam and the reference beam in synchronism with the chopper. There may also be one or more dark intervals in the chopper cycle. In this case, the measured beam intensities may be corrected by subtracting the intensity measured in the dark interval before the ratio is taken. 294:. The presence of an analyte gives a response assumed to be proportional to the concentration. For accurate results, the instrument's response to the analyte in the unknown should be compared with the response to a standard; this is very similar to the use of calibration curves. The response (e.g., peak height) for a particular concentration is known as the 599:
conditions of a test sample therefore must match reference measurements for conclusions to be valid. Worldwide, pharmacopoeias such as the American (USP) and European (Ph. Eur.) pharmacopeias demand that spectrophotometers perform according to strict regulatory requirements encompassing factors such as
1093:
In a double-beam instrument, the light is split into two beams before it reaches the sample. One beam is used as the reference; the other beam passes through the sample. The reference beam intensity is taken as 100% Transmission (or 0 Absorbance), and the measurement displayed is the ratio of the two
618:
It is important to have a monochromatic source of radiation for the light incident on the sample cell to enhance the linearity of the response. The closer the bandwidth is to be monochromatic (transmitting unit of wavelength) the more linear will be the response. The spectral bandwidth is measured as
276:
states that the absorbance of a solution is directly proportional to the concentration of the absorbing species in the solution and the path length. Thus, for a fixed path length, UV/Vis spectroscopy can be used to determine the concentration of the absorber in a solution. It is necessary to know how
1162:
A complete spectrum of the absorption at all wavelengths of interest can often be produced directly by a more sophisticated spectrophotometer. In simpler instruments the absorption is determined one wavelength at a time and then compiled into a spectrum by the operator. By removing the concentration
634:
of the absorption peak of the sample component, then the measured extinction coefficient will not be accurate. In reference measurements, the instrument bandwidth (bandwidth of the incident light) is kept below the width of the spectral peaks. When a test material is being measured, the bandwidth of
705:
Some solutions, like copper(II) chloride in water, change visually at a certain concentration because of changed conditions around the coloured ion (the divalent copper ion). For copper(II) chloride it means a shift from blue to green, which would mean that monochromatic measurements would deviate
697:
At sufficiently high concentrations, the absorption bands will saturate and show absorption flattening. The absorption peak appears to flatten because close to 100% of the light is already being absorbed. The concentration at which this occurs depends on the particular compound being measured. One
662:
Stray light can cause significant errors in absorbance measurements, especially at high absorbances, because the stray light will be added to the signal detected by the detector, even though it is not part of the actually selected wavelength. The result is that the measured and reported absorbance
529:
The Beer–Lambert law is useful for characterizing many compounds but does not hold as a universal relationship for the concentration and absorption of all substances. A 2nd order polynomial relationship between absorption and concentration is sometimes encountered for very large, complex molecules
1101:
In a single-beam instrument, the cuvette containing only a solvent has to be measured first. Mettler Toledo developed a single beam array spectrophotometer that allows fast and accurate measurements over the UV/VIS range. The light source consists of a Xenon flash lamp for the ultraviolet (UV) as
643:
The extinction coefficient of an analyte in solution changes gradually with wavelength. A peak (a wavelength where the absorbance reaches a maximum) in the absorbance curve vs wavelength, i.e. the UV-VIS spectrum, is where the rate of change of absorbance with wavelength is the lowest. Therefore,
1183:
tube (PMT). As only a single optical path is available, these are single beam instruments. Modern instruments are capable of measuring UV–visible spectra in both reflectance and transmission of micron-scale sampling areas. The advantages of using such instruments is that they are able to measure
680:
Typically a detector used in a UV-VIS spectrophotometer is broadband; it responds to all the light that reaches it. If a significant amount of the light passed through the sample contains wavelengths that have much lower extinction coefficients than the nominal one, the instrument will report an
1188:
reflectance. Microspectrophotometers are used in the semiconductor and micro-optics industries for monitoring the thickness of thin films after they have been deposited. In the semiconductor industry, they are used because the critical dimensions of circuitry is microscopic. A typical test of a
701:
Solutions that are not homogeneous can show deviations from the Beer–Lambert law because of the phenomenon of absorption flattening. This can happen, for instance, where the absorbing substance is located within suspended particles. The deviations will be most noticeable under conditions of low
1193:
of the spectra. In addition, ultraviolet–visible spectrophotometry can be used to determine the thickness, along with the refractive index and extinction coefficient of thin films. A map of the film thickness across the entire wafer can then be generated and used for quality control purposes.
598:
The Beer–Lambert law has implicit assumptions that must be met experimentally for it to apply; otherwise there is a possibility of deviations from the law. For instance, the chemical makeup and physical environment of the sample can alter its extinction coefficient. The chemical and physical
1206:. Illustrative is the conversion of the yellow-orange and blue isomers of mercury dithizonate. This method of analysis relies on the fact that concentration is linearly proportional to concentration. In the same approach allows determination of equilibria between chromophores. 199:. For organic chromophores, four possible types of transitions are assumed: π–π*, n–π*, σ–σ*, and n–σ*. Transition metal complexes are often colored (i.e., absorb visible light) owing to the presence of multiple electronic states associated with incompletely filled d orbitals. 256:
for organic-soluble compounds. (Organic solvents may have significant UV absorption; not all solvents are suitable for use in UV spectroscopy. Ethanol absorbs very weakly at most wavelengths.) Solvent polarity and pH can affect the absorption spectrum of an organic compound.
1634: 658:
Stray light in a UV spectrophotometer is any light that reaches its detector that is not of the wavelength selected by the monochromator. This can be caused, for instance, by scattering of light within the instrument, or by reflections from optical surfaces.
178:
is an analytical instrument that measures the amount of ultraviolet (UV) and visible light that is absorbed by a sample. It is a widely used technique in chemistry, biochemistry, and other fields, to identify and quantify compounds in a variety of samples.
182:
UV-vis spectrophotometers work by passing a beam of light through the sample and measuring the amount of light that is absorbed at each wavelength. The amount of light absorbed is proportional to the concentration of the absorbing compound in the sample
684:
As a rough guide, an instrument with a single monochromator would typically have a stray light level corresponding to about 3 Absorbance Units (AU), which would make measurements above about 2 AU problematic. A more complex instrument with a
1150:
because these are transparent throughout the UV, visible and near infrared regions. Glass and plastic cuvettes are also common, although glass and most plastics absorb in the UV, which limits their usefulness to visible wavelengths.
1659:
Historically, the term "Optical Density" (OD) was used instead of AU. But it is also worth noting that what is usually measured is percent transmission (%T), a linear ratio, which is converted to the logarithm by the instrument for
545:
UV–Vis spectroscopy is also used in the semiconductor industry to measure the thickness and optical properties of thin films on a wafer. UV–Vis spectrometers are used to measure the reflectance of light, and can be analyzed via the
644:
quantitative measurements of a solute are usually conducted, using a wavelength around the absorbance peak, to minimize inaccuracies produced by errors in wavelength, due to the change of extinction coefficient with wavelength.
635:
the incident light should also be sufficiently narrow. Reducing the spectral bandwidth reduces the energy passed to the detector and will, therefore, require a longer measurement time to achieve the same signal to noise ratio.
2215:
Mekhrengin, M.V.; Meshkovskii, I.K.; Tashkinov, V.A.; Guryev, V.I.; Sukhinets, A.V.; Smirnov, D.S. (June 2019). "Multispectral pyrometer for high temperature measurements inside combustion chamber of gas turbine engines".
163:. Being relatively inexpensive and easily implemented, this methodology is widely used in diverse applied and fundamental applications. The only requirement is that the sample absorb in the UV-Vis region, i.e. be a 1141:
can also be used as cuvettes in some instruments. The type of sample container used must allow radiation to pass over the spectral region of interest. The most widely applicable cuvettes are made of high quality
1154:
Specialized instruments have also been made. These include attaching spectrophotometers to telescopes to measure the spectra of astronomical features. UV–visible microspectrophotometers consist of a UV–visible
1094:
beam intensities. Some double-beam instruments have two detectors (photodiodes), and the sample and reference beam are measured at the same time. In other instruments, the two beams pass through a
397: 1189:
semiconductor wafer would entail the acquisition of spectra from many points on a patterned or unpatterned wafer. The thickness of the deposited films may be calculated from the
910: 611:
Spectral bandwidth of a spectrophotometer is the range of wavelengths that the instrument transmits through a sample at a given time. It is determined by the light source, the
1807:
Löper, Philipp; Stuckelberger, Michael; Niesen, Bjoern; Werner, Jérémie; Filipič, Miha; Moon, Soo-Jin; Yum, Jun-Ho; Topič, Marko; De Wolf, Stefaan; Ballif, Christophe (2015).
301:
The wavelengths of absorption peaks can be correlated with the types of bonds in a given molecule and are valuable in determining the functional groups within a molecule. The
915:
The UV–visible spectrophotometer can also be configured to measure reflectance. In this case, the spectrophotometer measures the intensity of light reflected from a sample (
1729: 2123:
Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technology Conference (Cat. No.94CH3424-9)
1950:
Wittung, Pernilla; Kajanus, Johan; Kubista, Mikael; Malmström, Bo G. (19 September 1994). "Absorption flattening in the optical spectra of liposome-entrapped substances".
995: 824: 513: 1088: 960: 789: 436: 2072: 2604: 1135: 933: 852: 762: 588: 568: 460: 1855: 1285: 53: 1584: 478:
or extinction coefficient. This constant is a fundamental molecular property in a given solvent, at a particular temperature and pressure, and has units of
1257:
are other common spectroscopic techniques, usually used to obtain information about the structure of compounds or to identify compounds. Both are forms of
171:. Parameters of interest, besides the wavelength of measurement, are absorbance (A) or transmittance (%T) or reflectance (%R), and its change with time. 1028:, which is continuous from 160 to 2,000 nm; or more recently, light emitting diodes (LED) for the visible wavelengths. The detector is typically a 2277: 100: 1993:
Ansell, S; Tromp, R H; Neilson, G W (20 February 1995). "The solute and aquaion structure in a concentrated aqueous solution of copper(II) chloride".
72: 17: 2823: 261:, for example, increases in absorption maxima and molar extinction coefficient when pH increases from 6 to 13 or when solvent polarity decreases. 79: 1869: 1750:"A comparative study of selected disperse azo dye derivatives based on spectroscopic (FT-IR, NMR and UV–Vis) and nonlinear optical behaviors" 2495: 2121:
Horie, M.; Fujiwara, N.; Kokubo, M.; Kondo, N. (1994). "Spectroscopic thin film thickness measurement system for semiconductor industries".
1209:
From the spectrum of burning gases, it is possible to determine a chemical composition of a fuel, temperature of gases, and air-fuel ratio.
2924: 2428: 2373: 2342: 1171:
UV–visible spectroscopy of microscopic samples is done by integrating an optical microscope with UV–visible optics, white light sources, a
86: 2929: 2337: 1090:
must be measured by removing the sample. This was the earliest design and is still in common use in both teaching and industrial labs.
237:, and biological macromolecules. Spectroscopic analysis is commonly carried out in solutions but solids and gases may also be studied. 2108:
Standard Guide for Microspectrophotometry and Color Measurement in Forensic Paint Analysis, Scientific Working Group-Materials, 1999,
2710: 2528: 2390: 1810:"Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry" 68: 1109:
are most often liquids, although the absorbance of gases and even of solids can also be measured. Samples are typically placed in a
2659: 2478: 1117:. Cuvettes are typically rectangular in shape, commonly with an internal width of 1 cm. (This width becomes the path length, 2907: 2599: 2401: 2322: 2302: 689:
would have a stray light level corresponding to about 6 AU, which would therefore allow measuring a much wider absorbance range.
2951: 2545: 2523: 2270: 320:
The method is most often used in a quantitative way to determine concentrations of an absorbing species in solution, using the
289: 2611: 2533: 1618: 1524: 1464: 1420: 1367: 1333: 2963: 2468: 2413: 1267:– a wavelength where absorption does not change as the reaction proceeds. Important in kinetics measurements as a control. 330: 2816: 2036:
Sooväli, L.; Rõõm, E.-I.; Kütt, A.; et al. (2006). "Uncertainty sources in UV–Vis spectrophotometric measurement".
623: 93: 2695: 2447: 2263: 2138: 1673:"Polynomial Equations based on Bouguer–Lambert and Beer Laws for Deviations from Linearity and Absorption Flattening" 1383: 223: 195:. The absorbed photon excites an electron in the chromophore to higher energy molecular orbitals, giving rise to an 119: 3792: 2700: 2518: 3768: 2715: 2685: 2616: 2550: 2190: 3797: 3647: 2809: 2644: 2435: 2332: 1492: 1245: 1234: 57: 3090: 2844: 2789: 2442: 2347: 619:
the number of wavelengths transmitted at half the maximum intensity of the light leaving the monochromator.
278: 2576: 2423: 2312: 2162:
Sertova, N.; Petkov, I.; Nunzi, J.-M. (June 2000). "Photochromism of mercury(II) dithizonate in solution".
1223: 3367: 2854: 2732: 2571: 2540: 2473: 1399: 1901: 860: 3744: 3293: 3264: 3244: 3197: 2722: 2664: 2513: 2385: 1270: 1749: 1542:
Carroll, Gregory T.; Dowling, Reed C.; Kirschman, David L.; Masthay, Mark B.; Mammana, Angela (2023).
207: 2882: 2748: 2727: 2368: 702:
concentration and high absorbance. The last reference describes a way to correct for this deviation.
547: 302: 268:
also give rise to colours, the colours are often too intense to be used for quantitative measurement.
265: 168: 2490: 3637: 3553: 3192: 1290: 1258: 686: 249: 160: 3575: 3486: 3449: 3333: 3259: 3080: 3063: 3006: 2621: 2317: 1544: 1275: 715: 309:, the wavelength of the most intense UV/Vis absorption, for conjugated organic compounds such as 148: 46: 1016:
to separate the different wavelengths of light, and a detector. The radiation source is often a
277:
quickly the absorbance changes with concentration. This can be taken from references (tables of
3493: 3481: 3372: 3237: 3011: 2877: 2408: 1456: 1190: 3642: 3539: 3524: 3454: 3377: 3209: 3159: 3068: 2993: 2892: 2777: 2649: 2380: 2294: 1883: 1250: 1176: 1110: 1037: 965: 794: 1448: 481: 3632: 3587: 3362: 3182: 3112: 2869: 2849: 2225: 2002: 1924: 1762: 1239: 1218: 1066: 1029: 938: 767: 737: 414: 321: 273: 219: 1163:
dependence, the extinction coefficient (ε) can be determined as a function of wavelength.
191:
Most molecules and ions absorb energy in the ultraviolet or visible range, i.e., they are
8: 3655: 3609: 3534: 3507: 3405: 3387: 3340: 3278: 3174: 3154: 3023: 3018: 2919: 2705: 2418: 2327: 1005: 671: 2229: 2006: 1928: 1766: 474:
of the absorbing species. For each species and wavelength, ε is a constant known as the
252:. The solvents for these determinations are often water for water-soluble compounds, or 3732: 3698: 3560: 3529: 3410: 3352: 3050: 3033: 3028: 2983: 2946: 2936: 2897: 2753: 2690: 2669: 2485: 2463: 2396: 2307: 2241: 2144: 2053: 2018: 1975: 1701: 1565: 1412: 1377: 1280: 1254: 1156: 1120: 1021: 918: 837: 747: 631: 573: 553: 475: 445: 2237: 2175: 1004:
The basic parts of a spectrophotometer are a light source, a holder for the sample, a
3751: 3713: 3678: 3661: 3599: 3517: 3512: 3440: 3425: 3395: 3316: 3283: 3254: 3249: 3224: 3214: 3134: 3122: 3001: 2914: 2654: 2581: 2555: 2245: 2148: 2134: 2022: 1967: 1963: 1830: 1786: 1778: 1705: 1693: 1614: 1569: 1561: 1488: 1460: 1449: 1416: 1363: 1329: 1203: 1106: 731: 719: 523: 282: 245: 231: 2057: 2014: 1979: 626:
achievable is a specification of the UV spectrophotometer, and it characterizes how
3756: 3673: 3328: 3187: 3164: 3117: 3058: 2233: 2171: 2126: 2045: 2010: 1959: 1932: 1822: 1770: 1685: 1557: 1408: 1321: 1264: 241: 234: 227: 156: 1310:
Cole, Kenneth; Levine, Barry S. (2020), Levine, Barry S.; Kerrigan, Sarah (eds.),
935:), and compares it to the intensity of light reflected from a reference material ( 764:), and compares it to the intensity of light before it passes through the sample ( 670:
of the light used for the analysis. The most important factor affecting it is the
3614: 3570: 3565: 3459: 3435: 3269: 3232: 3085: 3075: 2958: 2096:
Forensic Fiber Examination Guidelines, Scientific Working Group-Materials, 1999,
1602: 1325: 1180: 1095: 630:
the incident light can be. If this bandwidth is comparable to (or more than) the
295: 3498: 3476: 3471: 3466: 3421: 3417: 3400: 3357: 3288: 3149: 3144: 3129: 2941: 2859: 1312: 1025: 1009: 535: 2049: 1774: 1689: 3786: 3703: 3592: 3548: 3273: 3107: 3102: 3095: 2973: 2130: 1782: 1697: 1610: 1172: 1060: 1013: 627: 612: 471: 196: 1672: 1043: 3580: 3430: 3345: 3321: 3311: 3303: 3204: 3139: 3038: 2887: 2286: 1834: 1790: 1147: 1143: 1017: 1971: 411:(formally dimensionless but generally reported in absorbance units (AU)), 132: 2978: 653: 539: 531: 192: 164: 152: 2801: 3604: 1033: 1024:, which is continuous over the ultraviolet region (190–400 nm), a 831: 439: 408: 1936: 1826: 1403:, in Lindon, John C.; Tranter, George E.; Koppenaal, David W. (eds.), 3666: 2968: 2833: 1185: 1138: 744:. It measures the intensity of light after passing through a sample ( 305:, for instance, are a set of empirical observations used to predict λ 2214: 1809: 35: 3688: 1755:
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
258: 2109: 2097: 1047:
Simplified schematic of a double beam UV–visible spectrophotometer
3708: 1915:
Berberan-Santos, M. N. (September 1990). "Beer's law revisited".
1114: 253: 1447:
Skoog, Douglas A.; Holler, F. James; Crouch, Stanley R. (2007).
2255: 314: 1949: 1806: 1747:
Cinar, Mehmet; Coruh, Ali; Karabacak, Mehmet (25 March 2014).
1541: 1884:"Persee PG Scientific Inc. – New-UV FAQ: Spectral Band Width" 1405:
Encyclopedia of Spectroscopy and Spectrometry (Third Edition)
1320:, Cham: Springer International Publishing, pp. 127–134, 1228: 666:
The stray light is an important factor, as it determines the
310: 740:
used in ultraviolet–visible spectroscopy is called a UV/Vis
3683: 1455:(6th ed.). Belmont, CA: Thomson Brooks/Cole. pp.  1400:"UV-Visible Absorption Spectroscopy, Organic Applications" 1397:
Edwards, Alison A.; Alexander, Bruce D. (1 January 2017),
215:
UV/Vis can be used to monitor structural changes in DNA.
3693: 288:
A UV/Vis spectrophotometer may be used as a detector for
2120: 2071:
reserved, Mettler-Toledo International Inc. all rights.
2035: 725: 663:
will be lower than the actual absorbance of the sample.
248:, also absorb light in the UV or visible regions of the 2164:
Journal of Photochemistry and Photobiology A: Chemistry
1550:
Journal of Photochemistry and Photobiology A: Chemistry
692: 590:) of a given film across the measured spectral range. 1123: 1069: 968: 941: 921: 863: 840: 830:, and is usually expressed as a percentage (%T). The 797: 770: 750: 576: 556: 484: 448: 417: 333: 226:
determination of diverse analytes or sample, such as
1202:
UV/Vis can be applied to characterize the rate of a
1063:), all of the light passes through the sample cell. 392:{\displaystyle A=\log _{10}(I_{0}/I)=\varepsilon cL} 1746: 60:. Unsourced material may be challenged and removed. 2161: 1992: 1808: 1748: 1671: 1543: 1398: 1311: 1129: 1082: 989: 954: 927: 904: 846: 818: 783: 756: 709: 582: 562: 507: 454: 438:is the intensity of the incident light at a given 430: 391: 2073:"Spectrophotometry Applications and Fundamentals" 1870:"Wavelength Accuracy in UV/VIS Spectrophotometry" 1446: 1286:Ultraviolet–visible spectroscopy of stereoisomers 1231: – Vis spectroscopy with the human eye 1001:, and is usually expressed as a percentage (%R). 3784: 1730:"Limitations and Deviations of Beer–Lambert Law" 1396: 1159:integrated with a UV–visible spectrophotometer. 1914: 1902:"What is Stray light and how it is monitored?" 1601: 167:. Absorption spectroscopy is complementary to 145:ultraviolet–visible (UV–VIS) spectrophotometry 2817: 2271: 1545:"Intrinsic fluorescence of UV-irradiated DNA" 1508:Franca, Adriana S.; Nollet, Leo M.L. (2017). 2343:Vibrational spectroscopy of linear molecules 1802: 1800: 1670:Bozdoğan, Abdürrezzak E. (1 November 2022). 1507: 1407:, Oxford: Academic Press, pp. 511–519, 1360:Spectroscopy: principles and instrumentation 1482: 1059:. In a single beam instrument (such as the 593: 151:or reflectance spectroscopy in part of the 2824: 2810: 2338:Nuclear resonance vibrational spectroscopy 2278: 2264: 1856:"Stray Light and Performance Verification" 1485:Physical Methods for Chemists, 2nd Edition 1309: 1197: 2831: 2711:Inelastic electron tunneling spectroscopy 2391:Resonance-enhanced multiphoton ionization 1815:The Journal of Physical Chemistry Letters 1797: 1166: 281:), or more accurately, determined from a 244:, especially those with a high degree of 218:UV/Vis spectroscopy is routinely used in 120:Learn how and when to remove this message 2479:Extended X-ray absorption fine structure 2188: 1669: 1042: 466:the path length through the sample, and 206: 131: 1313:"Ultraviolet-Visible Spectrophotometry" 14: 3785: 1723: 1721: 1719: 1717: 1715: 1607:Ultraviolet Spectroscopy and UV Lasers 1510:Spectroscopic Methods in Food Analysis 1362:. Hoboken, NJ: John Wiley & Sons. 550:to determine the index of refraction ( 522:are sometimes defined in terms of the 186: 136:Beckman DU640 UV/Vis spectrophotometer 2805: 2259: 1727: 1582: 1522: 1478: 1476: 1442: 1440: 1438: 1357: 1175:, and a sensitive detector such as a 726:Ultraviolet–visible spectrophotometer 606: 3739: 2784: 2070: 1995:Journal of Physics: Condensed Matter 1358:Vitha, Mark F. (2018). "Chapter 2". 1353: 1351: 962:) (such as a white tile). The ratio 718:of the results obtained with UV/Vis 714:The above factors contribute to the 693:Deviations from the Beer–Lambert law 548:Forouhi–Bloomer dispersion equations 58:adding citations to reliable sources 29: 3763: 2038:Accreditation and Quality Assurance 1712: 1451:Principles of Instrumental Analysis 638: 24: 1516: 1473: 1435: 1413:10.1016/b978-0-12-803224-4.00013-3 1051:A spectrophotometer can be either 905:{\displaystyle A=-\log(\%T/100\%)} 896: 882: 570:) and the extinction coefficient ( 526:instead of the base-10 logarithm. 69:"Ultraviolet–visible spectroscopy" 25: 3809: 2696:Deep-level transient spectroscopy 2448:Saturated absorption spectroscopy 2238:10.1016/j.measurement.2019.02.084 1535: 1348: 1318:Principles of Forensic Toxicology 854:, is based on the transmittance: 3762: 3750: 3738: 3727: 3726: 2783: 2772: 2771: 2701:Dual-polarization interferometry 2285: 1605:; Dubinskii, Mark, eds. (2002). 1585:"Derivation of Beer–Lambert Law" 1562:10.1016/j.jphotochem.2022.114484 1523:Metha, Akul (13 December 2011). 600: 34: 18:Ultraviolet-visible spectroscopy 2716:Scanning tunneling spectroscopy 2691:Circular dichroism spectroscopy 2686:Acoustic resonance spectroscopy 2208: 2182: 2155: 2114: 2110:http://www.swgmat.org/paint.htm 2102: 2098:http://www.swgmat.org/fiber.htm 2090: 2064: 2029: 1986: 1943: 1908: 1894: 1876: 1862: 1848: 1740: 1678:Journal of Analytical Chemistry 1663: 1653: 1627: 1595: 1020:filament (300–2500 nm), a 710:Measurement uncertainty sources 202: 45:needs additional citations for 27:Range of spectroscopic analysis 2645:Fourier-transform spectroscopy 2333:Vibrational circular dichroism 1576: 1501: 1390: 1303: 1246:Fourier-transform spectroscopy 1235:Charge modulation spectroscopy 899: 879: 647: 518:The absorbance and extinction 462:is the transmitted intensity, 374: 353: 211:An example of a UV/Vis readout 13: 1: 3091:Interface and colloid science 2845:Glossary of chemical formulae 2443:Cavity ring-down spectroscopy 2348:Thermal infrared spectroscopy 2176:10.1016/s1010-6030(00)00267-7 1917:Journal of Chemical Education 1583:Metha, Akul (22 April 2012). 1382:: CS1 maint: date and year ( 1296: 279:molar extinction coefficients 141:Ultraviolet (UV) spectroscopy 2577:Inelastic neutron scattering 1964:10.1016/0014-5793(94)00912-0 1326:10.1007/978-3-030-42917-1_10 1137:, in the Beer–Lambert law.) 7: 3368:Bioorganometallic chemistry 2855:List of inorganic compounds 2638:Data collection, processing 2514:Photoelectron/photoemission 2189:UC Davis (2 October 2013). 1728:Metha, Akul (14 May 2012). 1212: 706:from the Beer–Lambert law. 10: 3814: 3294:Dynamic covalent chemistry 3265:Enantioselective synthesis 3245:Physical organic chemistry 3198:Organolanthanide chemistry 2723:Photoacoustic spectroscopy 2665:Time-resolved spectroscopy 1271:Near-infrared spectroscopy 1036:, a photodiode array or a 729: 675:level of the monochromator 651: 3722: 3625: 3386: 3302: 3223: 3173: 3049: 2992: 2883:Electroanalytical methods 2868: 2840: 2767: 2749:Astronomical spectroscopy 2741: 2728:Photothermal spectroscopy 2678: 2637: 2630: 2592: 2564: 2506: 2456: 2356: 2293: 2050:10.1007/s00769-006-0124-x 2015:10.1088/0953-8984/7/8/002 1775:10.1016/j.saa.2013.11.106 1690:10.1134/S1061934822110028 1512:. CRC Press. p. 664. 1242:– first UV–Vis instrument 603:and wavelength accuracy. 266:charge transfer complexes 169:fluorescence spectroscopy 3638:Nobel Prize in Chemistry 3554:Supramolecular chemistry 3193:Organometallic chemistry 2131:10.1109/IMTC.1994.352008 1291:Vibrational spectroscopy 1259:vibrational spectroscopy 1224:Benesi–Hildebrand method 594:Practical considerations 250:electromagnetic spectrum 176:UV-vis spectrophotometer 161:electromagnetic spectrum 3793:Absorption spectroscopy 3576:Combinatorial chemistry 3487:Food physical chemistry 3450:Environmental chemistry 3334:Bioorthogonal chemistry 3260:Retrosynthetic analysis 3081:Chemical thermodynamics 3064:Spectroelectrochemistry 3007:Computational chemistry 2733:Pump–probe spectroscopy 2622:Ferromagnetic resonance 2414:Laser-induced breakdown 1276:Rotational spectroscopy 1198:Additional applications 990:{\displaystyle I/I_{o}} 819:{\displaystyle I/I_{o}} 716:measurement uncertainty 155:and the full, adjacent 149:absorption spectroscopy 3648:of element discoveries 3494:Agricultural chemistry 3482:Carbohydrate chemistry 3373:Bioinorganic chemistry 3238:Alkane stereochemistry 3183:Coordination chemistry 3012:Mathematical chemistry 2878:Instrumental chemistry 2429:Glow-discharge optical 2409:Raman optical activity 2323:Rotational–vibrational 1635:"The Beer-Lambert Law" 1167:Microspectrophotometry 1131: 1084: 1048: 991: 956: 929: 906: 848: 820: 785: 758: 584: 564: 509: 508:{\displaystyle 1/M*cm} 456: 432: 393: 212: 137: 3798:Scientific techniques 3643:Timeline of chemistry 3540:Post-mortem chemistry 3525:Clandestine chemistry 3455:Atmospheric chemistry 3378:Biophysical chemistry 3210:Solid-state chemistry 3160:Equilibrium chemistry 3069:Photoelectrochemistry 2650:Hyperspectral imaging 1251:Infrared spectroscopy 1177:charge-coupled device 1132: 1085: 1083:{\displaystyle I_{o}} 1046: 1038:charge-coupled device 992: 957: 955:{\displaystyle I_{o}} 930: 907: 849: 821: 786: 784:{\displaystyle I_{o}} 759: 585: 565: 510: 457: 433: 431:{\displaystyle I_{0}} 394: 303:Woodward–Fieser rules 210: 135: 3633:History of chemistry 3588:Chemical engineering 3363:Bioorganic chemistry 3113:Structural chemistry 2850:List of biomolecules 2402:Coherent anti-Stokes 2357:UV–Vis–NIR "Optical" 2125:. pp. 677–682. 1639:Chemistry LibreTexts 1483:R. S. Drago (1992). 1240:DU spectrophotometer 1219:Applied spectroscopy 1191:interference pattern 1121: 1067: 1030:photomultiplier tube 966: 939: 919: 861: 838: 795: 768: 748: 687:double monochromator 574: 554: 482: 446: 415: 331: 220:analytical chemistry 54:improve this article 3656:The central science 3610:Ceramic engineering 3535:Forensic toxicology 3508:Chemistry education 3406:Radiation chemistry 3388:Interdisciplinarity 3341:Medicinal chemistry 3279:Fullerene chemistry 3155:Microwave chemistry 3024:Molecular mechanics 3019:Molecular modelling 2706:Hadron spectroscopy 2496:Conversion electron 2457:X-ray and Gamma ray 2364:Ultraviolet–visible 2230:2019Meas..139..355M 2007:1995JPCM....7.1513A 1929:1990JChEd..67..757B 1767:2014AcSpA.122..682C 1105:Samples for UV/Vis 1006:diffraction grating 187:Optical transitions 3699:Chemical substance 3561:Chemical synthesis 3530:Forensic chemistry 3411:Actinide chemistry 3353:Clinical chemistry 3034:Molecular geometry 3029:Molecular dynamics 2984:Elemental analysis 2937:Separation process 2754:Force spectroscopy 2679:Measured phenomena 2670:Video spectroscopy 2374:Cold vapour atomic 1734:PharmaXChange.info 1589:PharmaXChange.info 1529:PharmaXChange.info 1487:. W. B. Saunders. 1281:Slope spectroscopy 1255:Raman spectroscopy 1127: 1080: 1049: 1022:deuterium arc lamp 987: 952: 925: 902: 844: 816: 781: 754: 622:The best spectral 607:Spectral bandwidth 580: 560: 505: 476:molar absorptivity 452: 428: 389: 213: 138: 3778: 3777: 3714:Quantum mechanics 3679:Chemical compound 3662:Chemical reaction 3600:Materials science 3518:General chemistry 3513:Amateur chemistry 3441:Photogeochemistry 3426:Stellar chemistry 3396:Nuclear chemistry 3317:Molecular biology 3284:Polymer chemistry 3255:Organic synthesis 3250:Organic reactions 3215:Ceramic chemistry 3205:Cluster chemistry 3135:Chemical kinetics 3123:Molecular physics 3002:Quantum chemistry 2915:Mass spectrometry 2799: 2798: 2763: 2762: 2655:Spectrophotometry 2582:Neutron spin echo 2556:Beta spectroscopy 2469:Energy-dispersive 1937:10.1021/ed067p757 1827:10.1021/jz502471h 1684:(11): 1426–1432. 1620:978-0-8247-0668-5 1466:978-0-495-01201-6 1422:978-0-12-803224-4 1369:978-1-119-43664-5 1335:978-3-030-42917-1 1204:chemical reaction 1130:{\displaystyle L} 1113:cell, known as a 1107:spectrophotometry 928:{\displaystyle I} 847:{\displaystyle A} 757:{\displaystyle I} 742:spectrophotometer 732:Spectrophotometry 720:spectrophotometry 583:{\displaystyle k} 563:{\displaystyle n} 524:natural logarithm 455:{\displaystyle I} 283:calibration curve 242:Organic compounds 235:organic compounds 130: 129: 122: 104: 16:(Redirected from 3805: 3766: 3765: 3754: 3742: 3741: 3730: 3729: 3674:Chemical element 3329:Chemical biology 3188:Magnetochemistry 3165:Mechanochemistry 3118:Chemical physics 3059:Electrochemistry 2964:Characterization 2826: 2819: 2812: 2803: 2802: 2787: 2786: 2775: 2774: 2635: 2634: 2546:phenomenological 2295:Vibrational (IR) 2280: 2273: 2266: 2257: 2256: 2250: 2249: 2212: 2206: 2205: 2203: 2201: 2186: 2180: 2179: 2159: 2153: 2152: 2118: 2112: 2106: 2100: 2094: 2088: 2087: 2085: 2083: 2068: 2062: 2061: 2033: 2027: 2026: 2001:(8): 1513–1524. 1990: 1984: 1983: 1947: 1941: 1940: 1912: 1906: 1905: 1898: 1892: 1891: 1888:www.perseena.com 1880: 1874: 1873: 1866: 1860: 1859: 1852: 1846: 1845: 1843: 1841: 1812: 1804: 1795: 1794: 1752: 1744: 1738: 1737: 1725: 1710: 1709: 1675: 1667: 1661: 1657: 1651: 1650: 1648: 1646: 1641:. 3 October 2013 1631: 1625: 1624: 1603:Misra, Prabhakar 1599: 1593: 1592: 1580: 1574: 1573: 1547: 1539: 1533: 1532: 1520: 1514: 1513: 1505: 1499: 1498: 1480: 1471: 1470: 1454: 1444: 1433: 1432: 1431: 1429: 1402: 1394: 1388: 1387: 1381: 1373: 1355: 1346: 1345: 1344: 1342: 1315: 1307: 1265:Isosbestic point 1136: 1134: 1133: 1128: 1089: 1087: 1086: 1081: 1079: 1078: 996: 994: 993: 988: 986: 985: 976: 961: 959: 958: 953: 951: 950: 934: 932: 931: 926: 911: 909: 908: 903: 892: 853: 851: 850: 845: 825: 823: 822: 817: 815: 814: 805: 790: 788: 787: 782: 780: 779: 763: 761: 760: 755: 639:Wavelength error 589: 587: 586: 581: 569: 567: 566: 561: 542:, for example). 514: 512: 511: 506: 492: 461: 459: 458: 453: 437: 435: 434: 429: 427: 426: 407:is the measured 398: 396: 395: 390: 370: 365: 364: 349: 348: 322:Beer–Lambert law 274:Beer–Lambert law 228:transition metal 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 3813: 3812: 3808: 3807: 3806: 3804: 3803: 3802: 3783: 3782: 3779: 3774: 3718: 3621: 3615:Polymer science 3571:Click chemistry 3566:Green chemistry 3460:Ocean chemistry 3436:Biogeochemistry 3382: 3298: 3270:Total synthesis 3233:Stereochemistry 3219: 3169: 3086:Surface science 3076:Thermochemistry 3045: 2988: 2959:Crystallography 2864: 2836: 2830: 2800: 2795: 2759: 2737: 2674: 2626: 2588: 2560: 2502: 2452: 2352: 2313:Resonance Raman 2289: 2284: 2254: 2253: 2213: 2209: 2199: 2197: 2187: 2183: 2160: 2156: 2141: 2119: 2115: 2107: 2103: 2095: 2091: 2081: 2079: 2069: 2065: 2034: 2030: 1991: 1987: 1948: 1944: 1913: 1909: 1904:. 12 June 2015. 1900: 1899: 1895: 1882: 1881: 1877: 1868: 1867: 1863: 1854: 1853: 1849: 1839: 1837: 1805: 1798: 1745: 1741: 1726: 1713: 1668: 1664: 1658: 1654: 1644: 1642: 1633: 1632: 1628: 1621: 1600: 1596: 1581: 1577: 1540: 1536: 1521: 1517: 1506: 1502: 1495: 1481: 1474: 1467: 1445: 1436: 1427: 1425: 1423: 1395: 1391: 1375: 1374: 1370: 1356: 1349: 1340: 1338: 1336: 1308: 1304: 1299: 1215: 1200: 1181:photomultiplier 1169: 1122: 1119: 1118: 1074: 1070: 1068: 1065: 1064: 981: 977: 972: 967: 964: 963: 946: 942: 940: 937: 936: 920: 917: 916: 888: 862: 859: 858: 839: 836: 835: 810: 806: 801: 796: 793: 792: 775: 771: 769: 766: 765: 749: 746: 745: 734: 728: 712: 695: 656: 650: 641: 609: 596: 575: 572: 571: 555: 552: 551: 488: 483: 480: 479: 447: 444: 443: 422: 418: 416: 413: 412: 366: 360: 356: 344: 340: 332: 329: 328: 308: 296:response factor 205: 189: 159:regions of the 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 15: 12: 11: 5: 3811: 3801: 3800: 3795: 3776: 3775: 3773: 3772: 3760: 3748: 3736: 3723: 3720: 3719: 3717: 3716: 3711: 3706: 3701: 3696: 3691: 3686: 3681: 3676: 3671: 3670: 3669: 3659: 3652: 3651: 3650: 3640: 3635: 3629: 3627: 3623: 3622: 3620: 3619: 3618: 3617: 3612: 3607: 3597: 3596: 3595: 3585: 3584: 3583: 3578: 3573: 3568: 3558: 3557: 3556: 3545: 3544: 3543: 3542: 3537: 3527: 3522: 3521: 3520: 3515: 3504: 3503: 3502: 3501: 3499:Soil chemistry 3491: 3490: 3489: 3484: 3477:Food chemistry 3474: 3472:Carbochemistry 3469: 3467:Clay chemistry 3464: 3463: 3462: 3457: 3446: 3445: 3444: 3443: 3438: 3428: 3422:Astrochemistry 3418:Cosmochemistry 3415: 3414: 3413: 3408: 3403: 3401:Radiochemistry 3392: 3390: 3384: 3383: 3381: 3380: 3375: 3370: 3365: 3360: 3358:Neurochemistry 3355: 3350: 3349: 3348: 3338: 3337: 3336: 3326: 3325: 3324: 3319: 3308: 3306: 3300: 3299: 3297: 3296: 3291: 3289:Petrochemistry 3286: 3281: 3276: 3267: 3262: 3257: 3252: 3247: 3242: 3241: 3240: 3229: 3227: 3221: 3220: 3218: 3217: 3212: 3207: 3202: 3201: 3200: 3190: 3185: 3179: 3177: 3171: 3170: 3168: 3167: 3162: 3157: 3152: 3150:Spin chemistry 3147: 3145:Photochemistry 3142: 3137: 3132: 3130:Femtochemistry 3127: 3126: 3125: 3115: 3110: 3105: 3100: 3099: 3098: 3088: 3083: 3078: 3073: 3072: 3071: 3066: 3055: 3053: 3047: 3046: 3044: 3043: 3042: 3041: 3031: 3026: 3021: 3016: 3015: 3014: 3004: 2998: 2996: 2990: 2989: 2987: 2986: 2981: 2976: 2971: 2966: 2961: 2956: 2955: 2954: 2949: 2942:Chromatography 2939: 2934: 2933: 2932: 2927: 2922: 2912: 2911: 2910: 2905: 2900: 2895: 2885: 2880: 2874: 2872: 2866: 2865: 2863: 2862: 2860:Periodic table 2857: 2852: 2847: 2841: 2838: 2837: 2829: 2828: 2821: 2814: 2806: 2797: 2796: 2794: 2793: 2781: 2768: 2765: 2764: 2761: 2760: 2758: 2757: 2751: 2745: 2743: 2739: 2738: 2736: 2735: 2730: 2725: 2720: 2719: 2718: 2708: 2703: 2698: 2693: 2688: 2682: 2680: 2676: 2675: 2673: 2672: 2667: 2662: 2657: 2652: 2647: 2641: 2639: 2632: 2628: 2627: 2625: 2624: 2619: 2614: 2609: 2608: 2607: 2596: 2594: 2590: 2589: 2587: 2586: 2585: 2584: 2574: 2568: 2566: 2562: 2561: 2559: 2558: 2553: 2548: 2543: 2538: 2537: 2536: 2531: 2529:Angle-resolved 2526: 2521: 2510: 2508: 2504: 2503: 2501: 2500: 2499: 2498: 2488: 2483: 2482: 2481: 2476: 2471: 2460: 2458: 2454: 2453: 2451: 2450: 2445: 2440: 2439: 2438: 2433: 2432: 2431: 2416: 2411: 2406: 2405: 2404: 2394: 2388: 2383: 2378: 2377: 2376: 2366: 2360: 2358: 2354: 2353: 2351: 2350: 2345: 2340: 2335: 2330: 2325: 2320: 2315: 2310: 2305: 2299: 2297: 2291: 2290: 2283: 2282: 2275: 2268: 2260: 2252: 2251: 2207: 2191:"The Rate Law" 2181: 2170:(3): 163–168. 2154: 2139: 2113: 2101: 2089: 2063: 2044:(5): 246–255. 2028: 1985: 1942: 1907: 1893: 1875: 1861: 1847: 1796: 1739: 1711: 1662: 1652: 1626: 1619: 1594: 1575: 1534: 1515: 1500: 1493: 1472: 1465: 1434: 1421: 1389: 1368: 1347: 1334: 1301: 1300: 1298: 1295: 1294: 1293: 1288: 1283: 1278: 1273: 1268: 1262: 1248: 1243: 1237: 1232: 1226: 1221: 1214: 1211: 1199: 1196: 1168: 1165: 1126: 1077: 1073: 1026:xenon arc lamp 997:is called the 984: 980: 975: 971: 949: 945: 924: 913: 912: 901: 898: 895: 891: 887: 884: 881: 878: 875: 872: 869: 866: 843: 826:is called the 813: 809: 804: 800: 778: 774: 753: 727: 724: 711: 708: 694: 691: 649: 646: 640: 637: 608: 605: 595: 592: 579: 559: 536:xylenol orange 504: 501: 498: 495: 491: 487: 451: 425: 421: 401: 400: 388: 385: 382: 379: 376: 373: 369: 363: 359: 355: 352: 347: 343: 339: 336: 306: 270: 269: 262: 204: 201: 188: 185: 128: 127: 42: 40: 33: 26: 9: 6: 4: 3: 2: 3810: 3799: 3796: 3794: 3791: 3790: 3788: 3781: 3771: 3770: 3761: 3759: 3758: 3753: 3749: 3747: 3746: 3737: 3735: 3734: 3725: 3724: 3721: 3715: 3712: 3710: 3707: 3705: 3704:Chemical bond 3702: 3700: 3697: 3695: 3692: 3690: 3687: 3685: 3682: 3680: 3677: 3675: 3672: 3668: 3665: 3664: 3663: 3660: 3657: 3653: 3649: 3646: 3645: 3644: 3641: 3639: 3636: 3634: 3631: 3630: 3628: 3624: 3616: 3613: 3611: 3608: 3606: 3603: 3602: 3601: 3598: 3594: 3593:Stoichiometry 3591: 3590: 3589: 3586: 3582: 3579: 3577: 3574: 3572: 3569: 3567: 3564: 3563: 3562: 3559: 3555: 3552: 3551: 3550: 3549:Nanochemistry 3547: 3546: 3541: 3538: 3536: 3533: 3532: 3531: 3528: 3526: 3523: 3519: 3516: 3514: 3511: 3510: 3509: 3506: 3505: 3500: 3497: 3496: 3495: 3492: 3488: 3485: 3483: 3480: 3479: 3478: 3475: 3473: 3470: 3468: 3465: 3461: 3458: 3456: 3453: 3452: 3451: 3448: 3447: 3442: 3439: 3437: 3434: 3433: 3432: 3429: 3427: 3423: 3419: 3416: 3412: 3409: 3407: 3404: 3402: 3399: 3398: 3397: 3394: 3393: 3391: 3389: 3385: 3379: 3376: 3374: 3371: 3369: 3366: 3364: 3361: 3359: 3356: 3354: 3351: 3347: 3344: 3343: 3342: 3339: 3335: 3332: 3331: 3330: 3327: 3323: 3320: 3318: 3315: 3314: 3313: 3310: 3309: 3307: 3305: 3301: 3295: 3292: 3290: 3287: 3285: 3282: 3280: 3277: 3275: 3274:Semisynthesis 3271: 3268: 3266: 3263: 3261: 3258: 3256: 3253: 3251: 3248: 3246: 3243: 3239: 3236: 3235: 3234: 3231: 3230: 3228: 3226: 3222: 3216: 3213: 3211: 3208: 3206: 3203: 3199: 3196: 3195: 3194: 3191: 3189: 3186: 3184: 3181: 3180: 3178: 3176: 3172: 3166: 3163: 3161: 3158: 3156: 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3136: 3133: 3131: 3128: 3124: 3121: 3120: 3119: 3116: 3114: 3111: 3109: 3108:Sonochemistry 3106: 3104: 3103:Cryochemistry 3101: 3097: 3096:Micromeritics 3094: 3093: 3092: 3089: 3087: 3084: 3082: 3079: 3077: 3074: 3070: 3067: 3065: 3062: 3061: 3060: 3057: 3056: 3054: 3052: 3048: 3040: 3037: 3036: 3035: 3032: 3030: 3027: 3025: 3022: 3020: 3017: 3013: 3010: 3009: 3008: 3005: 3003: 3000: 2999: 2997: 2995: 2991: 2985: 2982: 2980: 2977: 2975: 2974:Wet chemistry 2972: 2970: 2967: 2965: 2962: 2960: 2957: 2953: 2950: 2948: 2945: 2944: 2943: 2940: 2938: 2935: 2931: 2928: 2926: 2923: 2921: 2918: 2917: 2916: 2913: 2909: 2906: 2904: 2901: 2899: 2896: 2894: 2891: 2890: 2889: 2886: 2884: 2881: 2879: 2876: 2875: 2873: 2871: 2867: 2861: 2858: 2856: 2853: 2851: 2848: 2846: 2843: 2842: 2839: 2835: 2827: 2822: 2820: 2815: 2813: 2808: 2807: 2804: 2792: 2791: 2782: 2780: 2779: 2770: 2769: 2766: 2755: 2752: 2750: 2747: 2746: 2744: 2740: 2734: 2731: 2729: 2726: 2724: 2721: 2717: 2714: 2713: 2712: 2709: 2707: 2704: 2702: 2699: 2697: 2694: 2692: 2689: 2687: 2684: 2683: 2681: 2677: 2671: 2668: 2666: 2663: 2661: 2658: 2656: 2653: 2651: 2648: 2646: 2643: 2642: 2640: 2636: 2633: 2629: 2623: 2620: 2618: 2615: 2613: 2610: 2606: 2603: 2602: 2601: 2598: 2597: 2595: 2591: 2583: 2580: 2579: 2578: 2575: 2573: 2570: 2569: 2567: 2563: 2557: 2554: 2552: 2549: 2547: 2544: 2542: 2539: 2535: 2532: 2530: 2527: 2525: 2522: 2520: 2517: 2516: 2515: 2512: 2511: 2509: 2505: 2497: 2494: 2493: 2492: 2489: 2487: 2484: 2480: 2477: 2475: 2472: 2470: 2467: 2466: 2465: 2462: 2461: 2459: 2455: 2449: 2446: 2444: 2441: 2437: 2434: 2430: 2427: 2426: 2425: 2422: 2421: 2420: 2417: 2415: 2412: 2410: 2407: 2403: 2400: 2399: 2398: 2395: 2392: 2389: 2387: 2386:Near-infrared 2384: 2382: 2379: 2375: 2372: 2371: 2370: 2367: 2365: 2362: 2361: 2359: 2355: 2349: 2346: 2344: 2341: 2339: 2336: 2334: 2331: 2329: 2326: 2324: 2321: 2319: 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2300: 2298: 2296: 2292: 2288: 2281: 2276: 2274: 2269: 2267: 2262: 2261: 2258: 2247: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2211: 2196: 2192: 2185: 2177: 2173: 2169: 2165: 2158: 2150: 2146: 2142: 2140:0-7803-1880-3 2136: 2132: 2128: 2124: 2117: 2111: 2105: 2099: 2093: 2078: 2074: 2067: 2059: 2055: 2051: 2047: 2043: 2039: 2032: 2024: 2020: 2016: 2012: 2008: 2004: 2000: 1996: 1989: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1953: 1946: 1938: 1934: 1930: 1926: 1922: 1918: 1911: 1903: 1897: 1889: 1885: 1879: 1871: 1865: 1857: 1851: 1836: 1832: 1828: 1824: 1820: 1816: 1811: 1803: 1801: 1792: 1788: 1784: 1780: 1776: 1772: 1768: 1764: 1760: 1756: 1751: 1743: 1735: 1731: 1724: 1722: 1720: 1718: 1716: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1679: 1674: 1666: 1660:presentation. 1656: 1640: 1636: 1630: 1622: 1616: 1612: 1611:Marcel Dekker 1608: 1604: 1598: 1590: 1586: 1579: 1571: 1567: 1563: 1559: 1555: 1551: 1546: 1538: 1530: 1526: 1519: 1511: 1504: 1496: 1490: 1486: 1479: 1477: 1468: 1462: 1458: 1453: 1452: 1443: 1441: 1439: 1424: 1418: 1414: 1410: 1406: 1401: 1393: 1385: 1379: 1371: 1365: 1361: 1354: 1352: 1337: 1331: 1327: 1323: 1319: 1314: 1306: 1302: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1272: 1269: 1266: 1263: 1260: 1256: 1252: 1249: 1247: 1244: 1241: 1238: 1236: 1233: 1230: 1227: 1225: 1222: 1220: 1217: 1216: 1210: 1207: 1205: 1195: 1192: 1187: 1182: 1178: 1174: 1173:monochromator 1164: 1160: 1158: 1152: 1149: 1145: 1140: 1124: 1116: 1112: 1108: 1103: 1099: 1097: 1091: 1075: 1071: 1062: 1061:Spectronic 20 1058: 1054: 1045: 1041: 1039: 1035: 1031: 1027: 1023: 1019: 1015: 1014:monochromator 1011: 1007: 1002: 1000: 982: 978: 973: 969: 947: 943: 922: 893: 889: 885: 876: 873: 870: 867: 864: 857: 856: 855: 841: 833: 829: 828:transmittance 811: 807: 802: 798: 791:). The ratio 776: 772: 751: 743: 739: 733: 723: 721: 717: 707: 703: 699: 690: 688: 682: 678: 676: 674: 669: 664: 660: 655: 645: 636: 633: 629: 628:monochromatic 625: 620: 616: 614: 613:monochromator 604: 602: 591: 577: 557: 549: 543: 541: 537: 533: 527: 525: 521: 516: 502: 499: 496: 493: 489: 485: 477: 473: 472:concentration 469: 465: 449: 441: 423: 419: 410: 406: 386: 383: 380: 377: 371: 367: 361: 357: 350: 345: 341: 337: 334: 327: 326: 325: 323: 318: 316: 312: 304: 299: 297: 293: 292: 286: 284: 280: 275: 267: 263: 260: 255: 251: 247: 243: 240: 239: 238: 236: 233: 230:ions, highly 229: 225: 221: 216: 209: 200: 198: 197:excited state 194: 184: 180: 177: 172: 170: 166: 162: 158: 154: 150: 146: 142: 134: 124: 121: 113: 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: –  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 3780: 3767: 3755: 3743: 3731: 3581:Biosynthesis 3431:Geochemistry 3346:Pharmacology 3322:Cell biology 3312:Biochemistry 3140:Spectroscopy 3039:VSEPR theory 2902: 2888:Spectroscopy 2832:Branches of 2788: 2776: 2756:(a misnomer) 2742:Applications 2660:Time-stretch 2551:paramagnetic 2369:Fluorescence 2363: 2287:Spectroscopy 2221: 2217: 2210: 2198:. Retrieved 2194: 2184: 2167: 2163: 2157: 2122: 2116: 2104: 2092: 2080:. Retrieved 2076: 2066: 2041: 2037: 2031: 1998: 1994: 1988: 1958:(1): 37–40. 1955: 1952:FEBS Letters 1951: 1945: 1920: 1916: 1910: 1896: 1887: 1878: 1864: 1850: 1838:. Retrieved 1821:(1): 66–71. 1818: 1814: 1758: 1754: 1742: 1733: 1681: 1677: 1665: 1655: 1643:. Retrieved 1638: 1629: 1609:. New York: 1606: 1597: 1588: 1578: 1553: 1549: 1537: 1528: 1518: 1509: 1503: 1484: 1450: 1426:, retrieved 1404: 1392: 1359: 1339:, retrieved 1317: 1305: 1208: 1201: 1170: 1161: 1153: 1148:quartz glass 1144:fused silica 1104: 1100: 1096:beam chopper 1092: 1056: 1052: 1050: 1003: 998: 914: 827: 741: 735: 713: 704: 700: 696: 683: 679: 672: 667: 665: 661: 657: 642: 621: 617: 610: 597: 544: 532:organic dyes 528: 519: 517: 467: 463: 404: 402: 319: 300: 290: 287: 271: 224:quantitative 217: 214: 203:Applications 193:chromophores 190: 181: 175: 173: 144: 140: 139: 116: 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 3769:WikiProject 2994:Theoretical 2979:Calorimetry 2328:Vibrational 2224:: 355–360. 2218:Measurement 2200:11 November 1840:16 November 1761:: 682–689. 1525:"Principle" 1111:transparent 1057:double beam 1053:single beam 999:reflectance 673:stray light 654:Stray light 648:Stray light 601:stray light 540:neutral red 246:conjugation 165:chromophore 153:ultraviolet 3787:Categories 3605:Metallurgy 3304:Biological 2870:Analytical 2534:Two-photon 2436:absorption 2318:Rotational 2077:www.mt.com 1923:(9): 757. 1645:19 October 1556:: 114484. 1494:0030751764 1428:19 October 1341:19 October 1297:References 1157:microscope 1139:Test tubes 1034:photodiode 832:absorbance 738:instrument 730:See also: 652:See also: 440:wavelength 409:absorbance 232:conjugated 147:refers to 110:April 2018 80:newspapers 3667:Catalysis 3175:Inorganic 2969:Titration 2834:chemistry 2612:Terahertz 2593:Radiowave 2491:Mössbauer 2246:116260472 2149:110637259 2023:250898349 1783:1386-1425 1706:253463022 1698:1608-3199 1570:254622477 1378:cite book 1186:vitrinite 1179:(CCD) or 897:% 883:% 877:⁡ 871:− 624:bandwidth 497:∗ 381:ε 351:⁡ 3733:Category 3689:Molecule 3626:See also 3051:Physical 2778:Category 2507:Electron 2474:Emission 2424:emission 2381:Vibronic 2195:ChemWiki 2058:94520012 1980:11419856 1835:26263093 1791:24345608 1213:See also 1018:tungsten 530:such as 259:Tyrosine 222:for the 3745:Commons 3709:Alchemy 3225:Organic 2790:Commons 2617:ESR/EPR 2565:Nucleon 2393:(REMPI) 2226:Bibcode 2082:10 July 2003:Bibcode 1972:7925937 1925:Bibcode 1763:Bibcode 1115:cuvette 315:ketones 254:ethanol 157:visible 94:scholar 3757:Portal 2903:UV-Vis 2631:Others 2419:Atomic 2244:  2147:  2137:  2056:  2021:  1978:  1970:  1833:  1789:  1781:  1704:  1696:  1617:  1568:  1491:  1463:  1459:–173. 1419:  1366:  1332:  668:purity 403:where 311:dienes 264:While 96:  89:  82:  75:  67:  2930:MALDI 2898:Raman 2572:Alpha 2541:Auger 2519:X-ray 2486:Gamma 2464:X-ray 2397:Raman 2308:Raman 2303:FT-IR 2242:S2CID 2145:S2CID 2054:S2CID 2019:S2CID 1976:S2CID 1702:S2CID 1566:S2CID 1229:Color 1012:as a 1010:prism 1008:or a 632:width 101:JSTOR 87:books 3684:Atom 2952:HPLC 2202:2014 2135:ISBN 2084:2018 1968:PMID 1842:2021 1831:PMID 1787:PMID 1779:ISSN 1694:ISSN 1647:2023 1615:ISBN 1489:ISBN 1461:ISBN 1430:2023 1417:ISBN 1384:link 1364:ISBN 1343:2023 1330:ISBN 1253:and 1032:, a 736:The 470:the 313:and 291:HPLC 272:The 73:news 3694:Ion 2925:ICP 2908:NMR 2600:NMR 2234:doi 2222:139 2172:doi 2168:134 2127:doi 2046:doi 2011:doi 1960:doi 1956:352 1933:doi 1823:doi 1771:doi 1759:122 1686:doi 1558:doi 1554:437 1457:169 1409:doi 1322:doi 1146:or 1055:or 894:100 874:log 538:or 342:log 307:max 143:or 56:by 3789:: 3424:/ 3420:/ 3272:/ 2947:GC 2920:EI 2893:IR 2605:2D 2524:UV 2240:. 2232:. 2220:. 2193:. 2166:. 2143:. 2133:. 2075:. 2052:. 2042:11 2040:. 2017:. 2009:. 1997:. 1974:. 1966:. 1954:. 1931:. 1921:67 1919:. 1886:. 1829:. 1817:. 1813:. 1799:^ 1785:. 1777:. 1769:. 1757:. 1753:. 1732:. 1714:^ 1700:. 1692:. 1682:77 1680:. 1676:. 1637:. 1613:. 1587:. 1564:. 1552:. 1548:. 1527:. 1475:^ 1437:^ 1415:, 1380:}} 1376:{{ 1350:^ 1328:, 1316:, 834:, 677:. 515:. 442:, 346:10 324:: 298:. 285:. 174:A 3658:" 3654:" 2825:e 2818:t 2811:v 2279:e 2272:t 2265:v 2248:. 2236:: 2228:: 2204:. 2178:. 2174:: 2151:. 2129:: 2086:. 2060:. 2048:: 2025:. 2013:: 2005:: 1999:7 1982:. 1962:: 1939:. 1935:: 1927:: 1890:. 1872:. 1858:. 1844:. 1825:: 1819:6 1793:. 1773:: 1765:: 1736:. 1708:. 1688:: 1649:. 1623:. 1591:. 1572:. 1560:: 1531:. 1497:. 1469:. 1411:: 1386:) 1372:. 1324:: 1261:. 1125:L 1076:o 1072:I 983:o 979:I 974:/ 970:I 948:o 944:I 923:I 900:) 890:/ 886:T 880:( 868:= 865:A 842:A 812:o 808:I 803:/ 799:I 777:o 773:I 752:I 578:k 558:n 534:( 520:ε 503:m 500:c 494:M 490:/ 486:1 468:c 464:L 450:I 424:0 420:I 405:A 399:, 387:L 384:c 378:= 375:) 372:I 368:/ 362:0 358:I 354:( 338:= 335:A 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 20:)

Index

Ultraviolet-visible spectroscopy

verification
improve this article
adding citations to reliable sources
"Ultraviolet–visible spectroscopy"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

absorption spectroscopy
ultraviolet
visible
electromagnetic spectrum
chromophore
fluorescence spectroscopy
chromophores
excited state

analytical chemistry
quantitative
transition metal
conjugated
organic compounds
Organic compounds
conjugation
electromagnetic spectrum

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.