Knowledge

Ultraviolet–visible spectroscopy

Source 📝

197: 1091:
well as for the visible (VIS) and near-infrared wavelength regions covering a spectral range from 190 up to 1100 nm. The lamp flashes are focused on a glass fiber which drives the beam of light onto a cuvette containing the sample solution. The beam passes through the sample and specific wavelengths are absorbed by the sample components. The remaining light is collected after the cuvette by a glass fiber and driven into a spectrograph. The spectrograph consists of a diffraction grating that separates the light into the different wavelengths, and a CCD sensor to record the data, respectively. The whole spectrum is thus simultaneously measured, allowing for fast recording.
1029:(CCD). Single photodiode detectors and photomultiplier tubes are used with scanning monochromators, which filter the light so that only light of a single wavelength reaches the detector at one time. The scanning monochromator moves the diffraction grating to "step-through" each wavelength so that its intensity may be measured as a function of wavelength. Fixed monochromators are used with CCDs and photodiode arrays. As both of these devices consist of many detectors grouped into one or two dimensional arrays, they are able to collect light of different wavelengths on different pixels or groups of pixels simultaneously. 604:, its physical slit-width and optical dispersion and the detector of the spectrophotometer. The spectral bandwidth affects the resolution and accuracy of the measurement. A narrower spectral bandwidth provides higher resolution and accuracy, but also requires more time and energy to scan the entire spectrum. A wider spectral bandwidth allows for faster and easier scanning, but may result in lower resolution and accuracy, especially for samples with overlapping absorption peaks. Therefore, choosing an appropriate spectral bandwidth is important for obtaining reliable and precise results. 670:
incorrectly low absorbance. Any instrument will reach a point where an increase in sample concentration will not result in an increase in the reported absorbance, because the detector is simply responding to the stray light. In practice the concentration of the sample or the optical path length must be adjusted to place the unknown absorbance within a range that is valid for the instrument. Sometimes an empirical calibration function is developed, using known concentrations of the sample, to allow measurements into the region where the instrument is becoming non-linear.
306:. The spectrum alone is not, however, a specific test for any given sample. The nature of the solvent, the pH of the solution, temperature, high electrolyte concentrations, and the presence of interfering substances can influence the absorption spectrum. Experimental variations such as the slit width (effective bandwidth) of the spectrophotometer will also alter the spectrum. To apply UV/Vis spectroscopy to analysis, these variables must be controlled or accounted for in order to identify the substances present. 1033: 122: 3717: 2762: 711:. If UV/Vis spectrophotometry is used in quantitative chemical analysis then the results are additionally affected by uncertainty sources arising from the nature of the compounds and/or solutions that are measured. These include spectral interferences caused by absorption band overlap, fading of the color of the absorbing species (caused by decomposition or reaction) and possible composition mismatch between the sample and the calibration solution. 3741: 25: 687:
test that can be used to test for this effect is to vary the path length of the measurement. In the Beer–Lambert law, varying concentration and path length has an equivalent effect—diluting a solution by a factor of 10 has the same effect as shortening the path length by a factor of 10. If cells of different path lengths are available, testing if this relationship holds true is one way to judge if absorption flattening is occurring.
1173:
microscopic samples but are also able to measure the spectra of larger samples with high spatial resolution. As such, they are used in the forensic laboratory to analyze the dyes and pigments in individual textile fibers, microscopic paint chips and the color of glass fragments. They are also used in materials science and biological research and for determining the energy content of coal and petroleum source rock by measuring the
3753: 3729: 2774: 1087:, which blocks one beam at a time. The detector alternates between measuring the sample beam and the reference beam in synchronism with the chopper. There may also be one or more dark intervals in the chopper cycle. In this case, the measured beam intensities may be corrected by subtracting the intensity measured in the dark interval before the ratio is taken. 283:. The presence of an analyte gives a response assumed to be proportional to the concentration. For accurate results, the instrument's response to the analyte in the unknown should be compared with the response to a standard; this is very similar to the use of calibration curves. The response (e.g., peak height) for a particular concentration is known as the 588:
conditions of a test sample therefore must match reference measurements for conclusions to be valid. Worldwide, pharmacopoeias such as the American (USP) and European (Ph. Eur.) pharmacopeias demand that spectrophotometers perform according to strict regulatory requirements encompassing factors such as
1082:
In a double-beam instrument, the light is split into two beams before it reaches the sample. One beam is used as the reference; the other beam passes through the sample. The reference beam intensity is taken as 100% Transmission (or 0 Absorbance), and the measurement displayed is the ratio of the two
607:
It is important to have a monochromatic source of radiation for the light incident on the sample cell to enhance the linearity of the response. The closer the bandwidth is to be monochromatic (transmitting unit of wavelength) the more linear will be the response. The spectral bandwidth is measured as
265:
states that the absorbance of a solution is directly proportional to the concentration of the absorbing species in the solution and the path length. Thus, for a fixed path length, UV/Vis spectroscopy can be used to determine the concentration of the absorber in a solution. It is necessary to know how
1151:
A complete spectrum of the absorption at all wavelengths of interest can often be produced directly by a more sophisticated spectrophotometer. In simpler instruments the absorption is determined one wavelength at a time and then compiled into a spectrum by the operator. By removing the concentration
623:
of the absorption peak of the sample component, then the measured extinction coefficient will not be accurate. In reference measurements, the instrument bandwidth (bandwidth of the incident light) is kept below the width of the spectral peaks. When a test material is being measured, the bandwidth of
694:
Some solutions, like copper(II) chloride in water, change visually at a certain concentration because of changed conditions around the coloured ion (the divalent copper ion). For copper(II) chloride it means a shift from blue to green, which would mean that monochromatic measurements would deviate
686:
At sufficiently high concentrations, the absorption bands will saturate and show absorption flattening. The absorption peak appears to flatten because close to 100% of the light is already being absorbed. The concentration at which this occurs depends on the particular compound being measured. One
651:
Stray light can cause significant errors in absorbance measurements, especially at high absorbances, because the stray light will be added to the signal detected by the detector, even though it is not part of the actually selected wavelength. The result is that the measured and reported absorbance
518:
The Beer–Lambert law is useful for characterizing many compounds but does not hold as a universal relationship for the concentration and absorption of all substances. A 2nd order polynomial relationship between absorption and concentration is sometimes encountered for very large, complex molecules
1090:
In a single-beam instrument, the cuvette containing only a solvent has to be measured first. Mettler Toledo developed a single beam array spectrophotometer that allows fast and accurate measurements over the UV/VIS range. The light source consists of a Xenon flash lamp for the ultraviolet (UV) as
632:
The extinction coefficient of an analyte in solution changes gradually with wavelength. A peak (a wavelength where the absorbance reaches a maximum) in the absorbance curve vs wavelength, i.e. the UV-VIS spectrum, is where the rate of change of absorbance with wavelength is the lowest. Therefore,
1172:
tube (PMT). As only a single optical path is available, these are single beam instruments. Modern instruments are capable of measuring UV–visible spectra in both reflectance and transmission of micron-scale sampling areas. The advantages of using such instruments is that they are able to measure
669:
Typically a detector used in a UV-VIS spectrophotometer is broadband; it responds to all the light that reaches it. If a significant amount of the light passed through the sample contains wavelengths that have much lower extinction coefficients than the nominal one, the instrument will report an
1177:
reflectance. Microspectrophotometers are used in the semiconductor and micro-optics industries for monitoring the thickness of thin films after they have been deposited. In the semiconductor industry, they are used because the critical dimensions of circuitry is microscopic. A typical test of a
690:
Solutions that are not homogeneous can show deviations from the Beer–Lambert law because of the phenomenon of absorption flattening. This can happen, for instance, where the absorbing substance is located within suspended particles. The deviations will be most noticeable under conditions of low
1182:
of the spectra. In addition, ultraviolet–visible spectrophotometry can be used to determine the thickness, along with the refractive index and extinction coefficient of thin films. A map of the film thickness across the entire wafer can then be generated and used for quality control purposes.
587:
The Beer–Lambert law has implicit assumptions that must be met experimentally for it to apply; otherwise there is a possibility of deviations from the law. For instance, the chemical makeup and physical environment of the sample can alter its extinction coefficient. The chemical and physical
1195:. Illustrative is the conversion of the yellow-orange and blue isomers of mercury dithizonate. This method of analysis relies on the fact that concentration is linearly proportional to concentration. In the same approach allows determination of equilibria between chromophores. 188:. For organic chromophores, four possible types of transitions are assumed: π–π*, n–π*, σ–σ*, and n–σ*. Transition metal complexes are often colored (i.e., absorb visible light) owing to the presence of multiple electronic states associated with incompletely filled d orbitals. 245:
for organic-soluble compounds. (Organic solvents may have significant UV absorption; not all solvents are suitable for use in UV spectroscopy. Ethanol absorbs very weakly at most wavelengths.) Solvent polarity and pH can affect the absorption spectrum of an organic compound.
1623: 647:
Stray light in a UV spectrophotometer is any light that reaches its detector that is not of the wavelength selected by the monochromator. This can be caused, for instance, by scattering of light within the instrument, or by reflections from optical surfaces.
167:
is an analytical instrument that measures the amount of ultraviolet (UV) and visible light that is absorbed by a sample. It is a widely used technique in chemistry, biochemistry, and other fields, to identify and quantify compounds in a variety of samples.
171:
UV-vis spectrophotometers work by passing a beam of light through the sample and measuring the amount of light that is absorbed at each wavelength. The amount of light absorbed is proportional to the concentration of the absorbing compound in the sample
673:
As a rough guide, an instrument with a single monochromator would typically have a stray light level corresponding to about 3 Absorbance Units (AU), which would make measurements above about 2 AU problematic. A more complex instrument with a
1139:
because these are transparent throughout the UV, visible and near infrared regions. Glass and plastic cuvettes are also common, although glass and most plastics absorb in the UV, which limits their usefulness to visible wavelengths.
1648:
Historically, the term "Optical Density" (OD) was used instead of AU. But it is also worth noting that what is usually measured is percent transmission (%T), a linear ratio, which is converted to the logarithm by the instrument for
534:
UV–Vis spectroscopy is also used in the semiconductor industry to measure the thickness and optical properties of thin films on a wafer. UV–Vis spectrometers are used to measure the reflectance of light, and can be analyzed via the
633:
quantitative measurements of a solute are usually conducted, using a wavelength around the absorbance peak, to minimize inaccuracies produced by errors in wavelength, due to the change of extinction coefficient with wavelength.
624:
the incident light should also be sufficiently narrow. Reducing the spectral bandwidth reduces the energy passed to the detector and will, therefore, require a longer measurement time to achieve the same signal to noise ratio.
2204:
Mekhrengin, M.V.; Meshkovskii, I.K.; Tashkinov, V.A.; Guryev, V.I.; Sukhinets, A.V.; Smirnov, D.S. (June 2019). "Multispectral pyrometer for high temperature measurements inside combustion chamber of gas turbine engines".
152:. Being relatively inexpensive and easily implemented, this methodology is widely used in diverse applied and fundamental applications. The only requirement is that the sample absorb in the UV-Vis region, i.e. be a 1130:
can also be used as cuvettes in some instruments. The type of sample container used must allow radiation to pass over the spectral region of interest. The most widely applicable cuvettes are made of high quality
1143:
Specialized instruments have also been made. These include attaching spectrophotometers to telescopes to measure the spectra of astronomical features. UV–visible microspectrophotometers consist of a UV–visible
1083:
beam intensities. Some double-beam instruments have two detectors (photodiodes), and the sample and reference beam are measured at the same time. In other instruments, the two beams pass through a
386: 1178:
semiconductor wafer would entail the acquisition of spectra from many points on a patterned or unpatterned wafer. The thickness of the deposited films may be calculated from the
899: 600:
Spectral bandwidth of a spectrophotometer is the range of wavelengths that the instrument transmits through a sample at a given time. It is determined by the light source, the
1796:
Löper, Philipp; Stuckelberger, Michael; Niesen, Bjoern; Werner, Jérémie; Filipič, Miha; Moon, Soo-Jin; Yum, Jun-Ho; Topič, Marko; De Wolf, Stefaan; Ballif, Christophe (2015).
290:
The wavelengths of absorption peaks can be correlated with the types of bonds in a given molecule and are valuable in determining the functional groups within a molecule. The
904:
The UV–visible spectrophotometer can also be configured to measure reflectance. In this case, the spectrophotometer measures the intensity of light reflected from a sample (
1718: 2112:
Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technology Conference (Cat. No.94CH3424-9)
1939:
Wittung, Pernilla; Kajanus, Johan; Kubista, Mikael; Malmström, Bo G. (19 September 1994). "Absorption flattening in the optical spectra of liposome-entrapped substances".
984: 813: 502: 1077: 949: 778: 425: 2061: 2593: 1124: 922: 841: 751: 577: 557: 449: 1844: 1274: 42: 1573: 467:
or extinction coefficient. This constant is a fundamental molecular property in a given solvent, at a particular temperature and pressure, and has units of
1246:
are other common spectroscopic techniques, usually used to obtain information about the structure of compounds or to identify compounds. Both are forms of
160:. Parameters of interest, besides the wavelength of measurement, are absorbance (A) or transmittance (%T) or reflectance (%R), and its change with time. 1017:, which is continuous from 160 to 2,000 nm; or more recently, light emitting diodes (LED) for the visible wavelengths. The detector is typically a 2266: 89: 1982:
Ansell, S; Tromp, R H; Neilson, G W (20 February 1995). "The solute and aquaion structure in a concentrated aqueous solution of copper(II) chloride".
61: 2812: 250:, for example, increases in absorption maxima and molar extinction coefficient when pH increases from 6 to 13 or when solvent polarity decreases. 68: 1858: 1739:"A comparative study of selected disperse azo dye derivatives based on spectroscopic (FT-IR, NMR and UV–Vis) and nonlinear optical behaviors" 2484: 2110:
Horie, M.; Fujiwara, N.; Kokubo, M.; Kondo, N. (1994). "Spectroscopic thin film thickness measurement system for semiconductor industries".
1198:
From the spectrum of burning gases, it is possible to determine a chemical composition of a fuel, temperature of gases, and air-fuel ratio.
2913: 2417: 2362: 2331: 1160:
UV–visible spectroscopy of microscopic samples is done by integrating an optical microscope with UV–visible optics, white light sources, a
75: 2918: 2326: 1079:
must be measured by removing the sample. This was the earliest design and is still in common use in both teaching and industrial labs.
226:, and biological macromolecules. Spectroscopic analysis is commonly carried out in solutions but solids and gases may also be studied. 2097:
Standard Guide for Microspectrophotometry and Color Measurement in Forensic Paint Analysis, Scientific Working Group-Materials, 1999,
2699: 2517: 2379: 1799:"Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry" 57: 1098:
are most often liquids, although the absorbance of gases and even of solids can also be measured. Samples are typically placed in a
2648: 2467: 1106:. Cuvettes are typically rectangular in shape, commonly with an internal width of 1 cm. (This width becomes the path length, 2896: 2588: 2390: 2311: 2291: 678:
would have a stray light level corresponding to about 6 AU, which would therefore allow measuring a much wider absorbance range.
2940: 2534: 2512: 2259: 309:
The method is most often used in a quantitative way to determine concentrations of an absorbing species in solution, using the
278: 2600: 2522: 1607: 1513: 1453: 1409: 1356: 1322: 2952: 2457: 2402: 1256:– a wavelength where absorption does not change as the reaction proceeds. Important in kinetics measurements as a control. 319: 2805: 2025:
Sooväli, L.; Rõõm, E.-I.; Kütt, A.; et al. (2006). "Uncertainty sources in UV–Vis spectrophotometric measurement".
612: 82: 2684: 2436: 2252: 2127: 1662:"Polynomial Equations based on Bouguer–Lambert and Beer Laws for Deviations from Linearity and Absorption Flattening" 1372: 212: 184:. The absorbed photon excites an electron in the chromophore to higher energy molecular orbitals, giving rise to an 108: 3781: 2689: 2507: 3757: 2704: 2674: 2605: 2539: 2179: 3786: 3636: 2798: 2633: 2424: 2321: 1481: 1234: 1223: 46: 3079: 2833: 2778: 2431: 2336: 608:
the number of wavelengths transmitted at half the maximum intensity of the light leaving the monochromator.
267: 2565: 2412: 2301: 2151:
Sertova, N.; Petkov, I.; Nunzi, J.-M. (June 2000). "Photochromism of mercury(II) dithizonate in solution".
1212: 3356: 2843: 2721: 2560: 2529: 2462: 1388: 1890: 849: 3733: 3282: 3253: 3233: 3186: 2711: 2653: 2502: 2374: 1259: 1738: 1531:
Carroll, Gregory T.; Dowling, Reed C.; Kirschman, David L.; Masthay, Mark B.; Mammana, Angela (2023).
196: 2871: 2737: 2716: 2357: 691:
concentration and high absorbance. The last reference describes a way to correct for this deviation.
536: 291: 257:
also give rise to colours, the colours are often too intense to be used for quantitative measurement.
254: 157: 2479: 3626: 3542: 3181: 1279: 1247: 675: 238: 149: 3564: 3475: 3438: 3322: 3248: 3069: 3052: 2995: 2610: 2306: 1533: 1264: 704: 298:, the wavelength of the most intense UV/Vis absorption, for conjugated organic compounds such as 137: 35: 1005:
to separate the different wavelengths of light, and a detector. The radiation source is often a
266:
quickly the absorbance changes with concentration. This can be taken from references (tables of
3482: 3470: 3361: 3226: 3000: 2866: 2397: 1445: 1179: 3631: 3528: 3513: 3443: 3366: 3198: 3148: 3057: 2982: 2881: 2766: 2638: 2369: 2283: 1872: 1239: 1165: 1099: 1026: 954: 783: 1437: 470: 3621: 3576: 3351: 3171: 3101: 2858: 2838: 2214: 1991: 1913: 1751: 1228: 1207: 1055: 1018: 927: 756: 726: 403: 310: 262: 208: 1152:
dependence, the extinction coefficient (ε) can be determined as a function of wavelength.
180:
Most molecules and ions absorb energy in the ultraviolet or visible range, i.e., they are
8: 3644: 3598: 3523: 3496: 3394: 3376: 3329: 3267: 3163: 3143: 3012: 3007: 2908: 2694: 2407: 2316: 994: 660: 2218: 1995: 1917: 1755: 463:
of the absorbing species. For each species and wavelength, ε is a constant known as the
241:. The solvents for these determinations are often water for water-soluble compounds, or 3721: 3687: 3549: 3518: 3399: 3341: 3039: 3022: 3017: 2972: 2935: 2925: 2886: 2742: 2679: 2658: 2474: 2452: 2385: 2296: 2230: 2133: 2042: 2007: 1964: 1690: 1554: 1401: 1366: 1269: 1243: 1145: 1109: 1010: 907: 826: 736: 620: 562: 542: 464: 434: 2226: 2164: 993:
The basic parts of a spectrophotometer are a light source, a holder for the sample, a
3740: 3702: 3667: 3650: 3588: 3506: 3501: 3429: 3414: 3384: 3305: 3272: 3243: 3238: 3213: 3203: 3123: 3111: 2990: 2903: 2643: 2570: 2544: 2234: 2137: 2123: 2011: 1956: 1952: 1819: 1775: 1767: 1694: 1682: 1603: 1558: 1550: 1477: 1449: 1438: 1405: 1352: 1318: 1192: 1095: 720: 708: 512: 271: 234: 220: 2046: 2003: 1968: 615:
achievable is a specification of the UV spectrophotometer, and it characterizes how
3745: 3662: 3317: 3176: 3153: 3106: 3047: 2222: 2160: 2115: 2034: 1999: 1948: 1921: 1811: 1759: 1674: 1546: 1397: 1310: 1253: 230: 223: 216: 145: 1299:
Cole, Kenneth; Levine, Barry S. (2020), Levine, Barry S.; Kerrigan, Sarah (eds.),
924:), and compares it to the intensity of light reflected from a reference material ( 753:), and compares it to the intensity of light before it passes through the sample ( 659:
of the light used for the analysis. The most important factor affecting it is the
3603: 3559: 3554: 3448: 3424: 3258: 3221: 3074: 3064: 2947: 2085:
Forensic Fiber Examination Guidelines, Scientific Working Group-Materials, 1999,
1591: 1314: 1169: 1084: 619:
the incident light can be. If this bandwidth is comparable to (or more than) the
284: 3487: 3465: 3460: 3455: 3410: 3406: 3389: 3346: 3277: 3138: 3133: 3118: 2930: 2848: 1301: 1014: 998: 524: 2038: 1763: 1678: 3775: 3692: 3581: 3537: 3262: 3096: 3091: 3084: 2962: 2119: 1771: 1686: 1599: 1161: 1049: 1002: 616: 601: 460: 185: 1661: 1032: 3569: 3419: 3334: 3310: 3300: 3292: 3193: 3128: 3027: 2876: 2275: 1823: 1779: 1136: 1132: 1006: 1960: 400:(formally dimensionless but generally reported in absorbance units (AU)), 121: 2967: 642: 528: 520: 181: 153: 141: 2790: 3593: 1022: 1013:, which is continuous over the ultraviolet region (190–400 nm), a 820: 428: 397: 1925: 1815: 1392:, in Lindon, John C.; Tranter, George E.; Koppenaal, David W. (eds.), 3655: 2957: 2822: 1174: 1127: 733:. It measures the intensity of light after passing through a sample ( 294:, for instance, are a set of empirical observations used to predict λ 2203: 1798: 24: 3677: 1744:
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
247: 2098: 2086: 1036:
Simplified schematic of a double beam UV–visible spectrophotometer
3697: 1904:
Berberan-Santos, M. N. (September 1990). "Beer's law revisited".
1103: 242: 1436:
Skoog, Douglas A.; Holler, F. James; Crouch, Stanley R. (2007).
2244: 303: 1938: 1795: 1736:
Cinar, Mehmet; Coruh, Ali; Karabacak, Mehmet (25 March 2014).
1530: 1873:"Persee PG Scientific Inc. – New-UV FAQ: Spectral Band Width" 1394:
Encyclopedia of Spectroscopy and Spectrometry (Third Edition)
1309:, Cham: Springer International Publishing, pp. 127–134, 1217: 655:
The stray light is an important factor, as it determines the
299: 729:
used in ultraviolet–visible spectroscopy is called a UV/Vis
3672: 1444:(6th ed.). Belmont, CA: Thomson Brooks/Cole. pp.  1389:"UV-Visible Absorption Spectroscopy, Organic Applications" 1386:
Edwards, Alison A.; Alexander, Bruce D. (1 January 2017),
204:
UV/Vis can be used to monitor structural changes in DNA.
3682: 277:
A UV/Vis spectrophotometer may be used as a detector for
2109: 2060:
reserved, Mettler-Toledo International Inc. all rights.
2024: 714: 652:
will be lower than the actual absorbance of the sample.
237:, also absorb light in the UV or visible regions of the 2153:
Journal of Photochemistry and Photobiology A: Chemistry
1539:
Journal of Photochemistry and Photobiology A: Chemistry
681: 579:) of a given film across the measured spectral range. 1112: 1058: 957: 930: 910: 852: 829: 819:, and is usually expressed as a percentage (%T). The 786: 759: 739: 565: 545: 473: 437: 406: 322: 215:
determination of diverse analytes or sample, such as
1191:
UV/Vis can be applied to characterize the rate of a
1052:), all of the light passes through the sample cell. 381:{\displaystyle A=\log _{10}(I_{0}/I)=\varepsilon cL} 1735: 49:. Unsourced material may be challenged and removed. 2150: 1981: 1797: 1737: 1660: 1532: 1387: 1300: 1118: 1071: 978: 943: 916: 893: 835: 807: 772: 745: 698: 571: 551: 496: 443: 427:is the intensity of the incident light at a given 419: 380: 2062:"Spectrophotometry Applications and Fundamentals" 1859:"Wavelength Accuracy in UV/VIS Spectrophotometry" 1435: 1275:Ultraviolet–visible spectroscopy of stereoisomers 1220: – Vis spectroscopy with the human eye 990:, and is usually expressed as a percentage (%R). 3773: 1719:"Limitations and Deviations of Beer–Lambert Law" 1385: 1148:integrated with a UV–visible spectrophotometer. 1903: 1891:"What is Stray light and how it is monitored?" 1590: 156:. Absorption spectroscopy is complementary to 134:ultraviolet–visible (UV–VIS) spectrophotometry 2806: 2260: 1534:"Intrinsic fluorescence of UV-irradiated DNA" 1497:Franca, Adriana S.; Nollet, Leo M.L. (2017). 2332:Vibrational spectroscopy of linear molecules 1791: 1789: 1659:Bozdoğan, Abdürrezzak E. (1 November 2022). 1496: 1396:, Oxford: Academic Press, pp. 511–519, 1349:Spectroscopy: principles and instrumentation 1471: 1048:. In a single beam instrument (such as the 582: 140:or reflectance spectroscopy in part of the 2813: 2799: 2327:Nuclear resonance vibrational spectroscopy 2267: 2253: 1845:"Stray Light and Performance Verification" 1474:Physical Methods for Chemists, 2nd Edition 1298: 1186: 2820: 2700:Inelastic electron tunneling spectroscopy 2380:Resonance-enhanced multiphoton ionization 1804:The Journal of Physical Chemistry Letters 1786: 1155: 270:), or more accurately, determined from a 233:, especially those with a high degree of 207:UV/Vis spectroscopy is routinely used in 109:Learn how and when to remove this message 2468:Extended X-ray absorption fine structure 2177: 1658: 1031: 455:the path length through the sample, and 195: 120: 1302:"Ultraviolet-Visible Spectrophotometry" 3774: 1712: 1710: 1708: 1706: 1704: 1596:Ultraviolet Spectroscopy and UV Lasers 1499:Spectroscopic Methods in Food Analysis 1351:. Hoboken, NJ: John Wiley & Sons. 539:to determine the index of refraction ( 511:are sometimes defined in terms of the 175: 125:Beckman DU640 UV/Vis spectrophotometer 2794: 2248: 1716: 1571: 1511: 1467: 1465: 1431: 1429: 1427: 1346: 1164:, and a sensitive detector such as a 715:Ultraviolet–visible spectrophotometer 595: 3728: 2773: 2059: 1984:Journal of Physics: Condensed Matter 1347:Vitha, Mark F. (2018). "Chapter 2". 1342: 1340: 951:) (such as a white tile). The ratio 707:of the results obtained with UV/Vis 703:The above factors contribute to the 682:Deviations from the Beer–Lambert law 537:Forouhi–Bloomer dispersion equations 47:adding citations to reliable sources 18: 3752: 2027:Accreditation and Quality Assurance 1701: 1440:Principles of Instrumental Analysis 627: 13: 1505: 1462: 1424: 1402:10.1016/b978-0-12-803224-4.00013-3 1040:A spectrophotometer can be either 894:{\displaystyle A=-\log(\%T/100\%)} 885: 871: 559:) and the extinction coefficient ( 515:instead of the base-10 logarithm. 58:"Ultraviolet–visible spectroscopy" 14: 3798: 2685:Deep-level transient spectroscopy 2437:Saturated absorption spectroscopy 2227:10.1016/j.measurement.2019.02.084 1524: 1337: 1307:Principles of Forensic Toxicology 843:, is based on the transmittance: 3751: 3739: 3727: 3716: 3715: 2772: 2761: 2760: 2690:Dual-polarization interferometry 2274: 1594:; Dubinskii, Mark, eds. (2002). 1574:"Derivation of Beer–Lambert Law" 1551:10.1016/j.jphotochem.2022.114484 1512:Metha, Akul (13 December 2011). 589: 23: 2705:Scanning tunneling spectroscopy 2680:Circular dichroism spectroscopy 2675:Acoustic resonance spectroscopy 2197: 2171: 2144: 2103: 2099:http://www.swgmat.org/paint.htm 2091: 2087:http://www.swgmat.org/fiber.htm 2079: 2053: 2018: 1975: 1932: 1897: 1883: 1865: 1851: 1837: 1729: 1667:Journal of Analytical Chemistry 1652: 1642: 1616: 1584: 1009:filament (300–2500 nm), a 699:Measurement uncertainty sources 191: 34:needs additional citations for 16:Range of spectroscopic analysis 2634:Fourier-transform spectroscopy 2322:Vibrational circular dichroism 1565: 1490: 1379: 1292: 1235:Fourier-transform spectroscopy 1224:Charge modulation spectroscopy 888: 868: 636: 507:The absorbance and extinction 451:is the transmitted intensity, 363: 342: 200:An example of a UV/Vis readout 1: 3080:Interface and colloid science 2834:Glossary of chemical formulae 2432:Cavity ring-down spectroscopy 2337:Thermal infrared spectroscopy 2165:10.1016/s1010-6030(00)00267-7 1906:Journal of Chemical Education 1572:Metha, Akul (22 April 2012). 1371:: CS1 maint: date and year ( 1285: 268:molar extinction coefficients 130:Ultraviolet (UV) spectroscopy 2566:Inelastic neutron scattering 1953:10.1016/0014-5793(94)00912-0 1315:10.1007/978-3-030-42917-1_10 1126:, in the Beer–Lambert law.) 7: 3357:Bioorganometallic chemistry 2844:List of inorganic compounds 2627:Data collection, processing 2503:Photoelectron/photoemission 2178:UC Davis (2 October 2013). 1717:Metha, Akul (14 May 2012). 1201: 695:from the Beer–Lambert law. 10: 3803: 3283:Dynamic covalent chemistry 3254:Enantioselective synthesis 3234:Physical organic chemistry 3187:Organolanthanide chemistry 2712:Photoacoustic spectroscopy 2654:Time-resolved spectroscopy 1260:Near-infrared spectroscopy 1025:, a photodiode array or a 718: 664:level of the monochromator 640: 3711: 3614: 3375: 3291: 3212: 3162: 3038: 2981: 2872:Electroanalytical methods 2857: 2829: 2756: 2738:Astronomical spectroscopy 2730: 2717:Photothermal spectroscopy 2667: 2626: 2619: 2581: 2553: 2495: 2445: 2345: 2282: 2039:10.1007/s00769-006-0124-x 2004:10.1088/0953-8984/7/8/002 1764:10.1016/j.saa.2013.11.106 1679:10.1134/S1061934822110028 1501:. CRC Press. p. 664. 1231:– first UV–Vis instrument 592:and wavelength accuracy. 255:charge transfer complexes 158:fluorescence spectroscopy 3627:Nobel Prize in Chemistry 3543:Supramolecular chemistry 3182:Organometallic chemistry 2120:10.1109/IMTC.1994.352008 1280:Vibrational spectroscopy 1248:vibrational spectroscopy 1213:Benesi–Hildebrand method 583:Practical considerations 239:electromagnetic spectrum 165:UV-vis spectrophotometer 150:electromagnetic spectrum 3782:Absorption spectroscopy 3565:Combinatorial chemistry 3476:Food physical chemistry 3439:Environmental chemistry 3323:Bioorthogonal chemistry 3249:Retrosynthetic analysis 3070:Chemical thermodynamics 3053:Spectroelectrochemistry 2996:Computational chemistry 2722:Pump–probe spectroscopy 2611:Ferromagnetic resonance 2403:Laser-induced breakdown 1265:Rotational spectroscopy 1187:Additional applications 979:{\displaystyle I/I_{o}} 808:{\displaystyle I/I_{o}} 705:measurement uncertainty 144:and the full, adjacent 138:absorption spectroscopy 3637:of element discoveries 3483:Agricultural chemistry 3471:Carbohydrate chemistry 3362:Bioinorganic chemistry 3227:Alkane stereochemistry 3172:Coordination chemistry 3001:Mathematical chemistry 2867:Instrumental chemistry 2418:Glow-discharge optical 2398:Raman optical activity 2312:Rotational–vibrational 1624:"The Beer-Lambert Law" 1156:Microspectrophotometry 1120: 1073: 1037: 980: 945: 918: 895: 837: 809: 774: 747: 573: 553: 498: 497:{\displaystyle 1/M*cm} 445: 421: 382: 201: 126: 3787:Scientific techniques 3632:Timeline of chemistry 3529:Post-mortem chemistry 3514:Clandestine chemistry 3444:Atmospheric chemistry 3367:Biophysical chemistry 3199:Solid-state chemistry 3149:Equilibrium chemistry 3058:Photoelectrochemistry 2639:Hyperspectral imaging 1240:Infrared spectroscopy 1166:charge-coupled device 1121: 1074: 1072:{\displaystyle I_{o}} 1035: 1027:charge-coupled device 981: 946: 944:{\displaystyle I_{o}} 919: 896: 838: 810: 775: 773:{\displaystyle I_{o}} 748: 574: 554: 499: 446: 422: 420:{\displaystyle I_{0}} 383: 292:Woodward–Fieser rules 199: 124: 3622:History of chemistry 3577:Chemical engineering 3352:Bioorganic chemistry 3102:Structural chemistry 2839:List of biomolecules 2391:Coherent anti-Stokes 2346:UV–Vis–NIR "Optical" 2114:. pp. 677–682. 1628:Chemistry LibreTexts 1472:R. S. Drago (1992). 1229:DU spectrophotometer 1208:Applied spectroscopy 1180:interference pattern 1110: 1056: 1019:photomultiplier tube 955: 928: 908: 850: 827: 784: 757: 737: 676:double monochromator 563: 543: 471: 435: 404: 320: 209:analytical chemistry 43:improve this article 3645:The central science 3599:Ceramic engineering 3524:Forensic toxicology 3497:Chemistry education 3395:Radiation chemistry 3377:Interdisciplinarity 3330:Medicinal chemistry 3268:Fullerene chemistry 3144:Microwave chemistry 3013:Molecular mechanics 3008:Molecular modelling 2695:Hadron spectroscopy 2485:Conversion electron 2446:X-ray and Gamma ray 2353:Ultraviolet–visible 2219:2019Meas..139..355M 1996:1995JPCM....7.1513A 1918:1990JChEd..67..757B 1756:2014AcSpA.122..682C 1094:Samples for UV/Vis 995:diffraction grating 176:Optical transitions 3688:Chemical substance 3550:Chemical synthesis 3519:Forensic chemistry 3400:Actinide chemistry 3342:Clinical chemistry 3023:Molecular geometry 3018:Molecular dynamics 2973:Elemental analysis 2926:Separation process 2743:Force spectroscopy 2668:Measured phenomena 2659:Video spectroscopy 2363:Cold vapour atomic 1723:PharmaXChange.info 1578:PharmaXChange.info 1518:PharmaXChange.info 1476:. W. B. Saunders. 1270:Slope spectroscopy 1244:Raman spectroscopy 1116: 1069: 1038: 1011:deuterium arc lamp 976: 941: 914: 891: 833: 805: 770: 743: 611:The best spectral 596:Spectral bandwidth 569: 549: 494: 465:molar absorptivity 441: 417: 378: 202: 127: 3767: 3766: 3703:Quantum mechanics 3668:Chemical compound 3651:Chemical reaction 3589:Materials science 3507:General chemistry 3502:Amateur chemistry 3430:Photogeochemistry 3415:Stellar chemistry 3385:Nuclear chemistry 3306:Molecular biology 3273:Polymer chemistry 3244:Organic synthesis 3239:Organic reactions 3204:Ceramic chemistry 3194:Cluster chemistry 3124:Chemical kinetics 3112:Molecular physics 2991:Quantum chemistry 2904:Mass spectrometry 2788: 2787: 2752: 2751: 2644:Spectrophotometry 2571:Neutron spin echo 2545:Beta spectroscopy 2458:Energy-dispersive 1926:10.1021/ed067p757 1816:10.1021/jz502471h 1673:(11): 1426–1432. 1609:978-0-8247-0668-5 1455:978-0-495-01201-6 1411:978-0-12-803224-4 1358:978-1-119-43664-5 1324:978-3-030-42917-1 1193:chemical reaction 1119:{\displaystyle L} 1102:cell, known as a 1096:spectrophotometry 917:{\displaystyle I} 836:{\displaystyle A} 746:{\displaystyle I} 731:spectrophotometer 721:Spectrophotometry 709:spectrophotometry 572:{\displaystyle k} 552:{\displaystyle n} 513:natural logarithm 444:{\displaystyle I} 272:calibration curve 231:Organic compounds 224:organic compounds 119: 118: 111: 93: 3794: 3755: 3754: 3743: 3731: 3730: 3719: 3718: 3663:Chemical element 3318:Chemical biology 3177:Magnetochemistry 3154:Mechanochemistry 3107:Chemical physics 3048:Electrochemistry 2953:Characterization 2815: 2808: 2801: 2792: 2791: 2776: 2775: 2764: 2763: 2624: 2623: 2535:phenomenological 2284:Vibrational (IR) 2269: 2262: 2255: 2246: 2245: 2239: 2238: 2201: 2195: 2194: 2192: 2190: 2175: 2169: 2168: 2148: 2142: 2141: 2107: 2101: 2095: 2089: 2083: 2077: 2076: 2074: 2072: 2057: 2051: 2050: 2022: 2016: 2015: 1990:(8): 1513–1524. 1979: 1973: 1972: 1936: 1930: 1929: 1901: 1895: 1894: 1887: 1881: 1880: 1877:www.perseena.com 1869: 1863: 1862: 1855: 1849: 1848: 1841: 1835: 1834: 1832: 1830: 1801: 1793: 1784: 1783: 1741: 1733: 1727: 1726: 1714: 1699: 1698: 1664: 1656: 1650: 1646: 1640: 1639: 1637: 1635: 1630:. 3 October 2013 1620: 1614: 1613: 1592:Misra, Prabhakar 1588: 1582: 1581: 1569: 1563: 1562: 1536: 1528: 1522: 1521: 1509: 1503: 1502: 1494: 1488: 1487: 1469: 1460: 1459: 1443: 1433: 1422: 1421: 1420: 1418: 1391: 1383: 1377: 1376: 1370: 1362: 1344: 1335: 1334: 1333: 1331: 1304: 1296: 1254:Isosbestic point 1125: 1123: 1122: 1117: 1078: 1076: 1075: 1070: 1068: 1067: 985: 983: 982: 977: 975: 974: 965: 950: 948: 947: 942: 940: 939: 923: 921: 920: 915: 900: 898: 897: 892: 881: 842: 840: 839: 834: 814: 812: 811: 806: 804: 803: 794: 779: 777: 776: 771: 769: 768: 752: 750: 749: 744: 628:Wavelength error 578: 576: 575: 570: 558: 556: 555: 550: 531:, for example). 503: 501: 500: 495: 481: 450: 448: 447: 442: 426: 424: 423: 418: 416: 415: 396:is the measured 387: 385: 384: 379: 359: 354: 353: 338: 337: 311:Beer–Lambert law 263:Beer–Lambert law 217:transition metal 114: 107: 103: 100: 94: 92: 51: 27: 19: 3802: 3801: 3797: 3796: 3795: 3793: 3792: 3791: 3772: 3771: 3768: 3763: 3707: 3610: 3604:Polymer science 3560:Click chemistry 3555:Green chemistry 3449:Ocean chemistry 3425:Biogeochemistry 3371: 3287: 3259:Total synthesis 3222:Stereochemistry 3208: 3158: 3075:Surface science 3065:Thermochemistry 3034: 2977: 2948:Crystallography 2853: 2825: 2819: 2789: 2784: 2748: 2726: 2663: 2615: 2577: 2549: 2491: 2441: 2341: 2302:Resonance Raman 2278: 2273: 2243: 2242: 2202: 2198: 2188: 2186: 2176: 2172: 2149: 2145: 2130: 2108: 2104: 2096: 2092: 2084: 2080: 2070: 2068: 2058: 2054: 2023: 2019: 1980: 1976: 1937: 1933: 1902: 1898: 1893:. 12 June 2015. 1889: 1888: 1884: 1871: 1870: 1866: 1857: 1856: 1852: 1843: 1842: 1838: 1828: 1826: 1794: 1787: 1734: 1730: 1715: 1702: 1657: 1653: 1647: 1643: 1633: 1631: 1622: 1621: 1617: 1610: 1589: 1585: 1570: 1566: 1529: 1525: 1510: 1506: 1495: 1491: 1484: 1470: 1463: 1456: 1434: 1425: 1416: 1414: 1412: 1384: 1380: 1364: 1363: 1359: 1345: 1338: 1329: 1327: 1325: 1297: 1293: 1288: 1204: 1189: 1170:photomultiplier 1158: 1111: 1108: 1107: 1063: 1059: 1057: 1054: 1053: 970: 966: 961: 956: 953: 952: 935: 931: 929: 926: 925: 909: 906: 905: 877: 851: 848: 847: 828: 825: 824: 799: 795: 790: 785: 782: 781: 764: 760: 758: 755: 754: 738: 735: 734: 723: 717: 701: 684: 645: 639: 630: 598: 585: 564: 561: 560: 544: 541: 540: 477: 472: 469: 468: 436: 433: 432: 411: 407: 405: 402: 401: 355: 349: 345: 333: 329: 321: 318: 317: 297: 285:response factor 194: 178: 148:regions of the 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 3800: 3790: 3789: 3784: 3765: 3764: 3762: 3761: 3749: 3737: 3725: 3712: 3709: 3708: 3706: 3705: 3700: 3695: 3690: 3685: 3680: 3675: 3670: 3665: 3660: 3659: 3658: 3648: 3641: 3640: 3639: 3629: 3624: 3618: 3616: 3612: 3611: 3609: 3608: 3607: 3606: 3601: 3596: 3586: 3585: 3584: 3574: 3573: 3572: 3567: 3562: 3557: 3547: 3546: 3545: 3534: 3533: 3532: 3531: 3526: 3516: 3511: 3510: 3509: 3504: 3493: 3492: 3491: 3490: 3488:Soil chemistry 3480: 3479: 3478: 3473: 3466:Food chemistry 3463: 3461:Carbochemistry 3458: 3456:Clay chemistry 3453: 3452: 3451: 3446: 3435: 3434: 3433: 3432: 3427: 3417: 3411:Astrochemistry 3407:Cosmochemistry 3404: 3403: 3402: 3397: 3392: 3390:Radiochemistry 3381: 3379: 3373: 3372: 3370: 3369: 3364: 3359: 3354: 3349: 3347:Neurochemistry 3344: 3339: 3338: 3337: 3327: 3326: 3325: 3315: 3314: 3313: 3308: 3297: 3295: 3289: 3288: 3286: 3285: 3280: 3278:Petrochemistry 3275: 3270: 3265: 3256: 3251: 3246: 3241: 3236: 3231: 3230: 3229: 3218: 3216: 3210: 3209: 3207: 3206: 3201: 3196: 3191: 3190: 3189: 3179: 3174: 3168: 3166: 3160: 3159: 3157: 3156: 3151: 3146: 3141: 3139:Spin chemistry 3136: 3134:Photochemistry 3131: 3126: 3121: 3119:Femtochemistry 3116: 3115: 3114: 3104: 3099: 3094: 3089: 3088: 3087: 3077: 3072: 3067: 3062: 3061: 3060: 3055: 3044: 3042: 3036: 3035: 3033: 3032: 3031: 3030: 3020: 3015: 3010: 3005: 3004: 3003: 2993: 2987: 2985: 2979: 2978: 2976: 2975: 2970: 2965: 2960: 2955: 2950: 2945: 2944: 2943: 2938: 2931:Chromatography 2928: 2923: 2922: 2921: 2916: 2911: 2901: 2900: 2899: 2894: 2889: 2884: 2874: 2869: 2863: 2861: 2855: 2854: 2852: 2851: 2849:Periodic table 2846: 2841: 2836: 2830: 2827: 2826: 2818: 2817: 2810: 2803: 2795: 2786: 2785: 2783: 2782: 2770: 2757: 2754: 2753: 2750: 2749: 2747: 2746: 2740: 2734: 2732: 2728: 2727: 2725: 2724: 2719: 2714: 2709: 2708: 2707: 2697: 2692: 2687: 2682: 2677: 2671: 2669: 2665: 2664: 2662: 2661: 2656: 2651: 2646: 2641: 2636: 2630: 2628: 2621: 2617: 2616: 2614: 2613: 2608: 2603: 2598: 2597: 2596: 2585: 2583: 2579: 2578: 2576: 2575: 2574: 2573: 2563: 2557: 2555: 2551: 2550: 2548: 2547: 2542: 2537: 2532: 2527: 2526: 2525: 2520: 2518:Angle-resolved 2515: 2510: 2499: 2497: 2493: 2492: 2490: 2489: 2488: 2487: 2477: 2472: 2471: 2470: 2465: 2460: 2449: 2447: 2443: 2442: 2440: 2439: 2434: 2429: 2428: 2427: 2422: 2421: 2420: 2405: 2400: 2395: 2394: 2393: 2383: 2377: 2372: 2367: 2366: 2365: 2355: 2349: 2347: 2343: 2342: 2340: 2339: 2334: 2329: 2324: 2319: 2314: 2309: 2304: 2299: 2294: 2288: 2286: 2280: 2279: 2272: 2271: 2264: 2257: 2249: 2241: 2240: 2196: 2180:"The Rate Law" 2170: 2159:(3): 163–168. 2143: 2128: 2102: 2090: 2078: 2052: 2033:(5): 246–255. 2017: 1974: 1931: 1896: 1882: 1864: 1850: 1836: 1785: 1728: 1700: 1651: 1641: 1615: 1608: 1583: 1564: 1523: 1504: 1489: 1482: 1461: 1454: 1423: 1410: 1378: 1357: 1336: 1323: 1290: 1289: 1287: 1284: 1283: 1282: 1277: 1272: 1267: 1262: 1257: 1251: 1237: 1232: 1226: 1221: 1215: 1210: 1203: 1200: 1188: 1185: 1157: 1154: 1115: 1066: 1062: 1015:xenon arc lamp 986:is called the 973: 969: 964: 960: 938: 934: 913: 902: 901: 890: 887: 884: 880: 876: 873: 870: 867: 864: 861: 858: 855: 832: 815:is called the 802: 798: 793: 789: 767: 763: 742: 716: 713: 700: 697: 683: 680: 638: 635: 629: 626: 597: 594: 584: 581: 568: 548: 525:xylenol orange 493: 490: 487: 484: 480: 476: 440: 414: 410: 390: 389: 377: 374: 371: 368: 365: 362: 358: 352: 348: 344: 341: 336: 332: 328: 325: 295: 259: 258: 251: 193: 190: 177: 174: 117: 116: 31: 29: 22: 15: 9: 6: 4: 3: 2: 3799: 3788: 3785: 3783: 3780: 3779: 3777: 3770: 3760: 3759: 3750: 3748: 3747: 3742: 3738: 3736: 3735: 3726: 3724: 3723: 3714: 3713: 3710: 3704: 3701: 3699: 3696: 3694: 3693:Chemical bond 3691: 3689: 3686: 3684: 3681: 3679: 3676: 3674: 3671: 3669: 3666: 3664: 3661: 3657: 3654: 3653: 3652: 3649: 3646: 3642: 3638: 3635: 3634: 3633: 3630: 3628: 3625: 3623: 3620: 3619: 3617: 3613: 3605: 3602: 3600: 3597: 3595: 3592: 3591: 3590: 3587: 3583: 3582:Stoichiometry 3580: 3579: 3578: 3575: 3571: 3568: 3566: 3563: 3561: 3558: 3556: 3553: 3552: 3551: 3548: 3544: 3541: 3540: 3539: 3538:Nanochemistry 3536: 3535: 3530: 3527: 3525: 3522: 3521: 3520: 3517: 3515: 3512: 3508: 3505: 3503: 3500: 3499: 3498: 3495: 3494: 3489: 3486: 3485: 3484: 3481: 3477: 3474: 3472: 3469: 3468: 3467: 3464: 3462: 3459: 3457: 3454: 3450: 3447: 3445: 3442: 3441: 3440: 3437: 3436: 3431: 3428: 3426: 3423: 3422: 3421: 3418: 3416: 3412: 3408: 3405: 3401: 3398: 3396: 3393: 3391: 3388: 3387: 3386: 3383: 3382: 3380: 3378: 3374: 3368: 3365: 3363: 3360: 3358: 3355: 3353: 3350: 3348: 3345: 3343: 3340: 3336: 3333: 3332: 3331: 3328: 3324: 3321: 3320: 3319: 3316: 3312: 3309: 3307: 3304: 3303: 3302: 3299: 3298: 3296: 3294: 3290: 3284: 3281: 3279: 3276: 3274: 3271: 3269: 3266: 3264: 3263:Semisynthesis 3260: 3257: 3255: 3252: 3250: 3247: 3245: 3242: 3240: 3237: 3235: 3232: 3228: 3225: 3224: 3223: 3220: 3219: 3217: 3215: 3211: 3205: 3202: 3200: 3197: 3195: 3192: 3188: 3185: 3184: 3183: 3180: 3178: 3175: 3173: 3170: 3169: 3167: 3165: 3161: 3155: 3152: 3150: 3147: 3145: 3142: 3140: 3137: 3135: 3132: 3130: 3127: 3125: 3122: 3120: 3117: 3113: 3110: 3109: 3108: 3105: 3103: 3100: 3098: 3097:Sonochemistry 3095: 3093: 3092:Cryochemistry 3090: 3086: 3085:Micromeritics 3083: 3082: 3081: 3078: 3076: 3073: 3071: 3068: 3066: 3063: 3059: 3056: 3054: 3051: 3050: 3049: 3046: 3045: 3043: 3041: 3037: 3029: 3026: 3025: 3024: 3021: 3019: 3016: 3014: 3011: 3009: 3006: 3002: 2999: 2998: 2997: 2994: 2992: 2989: 2988: 2986: 2984: 2980: 2974: 2971: 2969: 2966: 2964: 2963:Wet chemistry 2961: 2959: 2956: 2954: 2951: 2949: 2946: 2942: 2939: 2937: 2934: 2933: 2932: 2929: 2927: 2924: 2920: 2917: 2915: 2912: 2910: 2907: 2906: 2905: 2902: 2898: 2895: 2893: 2890: 2888: 2885: 2883: 2880: 2879: 2878: 2875: 2873: 2870: 2868: 2865: 2864: 2862: 2860: 2856: 2850: 2847: 2845: 2842: 2840: 2837: 2835: 2832: 2831: 2828: 2824: 2816: 2811: 2809: 2804: 2802: 2797: 2796: 2793: 2781: 2780: 2771: 2769: 2768: 2759: 2758: 2755: 2744: 2741: 2739: 2736: 2735: 2733: 2729: 2723: 2720: 2718: 2715: 2713: 2710: 2706: 2703: 2702: 2701: 2698: 2696: 2693: 2691: 2688: 2686: 2683: 2681: 2678: 2676: 2673: 2672: 2670: 2666: 2660: 2657: 2655: 2652: 2650: 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2631: 2629: 2625: 2622: 2618: 2612: 2609: 2607: 2604: 2602: 2599: 2595: 2592: 2591: 2590: 2587: 2586: 2584: 2580: 2572: 2569: 2568: 2567: 2564: 2562: 2559: 2558: 2556: 2552: 2546: 2543: 2541: 2538: 2536: 2533: 2531: 2528: 2524: 2521: 2519: 2516: 2514: 2511: 2509: 2506: 2505: 2504: 2501: 2500: 2498: 2494: 2486: 2483: 2482: 2481: 2478: 2476: 2473: 2469: 2466: 2464: 2461: 2459: 2456: 2455: 2454: 2451: 2450: 2448: 2444: 2438: 2435: 2433: 2430: 2426: 2423: 2419: 2416: 2415: 2414: 2411: 2410: 2409: 2406: 2404: 2401: 2399: 2396: 2392: 2389: 2388: 2387: 2384: 2381: 2378: 2376: 2375:Near-infrared 2373: 2371: 2368: 2364: 2361: 2360: 2359: 2356: 2354: 2351: 2350: 2348: 2344: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2298: 2295: 2293: 2290: 2289: 2287: 2285: 2281: 2277: 2270: 2265: 2263: 2258: 2256: 2251: 2250: 2247: 2236: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2200: 2185: 2181: 2174: 2166: 2162: 2158: 2154: 2147: 2139: 2135: 2131: 2129:0-7803-1880-3 2125: 2121: 2117: 2113: 2106: 2100: 2094: 2088: 2082: 2067: 2063: 2056: 2048: 2044: 2040: 2036: 2032: 2028: 2021: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1978: 1970: 1966: 1962: 1958: 1954: 1950: 1946: 1942: 1935: 1927: 1923: 1919: 1915: 1911: 1907: 1900: 1892: 1886: 1878: 1874: 1868: 1860: 1854: 1846: 1840: 1825: 1821: 1817: 1813: 1809: 1805: 1800: 1792: 1790: 1781: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1745: 1740: 1732: 1724: 1720: 1713: 1711: 1709: 1707: 1705: 1696: 1692: 1688: 1684: 1680: 1676: 1672: 1668: 1663: 1655: 1649:presentation. 1645: 1629: 1625: 1619: 1611: 1605: 1601: 1600:Marcel Dekker 1597: 1593: 1587: 1579: 1575: 1568: 1560: 1556: 1552: 1548: 1544: 1540: 1535: 1527: 1519: 1515: 1508: 1500: 1493: 1485: 1479: 1475: 1468: 1466: 1457: 1451: 1447: 1442: 1441: 1432: 1430: 1428: 1413: 1407: 1403: 1399: 1395: 1390: 1382: 1374: 1368: 1360: 1354: 1350: 1343: 1341: 1326: 1320: 1316: 1312: 1308: 1303: 1295: 1291: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1255: 1252: 1249: 1245: 1241: 1238: 1236: 1233: 1230: 1227: 1225: 1222: 1219: 1216: 1214: 1211: 1209: 1206: 1205: 1199: 1196: 1194: 1184: 1181: 1176: 1171: 1167: 1163: 1162:monochromator 1153: 1149: 1147: 1141: 1138: 1134: 1129: 1113: 1105: 1101: 1097: 1092: 1088: 1086: 1080: 1064: 1060: 1051: 1050:Spectronic 20 1047: 1043: 1034: 1030: 1028: 1024: 1020: 1016: 1012: 1008: 1004: 1003:monochromator 1000: 996: 991: 989: 971: 967: 962: 958: 936: 932: 911: 882: 878: 874: 865: 862: 859: 856: 853: 846: 845: 844: 830: 822: 818: 817:transmittance 800: 796: 791: 787: 780:). The ratio 765: 761: 740: 732: 728: 722: 712: 710: 706: 696: 692: 688: 679: 677: 671: 667: 665: 663: 658: 653: 649: 644: 634: 625: 622: 618: 617:monochromatic 614: 609: 605: 603: 602:monochromator 593: 591: 580: 566: 546: 538: 532: 530: 526: 522: 516: 514: 510: 505: 491: 488: 485: 482: 478: 474: 466: 462: 461:concentration 458: 454: 438: 430: 412: 408: 399: 395: 375: 372: 369: 366: 360: 356: 350: 346: 339: 334: 330: 326: 323: 316: 315: 314: 312: 307: 305: 301: 293: 288: 286: 282: 281: 275: 273: 269: 264: 256: 252: 249: 244: 240: 236: 232: 229: 228: 227: 225: 222: 219:ions, highly 218: 214: 210: 205: 198: 189: 187: 186:excited state 183: 173: 169: 166: 161: 159: 155: 151: 147: 143: 139: 135: 131: 123: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 3769: 3756: 3744: 3732: 3720: 3570:Biosynthesis 3420:Geochemistry 3335:Pharmacology 3311:Cell biology 3301:Biochemistry 3129:Spectroscopy 3028:VSEPR theory 2891: 2877:Spectroscopy 2821:Branches of 2777: 2765: 2745:(a misnomer) 2731:Applications 2649:Time-stretch 2540:paramagnetic 2358:Fluorescence 2352: 2276:Spectroscopy 2210: 2206: 2199: 2187:. Retrieved 2183: 2173: 2156: 2152: 2146: 2111: 2105: 2093: 2081: 2069:. Retrieved 2065: 2055: 2030: 2026: 2020: 1987: 1983: 1977: 1947:(1): 37–40. 1944: 1941:FEBS Letters 1940: 1934: 1909: 1905: 1899: 1885: 1876: 1867: 1853: 1839: 1827:. Retrieved 1810:(1): 66–71. 1807: 1803: 1747: 1743: 1731: 1722: 1670: 1666: 1654: 1644: 1632:. Retrieved 1627: 1618: 1598:. New York: 1595: 1586: 1577: 1567: 1542: 1538: 1526: 1517: 1507: 1498: 1492: 1473: 1439: 1415:, retrieved 1393: 1381: 1348: 1328:, retrieved 1306: 1294: 1197: 1190: 1159: 1150: 1142: 1137:quartz glass 1133:fused silica 1093: 1089: 1085:beam chopper 1081: 1045: 1041: 1039: 992: 987: 903: 816: 730: 724: 702: 693: 689: 685: 672: 668: 661: 656: 654: 650: 646: 631: 610: 606: 599: 586: 533: 521:organic dyes 517: 508: 506: 456: 452: 393: 391: 308: 289: 279: 276: 260: 213:quantitative 206: 203: 192:Applications 182:chromophores 179: 170: 164: 162: 133: 129: 128: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 3758:WikiProject 2983:Theoretical 2968:Calorimetry 2317:Vibrational 2213:: 355–360. 2207:Measurement 2189:11 November 1829:16 November 1750:: 682–689. 1514:"Principle" 1100:transparent 1046:double beam 1042:single beam 988:reflectance 662:stray light 643:Stray light 637:Stray light 590:stray light 529:neutral red 235:conjugation 154:chromophore 142:ultraviolet 3776:Categories 3594:Metallurgy 3293:Biological 2859:Analytical 2523:Two-photon 2425:absorption 2307:Rotational 2066:www.mt.com 1912:(9): 757. 1634:19 October 1545:: 114484. 1483:0030751764 1417:19 October 1330:19 October 1286:References 1146:microscope 1128:Test tubes 1023:photodiode 821:absorbance 727:instrument 719:See also: 641:See also: 429:wavelength 398:absorbance 221:conjugated 136:refers to 99:April 2018 69:newspapers 3656:Catalysis 3164:Inorganic 2958:Titration 2823:chemistry 2601:Terahertz 2582:Radiowave 2480:Mössbauer 2235:116260472 2138:110637259 2012:250898349 1772:1386-1425 1695:253463022 1687:1608-3199 1559:254622477 1367:cite book 1175:vitrinite 1168:(CCD) or 886:% 872:% 866:⁡ 860:− 613:bandwidth 486:∗ 370:ε 340:⁡ 3722:Category 3678:Molecule 3615:See also 3040:Physical 2767:Category 2496:Electron 2463:Emission 2413:emission 2370:Vibronic 2184:ChemWiki 2047:94520012 1969:11419856 1824:26263093 1780:24345608 1202:See also 1007:tungsten 519:such as 248:Tyrosine 211:for the 3734:Commons 3698:Alchemy 3214:Organic 2779:Commons 2606:ESR/EPR 2554:Nucleon 2382:(REMPI) 2215:Bibcode 2071:10 July 1992:Bibcode 1961:7925937 1914:Bibcode 1752:Bibcode 1104:cuvette 304:ketones 243:ethanol 146:visible 83:scholar 3746:Portal 2892:UV-Vis 2620:Others 2408:Atomic 2233:  2136:  2126:  2045:  2010:  1967:  1959:  1822:  1778:  1770:  1693:  1685:  1606:  1557:  1480:  1452:  1448:–173. 1408:  1355:  1321:  657:purity 392:where 300:dienes 253:While 85:  78:  71:  64:  56:  2919:MALDI 2887:Raman 2561:Alpha 2530:Auger 2508:X-ray 2475:Gamma 2453:X-ray 2386:Raman 2297:Raman 2292:FT-IR 2231:S2CID 2134:S2CID 2043:S2CID 2008:S2CID 1965:S2CID 1691:S2CID 1555:S2CID 1218:Color 1001:as a 999:prism 997:or a 621:width 90:JSTOR 76:books 3673:Atom 2941:HPLC 2191:2014 2124:ISBN 2073:2018 1957:PMID 1831:2021 1820:PMID 1776:PMID 1768:ISSN 1683:ISSN 1636:2023 1604:ISBN 1478:ISBN 1450:ISBN 1419:2023 1406:ISBN 1373:link 1353:ISBN 1332:2023 1319:ISBN 1242:and 1021:, a 725:The 459:the 302:and 280:HPLC 261:The 62:news 3683:Ion 2914:ICP 2897:NMR 2589:NMR 2223:doi 2211:139 2161:doi 2157:134 2116:doi 2035:doi 2000:doi 1949:doi 1945:352 1922:doi 1812:doi 1760:doi 1748:122 1675:doi 1547:doi 1543:437 1446:169 1398:doi 1311:doi 1135:or 1044:or 883:100 863:log 527:or 331:log 296:max 132:or 45:by 3778:: 3413:/ 3409:/ 3261:/ 2936:GC 2909:EI 2882:IR 2594:2D 2513:UV 2229:. 2221:. 2209:. 2182:. 2155:. 2132:. 2122:. 2064:. 2041:. 2031:11 2029:. 2006:. 1998:. 1986:. 1963:. 1955:. 1943:. 1920:. 1910:67 1908:. 1875:. 1818:. 1806:. 1802:. 1788:^ 1774:. 1766:. 1758:. 1746:. 1742:. 1721:. 1703:^ 1689:. 1681:. 1671:77 1669:. 1665:. 1626:. 1602:. 1576:. 1553:. 1541:. 1537:. 1516:. 1464:^ 1426:^ 1404:, 1369:}} 1365:{{ 1339:^ 1317:, 1305:, 823:, 666:. 504:. 431:, 335:10 313:: 287:. 274:. 163:A 3647:" 3643:" 2814:e 2807:t 2800:v 2268:e 2261:t 2254:v 2237:. 2225:: 2217:: 2193:. 2167:. 2163:: 2140:. 2118:: 2075:. 2049:. 2037:: 2014:. 2002:: 1994:: 1988:7 1971:. 1951:: 1928:. 1924:: 1916:: 1879:. 1861:. 1847:. 1833:. 1814:: 1808:6 1782:. 1762:: 1754:: 1725:. 1697:. 1677:: 1638:. 1612:. 1580:. 1561:. 1549:: 1520:. 1486:. 1458:. 1400:: 1375:) 1361:. 1313:: 1250:. 1114:L 1065:o 1061:I 972:o 968:I 963:/ 959:I 937:o 933:I 912:I 889:) 879:/ 875:T 869:( 857:= 854:A 831:A 801:o 797:I 792:/ 788:I 766:o 762:I 741:I 567:k 547:n 523:( 509:ε 492:m 489:c 483:M 479:/ 475:1 457:c 453:L 439:I 413:0 409:I 394:A 388:, 376:L 373:c 367:= 364:) 361:I 357:/ 351:0 347:I 343:( 327:= 324:A 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Ultraviolet–visible spectroscopy"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

absorption spectroscopy
ultraviolet
visible
electromagnetic spectrum
chromophore
fluorescence spectroscopy
chromophores
excited state

analytical chemistry
quantitative
transition metal
conjugated
organic compounds
Organic compounds
conjugation
electromagnetic spectrum
ethanol

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.