Knowledge

Ulam spiral

Source 📝

515:
hence certainly not prime, while in the sequence of values taken by the first polynomial, none are divisible by 3. Thus it seems plausible that the first polynomial will produce values with a higher density of primes than will the second. At the very least, this observation gives little reason to believe that the corresponding diagonals will be equally dense with primes. One should, of course, consider divisibility by primes other than 3. Examining divisibility by 5 as well, remainders upon division by 15 repeat with pattern 1, 11, 14, 10, 14, 11, 1, 14, 5, 4, 11, 11, 4, 5, 14 for the first polynomial, and with pattern 5, 0, 3, 14, 3, 0, 5, 3, 9, 8, 0, 0, 8, 9, 3 for the second, implying that only three out of 15 values in the second sequence are potentially prime (being divisible by neither 3 nor 5), while 12 out of 15 values in the first sequence are potentially prime (since only three are divisible by 5 and none are divisible by 3).
1471: 1495: 139: 1820: 151: 1427: 1459: 2047: 1483: 158:
often, the number spiral is started with the number 1 at the center, but it is possible to start with any number, and the same concentration of primes along diagonal, horizontal, and vertical lines is observed. Starting with 41 at the center gives a diagonal containing an unbroken string of 40 primes (starting from 1523 southwest of the origin, decreasing to 41 at the origin, and increasing to 1601 northeast of the origin), the longest example of its kind.
28: 1447: 20: 1149: 514:
takes successive values 0, 1, 2, .... For the first of these polynomials, the sequence of remainders is 1, 2, 2, 1, 2, 2, ..., while for the second, it is 2, 0, 0, 2, 0, 0, .... This implies that in the sequence of values taken by the second polynomial, two out of every three are divisible by 3, and
1416:
are also included in the Ulam spiral. The number 1 has only a single factor, itself; each prime number has two factors, itself and 1; composite numbers are divisible by at least three different factors. Using the size of the dot representing an integer to indicate the number of factors and coloring
191:
column, Gardner mentioned the earlier paper of Klauber. Klauber describes his construction as follows, "The integers are arranged in triangular order with 1 at the apex, the second line containing numbers 2 to 4, the third 5 to 9, and so forth. When the primes have been indicated, it is found that
175:
to extend the calculation to about 100,000 points. The group also computed the density of primes among numbers up to 10,000,000 along some of the prime-rich lines as well as along some of the prime-poor lines. Images of the spiral up to 65,000 points were displayed on "a scope attached to the
157:
In the figure, primes appear to concentrate along certain diagonal lines. In the 201×201 Ulam spiral shown above, diagonal lines are clearly visible, confirming the pattern to that point. Horizontal and vertical lines with a high density of primes, while less prominent, are also evident. Most
166:
According to Gardner, Ulam discovered the spiral in 1963 while doodling during the presentation of "a long and very boring paper" at a scientific meeting. These hand calculations amounted to "a few hundred points". Shortly afterwards, Ulam, with collaborators Myron Stein and Mark Wells, used
74:
Ulam and Gardner emphasized the striking appearance in the spiral of prominent diagonal, horizontal, and vertical lines containing large numbers of primes. Both Ulam and Gardner noted that the existence of such prominent lines is not unexpected, as lines in the spiral correspond to
593: 1013: 576:
odd. Conjecture F provides a formula that can be used to estimate the density of primes along such rays. It implies that there will be considerable variability in the density along different rays. In particular, the density is highly sensitive to the
1400:
takes the values 0, 1, 2, ... This curve asymptotically approaches a horizontal line in the left half of the figure. (In the Ulam spiral, Euler's polynomial forms two diagonal lines, one in the top half of the figure, corresponding to even values of
518:
While rigorously-proved results about primes in quadratic sequences are scarce, considerations like those above give rise to a plausible conjecture on the asymptotic density of primes in such sequences, which is described in the next section.
865:
for this polynomial is approximately 6.6, meaning that the numbers it generates are almost seven times as likely to be prime as random numbers of comparable size, according to the conjecture. This particular polynomial is related to Euler's
116:
constructed a triangular, non-spiral array containing vertical and diagonal lines exhibiting a similar concentration of prime numbers. Like Ulam, Klauber noted the connection with prime-generating polynomials, such as Euler's.
800: 539:
stated a series of conjectures, one of which, if true, would explain some of the striking features of the Ulam spiral. This conjecture, which Hardy and Littlewood called "Conjecture F", is a special case of the
965: 1470: 1320: 102:. In particular, no quadratic polynomial has ever been proved to generate infinitely many primes, much less to have a high asymptotic density of them, although there is a well-supported 853:
can take values bigger or smaller than 1, some polynomials, according to the conjecture, will be especially rich in primes, and others especially poor. An unusually rich polynomial is 4
415: 1144:{\displaystyle A=\varepsilon \prod _{p}{\biggl (}{\frac {p}{p-1}}{\biggr )}\,\prod _{\varpi }{\biggl (}1-{\frac {1}{\varpi -1}}{\Bigl (}{\frac {\Delta }{\varpi }}{\Bigr )}{\biggr )}} 688:
are both even, the polynomial produces only even values, and is therefore composite except possibly for the value 2. Hardy and Littlewood assert that, apart from these situations,
1426: 261: 1216: 508: 463: 325: 1277: 998: 1244: 192:
there are concentrations in certain vertical and diagonal lines, and amongst these the so-called Euler sequences with high concentrations of primes are discovered."
23:
Ulam spiral of size 201×201. Black dots represent prime numbers. Diagonal, vertical, and horizontal lines with a high density of prime numbers are clearly visible.
417:
and are therefore never prime except possibly when one of the factors equals 1. Such examples correspond to diagonals that are devoid of primes or nearly so.
556:. Rays emanating from the central region of the Ulam spiral making angles of 45° with the horizontal and vertical correspond to numbers of the form 4 1458: 738: 1365:. As in the Ulam spiral, quadratic polynomials generate numbers that lie in straight lines. Vertical lines correspond to numbers of the form 94:+ 41, are believed to produce a high density of prime numbers. Nevertheless, the Ulam spiral is connected with major unsolved problems in 1796:
Hardy, G. H.; Littlewood, J. E. (1923), "Some Problems of 'Partitio Numerorum'; III: On the Expression of a Number as a Sum of Primes",
282:. It is therefore no surprise that all primes other than 2 lie in alternate diagonals of the Ulam spiral. Some polynomials, such as 899: 138: 1482: 184:
and featured on the front cover of that issue. Some of the photographs of Stein, Ulam, and Wells were reproduced in the column.
1494: 867: 84: 1787: 1700: 1388:
occurs in each full rotation. (In the Ulam spiral, two squares occur in each rotation.) Euler's prime-generating polynomial,
1290: 420:
To gain insight into why some of the remaining odd diagonals may have a higher concentration of primes than others, consider
1883: 1380:
Robert Sacks devised a variant of the Ulam spiral in 1994. In the Sacks spiral, the non-negative integers are plotted on an
608:= 0, 1, 2, ... have been highlighted in purple. The prominent parallel line in the lower half of the figure corresponds to 4 1420:
Spirals following other tilings of the plane also generate lines rich in prime numbers, for example hexagonal spirals.
1645: 1985: 1902:
Stein, M. L.; Ulam, S. M.; Wells, M. B. (1964), "A Visual Display of Some Properties of the Distribution of Primes",
1839: 31:
For comparison, a spiral with random odd numbers colored black (at the same density of primes in a 200x200 spiral).
1007:
and therefore takes one of the values 0, 1, or 2. Hardy and Littlewood break the product into three factors as
330: 1476:
Hexagonal number spiral with prime numbers in green and more highly composite numbers in darker shades of blue.
172: 1904: 1827: 1722: 278:
is even, the lines are diagonal, and either all numbers are odd, or all are even, depending on the value of
1850:"Quadratic polynomials producing consecutive, distinct primes and class groups of complex quadratic fields" 150: 541: 1279:
equals 1, 2, or 0 depending on whether the discriminant is 0, a non-zero square, or a non-square modulo
2071: 1653: 206: 2120: 1819: 200:
Diagonal, horizontal, and vertical lines in the number spiral correspond to polynomials of the form
652:
is positive. If the coefficients contain a common factor greater than 1 or if the discriminant Δ =
528: 57: 1186: 2243: 536: 468: 423: 285: 113: 1253: 974: 2279: 705: 1377:. Vertical and diagonal lines with a high density of prime numbers are evident in the figure. 837:
expected in a random set of numbers having the same density as the set of numbers of the form
176:
machine" and then photographed. The Ulam spiral was described in Martin Gardner's March 1964
2238: 2036: 1978: 1229: 2187: 1662: 1405:
in the sequence, the other in the bottom half of the figure corresponding to odd values of
826: 99: 1627: 8: 2248: 1755: 1511: 1345:≈ 11.3, currently the highest known value, has been discovered by Jacobson and Williams. 63: 1666: 2219: 2204: 2167: 1949: 1921: 1768: 1739: 1381: 1001: 708:
and remains open. Hardy and Littlewood further assert that, asymptotically, the number
76: 1849: 2182: 2172: 2130: 2026: 1835: 1783: 1696: 1446: 665: 48: 2284: 2081: 1971: 1941: 1913: 1866: 1857: 1807: 1798: 1764: 1735: 1731: 1670: 1413: 1675: 2214: 2066: 2016: 1690: 1284: 16:
Visualization of the prime numbers formed by arranging the integers into a spiral
2145: 2031: 1932:
Stein, M.; Ulam, S. M. (1967), "An Observation on the Distribution of Primes",
1780:
Martin Gardner's Sixth Book of Mathematical Diversions from Scientific American
1775: 1750: 572:
even; horizontal and vertical rays correspond to numbers of the same form with
130: 52: 1963: 2273: 2224: 1753:(March 1964), "Mathematical Games: The Remarkable Lore of the Prime Number", 1516: 1385: 704:
takes the values 0, 1, 2, ... This statement is a special case of an earlier
661: 110: 95: 27: 1720:
Daus, P. H. (1932), "The March Meeting of the Southern California Section",
67:
a short time later. It is constructed by writing the positive integers in a
2199: 2194: 2140: 2086: 1879: 795:{\displaystyle P(n)\sim A{\frac {1}{\sqrt {a}}}{\frac {\sqrt {n}}{\log n}}} 578: 44: 1871: 2110: 2061: 532: 1417:
prime numbers red and composite numbers blue produces the figure shown.
672:
takes the values 0, 1, 2, ... (except possibly for one or two values of
2232: 2135: 2115: 1953: 1925: 1812: 1743: 1384:
rather than the square spiral used by Ulam, and are spaced so that one
544:
and asserts an asymptotic formula for the number of primes of the form
2253: 2177: 2102: 2076: 2021: 1464:
Ulam spiral of size 150×150 showing both prime and composite numbers.
168: 125:
The Ulam spiral is constructed by writing the positive integers in a
68: 1945: 1917: 1432:
Klauber triangle with prime numbers generated by Euler's polynomial
2209: 2125: 19: 861:+ 41 which forms a visible line in the Ulam spiral. The constant 960:{\displaystyle A=\prod \limits _{p}{\frac {p-\omega (p)}{p-1}}~} 1994: 1646:"New quadratic polynomials with high densities of prime values" 1338:. Consequently, such primes do not contribute to the product. 327:, while producing only odd values, factorize over the integers 126: 833:
set equal to one is the asymptotic number of primes less than
2002: 1998: 80: 1595: 1544: 103: 1488:
Number spiral with 7503 primes visible on regular triangle.
1155:
Here the factor ε, corresponding to the prime 2, is 1 if
592: 1534: 1532: 1832:
Archimedes' Revenge: The Joys and Perils of Mathematics
1353:
Klauber's 1932 paper describes a triangle in which row
1315:{\displaystyle \left({\frac {\Delta }{\varpi }}\right)} 624:
Conjecture F is concerned with polynomials of the form
1246:
runs over the infinitely-many odd primes not dividing
893:
is given by a product running over all prime numbers,
522: 1573: 1571: 1556: 1529: 1293: 1256: 1232: 1189: 1175:
runs over the finitely-many odd primes dividing both
1016: 977: 902: 741: 471: 426: 333: 288: 209: 1643: 1607: 1912:(5), Mathematical Association of America: 516–520, 1730:(7), Mathematical Association of America: 373–374, 1583: 664:, the polynomial factorizes and therefore produces 1568: 1314: 1271: 1238: 1210: 1143: 992: 959: 794: 502: 457: 409: 319: 255: 1940:(1), Mathematical Association of America: 43–44, 1136: 1129: 1112: 1081: 1063: 1038: 676:where one of the factors equals 1). Moreover, if 109:In 1932, 31 years prior to Ulam's discovery, the 2271: 1993: 1795: 1632:, The Online Archive of California, p. 117 1000:is number of zeros of the quadratic polynomial 1901: 1601: 1550: 106:as to what that asymptotic density should be. 1979: 616:+ 41 or, equivalently, to negative values of 1644:Jacobson Jr., M. J.; Williams, H. C (2003), 2095: 510:. Compute remainders upon division by 3 as 1986: 1972: 1283:. This is accounted for by the use of the 410:{\displaystyle (4n^{2}+8n+3)=(2n+1)(2n+3)} 1931: 1878: 1870: 1811: 1674: 1068: 71:and specially marking the prime numbers. 591: 79:, and certain such polynomials, such as 26: 18: 1826: 1774: 1749: 1625: 1613: 1562: 1538: 1396:+ 41, now appears as a single curve as 700:takes prime values infinitely often as 43:is a graphical depiction of the set of 2272: 1847: 1589: 1412:Additional structure may be seen when 1967: 1890:, Mathematical Association of America 1695:(3rd ed.), Springer, p. 8, 1719: 1577: 145:and then marking the prime numbers: 1688: 1500:Ulam spiral with 10 million primes. 910: 523:Hardy and Littlewood's Conjecture F 13: 1769:10.1038/scientificamerican0364-120 1692:Unsolved problems in number theory 1629:Guide to the Martin Gardner papers 1300: 1119: 889:to the even numbers. The constant 885:, or equivalently, by restricting 14: 2296: 1171:is even. The first product index 2045: 1818: 1493: 1481: 1469: 1457: 1445: 1425: 256:{\displaystyle f(n)=4n^{2}+bn+c} 173:Los Alamos Scientific Laboratory 149: 137: 1834:, New York: Fawcett Colombine, 1782:, University of Chicago Press, 1712: 1682: 120: 1884:"Prime generating polynomials" 1736:10.1080/00029890.1932.11987331 1637: 1619: 1266: 1260: 1199: 1193: 987: 981: 937: 931: 751: 745: 404: 389: 386: 371: 365: 334: 219: 213: 195: 1: 1934:American Mathematical Monthly 1905:American Mathematical Monthly 1723:American Mathematical Monthly 1676:10.1090/S0025-5718-02-01418-7 1522: 274:are integer constants. When 1602:Stein, Ulam & Wells 1964 1551:Stein, Ulam & Wells 1964 1341:A quadratic polynomial with 1211:{\displaystyle \omega (p)=0} 7: 1505: 1348: 1226:. The second product index 868:prime-generating polynomial 527:In their 1923 paper on the 503:{\displaystyle 4n^{2}+6n+5} 458:{\displaystyle 4n^{2}+6n+1} 320:{\displaystyle 4n^{2}+8n+3} 85:prime-generating polynomial 51:in 1963 and popularized in 47:, devised by mathematician 10: 2301: 1654:Mathematics of Computation 1272:{\displaystyle \omega (p)} 993:{\displaystyle \omega (p)} 161: 2160: 2054: 2043: 2009: 1334:there is one root modulo 706:conjecture of Bunyakovsky 1689:Guy, Richard K. (2004), 1626:Hartwig, Daniel (2013), 716:) of primes of the form 596:The primes of the form 4 1239:{\displaystyle \varpi } 542:Bateman–Horn conjecture 1357:contains the numbers ( 1316: 1273: 1240: 1212: 1145: 994: 961: 796: 621: 504: 459: 411: 321: 257: 187:In an addendum to the 32: 24: 1872:10.4064/aa-74-1-17-30 1848:Mollin, R.A. (1996), 1317: 1274: 1241: 1213: 1146: 995: 962: 797: 595: 505: 460: 412: 322: 258: 77:quadratic polynomials 30: 22: 1291: 1254: 1230: 1187: 1183:. For these primes 1014: 975: 900: 829:, this formula with 827:prime number theorem 739: 469: 424: 331: 286: 207: 1756:Scientific American 1667:2003MaCom..72..499J 1512:Pattern recognition 1250:. For these primes 1222:then cannot divide 581:of the polynomial, 529:Goldbach Conjecture 189:Scientific American 182:Scientific American 64:Scientific American 1813:10.1007/BF02403921 1440:+  41 highlighted. 1409:in the sequence.) 1382:Archimedean spiral 1361:−  1) + 1 through 1312: 1269: 1236: 1208: 1141: 1078: 1035: 990: 957: 918: 877:+ 41 by replacing 792: 622: 500: 455: 407: 317: 253: 178:Mathematical Games 58:Mathematical Games 33: 25: 2267: 2266: 2156: 2155: 1882:(July 17, 2006), 1789:978-0-226-28250-3 1702:978-0-387-20860-2 1414:composite numbers 1306: 1125: 1108: 1069: 1059: 1026: 956: 952: 909: 790: 778: 770: 769: 666:composite numbers 648:are integers and 129:arrangement on a 100:Landau's problems 2292: 2093: 2092: 2072:Boerdijk–Coxeter 2049: 2048: 1988: 1981: 1974: 1965: 1964: 1956: 1928: 1898: 1897: 1895: 1875: 1874: 1858:Acta Arithmetica 1854: 1844: 1823: 1822: 1816: 1815: 1799:Acta Mathematica 1792: 1771: 1746: 1706: 1705: 1686: 1680: 1679: 1678: 1661:(241): 499–519, 1650: 1641: 1635: 1633: 1623: 1617: 1611: 1605: 1599: 1593: 1587: 1581: 1575: 1566: 1560: 1554: 1548: 1542: 1536: 1497: 1485: 1473: 1461: 1449: 1429: 1322:. When a prime 1321: 1319: 1318: 1313: 1311: 1307: 1299: 1278: 1276: 1275: 1270: 1245: 1243: 1242: 1237: 1217: 1215: 1214: 1209: 1163:is odd and 2 if 1150: 1148: 1147: 1142: 1140: 1139: 1133: 1132: 1126: 1118: 1116: 1115: 1109: 1107: 1093: 1085: 1084: 1077: 1067: 1066: 1060: 1058: 1044: 1042: 1041: 1034: 999: 997: 996: 991: 966: 964: 963: 958: 954: 953: 951: 940: 920: 917: 801: 799: 798: 793: 791: 789: 774: 773: 771: 765: 761: 509: 507: 506: 501: 484: 483: 464: 462: 461: 456: 439: 438: 416: 414: 413: 408: 349: 348: 326: 324: 323: 318: 301: 300: 262: 260: 259: 254: 237: 236: 153: 141: 114:Laurence Klauber 2300: 2299: 2295: 2294: 2293: 2291: 2290: 2289: 2270: 2269: 2268: 2263: 2152: 2106: 2091: 2050: 2046: 2041: 2005: 1992: 1961: 1959: 1946:10.2307/2314055 1918:10.2307/2312588 1893: 1891: 1852: 1842: 1817: 1790: 1715: 1710: 1709: 1703: 1687: 1683: 1648: 1642: 1638: 1624: 1620: 1612: 1608: 1600: 1596: 1588: 1584: 1576: 1569: 1561: 1557: 1549: 1545: 1537: 1530: 1525: 1508: 1501: 1498: 1489: 1486: 1477: 1474: 1465: 1462: 1453: 1450: 1441: 1430: 1351: 1298: 1294: 1292: 1289: 1288: 1285:Legendre symbol 1255: 1252: 1251: 1231: 1228: 1227: 1188: 1185: 1184: 1135: 1134: 1128: 1127: 1117: 1111: 1110: 1097: 1092: 1080: 1079: 1073: 1062: 1061: 1048: 1043: 1037: 1036: 1030: 1015: 1012: 1011: 976: 973: 972: 941: 921: 919: 913: 901: 898: 897: 779: 772: 760: 740: 737: 736: 525: 479: 475: 470: 467: 466: 434: 430: 425: 422: 421: 344: 340: 332: 329: 328: 296: 292: 287: 284: 283: 232: 228: 208: 205: 204: 198: 164: 123: 17: 12: 11: 5: 2298: 2288: 2287: 2282: 2265: 2264: 2262: 2261: 2256: 2251: 2246: 2241: 2236: 2229: 2228: 2227: 2217: 2212: 2207: 2202: 2197: 2192: 2191: 2190: 2185: 2180: 2170: 2164: 2162: 2158: 2157: 2154: 2153: 2151: 2150: 2149: 2148: 2138: 2133: 2128: 2123: 2118: 2113: 2108: 2104: 2099: 2097: 2090: 2089: 2084: 2079: 2074: 2069: 2064: 2058: 2056: 2052: 2051: 2044: 2042: 2040: 2039: 2034: 2029: 2024: 2019: 2013: 2011: 2007: 2006: 1991: 1990: 1983: 1976: 1968: 1958: 1957: 1929: 1899: 1876: 1845: 1840: 1824: 1793: 1788: 1772: 1747: 1716: 1714: 1711: 1708: 1707: 1701: 1681: 1636: 1618: 1606: 1604:, p. 520. 1594: 1582: 1580:, p. 373. 1567: 1565:, p. 124. 1555: 1553:, p. 517. 1543: 1541:, p. 122. 1527: 1526: 1524: 1521: 1520: 1519: 1514: 1507: 1504: 1503: 1502: 1499: 1492: 1490: 1487: 1480: 1478: 1475: 1468: 1466: 1463: 1456: 1454: 1451: 1444: 1442: 1431: 1424: 1386:perfect square 1350: 1347: 1310: 1305: 1302: 1297: 1268: 1265: 1262: 1259: 1235: 1207: 1204: 1201: 1198: 1195: 1192: 1153: 1152: 1138: 1131: 1124: 1121: 1114: 1106: 1103: 1100: 1096: 1091: 1088: 1083: 1076: 1072: 1065: 1057: 1054: 1051: 1047: 1040: 1033: 1029: 1025: 1022: 1019: 989: 986: 983: 980: 969: 968: 950: 947: 944: 939: 936: 933: 930: 927: 924: 916: 912: 908: 905: 803: 802: 788: 785: 782: 777: 768: 764: 759: 756: 753: 750: 747: 744: 728:and less than 662:perfect square 524: 521: 499: 496: 493: 490: 487: 482: 478: 474: 454: 451: 448: 445: 442: 437: 433: 429: 406: 403: 400: 397: 394: 391: 388: 385: 382: 379: 376: 373: 370: 367: 364: 361: 358: 355: 352: 347: 343: 339: 336: 316: 313: 310: 307: 304: 299: 295: 291: 264: 263: 252: 249: 246: 243: 240: 235: 231: 227: 224: 221: 218: 215: 212: 197: 194: 163: 160: 155: 154: 143: 142: 131:square lattice 122: 119: 53:Martin Gardner 49:Stanisław Ulam 15: 9: 6: 4: 3: 2: 2297: 2286: 2283: 2281: 2280:Prime numbers 2278: 2277: 2275: 2260: 2257: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2234: 2230: 2226: 2223: 2222: 2221: 2218: 2216: 2213: 2211: 2208: 2206: 2203: 2201: 2198: 2196: 2193: 2189: 2186: 2184: 2181: 2179: 2176: 2175: 2174: 2171: 2169: 2166: 2165: 2163: 2159: 2147: 2144: 2143: 2142: 2139: 2137: 2134: 2132: 2129: 2127: 2124: 2122: 2119: 2117: 2114: 2112: 2109: 2107: 2101: 2100: 2098: 2094: 2088: 2085: 2083: 2080: 2078: 2075: 2073: 2070: 2068: 2065: 2063: 2060: 2059: 2057: 2053: 2038: 2035: 2033: 2030: 2028: 2025: 2023: 2020: 2018: 2015: 2014: 2012: 2008: 2004: 2000: 1996: 1989: 1984: 1982: 1977: 1975: 1970: 1969: 1966: 1962: 1955: 1951: 1947: 1943: 1939: 1935: 1930: 1927: 1923: 1919: 1915: 1911: 1907: 1906: 1900: 1889: 1885: 1881: 1880:Pegg, Jr., Ed 1877: 1873: 1868: 1864: 1860: 1859: 1851: 1846: 1843: 1841:0-449-00089-3 1837: 1833: 1829: 1828:Hoffman, Paul 1825: 1821: 1814: 1809: 1805: 1801: 1800: 1794: 1791: 1785: 1781: 1777: 1773: 1770: 1766: 1762: 1758: 1757: 1752: 1748: 1745: 1741: 1737: 1733: 1729: 1725: 1724: 1718: 1717: 1704: 1698: 1694: 1693: 1685: 1677: 1672: 1668: 1664: 1660: 1656: 1655: 1647: 1640: 1631: 1630: 1622: 1616:, p. 88. 1615: 1610: 1603: 1598: 1592:, p. 21. 1591: 1586: 1579: 1574: 1572: 1564: 1559: 1552: 1547: 1540: 1535: 1533: 1528: 1518: 1517:Prime k-tuple 1515: 1513: 1510: 1509: 1496: 1491: 1484: 1479: 1472: 1467: 1460: 1455: 1452:Sacks spiral. 1448: 1443: 1439: 1435: 1428: 1423: 1422: 1421: 1418: 1415: 1410: 1408: 1404: 1399: 1395: 1391: 1387: 1383: 1378: 1376: 1372: 1368: 1364: 1360: 1356: 1346: 1344: 1339: 1337: 1333: 1329: 1325: 1308: 1303: 1295: 1286: 1282: 1263: 1257: 1249: 1233: 1225: 1221: 1205: 1202: 1196: 1190: 1182: 1178: 1174: 1170: 1166: 1162: 1158: 1122: 1104: 1101: 1098: 1094: 1089: 1086: 1074: 1070: 1055: 1052: 1049: 1045: 1031: 1027: 1023: 1020: 1017: 1010: 1009: 1008: 1006: 1003: 984: 978: 948: 945: 942: 934: 928: 925: 922: 914: 906: 903: 896: 895: 894: 892: 888: 884: 880: 876: 872: 869: 864: 860: 856: 852: 848: 844: 840: 836: 832: 828: 824: 820: 816: 812: 808: 786: 783: 780: 775: 766: 762: 757: 754: 748: 742: 735: 734: 733: 731: 727: 723: 719: 715: 711: 707: 703: 699: 695: 691: 687: 683: 679: 675: 671: 667: 663: 659: 655: 651: 647: 643: 639: 635: 631: 627: 619: 615: 611: 607: 603: 599: 594: 590: 588: 584: 580: 575: 571: 567: 563: 559: 555: 551: 547: 543: 538: 534: 530: 520: 516: 513: 497: 494: 491: 488: 485: 480: 476: 472: 452: 449: 446: 443: 440: 435: 431: 427: 418: 401: 398: 395: 392: 383: 380: 377: 374: 368: 362: 359: 356: 353: 350: 345: 341: 337: 314: 311: 308: 305: 302: 297: 293: 289: 281: 277: 273: 269: 250: 247: 244: 241: 238: 233: 229: 225: 222: 216: 210: 203: 202: 201: 193: 190: 185: 183: 179: 174: 170: 159: 152: 148: 147: 146: 140: 136: 135: 134: 132: 128: 118: 115: 112: 111:herpetologist 107: 105: 101: 97: 96:number theory 93: 89: 86: 82: 78: 72: 70: 69:square spiral 66: 65: 60: 59: 54: 50: 46: 45:prime numbers 42: 38: 29: 21: 2258: 2231: 2096:Biochemistry 1960: 1937: 1933: 1909: 1903: 1892:, retrieved 1887: 1862: 1856: 1831: 1803: 1797: 1779: 1760: 1754: 1727: 1721: 1713:Bibliography 1691: 1684: 1658: 1652: 1639: 1628: 1621: 1614:Gardner 1971 1609: 1597: 1585: 1563:Gardner 1964 1558: 1546: 1539:Gardner 1964 1437: 1433: 1419: 1411: 1406: 1402: 1397: 1393: 1389: 1379: 1374: 1370: 1366: 1362: 1358: 1354: 1352: 1342: 1340: 1335: 1331: 1327: 1323: 1280: 1247: 1223: 1219: 1180: 1176: 1172: 1168: 1164: 1160: 1156: 1154: 1004: 970: 890: 886: 882: 878: 874: 870: 862: 858: 854: 850: 849:. But since 846: 842: 838: 834: 830: 822: 818: 814: 810: 806: 804: 732:is given by 729: 725: 721: 717: 713: 709: 701: 697: 693: 689: 685: 681: 677: 673: 669: 657: 653: 649: 645: 641: 637: 633: 629: 625: 623: 617: 613: 609: 605: 601: 597: 586: 582: 579:discriminant 573: 569: 565: 561: 557: 553: 549: 545: 526: 517: 511: 419: 279: 275: 271: 267: 265: 199: 188: 186: 181: 177: 165: 156: 144: 124: 121:Construction 108: 91: 87: 73: 62: 56: 41:prime spiral 40: 36: 34: 2244:Pitch angle 2220:Logarithmic 2168:Archimedean 2131:Polyproline 1776:Gardner, M. 1763:: 120–128, 1751:Gardner, M. 1590:Mollin 1996 821:but not on 809:depends on 196:Explanation 37:Ulam spiral 2274:Categories 2233:On Spirals 2183:Hyperbolic 1888:Math Games 1523:References 604:+ 41 with 537:Littlewood 180:column in 104:conjecture 61:column in 2254:Spirangle 2249:Theodorus 2188:Poinsot's 2178:Epispiral 2022:Curvature 2017:Algebraic 1894:1 January 1865:: 17–30, 1578:Daus 1932 1304:ϖ 1301:Δ 1258:ω 1234:ϖ 1191:ω 1123:ϖ 1120:Δ 1102:− 1099:ϖ 1090:− 1075:ϖ 1071:∏ 1053:− 1028:∏ 1024:ε 979:ω 971:in which 946:− 929:ω 926:− 911:∏ 825:. By the 784:⁡ 755:∼ 169:MANIAC II 2210:Involute 2205:Fermat's 2146:Collagen 2082:Symmetry 1830:(1988), 1806:: 1–70, 1778:(1971), 1506:See also 1349:Variants 1330:but not 1326:divides 98:such as 2285:Spirals 2239:Padovan 2173:Cotes's 2161:Spirals 2067:Antenna 2055:Helices 2027:Gallery 2003:helices 1995:Spirals 1954:2314055 1926:2312588 1744:2300380 1663:Bibcode 1218:since 162:History 2225:Golden 2141:Triple 2121:Double 2087:Triple 2037:Topics 2010:Curves 1999:curves 1952:  1924:  1838:  1786:  1742:  1699:  1002:modulo 955:  881:with 2 817:, and 805:where 644:, and 636:where 266:where 127:spiral 2200:Euler 2195:Doyle 2136:Super 2111:Alpha 2062:Angle 1950:JSTOR 1922:JSTOR 1853:(PDF) 1740:JSTOR 1649:(PDF) 660:is a 568:with 533:Hardy 81:Euler 2259:Ulam 2215:List 2116:Beta 2077:Hemi 2032:List 2001:and 1896:2019 1836:ISBN 1784:ISBN 1697:ISBN 1179:and 684:and 585:− 16 535:and 465:and 270:and 35:The 1942:doi 1914:doi 1867:doi 1808:doi 1765:doi 1761:210 1732:doi 1671:doi 1436:− 857:− 2 781:log 668:as 656:− 4 612:+ 2 600:− 2 171:at 83:'s 55:'s 39:or 2276:: 2126:Pi 2105:10 1997:, 1948:, 1938:74 1936:, 1920:, 1910:71 1908:, 1886:, 1863:74 1861:, 1855:, 1804:44 1802:, 1759:, 1738:, 1728:39 1726:, 1669:, 1659:72 1657:, 1651:, 1570:^ 1531:^ 1392:− 1373:+ 1369:− 1287:, 1167:+ 1159:+ 873:− 845:+ 843:bx 841:+ 839:ax 813:, 724:+ 722:bx 720:+ 718:ax 696:+ 694:bx 692:+ 690:ax 680:+ 658:ac 640:, 632:+ 630:bx 628:+ 626:ax 589:. 564:+ 562:bx 560:+ 552:+ 550:bx 548:+ 546:ax 531:, 133:: 90:− 2103:3 1987:e 1980:t 1973:v 1944:: 1916:: 1869:: 1810:: 1767:: 1734:: 1673:: 1665:: 1634:. 1438:x 1434:x 1407:x 1403:x 1398:x 1394:x 1390:x 1375:M 1371:k 1367:k 1363:n 1359:n 1355:n 1343:A 1336:p 1332:b 1328:a 1324:p 1309:) 1296:( 1281:p 1267:) 1264:p 1261:( 1248:a 1224:c 1220:p 1206:0 1203:= 1200:) 1197:p 1194:( 1181:b 1177:a 1173:p 1169:b 1165:a 1161:b 1157:a 1151:. 1137:) 1130:) 1113:( 1105:1 1095:1 1087:1 1082:( 1064:) 1056:1 1050:p 1046:p 1039:( 1032:p 1021:= 1018:A 1005:p 988:) 985:p 982:( 967:, 949:1 943:p 938:) 935:p 932:( 923:p 915:p 907:= 904:A 891:A 887:x 883:x 879:x 875:x 871:x 863:A 859:x 855:x 851:A 847:c 835:n 831:A 823:n 819:c 815:b 811:a 807:A 787:n 776:n 767:a 763:1 758:A 752:) 749:n 746:( 743:P 730:n 726:c 714:n 712:( 710:P 702:x 698:c 686:c 682:b 678:a 674:x 670:x 654:b 650:a 646:c 642:b 638:a 634:c 620:. 618:x 614:x 610:x 606:x 602:x 598:x 587:c 583:b 574:b 570:b 566:c 558:x 554:c 512:n 498:5 495:+ 492:n 489:6 486:+ 481:2 477:n 473:4 453:1 450:+ 447:n 444:6 441:+ 436:2 432:n 428:4 405:) 402:3 399:+ 396:n 393:2 390:( 387:) 384:1 381:+ 378:n 375:2 372:( 369:= 366:) 363:3 360:+ 357:n 354:8 351:+ 346:2 342:n 338:4 335:( 315:3 312:+ 309:n 306:8 303:+ 298:2 294:n 290:4 280:c 276:b 272:c 268:b 251:c 248:+ 245:n 242:b 239:+ 234:2 230:n 226:4 223:= 220:) 217:n 214:( 211:f 92:x 88:x

Index



prime numbers
Stanisław Ulam
Martin Gardner
Mathematical Games
Scientific American
square spiral
quadratic polynomials
Euler
prime-generating polynomial
number theory
Landau's problems
conjecture
herpetologist
Laurence Klauber
spiral
square lattice
Numbers from 1 to 49 placed in spiral order
Small Ulam spiral
MANIAC II
Los Alamos Scientific Laboratory
Goldbach Conjecture
Hardy
Littlewood
Bateman–Horn conjecture
discriminant

perfect square
composite numbers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.