Knowledge

Toroidal polyhedron

Source 📝

180: 166: 226: 457: 450: 443: 464: 436: 429: 422: 313: 415: 728: 320: 717: 739: 20: 773: 751:
A polyhedron that is formed by a system of crossing polygons corresponds to an abstract topological manifold formed by its polygons and their system of shared edges and vertices, and the genus of the polyhedron may be determined from this abstract manifold. Examples include the genus-1
94:
as they do. That is, each edge should be shared by exactly two polygons, and at each vertex the edges and faces that meet at the vertex should be linked together in a single cycle of alternating edges and faces, the
217:
The CsĂĄszĂĄr polyhedron has the fewest possible vertices of any embedded toroidal polyhedron, and the Szilassi polyhedron has the fewest possible faces of any embedded toroidal polyhedron.
288:. For such a polyhedron, each face of the convex hull either lies on the surface of the toroid, or is a polygon all of whose edges lie on the surface of the toroid. 1150:; see messages dated "Sep 23, 1997, 12:00:00 AM" announcing the toroidal deltahedron, and "Sep 25, 1997, 12:00:00 AM" describing its construction. Unlike the 122:, topological surfaces without any specified geometric realization. Intermediate between these two extremes are polyhedra formed by geometric polygons or 257:
faces, without crossings, and with a further restriction that adjacent faces may not lie in the same plane as each other. These are called
103:. Some authors restrict the phrase "toroidal polyhedra" to mean more specifically polyhedra topologically equivalent to the (genus 1) 206:
are the only known polyhedra in which every possible line segment connecting two vertices forms an edge of the polyhedron. Its dual, the
1310: 1305: 1210: 1061: 1138: 1031: 1261:, NATO ASI Series C: Mathematical and Physical Series, vol. 440, Kluwer Academic Publishers, pp. 43–70, 1154:, it has coplanar adjacent triangles, but otherwise resembles a toroidal deltahedron with more faces described by 273:; however, unlike the Johnson solids, there are infinitely many Stewart toroids. They include also toroidal 1200: 210:, has seven hexagonal faces that are all adjacent to each other, hence providing the existence half of the 129:
In all of these cases the toroidal nature of a polyhedron can be verified by its orientability and by its
1335: 921: 184: 211: 170: 179: 757: 732: 612: 607: 602: 597: 199: 195:
Two of the simplest possible embedded toroidal polyhedra are the CsĂĄszĂĄr and Szilassi polyhedra.
165: 71: 592: 60: 1271: 1254: 821: 245:. Conway suggested that it should be the deltahedral toroid with the fewest possible faces. 1185: 936: 895: 832: 809: 587: 582: 130: 1027: 1004: 8: 874: 207: 75: 63: 1291: 202:
is a seven-vertex toroidal polyhedron with 21 edges and 14 triangular faces. It and the
1169: 1115: 1067: 1039: 899: 761: 753: 743: 721: 119: 1250: 965: 1315: 1288: 1206: 1057: 987: 903: 826: 777: 567: 540: 529: 497: 486: 456: 449: 442: 270: 1071: 463: 214:
that the maximum number of colors needed for a map on a (genus one) torus is seven.
1262: 1097: 1049: 977: 883: 805: 797: 781: 508: 435: 28: 968:; Szilassi, Lajos (2009), "Geometric Realizations of Special Toroidal Complexes", 428: 421: 1181: 1053: 932: 917: 891: 801: 331: 254: 115: 96: 1266: 1202:
Adventures Among the Toroids: A Study of Orientable Polyhedra with Regular Faces
1085: 872:
Webber, William T. (1997), "Monohedral idemvalent polyhedra that are toroids",
837: 577: 513: 502: 491: 262: 238: 1320: 1030:(2008), "Polyhedral Surfaces of High Genus", in Bobenko, A. I.; Schröder, P.; 887: 225: 1329: 991: 562: 551: 524: 475: 312: 266: 100: 982: 414: 123: 727: 1038:, Oberwolfach Seminars, vol. 38, Springer-Verlag, pp. 191–213, 319: 285: 274: 234: 203: 1044: 280:
A restricted class of Stewart toroids, also defined by Stewart, are the
253:
A special category of toroidal polyhedra are constructed exclusively by
950: 808:(equal faces). Crown polyhedra are self-intersecting and topologically 518: 480: 114:
toroidal polyhedra, whose faces are flat polygons in three-dimensional
44: 241:
in 1997, containing 18 vertices and 36 faces. Some adjacent faces are
1296: 1101: 738: 716: 337: 111: 284:. These are Stewart toroids that include all of the edges of their 242: 91: 36: 19: 87: 1144: 48: 772: 104: 56: 24: 1306:
Stewart Toroids (Toroidal Solids with Regular Polygon Faces)
1286: 133:
being non-positive. The Euler characteristic generalizes to
556: 545: 534: 99:
of the vertex. For toroidal polyhedra, this manifold is an
265:, who studied them intensively. They are analogous to the 27:
can be constructed to approximate a torus surface, from a
126:
in Euclidean space that are allowed to cross each other.
1240:, "Quasi-convexity and weak quasi-convexity", pp. 76–79. 292:
Stewart toroids by augmentation of a single polyhedron
277:, polyhedra whose faces are all equilateral triangles. 776:
Pentagonal stephanoid. This stephanoid has pentagonal
183:Interactive Szilassi polyhedron model – in 156: 118:that do not cross themselves or each other, from 90:that meet at their edges and vertices, forming a 86:Toroidal polyhedra are defined as collections of 1327: 964: 220: 169:Interactive Csaszar polyhedron model – in 70:) of 1 or greater. Notable examples include the 1114: 955:, Bolyai Institute, University of Szeged, 1949 31:of quadrilateral faces, like this 6x4 example. 1259:Polytopes: Abstract, Convex and Computational 110:In this area, it is important to distinguish 16:Partition of a toroidal surface into polygons 1003: 173:move the mouse left and right to rotate it. 81: 1007:(1949), "A polyhedron without diagonals", 707: 1043: 981: 780:and has the same vertices as the uniform 1249: 1084: 916: 855: 771: 224: 178: 164: 18: 1237: 1225: 1198: 1155: 1026: 859: 796:is a toroidal polyhedron which is also 1328: 871: 1287: 970:Contributions to Discrete Mathematics 1167: 1151: 13: 1136: 1118:(1890), "Map colouring theorems", 767: 248: 14: 1347: 1280: 1120:Quarterly Journal of Mathematics 737: 726: 715: 462: 455: 448: 441: 434: 427: 420: 413: 318: 311: 1243: 1231: 1219: 1205:(2nd ed.), B. M. Stewart, 1192: 1161: 1130: 952:A Polyhedron Without Diagonals. 282:quasi-convex toroidal polyhedra 1170:"Stella: polyhedron navigator" 1108: 1078: 1036:Discrete Differential Geometry 1020: 997: 958: 943: 910: 865: 849: 711: 160: 157:CsĂĄszĂĄr and Szilassi polyhedra 1: 1255:"Polyhedra with Hollow Faces" 1174:Symmetry: Culture and Science 1139:"Polyhedra of positive genus" 843: 379:Quasi-convex Stewart toroids 229:Conway's toroidal deltahedron 221:Conway's toroidal deltahedron 1054:10.1007/978-3-7643-8621-4_10 922:"Realizability of polyhedra" 713: 675: 646: 617: 469: 364: 353: 342: 325: 187:move the mouse to rotate it. 7: 1267:10.1007/978-94-011-0924-6_3 1088:(1986), "Regular toroids", 815: 10: 1352: 829:(infinite skew polyhedron) 177: 163: 153:is its topological genus. 1034:; Ziegler, G. M. (eds.), 386: 82:Variations in definition 1199:Stewart, B. M. (1980), 983:10.11575/cdm.v4i1.61986 888:10.1023/A:1004997029852 758:small cubicuboctahedron 733:Small cubicuboctahedron 708:Self-crossing polyhedra 613:truncated cuboctahedron 608:truncated cuboctahedron 603:truncated cuboctahedron 598:truncated cuboctahedron 1152:§ Stewart toroids 1009:Acta Sci. Math. Szeged 785: 593:expanded cuboctahedron 230: 188: 174: 32: 1292:"Toroidal polyhedron" 1168:Webb, Robert (2000), 822:Projective polyhedron 804:(equal vertices) and 775: 228: 182: 168: 22: 1270:. See in particular 833:Spherical polyhedron 588:truncated octahedron 583:truncated octahedron 131:Euler characteristic 1311:Stewart's polyhedra 1090:Structural Topology 929:Structural Topology 875:Geometriae Dedicata 380: 293: 208:Szilassi polyhedron 41:toroidal polyhedron 1336:Toroidal polyhedra 1316:Toroidal Polyhedra 1289:Weisstein, Eric W. 1143:geometry.research 1028:Ziegler, GĂŒnter M. 786: 762:great dodecahedron 760:, and the genus-4 754:octahemioctahedron 744:Great dodecahedron 722:Octahemioctahedron 568:triangular cupolae 541:triangular cupolae 530:triangular cupolae 498:triangular cupolae 487:triangular cupolae 378: 291: 231: 200:CsĂĄszĂĄr polyhedron 189: 175: 120:abstract polyhedra 101:orientable surface 76:Szilassi polyhedra 33: 1212:978-0-686-11936-4 1063:978-3-7643-8620-7 827:Skew apeirohedron 778:dihedral symmetry 749: 748: 705: 704: 509:triangular prisms 376: 375: 237:was described by 193: 192: 1343: 1302: 1301: 1275: 1269: 1251:GrĂŒnbaum, Branko 1247: 1241: 1235: 1229: 1223: 1217: 1215: 1196: 1190: 1188: 1180:(1–4): 231–268, 1165: 1159: 1149: 1134: 1128: 1127: 1122:, First Series, 1112: 1106: 1104: 1082: 1076: 1074: 1047: 1024: 1018: 1016: 1001: 995: 994: 985: 966:GrĂŒnbaum, Branko 962: 956: 947: 941: 939: 931:(1): 46–58, 73, 926: 918:Whiteley, Walter 914: 908: 906: 869: 863: 853: 790:crown polyhedron 782:pentagonal prism 741: 730: 719: 712: 466: 459: 452: 445: 438: 431: 424: 417: 381: 377: 332:hexagonal prisms 322: 315: 294: 290: 271:convex polyhedra 161: 69: 54: 47:which is also a 1351: 1350: 1346: 1345: 1344: 1342: 1341: 1340: 1326: 1325: 1321:Stewart toroids 1283: 1278: 1248: 1244: 1236: 1232: 1224: 1220: 1213: 1197: 1193: 1166: 1162: 1135: 1131: 1113: 1109: 1086:Szilassi, Lajos 1083: 1079: 1064: 1045:math.MG/0412093 1032:Sullivan, J. M. 1025: 1021: 1002: 998: 963: 959: 948: 944: 924: 915: 911: 870: 866: 856:Whiteley (1979) 854: 850: 846: 818: 770: 768:Crown polyhedra 742: 731: 720: 710: 565: 554: 543: 532: 527: 516: 514:square pyramids 511: 503:square pyramids 500: 492:square pyramids 489: 478: 269:in the case of 259:Stewart toroids 255:regular polygon 251: 249:Stewart toroids 223: 159: 116:Euclidean space 84: 67: 52: 17: 12: 11: 5: 1349: 1339: 1338: 1324: 1323: 1318: 1313: 1308: 1303: 1282: 1281:External links 1279: 1277: 1276: 1242: 1238:Stewart (1980) 1230: 1226:Stewart (1980) 1218: 1211: 1191: 1160: 1156:Stewart (1980) 1137:Conway, John, 1129: 1116:Heawood, P. J. 1107: 1077: 1062: 1019: 996: 957: 949:Ákos CsĂĄszĂĄr, 942: 909: 864: 860:Stewart (1980) 847: 845: 842: 841: 840: 838:Toroidal graph 835: 830: 824: 817: 814: 769: 766: 756:, the genus-3 747: 746: 735: 724: 709: 706: 703: 702: 699: 696: 693: 690: 687: 684: 681: 678: 674: 673: 670: 667: 664: 661: 658: 655: 652: 649: 645: 644: 641: 638: 635: 632: 629: 626: 623: 620: 616: 615: 610: 605: 600: 595: 590: 585: 580: 578:truncated cube 575: 571: 570: 563:square cupolae 559: 552:square cupolae 548: 537: 525:square cupolae 521: 505: 494: 483: 476:square cupolae 472: 468: 467: 460: 453: 446: 439: 432: 425: 418: 411: 407: 406: 403: 400: 397: 394: 391: 388: 385: 374: 373: 370: 367: 363: 362: 359: 356: 352: 351: 348: 345: 341: 340: 334: 328: 324: 323: 316: 309: 305: 304: 301: 298: 267:Johnson solids 263:Bonnie Stewart 261:, named after 250: 247: 239:John H. Conway 222: 219: 191: 190: 185:the SVG image, 176: 171:the SVG image, 158: 155: 83: 80: 15: 9: 6: 4: 3: 2: 1348: 1337: 1334: 1333: 1331: 1322: 1319: 1317: 1314: 1312: 1309: 1307: 1304: 1299: 1298: 1293: 1290: 1285: 1284: 1273: 1268: 1264: 1260: 1256: 1252: 1246: 1239: 1234: 1228:, p. 15. 1227: 1222: 1214: 1208: 1204: 1203: 1195: 1187: 1183: 1179: 1175: 1171: 1164: 1157: 1153: 1148: 1146: 1140: 1133: 1125: 1121: 1117: 1111: 1103: 1099: 1095: 1091: 1087: 1081: 1073: 1069: 1065: 1059: 1055: 1051: 1046: 1041: 1037: 1033: 1029: 1023: 1014: 1010: 1006: 1000: 993: 989: 984: 979: 975: 971: 967: 961: 954: 953: 946: 938: 934: 930: 923: 919: 913: 905: 901: 897: 893: 889: 885: 881: 877: 876: 868: 862:, p. 15. 861: 857: 852: 848: 839: 836: 834: 831: 828: 825: 823: 820: 819: 813: 811: 807: 803: 800:, being both 799: 795: 791: 783: 779: 774: 765: 763: 759: 755: 745: 740: 736: 734: 729: 725: 723: 718: 714: 700: 697: 694: 691: 688: 685: 682: 679: 676: 671: 668: 665: 662: 659: 656: 653: 650: 647: 642: 639: 636: 633: 630: 627: 624: 621: 618: 614: 611: 609: 606: 604: 601: 599: 596: 594: 591: 589: 586: 584: 581: 579: 576: 573: 572: 569: 564: 560: 558: 553: 549: 547: 542: 538: 536: 531: 526: 522: 520: 515: 510: 506: 504: 499: 495: 493: 488: 484: 482: 477: 473: 470: 465: 461: 458: 454: 451: 447: 444: 440: 437: 433: 430: 426: 423: 419: 416: 412: 409: 408: 404: 401: 398: 395: 392: 389: 383: 382: 371: 368: 365: 360: 357: 354: 349: 346: 343: 339: 335: 333: 329: 326: 321: 317: 314: 310: 307: 306: 302: 299: 296: 295: 289: 287: 283: 278: 276: 272: 268: 264: 260: 256: 246: 244: 240: 236: 227: 218: 215: 213: 209: 205: 201: 196: 186: 181: 172: 167: 162: 154: 152: 148: 144: 140: 136: 132: 127: 125: 124:star polygons 121: 117: 113: 108: 106: 102: 98: 93: 89: 79: 77: 73: 65: 62: 58: 50: 46: 42: 38: 30: 26: 23:A polyhedral 21: 1295: 1258: 1245: 1233: 1221: 1201: 1194: 1177: 1173: 1163: 1142: 1132: 1123: 1119: 1110: 1093: 1089: 1080: 1035: 1022: 1012: 1008: 999: 976:(1): 21–39, 973: 969: 960: 951: 945: 928: 912: 882:(1): 31–44, 879: 873: 867: 851: 793: 789: 787: 750: 574:Convex hull 286:convex hulls 281: 279: 258: 252: 232: 216: 197: 194: 150: 146: 142: 138: 134: 128: 109: 85: 59:), having a 40: 34: 1005:CsĂĄszĂĄr, A. 235:deltahedron 233:A toroidal 204:tetrahedron 61:topological 1272:p. 60 844:References 794:stephanoid 519:tetrahedra 481:tetrahedra 471:Polyhedra 327:Polyhedra 275:deltahedra 45:polyhedron 1297:MathWorld 1126:: 322–339 1102:2099/1038 1096:: 69–80, 1015:: 140–142 992:1715-0868 904:117884274 810:self-dual 806:isohedral 619:Vertices 344:Vertices 338:octahedra 1330:Category 1253:(1994), 1158:, p. 60. 1072:15911143 920:(1979), 816:See also 802:isogonal 243:coplanar 149:, where 112:embedded 92:manifold 88:polygons 37:geometry 1186:2001419 937:0621628 896:1468859 212:theorem 145:= 2 − 2 72:CsĂĄszĂĄr 55:-holed 1209:  1184:  1145:Usenet 1070:  1060:  990:  935:  902:  894:  677:Faces 648:Edges 410:Image 366:Faces 355:Edges 308:Image 49:toroid 1147:group 1068:S2CID 1040:arXiv 925:(PDF) 900:S2CID 798:noble 557:cubes 546:cubes 535:cubes 384:Genus 297:Genus 105:torus 64:genus 57:torus 43:is a 25:torus 1207:ISBN 1058:ISBN 988:ISSN 672:168 198:The 97:link 74:and 39:, a 1263:doi 1098:hdl 1050:doi 978:doi 884:doi 792:or 701:76 669:168 666:168 663:144 660:168 643:72 555:12 544:12 533:12 507:24 405:11 372:48 361:72 350:24 51:(a 35:In 29:net 1332:: 1294:. 1257:, 1182:MR 1178:11 1176:, 1172:, 1141:, 1124:24 1094:13 1092:, 1066:, 1056:, 1048:, 1013:13 1011:, 986:, 972:, 933:MR 927:, 898:, 892:MR 890:, 880:67 878:, 858:; 812:. 788:A 764:. 698:84 695:88 692:68 689:86 686:38 683:30 680:32 657:72 654:60 651:64 640:72 637:72 634:72 631:62 628:30 625:30 622:32 566:8 561:6 550:6 539:8 528:4 523:6 517:8 512:6 501:6 496:4 490:6 485:6 479:8 474:4 393:11 369:36 358:84 347:48 336:8 330:6 303:1 141:+ 137:− 107:. 78:. 1300:. 1274:. 1265:: 1216:. 1189:. 1105:. 1100:: 1075:. 1052:: 1042:: 1017:. 980:: 974:4 940:. 907:. 886:: 784:. 402:7 399:5 396:3 390:3 387:1 300:1 151:g 147:g 143:F 139:E 135:V 68:g 66:( 53:g

Index


torus
net
geometry
polyhedron
toroid
torus
topological
genus
CsĂĄszĂĄr
Szilassi polyhedra
polygons
manifold
link
orientable surface
torus
embedded
Euclidean space
abstract polyhedra
star polygons
Euler characteristic

the SVG image,

the SVG image,
CsĂĄszĂĄr polyhedron
tetrahedron
Szilassi polyhedron
theorem
Conway's toroidal deltahedron

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑