Knowledge

Acidithiobacillus

Source 📝

44: 64: 1245: 534:, which has a tuft of polar flagella and a glycocalyx. Nitrogen fixation also is an important ecological function carried out by some species in this genus, as is growth using molecular hydrogen as a source of energy - neither property is found in every species. Ferric iron can be used by some species as a terminal electron acceptor. 304:
can also grow mixotrophically. Currently, the genus comprises ten species which are capable of obtaining energy by oxidizing sulfur compounds, with certain species also utilizing both ferrous and ferric iron. Some species have also evolved to use hydrogen and nitrogen from the environment. They
1215: 224:
Acidithiobacillus albertensis, Acidithiobacillus caldus, Acidithiobacillus cuprithermicus, Acidithiobacillus ferrianus, Acidithiobacillus ferridurans, Acidithiobacillus ferriphilus, Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus
479:
has been proven as a potent leaching organism, for dissolution of metals from low-grade sulfide ores. Recently, the attention has been focused upon the treatment of mineral concentrates, as well as complex sulfide ores using batch or continuous-flow reactors.
494:. The oxidation of ferrous iron and reduced sulfur oxyanions, metal sulfides and elementary sulfur results in the production of ferric sulfate in sulfuric acid, this in turn causes the solubilization of metals and other compounds. As a result, 1219: 529:
spp. occur as single cells or occasionally in pairs or chains, depending on growth conditions. Highly motile species have been described, as well as nonmotile ones. Motile strains have a single flagellum with the exception of
647:
class include the presence of enzymes which aid in the use of hydrogen sulfide, elemental sulfur, thiosulfate, and tetrathionate in sulfur metabolism. Species capable of iron oxidation also possess genes that are coded for
574:
and can flourish in environments where high concentrations of these metals are present. To obtain energy, they have evolved to couple sulfur oxidation to molecular oxygen but can also use other resources around them as
1243:, Курашов, Виктор Михайлович & Сахно, Тамара Владимировна, "Microbiological method of transmutation of chemical elements and conversion of isotopes of chemical elements", published 2015-09-20 565:
are sometimes present. Optimum pH conditions for these bacteria vary among species, but some have been observed at the genus level in pH conditions as high as 8.94 and temperatures as high as 97.6°C. All species of
457:. Biomining uses radioactive waste as an ore with the bacteria to obtain gold, platinum, polonium, radon, radium, uranium, neptunium, americium, nickel, manganese, bromine, mercury, and their isotopes. 711:
Moya-Beltrán, Ana; Beard, Simón; Rojas-Villalobos, Camila; Issotta, Francisco; Gallardo, Yasna; Ulloa, Ricardo; Giaveno, Alejandra; Degli Esposti, Mauro; Johnson, D. Barrie; Quatrini, Raquel (2021).
629:
is a significantly diverse genus, species have adapted to survive in differing environments under varying limitations such as acidity, temperature, and nutrient availability. For example
153: 189: 1305:
Li, X., Kappler, U., Jiang, G., & Bond, P. L. (2017). The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment. Frontiers in microbiology, 8, 683.
177: 171: 165: 141: 159: 1388:
Li, Liangzhi; Liu, Zhenghua; Meng, Delong; Liu, Xueduan; Li, Xing; Zhang, Ming; Tao, Jiemeng; Gu, Yabing; Zhong, Shuiping; Yin, Huaqun (2019). Liu, Shuang-Jiang (ed.).
313:. The genus comprises motile, rod-shaped cells that can be isolated from low pH environments including low pH microenvironments on otherwise neutral mineral grains. 1058:
Williams, K. P.; Kelly, D. P. (2013). "Proposal for a new Class within the Proteobacteria, the Acidithiobacillia, with the Acidithiobacillales as the type Order".
1734: 1020: 1155:"Microorganisms Concerned in the Oxidation of Sulfur in the Soil II. Thiobacillus Thiooxidans, a New Sulfur-oxidizing Organism Isolated from the Soil" 1708: 1512:
Valdés, Jorge; Pedroso, Inti; Quatrini, Raquel; Dodson, Robert J.; Tettelin, Herve; Blake, Robert; Eisen, Jonathan A.; Holmes, David S. (2008).
561:
are currently an important research focus as they can provide known limiting conditions for the genus, but host microbial communities in which
1747: 1390:"Comparative Genomic Analysis Reveals the Distribution, Organization, and Evolution of Metal Resistance Genes in the Genus Acidithiobacillus" 652:
and hydrogen utilization. The diversity in genomic composition allows these same species to inhabit both aerobic and anaerobic environments.
1574: 17: 1682: 1582: 274:. A portion of the genes that support the survival of these bacteria in acidic environments are presumed to have been obtained by 1721: 475:”, which deals with all aspects of microbial mediated extraction of metals from minerals or solid wastes and acid mine drainage. 599:, possibly thermophilic, and throughout their evolutionary history further acid resistance genes were obtained from neighboring 795: 611:
spp. has occurred over hundred of millions of years involving events of gene gain and gene loss. Some evidence points to the
584: 1726: 343:, but the situation was resolved by whole-genome alignment studies and both genera have been reclassified to the new class 1204:
Sand, W.; Bock, E. (1987). "Biotest System For Rapid Evaluation Of Concrete Resistance To Sulfur-Oxidizing Bacteria".
1025:
Parte, Aidan C.; Sardà Carbasse, Joaquim; Meier-Kolthoff, Jan P.; Reimer, Lorenz C.; Göker, Markus (1 November 2020).
713:"Genomic evolution of the class Acidithiobacillia: deep-branching Proteobacteria living in extreme acidic conditions" 680: 1773: 1752: 893:"Integrative Genomics Sheds Light on Evolutionary Forces Shaping the Acidithiobacillia Class Acidophilic Lifestyle" 1323:"Genomic adaptations enabling Acidithiobacillus distribution across wide-ranging hot spring temperatures and pHs" 952:"Genomic adaptations enabling Acidithiobacillus distribution across wide-ranging hot spring temperatures and pHs" 843:"Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans" 183: 570:
can grow under pH and temperature conditions between 0.5 to 6.0, and 5°C to 52°C. They are highly tolerant of
63: 467:, in the leaching of sulfide ores since its discovery in 1950 by Colmer, Temple and Hinkle. The discovery of 195: 222:". This genus includes ten species of acidophilic microorganisms capable of sulfur and/or iron oxidation: 1647: 612: 310: 1801: 414: 1778: 1016: 777: 1806: 1453:
Zhang, Xian; Liu, Xueduan; Li, Liangzhi; Wei, Guanyun; Zhang, Danli; Liang, Yili; Miao, Bo (2019).
891:
González-Rosales, Carolina; Vergara, Eva; Dopson, Mark; Valdés, Jorge H.; Holmes, David S. (2022).
603:. While the trait of sulfur oxidation is ubiquitous among the genus, iron oxidation is specific to 275: 147: 1455:"Phylogeny, Divergent Evolution, and Speciation of Sulfur-Oxidizing Acidithiobacillus Populations" 550: 1590: 1609: 1321:
Sriaporn, Chanenath; Campbell, Kathleen A.; Van Kranendonk, Martin J.; Handley, Kim M. (2021).
950:
Sriaporn, Chanenath; Campbell, Kathleen A.; Van Kranendonk, Martin J.; Handley, Kim M. (2021).
588: 1713: 1268: 339:, with considerable debate regarding their position and that they could also fall within the 1765: 1514:"Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications" 1669: 1401: 1280: 724: 8: 328: 105: 1405: 1284: 728: 587:, but the basis by which they can survive in low pH environments likely evolved through 322: 1548: 1513: 1489: 1454: 1430: 1389: 1370: 1357: 1322: 1193: 999: 986: 951: 927: 892: 870: 801: 787: 753: 712: 674: 546: 487: 472: 464: 442: 255: 58: 1179: 1154: 518:
as the usual species present, although it is occasionally absent from such locations.
1760: 1656: 1553: 1535: 1494: 1476: 1435: 1417: 1374: 1362: 1344: 1184: 1135: 1075: 1003: 991: 973: 932: 914: 862: 828: 805: 791: 758: 740: 649: 643: 641:
can survive under extremely acidic conditions with pH <1. Metabolic traits of the
580: 212: 95: 1271:(2004). "Microbial influence on metal mobility and application for bioremediation". 874: 1543: 1525: 1484: 1466: 1425: 1409: 1352: 1334: 1292: 1288: 1240: 1174: 1166: 1125: 1067: 1038: 981: 963: 922: 904: 854: 783: 748: 732: 634: 425: 1027:"List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ" 605:
A. ferrooxidans, A. ferridurans, A. ferriphilus, A. ferrivorans, and A. ferrianus.
1739: 1661: 661: 43: 1170: 1339: 968: 736: 576: 511: 507: 499: 421: 218: 85: 1471: 1130: 1097: 909: 858: 254:
and non-spore forming. They also play a significant role in the generation of
1795: 1632: 1539: 1480: 1421: 1348: 977: 918: 744: 410: 388: 306: 251: 1530: 842: 637:
of the genus, is adept to survive in extreme temperatures up to 52°C, while
1557: 1498: 1439: 1366: 1306: 1188: 1139: 1079: 1071: 1043: 1026: 995: 936: 866: 762: 667: 571: 352: 1695: 1641: 1413: 596: 446: 380: 267: 710: 1687: 1024: 600: 558: 293: 1700: 1320: 949: 463:
has emerged as an economically significant bacterium in the field of
454: 450: 297: 271: 1603: 545:
spp. are known to inhabit diverse environments such as hot springs,
1626: 890: 591:. It is probable that the foundational genes of acid resistance in 554: 491: 418: 75: 776:
Kumar, Pankaj; Jyoti, Bhim; Kumar, Ajay; Paliwal, Arunima (2019),
413:; first isolated from the soil, it has also been observed causing 1060:
International Journal of Systematic and Evolutionary Microbiology
1031:
International Journal of Systematic and Evolutionary Microbiology
453:, whereby metals are extracted from their ores through bacterial 406: 384: 376: 368: 259: 1674: 841:
Quatrini, Raquel; Jedlicki, Eugenia; Holmes, David S. (2005).
1511: 1152: 372: 583:
They have adapted to living in these environments through
840: 775: 1095: 367:) can be isolated from iron-sulfur minerals such as 847:
Journal of Industrial Microbiology and Biotechnology
779:
Smart Bioremediation Technologies: Microbial Enzymes
258:; a major global environmental challenge within the 506:is also commonly abundant upon inner surfaces of 1793: 1203: 557:, acidic soils, and sulfidic caves. Terrestrial 305:assimilate carbon from carbon dioxide using the 350:Some members of this genus were classified as 1452: 1057: 356:spp., before they were reclassified in 2000. 234:is the most widely studied of the genus, but 1387: 1239: 823:International Network for Acid Prevention, 292:are chemolithoautotrophs that can occur as 242:are also significant in research. Like all 281: 42: 1576:Acidithiobacillus ferrooxidans ATCC 23270 1547: 1529: 1488: 1470: 1429: 1356: 1338: 1178: 1129: 1042: 985: 967: 926: 908: 752: 1307:https://doi.org/10.3389/fmicb.2017.00683 1599:- the Bacterial Diversity Metadatabase 1091: 1089: 14: 1794: 1394:Applied and Environmental Microbiology 1316: 1314: 1153:Selman A. Waksman; J.S. Joffe (1922). 1608: 1607: 1098:"Reclassification of some species of 1267: 1086: 886: 884: 706: 704: 702: 700: 698: 696: 1311: 24: 788:10.1016/b978-0-12-818307-6.00008-1 619:appearing around the same time as 25: 1818: 1568: 943: 881: 693: 681:Acidophiles in acid mine drainage 428:in sewage gas into sulfuric acid. 1096:Kelly, D.P.; Wood, A.P. (2000). 154:Acidithiobacillus cuprithermicus 62: 1505: 1446: 1381: 1299: 1261: 1252: 1233: 1197: 1146: 1102:to the newly designated genera 510:in areas exhibiting corrosion; 335:) were formerly members of the 190:Acidithiobacillus sulfuriphilus 1593:Acidithiobacillus ferrooxidans 1293:10.1016/j.geoderma.2004.01.002 1051: 1010: 834: 817: 782:, Elsevier, pp. 137–158, 769: 484:Acidithiobacillus ferrooxidans 461:Acidithiobacillus ferrooxidans 432: 361:Acidithiobacillus ferrooxidans 323:Pseudomonadota § taxonomy 229:Acidithiobacillus thiooxidans. 184:Acidithiobacillus ferrooxidans 52:Acidithiobacillus ferrooxidans 13: 1: 1118:Int. J. Syst. Evol. Microbiol 686: 607:The transition to modern day 521: 516:Acidothiobacillus thiooxidans 395:Acidithiobacillus thiooxidans 379:as energy sources to support 196:Acidithiobacillus thiooxidans 178:Acidithiobacillus ferrivorans 172:Acidithiobacillus ferriphilus 166:Acidithiobacillus ferridurans 142:Acidithiobacillus albertensis 877:– via Oxford Academic. 595:were first inherited from a 537: 471:led to the development of “ 316: 7: 1171:10.1128/jb.7.2.239-256.1922 655: 613:most recent common ancestor 445:industry in methods called 311:Calvin-Benson-Bassham cycle 160:Acidithiobacillus ferrianus 10: 1823: 1340:10.1186/s40168-021-01090-1 969:10.1186/s40168-021-01090-1 831:  Accessed July 2018. 737:10.1038/s41396-021-00995-x 415:biogenic sulfide corrosion 403:Thiobacillus concretivorus 320: 262:industry. Some species of 1616: 1472:10.1186/s12864-019-5827-6 1131:10.1099/00207713-50-2-511 910:10.3389/fmicb.2021.822229 897:Frontiers in Microbiology 859:10.1007/s10295-005-0233-2 623:, 800 million years ago. 365:Thiobacillus ferrooxidans 138: 133: 59:Scientific classification 57: 50: 41: 34: 18:Thiobacillus ferrooxidans 633:which is the only known 585:horizontal gene transfer 399:Thiobacillus thiooxidans 302:Acidithiobacillus caldus 276:horizontal gene transfer 148:Acidithiobacillus caldus 1531:10.1186/1471-2164-9-597 551:abandoned mine drainage 498:may be of interest for 300:, or mesothermophilic. 1740:acidithiobacillus.html 1072:10.1099/ijs.0.049270-0 1044:10.1099/ijsem.0.004332 589:vertical gene transfer 1206:Materials Performance 486:is commonly found in 383:growth and producing 1414:10.1128/AEM.02153-18 371:deposits, oxidising 116:Acidithiobacillaceae 1406:2019ApEnM..85E2153L 1285:2004Geode.122..109G 1017:Acidithiobacillales 729:2021ISMEJ..15.3221M 337:Gammaproteobacteria 329:Acidithiobacillales 106:Acidithiobacillales 1112:Thermithiobacillus 853:(11–12): 606–614. 675:Thermithiobacillus 547:acid mine drainage 512:genetic sequencing 488:acid mine drainage 473:biohydrometallurgy 465:biohydrometallurgy 443:biohydrometallurgy 424:pipes by altering 341:Betaproteobacteria 333:Thermithiobacillus 256:acid mine drainage 210:is a genus of the 1802:Acidithiobacillia 1789: 1788: 1761:Open Tree of Life 1648:Acidithiobacillus 1618:Acidithiobacillus 1610:Taxon identifiers 1104:Acidithiobacillus 1037:(11): 5607–5612. 797:978-0-12-818307-6 723:(11): 3221–3238. 650:nitrogen fixation 644:Acidithiobacillia 627:Acidithiobacillus 617:Acidithiobacillus 609:Acidithiobacillus 593:Acidithiobacillus 568:Acidithiobacillus 563:Acidithiobacillus 543:Acidithiobacillus 527:Acidithiobacillus 504:Acidithiobacillus 439:Acidothiobacillus 345:Acidithiobacillia 290:Acidithiobacillus 284:Acidithiobacillus 264:Acidithiobacillus 248:Acidithiobacillus 213:Acidithiobacillia 207:Acidithiobacillus 203: 202: 127:Acidithiobacillus 96:Acidithiobacillia 36:Acidithiobacillus 27:Genus of bacteria 16:(Redirected from 1814: 1782: 1781: 1769: 1768: 1756: 1755: 1743: 1742: 1730: 1729: 1717: 1716: 1704: 1703: 1691: 1690: 1678: 1677: 1665: 1664: 1652: 1651: 1650: 1637: 1636: 1635: 1605: 1604: 1562: 1561: 1551: 1533: 1509: 1503: 1502: 1492: 1474: 1450: 1444: 1443: 1433: 1400:(2): e02153–18. 1385: 1379: 1378: 1360: 1342: 1318: 1309: 1303: 1297: 1296: 1265: 1259: 1256: 1250: 1249: 1248: 1244: 1237: 1231: 1230: 1228: 1227: 1218:. Archived from 1213: 1201: 1195: 1192: 1182: 1150: 1144: 1143: 1133: 1108:Halothiobacillus 1093: 1084: 1083: 1066:(Pt 8): 2901–6. 1055: 1049: 1048: 1046: 1014: 1008: 1007: 989: 971: 947: 941: 940: 930: 912: 888: 879: 878: 838: 832: 821: 815: 814: 813: 812: 773: 767: 766: 756: 717:The ISME Journal 708: 635:thermoacidophile 441:are used in the 426:hydrogen sulfide 266:are utilized in 244:"Pseudomonadota" 67: 66: 46: 32: 31: 21: 1822: 1821: 1817: 1816: 1815: 1813: 1812: 1811: 1807:Bacteria genera 1792: 1791: 1790: 1785: 1777: 1772: 1764: 1759: 1751: 1746: 1738: 1733: 1725: 1720: 1712: 1707: 1699: 1694: 1686: 1681: 1673: 1668: 1660: 1655: 1646: 1645: 1640: 1631: 1630: 1625: 1612: 1591:Type strain of 1571: 1566: 1565: 1510: 1506: 1451: 1447: 1386: 1382: 1319: 1312: 1304: 1300: 1266: 1262: 1257: 1253: 1246: 1238: 1234: 1225: 1223: 1214: 1202: 1198: 1151: 1147: 1094: 1087: 1056: 1052: 1015: 1011: 948: 944: 889: 882: 839: 835: 822: 818: 810: 808: 798: 774: 770: 709: 694: 689: 662:Talvivaara mine 658: 639:A. ferrooxidans 577:electron donors 540: 524: 496:A. ferrooxidans 477:A. ferrooxidans 469:A. ferrooxidans 437:Species within 435: 325: 319: 309:variant of the 287: 216:in the phylum " 193: 187: 181: 175: 169: 163: 157: 151: 145: 61: 28: 23: 22: 15: 12: 11: 5: 1820: 1810: 1809: 1804: 1787: 1786: 1784: 1783: 1770: 1757: 1744: 1731: 1718: 1705: 1692: 1679: 1666: 1653: 1638: 1622: 1620: 1614: 1613: 1602: 1601: 1588: 1580: 1570: 1569:External links 1567: 1564: 1563: 1504: 1445: 1380: 1310: 1298: 1279:(2): 109–119. 1260: 1251: 1241:RU RU2563511C2 1232: 1196: 1165:(2): 239–256. 1145: 1110:gen. nov. and 1085: 1050: 1009: 942: 880: 833: 816: 796: 768: 691: 690: 688: 685: 684: 683: 678: 671: 664: 657: 654: 539: 536: 532:A. albertensis 523: 520: 500:bioremediation 434: 431: 430: 429: 392: 321:Main article: 318: 315: 286: 280: 240:A. thiooxidans 232:A. ferooxidans 225:sulfuriphilus, 219:Pseudomonadota 201: 200: 136: 135: 131: 130: 123: 119: 118: 113: 109: 108: 103: 99: 98: 93: 89: 88: 86:Pseudomonadota 83: 79: 78: 73: 69: 68: 55: 54: 48: 47: 39: 38: 26: 9: 6: 4: 3: 2: 1819: 1808: 1805: 1803: 1800: 1799: 1797: 1780: 1775: 1771: 1767: 1762: 1758: 1754: 1749: 1745: 1741: 1736: 1732: 1728: 1723: 1719: 1715: 1710: 1706: 1702: 1697: 1693: 1689: 1684: 1680: 1676: 1671: 1667: 1663: 1658: 1654: 1649: 1643: 1639: 1634: 1628: 1624: 1623: 1621: 1619: 1615: 1611: 1606: 1600: 1598: 1594: 1589: 1587: 1585: 1581: 1579: 1577: 1573: 1572: 1559: 1555: 1550: 1545: 1541: 1537: 1532: 1527: 1523: 1519: 1515: 1508: 1500: 1496: 1491: 1486: 1482: 1478: 1473: 1468: 1464: 1460: 1456: 1449: 1441: 1437: 1432: 1427: 1423: 1419: 1415: 1411: 1407: 1403: 1399: 1395: 1391: 1384: 1376: 1372: 1368: 1364: 1359: 1354: 1350: 1346: 1341: 1336: 1332: 1328: 1324: 1317: 1315: 1308: 1302: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1264: 1255: 1242: 1236: 1222:on 2011-05-20 1221: 1217: 1211: 1207: 1200: 1194: 1190: 1186: 1181: 1176: 1172: 1168: 1164: 1160: 1156: 1149: 1141: 1137: 1132: 1127: 1123: 1119: 1115: 1113: 1109: 1105: 1101: 1092: 1090: 1081: 1077: 1073: 1069: 1065: 1061: 1054: 1045: 1040: 1036: 1032: 1028: 1022: 1018: 1013: 1005: 1001: 997: 993: 988: 983: 979: 975: 970: 965: 961: 957: 953: 946: 938: 934: 929: 924: 920: 916: 911: 906: 902: 898: 894: 887: 885: 876: 872: 868: 864: 860: 856: 852: 848: 844: 837: 830: 826: 820: 807: 803: 799: 793: 789: 785: 781: 780: 772: 764: 760: 755: 750: 746: 742: 738: 734: 730: 726: 722: 718: 714: 707: 705: 703: 701: 699: 697: 692: 682: 679: 677: 676: 672: 670: 669: 665: 663: 660: 659: 653: 651: 646: 645: 640: 636: 632: 628: 624: 622: 618: 614: 610: 606: 602: 598: 594: 590: 586: 582: 578: 573: 569: 564: 560: 556: 555:mine tailings 552: 548: 544: 535: 533: 528: 519: 517: 513: 509: 505: 501: 497: 493: 489: 485: 481: 478: 474: 470: 466: 462: 458: 456: 452: 448: 444: 440: 427: 423: 420: 416: 412: 411:sulfuric acid 409:and produces 408: 404: 400: 396: 393: 390: 389:sulfuric acid 386: 382: 378: 374: 370: 366: 362: 359: 358: 357: 355: 354: 348: 346: 342: 338: 334: 330: 324: 314: 312: 308: 307:transaldolase 303: 299: 295: 291: 285: 279: 277: 273: 269: 265: 261: 257: 253: 252:Gram-negative 249: 245: 241: 237: 233: 230: 226: 221: 220: 215: 214: 209: 208: 199: 198: 197: 192: 191: 186: 185: 180: 179: 174: 173: 168: 167: 162: 161: 156: 155: 150: 149: 144: 143: 137: 132: 129: 128: 124: 121: 120: 117: 114: 111: 110: 107: 104: 101: 100: 97: 94: 91: 90: 87: 84: 81: 80: 77: 74: 71: 70: 65: 60: 56: 53: 49: 45: 40: 37: 33: 30: 19: 1617: 1596: 1592: 1584:Thiobacillus 1583: 1575: 1521: 1518:BMC Genomics 1517: 1507: 1462: 1459:BMC Genomics 1458: 1448: 1397: 1393: 1383: 1330: 1326: 1301: 1276: 1272: 1263: 1254: 1235: 1224:. Retrieved 1220:the original 1209: 1205: 1199: 1162: 1158: 1148: 1124:(2): 511–6. 1121: 1117: 1111: 1107: 1103: 1100:Thiobacillus 1099: 1063: 1059: 1053: 1034: 1030: 1012: 959: 955: 945: 900: 896: 850: 846: 836: 824: 819: 809:, retrieved 778: 771: 720: 716: 673: 668:Thiobacillus 666: 642: 638: 630: 626: 625: 620: 616: 608: 604: 592: 572:heavy metals 567: 562: 542: 541: 531: 526: 525: 515: 503: 495: 483: 482: 476: 468: 460: 459: 438: 436: 402: 398: 394: 364: 360: 353:Thiobacillus 351: 349: 344: 340: 336: 332: 326: 301: 289: 288: 283: 263: 247: 243: 239: 235: 231: 228: 223: 217: 211: 206: 205: 204: 194: 188: 182: 176: 170: 164: 158: 152: 146: 140: 139: 126: 125: 115: 51: 35: 29: 1696:iNaturalist 1642:Wikispecies 1578:Genome Page 1269:Gadd, G. M. 1258:Torma, 1980 1212:(3): 14–17. 1159:J Bacteriol 1106:gen. nov., 601:acidophiles 597:neutrophile 559:hot springs 514:identifies 502:processes. 447:bioleaching 433:Bioleaching 405:) oxidises 381:autotrophic 294:acidophilic 268:bioleaching 1796:Categories 1524:(1): 597. 1465:(1): 438. 1333:(1): 135. 1327:Microbiome 1226:2008-02-13 962:(1): 135. 956:Microbiome 903:: 822229. 825:GARD Guide 811:2023-04-23 687:References 631:A. caldus, 581:acceptors. 522:Morphology 327:The order 298:mesophilic 1540:1471-2164 1481:1471-2164 1422:0099-2240 1375:256332390 1349:2049-2618 1114:gen. nov" 1004:256332390 978:2049-2618 919:1664-302X 829:Chapter 2 806:199107288 745:1751-7362 621:A. caldus 538:Evolution 490:and mine 455:oxidation 451:biomining 397:(basonym 387:iron and 363:(basonym 317:Phylogeny 272:biomining 250:spp. are 236:A. caldus 1627:Wikidata 1558:19077236 1499:31146680 1440:30389769 1367:34116726 1273:Geoderma 1189:16558952 1140:10758854 1080:23334881 996:34116726 937:35242113 875:35943141 867:15895264 763:34007059 656:See also 492:tailings 419:concrete 134:Species 112:Family: 82:Phylum: 76:Bacteria 72:Domain: 1714:1042148 1688:3222916 1633:Q142671 1549:2621215 1490:6543593 1431:6328783 1402:Bibcode 1358:8196465 1281:Bibcode 987:8196465 928:8886135 754:8528912 725:Bibcode 122:Genus: 102:Order: 92:Class: 1779:570914 1766:950845 1753:119977 1727:956608 1701:553397 1595:at Bac 1556:  1546:  1538:  1497:  1487:  1479:  1438:  1428:  1420:  1373:  1365:  1355:  1347:  1247:  1187:  1180:378965 1177:  1138:  1078:  1002:  994:  984:  976:  935:  925:  917:  873:  865:  804:  794:  761:  751:  743:  508:sewers 407:sulfur 385:ferric 377:sulfur 369:pyrite 331:(i.e. 282:Genus 260:mining 1774:WoRMS 1709:IRMNG 1675:97352 1371:S2CID 1216:"CSA" 1000:S2CID 871:S2CID 802:S2CID 553:) or 422:sewer 1748:NCBI 1735:LPSN 1722:ITIS 1683:GBIF 1597:Dive 1554:PMID 1536:ISSN 1495:PMID 1477:ISSN 1436:PMID 1418:ISSN 1363:PMID 1345:ISSN 1185:PMID 1136:PMID 1076:PMID 1021:LPSN 992:PMID 974:ISSN 933:PMID 915:ISSN 863:PMID 792:ISBN 759:PMID 741:ISSN 449:and 375:and 373:iron 270:and 238:and 227:and 1670:EoL 1662:MWS 1657:CoL 1586:sp. 1544:PMC 1526:doi 1485:PMC 1467:doi 1426:PMC 1410:doi 1353:PMC 1335:doi 1289:doi 1277:122 1175:PMC 1167:doi 1126:doi 1068:doi 1039:doi 1019:in 982:PMC 964:doi 923:PMC 905:doi 855:doi 784:doi 749:PMC 733:doi 615:of 579:or 417:of 347:. 1798:: 1776:: 1763:: 1750:: 1737:: 1724:: 1711:: 1698:: 1685:: 1672:: 1659:: 1644:: 1629:: 1552:. 1542:. 1534:. 1520:. 1516:. 1493:. 1483:. 1475:. 1463:20 1461:. 1457:. 1434:. 1424:. 1416:. 1408:. 1398:85 1396:. 1392:. 1369:. 1361:. 1351:. 1343:. 1329:. 1325:. 1313:^ 1287:. 1275:. 1210:26 1208:. 1183:. 1173:. 1161:. 1157:. 1134:. 1122:50 1120:. 1116:. 1088:^ 1074:. 1064:63 1062:. 1035:70 1033:. 1029:. 1023:; 998:. 990:. 980:. 972:. 958:. 954:. 931:. 921:. 913:. 901:12 899:. 895:. 883:^ 869:. 861:. 851:32 849:. 845:. 827:, 800:, 790:, 757:. 747:. 739:. 731:. 721:15 719:. 715:. 695:^ 401:, 296:, 278:. 246:, 1560:. 1528:: 1522:9 1501:. 1469:: 1442:. 1412:: 1404:: 1377:. 1337:: 1331:9 1295:. 1291:: 1283:: 1229:. 1191:. 1169:: 1163:7 1142:. 1128:: 1082:. 1070:: 1047:. 1041:: 1006:. 966:: 960:9 939:. 907:: 857:: 786:: 765:. 735:: 727:: 549:( 391:. 20:)

Index

Thiobacillus ferrooxidans

Scientific classification
Edit this classification
Bacteria
Pseudomonadota
Acidithiobacillia
Acidithiobacillales
Acidithiobacillaceae
Acidithiobacillus
Acidithiobacillus albertensis
Acidithiobacillus caldus
Acidithiobacillus cuprithermicus
Acidithiobacillus ferrianus
Acidithiobacillus ferridurans
Acidithiobacillus ferriphilus
Acidithiobacillus ferrivorans
Acidithiobacillus ferrooxidans
Acidithiobacillus sulfuriphilus
Acidithiobacillus thiooxidans
Acidithiobacillia
Pseudomonadota
Gram-negative
acid mine drainage
mining
bioleaching
biomining
horizontal gene transfer
acidophilic
mesophilic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.