Knowledge

Sylvester–Gallai theorem

Source 📝

235:. The projective plane can be formed from the Euclidean plane by adding extra points "at infinity" where lines that are parallel in the Euclidean plane intersect each other, and by adding a single line "at infinity" containing all the added points. However, the additional points of the projective plane cannot help create non-Euclidean finite point sets with no ordinary line, as any finite point set in the projective plane can be transformed into a Euclidean point set with the same combinatorial pattern of point-line incidences. Therefore, any pattern of finitely many intersecting points and lines that exists in one of these two types of plane also exists in the other. Nevertheless, the projective viewpoint allows certain configurations to be described more easily. In particular, it allows the use of 436: 3844: 251: 2652: 2253: 22: 283:
ordinary points (corresponding to the four pairs of opposite parallelograms). An equivalent statement of the Sylvester–Gallai theorem, in terms of zonohedra, is that every zonohedron has at least one parallelogram face (counting rectangles, rhombuses, and squares as special cases of parallelograms). More strongly, whenever sets of
278:, called generators. In this connection, each pair of opposite faces of a zonohedron corresponds to a crossing point of an arrangement of lines in the projective plane, with one line for each generator. The number of sides of each face is twice the number of lines that cross in the arrangement. For instance, the 4043:
for these points is an equality, and a line is defined from any pair of points by repeatedly including additional points that are collinear with points already added to the line, until no more such points can be added. The generalization of Chvátal and Chen states that every finite metric space has a
1623:, an axiomatization of geometry in terms of betweenness that includes not only Euclidean geometry but several other related geometries. Coxeter's proof is a variation of an earlier proof given by Steinberg in 1944. The problem of finding a minimal set of axioms needed to prove the theorem belongs to 406:
The Sylvester–Gallai theorem has been proved in many different ways. Gallai's 1944 proof switches back and forth between Euclidean and projective geometry, in order to transform the points into an equivalent configuration in which an ordinary line can be found as a line of slope closest to zero; for
282:
shown is a zonohedron with five generators, two pairs of opposite hexagon faces, and four pairs of opposite parallelogram faces. In the corresponding five-line arrangement, two triples of lines cross (corresponding to the two pairs of opposite hexagons) and the remaining four pairs of lines cross at
1069:
In 1941 (thus, prior to Erdős publishing the question and Gallai's subsequent proof) Melchior showed that any nontrivial finite arrangement of lines in the projective plane has at least three ordinary points. By duality, this results also says that any finite nontrivial set of points on the plane
2216:
As the authors prove, the line returned by this algorithm must be ordinary. The proof is either by construction if it is returned by step 4, or by contradiction if it is returned by step 7: if the line returned in step 7 were not ordinary, then the authors prove that there would exist an ordinary
3927:
proved a complex-number analogue of the Sylvester–Gallai theorem: whenever the points of a Sylvester–Gallai configuration are embedded into a complex projective space, the points must all lie in a two-dimensional subspace. Equivalently, a set of points in three-dimensional complex space whose
3540:
of maximizing the number of three-point lines, which Green and Tao also solved for all sufficiently large point sets. In the dual setting, where one is looking for ordinary points, one can consider the minimum number of ordinary points in an arrangement of pseudolines. In this context, the
3030:. Because of this connection, the Kelly–Moser example has also been called the non-Fano configuration. The other counterexample, due to McKee, consists of two regular pentagons joined edge-to-edge together with the midpoint of the shared edge and four points on the line at infinity in the 1646:
that is rejected as an axiom of constructive mathematics. Nevertheless, it is possible to formulate a version of the Sylvester–Gallai theorem that is valid within the axioms of constructive analysis, and to adapt Kelly's proof of the theorem to be a valid proof under these axioms.
60:. Another way of stating the theorem is that every finite set of points that is not collinear has an ordinary line. According to a strengthening of the theorem, every finite point set (not all on one line) has at least a linear number of ordinary lines. An 3760:
points, by deleting an ordinary line and one of the two points on it (taking care not to delete a point for which the remaining subset would lie on a single line). Thus, it follows by mathematical induction. The example of a near-pencil, a set of
239:, in which the roles of points and lines in statements of projective geometry can be exchanged for each other. Under projective duality, the existence of an ordinary line for a set of non-collinear points in RP is equivalent to the existence of an 1193:
are the number of vertices, edges, and faces of the graph, respectively. Any nontrivial line arrangement on the projective plane defines a graph in which each face is bounded by at least three edges, and each edge bounds two faces; so,
3915:, and it cannot be realized by points and lines of the Euclidean plane. Another way of stating the Sylvester–Gallai theorem is that whenever the points of a Sylvester–Gallai configuration are embedded into a Euclidean space, preserving 1313:, contradicting this inequality. Therefore, some vertices must be the crossing point of only two lines, and as Melchior's more careful analysis shows, at least three ordinary vertices are needed in order to satisfy the inequality 3879:
for the projective plane), analogous abstract systems of points and lines can be defined by using other number systems as coordinates. The Sylvester–Gallai theorem does not hold for geometries defined in this way over
1598: 3819:, considers finite planar sets of points (not all in a line) that are given two colors, and asks whether every such set has a line through two or more points that are all the same color. In the language of sets and 1619:) writes of Kelly's proof that its use of Euclidean distance is unnecessarily powerful, "like using a sledge hammer to crack an almond". Instead, Coxeter gave another proof of the Sylvester–Gallai theorem within 262:. Its eight red parallelogram faces correspond to ordinary points of a five-line arrangement; an equivalent form of the Sylvester–Gallai theorem states that every zonohedron has at least one parallelogram face. 3851:, in which the line through every pair of points contains a third point. The Sylvester–Gallai theorem shows that it cannot be realized by straight lines in the Euclidean plane, but it has a realization in the 1510: 247:
of finitely many lines. An arrangement is said to be trivial when all its lines pass through a common point, and nontrivial otherwise; an ordinary point is a point that belongs to exactly two lines.
1655:
Kelly's proof of the existence of an ordinary line can be turned into an algorithm that finds an ordinary line by searching for the closest pair of a point and a line through two other points.
3134: 170:) in which each line determined by two of the points contains a third point. The Sylvester–Gallai theorem implies that it is impossible for all nine of these points to have real coordinates. 2561: 2506: 3069: 3576: 3191: 2929:. As with any finite configuration in the real projective plane, this construction can be perturbed so that all points are finite, without changing the number of ordinary lines. 2646: 423:
showed that the metric concepts of slope and distance appearing in Gallai's and Kelly's proofs are unnecessarily powerful, instead proving the theorem using only the axioms of
3012: 2727: 3795:
The Sylvester–Gallai theorem has been generalized to colored point sets in the Euclidean plane, and to systems of points and lines defined algebraically or by distances in a
2288:
While the Sylvester–Gallai theorem states that an arrangement of points, not all collinear, must determine an ordinary line, it does not say how many must be determined. Let
3348: 2384: 3398: 3280: 1819: 1346: 1288: 1233: 120: 2183: 2156: 2127: 2100: 2073: 1899: 992: 961: 396: 2847: 2432: 2322: 1777: 1733: 1693: 930: 902: 337: 1391: 854: 749: 624: 3514: 4900: 3425: 2730: 2242: 2210: 2043: 2016: 1986: 1956: 1926: 1861: 1418: 1107: 1059: 1039: 664: 579: 552: 532: 419:
shows by contradiction that the connecting line with the smallest nonzero distance to another point must be ordinary. And, following an earlier proof by Steinberg,
4005: 2804: 3936:
showed that whenever a Sylvester–Gallai configuration is embedded into a space defined over the quaternions, its points must lie in a three-dimensional subspace.
3785: 3758: 3692: 3604: 3453: 3306: 3245: 3219: 2282: 1311: 411:. The 1941 proof by Melchior uses projective duality to convert the problem into an equivalent question about arrangements of lines, which can be answered using 5335: 3974: 3732: 3712: 3662: 3642: 3534: 3473: 3154: 2950: 2927: 2907: 2887: 2867: 2775: 2751: 2677: 2581: 2452: 2342: 1438: 1253: 1191: 1171: 1151: 1127: 1019: 874: 829: 809: 789: 769: 724: 704: 684: 644: 599: 512: 492: 472: 357: 301: 82: 3536:. Thus, the constructions of Böröczky for even and odd (discussed above) are best possible. Minimizing the number of ordinary lines is closely related to the 4007:
two-point lines, or equivalently every rank-3 matroid with fewer two-point lines must be non-orientable. A matroid without any two-point lines is called a
3911:(the inflection points of a cubic curve), in which every line is non-ordinary, violating the Sylvester–Gallai theorem. Such a configuration is known as a 6013: 3665: 3615: 5459: 1991:
For each two consecutive groups of points, in the sorted sequence by their angles, form two lines, each of which passes through the closest point to
216: 3018:, consists of the vertices, edge midpoints, and centroid of an equilateral triangle; these seven points determine only three ordinary lines. The 5570: 5821: 1521: 1743:
also shows how to construct the dual arrangement of lines to the given points (as used in Melchior and Steenrod's proof) in the same time,
1290:. But if every vertex in the arrangement were the crossing point of three or more lines, then the total number of edges would be at least 474:
of points is not all collinear. Define a connecting line to be a line that contains at least two points in the collection. By finiteness,
5751: 5150: 4433:
Basit, Abdul; Dvir, Zeev; Saraf, Shubhangi; Wolf, Charles (2019), "On the number of ordinary lines determined by sets in complex space",
211:
In a 1951 review, Erdős called the result "Gallai's theorem", but it was already called the Sylvester–Gallai theorem in a 1954 review by
3034:; these 13 points have among them 6 ordinary lines. Modifications of Böröczky's construction lead to sets of odd numbers of points with 184:) claimed to have a short proof of the Sylvester–Gallai theorem, but it was already noted to be incomplete at the time of publication. 3787:
collinear points together with one additional point that is not on the same line as the other points, shows that this bound is tight.
1446: 3944:
Every set of points in the Euclidean plane, and the lines connecting them, may be abstracted as the elements and flats of a rank-3
2655:
Example of Böröczky's (even) configuration with 10 points determining 5 ordinary lines (the five solid black lines of the figure).
4984: 3022:
in which these three ordinary lines are replaced by a single line cannot be realized in the Euclidean plane, but forms a finite
6075: 3823:, an equivalent statement is that the family of the collinear subsets of a finite point set (not all on one line) cannot have 4424: 3247:
case is an exception because otherwise the Kelly–Moser construction would be a counterexample; their construction shows that
5019: 4904: 4743: 4708: 4435: 3891:
The Sylvester–Gallai theorem also does not directly apply to geometries in which points have coordinates that are pairs of
1699:
of all triples of points, but an algorithm to find the closest given point to each line through two given points, in time
5284: 4484:(1983), "On the lattice property of the plane and some problems of Dirac, Motzkin, and Erdős in combinatorial geometry", 534:
that are a positive distance apart such that no other point-line pair has a smaller positive distance. Kelly proved that
5982: 3956:
lower-bounding the number of ordinary lines can be generalized to oriented matroids: every rank-3 oriented matroid with
3919:, the points must all lie on a single line, and the example of the Hesse configuration shows that this is false for the 1739:, as a subroutine for finding the minimum-area triangle determined by three of a given set of points. The same paper of 6028: 5972: 5814: 5726: 5575: 3912: 5942: 3803:
of points, to avoid examples like the set of all points in the Euclidean plane, which does not have an ordinary line.
3080: 2806:) on the line at infinity corresponding to each of the directions determined by pairs of vertices. Although there are 45:
has a line that passes through exactly two of the points or a line that passes through all of them. It is named after
6070: 4824: 4623: 4552: 1195: 5519: 5017:; Pretorius, Lou M.; Swanepoel, Konrad J. (2006), "Sylvester–Gallai theorems for complex numbers and quaternions", 4939: 3932:
is the whole space must have an ordinary line, and in fact must have a linear number of ordinary lines. Similarly,
2519: 1639: 6018: 5497:
Mukhopadhyay, A.; Agrawal, A.; Hosabettu, R. M. (1997), "On the ordinary line problem in computational geometry",
6049: 5339: 5158: 4543:, Encyclopedia of Mathematics and its Applications, vol. 46, Cambridge: Cambridge University Press, p.  4812: 4773: 1608: 420: 2465: 5992: 5807: 5759: 5662: 5561: 5070: 4670: 412: 4011:. Relatedly, the Kelly–Moser configuration with seven points and only three ordinary lines forms one of the 3357:, stating a tradeoff between the number of lines with few points and the number of points on a single line. 6023: 3354: 3037: 3544: 3159: 3948:. The points and lines of geometries defined using other number systems than the real numbers also form 5390: 2598: 2955: 2682: 5194: 4648: 4632: 3360: 2387: 1783:
first showed how to find a single ordinary line (not necessarily the one from Kelly's proof) in time
3311: 2347: 5924: 4574: 4039:. In this generalization, a triple of points in a metric space is defined to be collinear when the 3920: 3908: 3904: 3900: 3852: 3537: 3019: 163: 159: 6080: 5957: 5605: 3876: 1961:
If any of the points is alone in its group, then return the ordinary line through that point and
192:) proved the theorem (and actually a slightly stronger result) in an equivalent formulation, its 4544: 4538: 3370: 3250: 1786: 1316: 1258: 1201: 87: 2161: 2134: 2105: 2078: 2051: 1877: 1643: 555: 362: 279: 255: 131: 46: 5967: 5763: 5183: 2809: 2401: 2291: 1746: 1702: 1662: 306: 6044: 5912: 3872: 1635: 1370: 5380:
Sylvester-Gallai results and other contributions to combinatorial and computational geometry
3899:, but these geometries have more complicated analogues of the theorem. For instance, in the 3482: 5977: 5947: 5887: 5865: 5789: 5637: 5598: 5542: 5510: 5490: 5421: 5362: 5307: 5272: 5232: 5179: 5131: 5050: 5007: 4975: 4968: 4948: 4934: 4927: 4874: 4864: 4835: 4805: 4766: 4731: 4699: 4661: 4595: 4562: 4507: 4466: 4406: 4120: 4106: 4016: 3476: 3403: 2509: 2220: 2188: 2021: 1994: 1964: 1934: 1904: 1839: 1396: 1130: 1080: 1044: 1024: 649: 564: 537: 517: 244: 227:
The question of the existence of an ordinary line can also be posed for points in the real
4534: 4402: 3979: 2780: 1355:
note, the same argument for the existence of an ordinary vertex was also given in 1944 by
966: 935: 8: 5987: 5952: 5932: 5830: 5556:(2009), "Chapter 1. Sylvester–Gallai Problem: The Beginnings of Combinatorial Geometry", 5441: 4738: 4040: 3848: 3764: 3737: 3671: 3581: 3430: 3285: 3224: 3196: 3023: 2659:
Dirac's conjectured lower bound is asymptotically the best possible, as the even numbers
2259: 1624: 907: 879: 167: 5251: 4952: 3578:
lower bound is still valid, though it is not known whether the Green and Tao asymptotic
1293: 834: 729: 604: 5962: 5882: 5679: 5641: 5625: 5478: 5425: 5399: 5366: 5320: 5314: 5279: 5236: 5210: 5135: 5087: 5054: 5028: 4979: 4852: 4793: 4687: 4599: 4526: 4511: 4470: 4444: 3959: 3717: 3697: 3647: 3627: 3519: 3458: 3139: 2952:, only two examples are known that match Dirac's lower bound conjecture, that is, with 2935: 2912: 2892: 2872: 2852: 2760: 2736: 2662: 2566: 2437: 2327: 1696: 1423: 1238: 1176: 1156: 1136: 1112: 1004: 859: 814: 794: 774: 754: 709: 689: 669: 629: 584: 497: 477: 457: 444: 416: 342: 286: 236: 212: 193: 147: 139: 67: 5247: 1779:, from which it is possible to identify all ordinary vertices and all ordinary lines. 5772: 5645: 5436: 5429: 5370: 4998: 4820: 4619: 4603: 4572:; Moser, W. O. J. (1990), "A survey of Sylvester's problem and its generalizations", 4548: 4474: 4420: 4008: 1864: 1832:
is based on Coxeter's proof using ordered geometry. It performs the following steps:
185: 5240: 4522: 4515: 1367:
By a similar argument, Melchior was able to prove a more general result. For every
5892: 5844: 5671: 5617: 5584: 5528: 5517:
Mukhopadhyay, Asish; Greene, Eugene (2012), "The ordinary line problem revisited",
5468: 5454: 5409: 5388:
Mandelkern, Mark (2016), "A constructive version of the Sylvester–Gallai theorem",
5348: 5293: 5220: 5167: 5139: 5119: 5079: 5058: 5038: 4993: 4956: 4913: 4844: 4785: 4752: 4717: 4679: 4668:
Chakerian, G. D. (1970), "Sylvester's problem on collinear points and a relative",
4583: 4495: 4454: 4412: 3945: 3864: 3828: 3816: 3031: 2754: 2455: 1620: 1041:
as the point-line pair with the smallest positive distance. So the assumption that
995: 424: 228: 151: 5776: 5690: 5657: 5633: 5594: 5538: 5533: 5506: 5486: 5417: 5358: 5303: 5268: 5228: 5175: 5127: 5046: 5003: 4964: 4923: 4860: 4801: 4762: 4727: 4695: 4657: 4591: 4558: 4530: 4503: 4462: 4416: 4117: 4103: 3860: 1356: 1074: 232: 42: 250: 5875: 5259: 5102: 3892: 3820: 435: 5589: 5413: 5378: 5224: 5042: 4833:
Crowe, D. W.; McKee, T. A. (1968), "Sylvester's problem on collinear points",
4757: 4722: 4481: 4458: 6064: 5722: 5706: 5110: 5103:"Personal reminiscences and remarks on the mathematical work of Tibor Gallai" 4569: 4486: 4398: 4012: 3812: 271: 173: 146:) suggests that Sylvester may have been motivated by a related phenomenon in 5558:
Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures
5549: 5098: 5065: 4960: 4636: 4611: 3621: 2391: 197: 5870: 5653: 5553: 5353: 5171: 4640: 4028: 3881: 3796: 3624:
observed, the Sylvester–Gallai theorem immediately implies that any set of
275: 205: 50: 266:
Arrangements of lines have a combinatorial structure closely connected to
5793: 5317:; Moser, W. O. J. (1958), "On the number of ordinary lines determined by 5198: 5014: 3929: 3916: 3868: 3364: 1868: 1593:{\displaystyle \displaystyle t_{2}\geqslant 3+\sum _{k\geq 4}(k-3)t_{k}.} 155: 3952:, but not necessarily oriented matroids. In this context, the result of 5937: 5902: 5849: 5799: 5683: 5629: 5482: 5298: 5282:(1986), "A resolution of the Sylvester–Gallai problem of J. P. Serre", 5146: 5123: 5091: 4918: 4856: 4797: 4691: 4587: 4499: 3896: 3885: 3824: 3800: 3027: 2651: 2244:, but this line should have already been found and returned in step 4. 2075:
in the set of lines formed in this way, find the intersection point of
267: 259: 38: 5457:(1951), "The lines and planes connecting the points of a finite set", 4405:(2018), "Chapter 11. Lines in the plane and decomposition of graphs", 3843: 5781: 5033: 2324:
be the minimum number of ordinary lines determined over every set of
2252: 61: 5675: 5621: 5473: 5083: 4848: 4789: 4683: 4027:
Another generalization of the Sylvester–Gallai theorem to arbitrary
1821:, and a simpler algorithm with the same time bound was described by 1634:
The usual statement of the Sylvester–Gallai theorem is not valid in
25:
Three of the ordinary lines in a 4 × 4 grid of points
5404: 4819:(2nd ed.), New York: John Wiley & Sons, pp. 181–182, 4449: 4054: 4044:
line that contains either all points or exactly two of the points.
56:
A line that contains exactly two of a set of points is known as an
34: 5215: 3949: 2733:, that achieves this bound consists of the vertices of a regular 53:, who published one of the first proofs of this theorem in 1944. 21: 5252:"Monochromatic intersection points in families of colored lines" 4521: 4361: 204:) again stated the conjecture, which was subsequently proved by 5731:
Mathematical Questions and Solutions from the Educational Times
5660:(1944), "Three point collinearity (solution to problem 4065)", 3888:, the set of all points in the geometry has no ordinary lines. 2909:
with the point at infinity collinear with the two neighbors of
1505:{\displaystyle \displaystyle \sum _{k\geq 2}(k-3)t_{k}\leq -3.} 1359:, who explicitly applied it to the dual ordinary line problem. 581:
is not ordinary. Then it goes through at least three points of
4343: 4239: 3884:: for some finite geometries defined in this way, such as the 3811:
A variation of Sylvester's problem, posed in the mid-1960s by
451:
call it "simply the best" of the many proofs of this theorem.
5651: 4221: 4185: 4087: 5496: 3799:. In general, these variations of the theorem consider only 3367:
showed that for all sufficiently large point sets (that is,
1780: 751:(and possibly coinciding with it). Draw the connecting line 4741:(2004), "Sylvester–Gallai theorem and metric betweenness", 4337:
For the history of this variation of the problem, see also
4148: 4146: 4144: 4142: 4140: 5068:(1943), "Problem 4065", Problems for solution: 4065–4069, 4184:, p. 92); Steenrod's proof was briefly summarized in 4071: 4069: 5013: 4815:(1969), "12.3 Sylvester's problem of collinear points", 4137: 4060: 3933: 1931:
Sort the other given points by the angle they make with
5608:(1968), "Twenty problems on convex polyhedra, part I", 4706:
Chen, Xiaomin (2006), "The Sylvester–Chvátal theorem",
4066: 303:
points in the plane can be guaranteed to have at least
130:
The Sylvester–Gallai theorem was posed as a problem by
5770: 5560:, Mathematical Surveys and Monographs, vol. 152, 5151:"The excluded minors for GF(4)-representable matroids" 4227: 4165: 4163: 4161: 3831:
but never published; the first published proof was by
1255:
from the Euler characteristic leads to the inequality
5323: 4937:(1951), "Collinearity properties of sets of points", 4877: 3982: 3962: 3767: 3740: 3720: 3700: 3674: 3650: 3630: 3584: 3547: 3522: 3485: 3461: 3433: 3406: 3373: 3314: 3288: 3253: 3227: 3199: 3162: 3142: 3083: 3040: 2958: 2938: 2915: 2895: 2875: 2855: 2812: 2783: 2763: 2739: 2685: 2665: 2601: 2569: 2522: 2468: 2440: 2404: 2350: 2330: 2294: 2262: 2256:
The two known examples of point sets with fewer than
2223: 2191: 2164: 2137: 2108: 2081: 2054: 2024: 1997: 1967: 1937: 1907: 1880: 1842: 1789: 1749: 1705: 1665: 1525: 1524: 1450: 1449: 1426: 1399: 1373: 1319: 1296: 1261: 1241: 1204: 1179: 1159: 1139: 1115: 1083: 1047: 1027: 1007: 1001:
However, this contradicts the original definition of
969: 938: 910: 882: 862: 837: 817: 797: 777: 757: 732: 712: 692: 672: 652: 632: 607: 587: 567: 540: 520: 500: 480: 460: 365: 345: 309: 289: 90: 70: 5571:"A reverse analysis of the Sylvester–Gallai theorem" 4319: 4307: 1958:, grouping together points that form the same angle. 5145: 4275: 4158: 4125: 3427:), the number of ordinary lines is indeed at least 2344:non-collinear points. Melchior's proof showed that 5749: 5516: 5329: 4974: 4894: 4432: 4349: 4245: 3999: 3968: 3779: 3752: 3726: 3706: 3686: 3656: 3644:points that are not collinear determines at least 3636: 3598: 3570: 3528: 3508: 3467: 3447: 3419: 3392: 3342: 3300: 3274: 3239: 3213: 3185: 3156:is seven. Asymptotically, this formula is already 3148: 3128: 3063: 3006: 2944: 2921: 2901: 2881: 2861: 2841: 2798: 2769: 2745: 2721: 2671: 2640: 2575: 2555: 2500: 2446: 2426: 2378: 2336: 2316: 2276: 2236: 2204: 2177: 2150: 2121: 2094: 2067: 2037: 2010: 1980: 1950: 1920: 1893: 1855: 1829: 1822: 1813: 1771: 1740: 1736: 1727: 1687: 1656: 1592: 1504: 1432: 1412: 1385: 1340: 1305: 1282: 1247: 1227: 1185: 1165: 1145: 1121: 1101: 1053: 1033: 1013: 986: 955: 924: 896: 868: 848: 823: 803: 783: 763: 743: 718: 698: 678: 658: 638: 618: 593: 573: 546: 526: 506: 486: 466: 390: 351: 331: 295: 114: 76: 5709:(1893a), "Mathematical question 11851 answered", 5460:Transactions of the American Mathematical Society 4982:(1989), "Topologically sweeping an arrangement", 3668:. As a base case, the result is clearly true for 3609: 3282:. However, were the Csima–Sawyer bound valid for 6062: 4411:(6th ed.), Springer, Theorem 1, pp. 77–78, 4295: 3129:{\displaystyle t_{2}(n)\geq \lceil 6n/13\rceil } 2889:ordinary lines, the lines that connect a vertex 1659:report the time for this closest-pair search as 601:. At least two of these are on the same side of 5520:Computational Geometry: Theory and Applications 5439:(1941), "Über Vielseite der Projektive Ebene", 5201:(2013), "On sets defining few ordinary lines", 2869:distinct directions. This arrangement has only 2247: 1928:and otherwise stays outside of the convex hull. 4631: 4609: 2679:greater than four have a matching upper bound 2588: 2395: 359:generators can be guaranteed to have at least 5815: 4397: 4197: 4181: 4152: 3827:. A proof of this variation was announced by 3664:different lines. This result is known as the 2556:{\displaystyle t_{2}\geq \lfloor n/2\rfloor } 1352: 448: 4568: 4075: 3616:De Bruijn–Erdős theorem (incidence geometry) 3565: 3548: 3123: 3106: 3058: 3044: 2550: 2536: 1781:Mukhopadhyay, Agrawal & Hosabettu (1997) 408: 4871:Csima, J.; Sawyer, E. (1993), "There exist 4870: 3479:, the number of ordinary lines is at least 3074: 2849:pairs of these points, they determine only 1650: 5822: 5808: 5568: 5548: 5387: 5313: 4832: 4381: 4290: 4260: 4233: 4217: 4201: 3953: 3015: 2592: 1628: 1077:in the real projective plane, the formula 5689: 5588: 5532: 5472: 5403: 5352: 5297: 5214: 5032: 4997: 4917: 4776:(1948), "A problem of collinear points", 4756: 4721: 4667: 4448: 3832: 2462:) confirmed that it does by proving that 2018:in one group and the farthest point from 217:mathematical topics named after Sylvester 135: 49:, who posed it as a problem in 1893, and 5829: 5721: 5705: 5604: 5435: 5376: 5246: 5193: 5149:; Gerards, A. M. H.; Kapoor, A. (2000), 4338: 4325: 4313: 4271: 4269: 4169: 4131: 4061:Elkies, Pretorius & Swanepoel (2006) 3934:Elkies, Pretorius & Swanepoel (2006) 3842: 2650: 2501:{\displaystyle t_{2}(n)\geq {\sqrt {n}}} 2251: 1362: 434: 249: 208:, and soon afterwards by other authors. 189: 181: 177: 20: 5693:(1893), "Mathematical question 11851", 5453: 4985:Journal of Computer and System Sciences 4811: 4772: 4737: 4641:"A combinatioral [sic] problem" 4373: 4286: 4284: 4256: 4254: 4213: 4032: 3838: 2459: 1640:lesser limited principle of omniscience 1616: 1612: 6063: 5727:"Mathematical question 11851 answered" 4616:Research problems in discrete geometry 4081: 1073:Melchior observed that, for any graph 222: 64:can find an ordinary line in a set of 16:Existence of a line through two points 5803: 5771: 5278: 5203:Discrete & Computational Geometry 5097: 5064: 5020:Discrete & Computational Geometry 4933: 4905:Discrete & Computational Geometry 4744:Discrete & Computational Geometry 4709:Discrete & Computational Geometry 4436:Discrete & Computational Geometry 4266: 4091: 3924: 3871:for the coordinates of their points ( 2513: 1235:. Using this inequality to eliminate 1061:is not ordinary cannot be true, QED. 201: 166:of nine points and twelve lines (the 143: 4705: 4480: 4377: 4301: 4281: 4251: 4036: 4022: 3064:{\displaystyle 3\lfloor n/4\rfloor } 2583:. This is often referred to as the 5285:Discrete and Computational Geometry 4276:Geelen, Gerards & Kapoor (2000) 3571:{\displaystyle \lceil 6n/13\rceil } 3186:{\displaystyle 12/13\approx 92.3\%} 2217:line between one of its points and 1070:has at least three ordinary lines. 1064: 13: 5576:Notre Dame Journal of Formal Logic 3790: 3180: 998:, one contained inside the other. 932:. This follows from the fact that 626:, the perpendicular projection of 14: 6092: 5743: 3806: 3714:, the result can be reduced from 2641:{\displaystyle t_{2}(n)\geq 3n/7} 2398:) raised the question of whether 1420:be the number of points to which 4940:Quarterly Journal of Mathematics 4246:Mukhopadhyay & Greene (2012) 3007:{\displaystyle t_{2}(n)=(n-1)/2} 2722:{\displaystyle t_{2}(n)\leq n/2} 1830:Mukhopadhyay & Greene (2012) 1823:Mukhopadhyay & Greene (2012) 1741:Edelsbrunner & Guibas (1989) 1737:Edelsbrunner & Guibas (1989) 1657:Mukhopadhyay & Greene (2012) 1198:gives the additional inequality 430: 196:. Unaware of Melchior's proof, 5340:Canadian Journal of Mathematics 5159:Journal of Combinatorial Theory 4367: 4355: 4331: 4207: 4191: 339:ordinary lines, zonohedra with 5973:Cremona–Richmond configuration 4610:Brass, Peter; Moser, William; 4175: 4111: 4097: 3913:Sylvester–Gallai configuration 3610:The number of connecting lines 3343:{\displaystyle t_{2}(7)\geq 4} 3331: 3325: 3263: 3257: 3100: 3094: 2993: 2981: 2975: 2969: 2828: 2816: 2702: 2696: 2618: 2612: 2485: 2479: 2421: 2415: 2379:{\displaystyle t_{2}(n)\geq 3} 2367: 2361: 2311: 2305: 2158:whose intersection point with 1808: 1793: 1766: 1753: 1722: 1709: 1682: 1669: 1631:for a study of this question. 1573: 1561: 1479: 1467: 1133:of the projective plane. Here 385: 379: 326: 320: 109: 94: 1: 6076:Theorems in discrete geometry 5760:American Mathematical Society 5663:American Mathematical Monthly 5562:American Mathematical Society 5071:American Mathematical Monthly 4778:American Mathematical Monthly 4671:American Mathematical Monthly 4390: 2589:Brass, Moser & Pach (2005 1603: 811:, and the perpendicular from 6050:Kirkman's schoolgirl problem 5983:Grünbaum–Rigby configuration 5796:at the 2013 Minerva Lectures 5752:"A discrete geometrical gem" 5652:Steinberg, R.; Buck, R. C.; 5534:10.1016/j.comgeo.2011.10.003 4999:10.1016/0022-0000(89)90038-X 4417:10.1007/978-3-662-57265-8_11 4220:. For Steinberg's proof see 4017:GF(4)-representable matroids 3875:for the Euclidean plane and 3400:for some suitable choice of 3353:A closely related result is 2248:The number of ordinary lines 7: 5943:Möbius–Kantor configuration 5750:Malkevitch, Joseph (2003), 5569:Pambuccian, Victor (2009), 5499:Nordic Journal of Computing 5377:Lenchner, Jonathan (2008). 4198:Aigner & Ziegler (2018) 4153:Aigner & Ziegler (2018) 3939: 2729:. The construction, due to 1353:Aigner & Ziegler (2018) 449:Aigner & Ziegler (2018) 10: 6097: 6029:Bruck–Ryser–Chowla theorem 5391:Acta Mathematica Hungarica 4182:Aigner & Ziegler (2018 4076:Borwein & Moser (1990) 3694:. For any larger value of 3613: 3393:{\displaystyle n>n_{0}} 3275:{\displaystyle t(7)\leq 3} 1814:{\displaystyle O(n\log n)} 1341:{\displaystyle E\leq 3V-3} 1283:{\displaystyle E\leq 3V-3} 1228:{\displaystyle F\leq 2E/3} 454:Suppose that a finite set 439:Notation for Kelly's proof 413:Euler's polyhedral formula 409:Borwein & Moser (1990) 270:, polyhedra formed as the 125: 115:{\displaystyle O(n\log n)} 6037: 6019:Szemerédi–Trotter theorem 6001: 5923: 5858: 5837: 5590:10.1215/00294527-2009-010 5414:10.1007/s10474-016-0624-z 5225:10.1007/s00454-013-9518-9 5043:10.1007/s00454-005-1226-7 4758:10.1007/s00454-003-0795-6 4723:10.1007/s00454-005-1216-9 4649:Indagationes Mathematicae 4459:10.1007/s00454-018-0039-4 3075:Csima & Sawyer (1993) 2434:approaches infinity with 2178:{\displaystyle \ell _{0}} 2151:{\displaystyle \ell _{i}} 2122:{\displaystyle \ell _{0}} 2095:{\displaystyle \ell _{i}} 2068:{\displaystyle \ell _{i}} 1894:{\displaystyle \ell _{0}} 1642:, a weakened form of the 1440:lines are incident. Then 401: 391:{\displaystyle 2t_{2}(n)} 6071:Euclidean plane geometry 6009:Sylvester–Gallai theorem 5610:The Mathematical Gazette 4817:Introduction to Geometry 4575:Aequationes Mathematicae 4291:Pach & Sharir (2009) 4261:Crowe & McKee (1968) 4047: 3954:Kelly & Moser (1958) 3921:complex projective plane 3901:complex projective plane 3867:can be defined by using 3853:complex projective plane 3538:orchard-planting problem 3016:Kelly & Moser (1958) 2842:{\displaystyle m(m-1)/2} 2593:Kelly & Moser (1958) 2585:Dirac–Motzkin conjecture 2427:{\displaystyle t_{2}(n)} 2317:{\displaystyle t_{2}(n)} 1772:{\displaystyle O(n^{2})} 1728:{\displaystyle O(n^{2})} 1688:{\displaystyle O(n^{3})} 1651:Finding an ordinary line 332:{\displaystyle t_{2}(n)} 160:complex projective plane 31:Sylvester–Gallai theorem 6014:De Bruijn–Erdős theorem 5958:Desargues configuration 4222:Steinberg et al. (1944) 4186:Steinberg et al. (1944) 4088:Steinberg et al. (1944) 3877:homogeneous coordinates 3666:De Bruijn–Erdős theorem 1735:, was given earlier by 1386:{\displaystyle k\geq 2} 5354:10.4153/CJM-1958-024-6 5331: 5172:10.1006/jctb.2000.1963 4896: 4314:Green & Tao (2013) 4001: 3976:elements has at least 3970: 3856: 3781: 3754: 3728: 3708: 3688: 3658: 3638: 3600: 3572: 3530: 3510: 3509:{\displaystyle 3n/4-C} 3469: 3449: 3421: 3394: 3344: 3308:, it would claim that 3302: 3276: 3241: 3215: 3187: 3150: 3130: 3065: 3008: 2946: 2923: 2903: 2883: 2863: 2843: 2800: 2771: 2747: 2723: 2673: 2656: 2642: 2577: 2557: 2502: 2448: 2428: 2380: 2338: 2318: 2285: 2278: 2238: 2206: 2179: 2152: 2123: 2096: 2069: 2039: 2012: 1982: 1952: 1922: 1895: 1857: 1815: 1773: 1729: 1689: 1644:law of excluded middle 1594: 1506: 1434: 1414: 1387: 1342: 1307: 1284: 1249: 1229: 1187: 1167: 1147: 1123: 1103: 1055: 1035: 1015: 988: 957: 926: 898: 870: 850: 825: 805: 785: 765: 745: 720: 700: 680: 660: 640: 620: 595: 575: 548: 528: 514:and a connecting line 508: 488: 468: 440: 392: 353: 333: 297: 280:elongated dodecahedron 263: 256:elongated dodecahedron 116: 78: 47:James Joseph Sylvester 26: 6045:Design of experiments 5711:The Educational Times 5695:The Educational Times 5332: 4976:Edelsbrunner, Herbert 4961:10.1093/qmath/2.1.221 4897: 4895:{\displaystyle 6n/13} 4362:Björner et al. (1993) 4002: 3971: 3909:Hesse's configuration 3873:Cartesian coordinates 3846: 3782: 3755: 3729: 3709: 3689: 3659: 3639: 3601: 3573: 3531: 3511: 3470: 3450: 3422: 3420:{\displaystyle n_{0}} 3395: 3345: 3303: 3277: 3242: 3216: 3188: 3151: 3131: 3066: 3009: 2947: 2924: 2904: 2884: 2864: 2844: 2801: 2772: 2748: 2724: 2674: 2654: 2643: 2578: 2558: 2503: 2449: 2429: 2381: 2339: 2319: 2279: 2255: 2239: 2237:{\displaystyle p_{0}} 2207: 2205:{\displaystyle p_{0}} 2180: 2153: 2124: 2097: 2070: 2040: 2038:{\displaystyle p_{0}} 2013: 2011:{\displaystyle p_{0}} 1983: 1981:{\displaystyle p_{0}} 1953: 1951:{\displaystyle p_{0}} 1923: 1921:{\displaystyle p_{0}} 1896: 1858: 1856:{\displaystyle p_{0}} 1816: 1774: 1730: 1690: 1636:constructive analysis 1595: 1507: 1435: 1415: 1413:{\displaystyle t_{k}} 1388: 1363:Melchior's inequality 1343: 1308: 1285: 1250: 1230: 1188: 1168: 1148: 1124: 1104: 1102:{\displaystyle V-E+F} 1056: 1054:{\displaystyle \ell } 1036: 1034:{\displaystyle \ell } 1016: 989: 958: 927: 899: 871: 851: 826: 806: 786: 766: 746: 721: 701: 681: 661: 659:{\displaystyle \ell } 641: 621: 596: 576: 574:{\displaystyle \ell } 549: 547:{\displaystyle \ell } 529: 527:{\displaystyle \ell } 509: 489: 469: 438: 398:parallelogram faces. 393: 354: 334: 298: 253: 186:Eberhard Melchior 117: 79: 24: 5978:Kummer configuration 5948:Pappus configuration 5831:Incidence structures 5321: 4875: 4836:Mathematics Magazine 4618:, Berlin: Springer, 4408:Proofs from THE BOOK 4000:{\displaystyle 3n/7} 3980: 3960: 3839:Non-real coordinates 3765: 3738: 3718: 3698: 3672: 3648: 3628: 3582: 3545: 3520: 3516:, for some constant 3483: 3459: 3455:. Furthermore, when 3431: 3404: 3371: 3312: 3286: 3251: 3225: 3197: 3160: 3140: 3081: 3038: 2956: 2936: 2913: 2893: 2873: 2853: 2810: 2799:{\displaystyle n=2m} 2781: 2761: 2737: 2683: 2663: 2599: 2567: 2563:, for all values of 2520: 2466: 2456:Theodore Motzkin 2438: 2402: 2348: 2328: 2292: 2260: 2221: 2189: 2162: 2135: 2106: 2079: 2052: 2022: 1995: 1965: 1935: 1905: 1901:that passes through 1878: 1871:of the given points. 1840: 1787: 1747: 1703: 1663: 1638:, as it implies the 1609:H. S. M. Coxeter 1522: 1447: 1424: 1397: 1371: 1317: 1294: 1259: 1239: 1202: 1177: 1157: 1137: 1131:Euler characteristic 1113: 1081: 1045: 1025: 1005: 987:{\displaystyle BB'C} 967: 956:{\displaystyle PP'C} 936: 908: 880: 860: 835: 815: 795: 775: 755: 730: 710: 690: 670: 650: 630: 605: 585: 565: 538: 518: 498: 478: 458: 363: 343: 307: 287: 215:. It is one of many 88: 68: 5988:Klein configuration 5968:Schläfli double six 5953:Hesse configuration 5933:Complete quadrangle 5442:Deutsche Mathematik 4980:Guibas, Leonidas J. 4953:1951QJMat...2..221D 4527:Las Vergnas, Michel 4350:Basit et al. (2019) 4041:triangle inequality 4031:was conjectured by 3849:Hesse configuration 3815:and popularized by 3780:{\displaystyle n-1} 3753:{\displaystyle n-1} 3687:{\displaystyle n=3} 3606:bound still holds. 3599:{\displaystyle n/2} 3448:{\displaystyle n/2} 3301:{\displaystyle n=7} 3240:{\displaystyle n=7} 3214:{\displaystyle n/2} 2516:) conjectured that 2277:{\displaystyle n/2} 2045:in the other group. 1625:reverse mathematics 925:{\displaystyle PP'} 897:{\displaystyle BB'} 415:. Another proof by 274:of a finite set of 223:Equivalent versions 168:Hesse configuration 132:J. J. Sylvester 5963:Reye configuration 5790:Proof presentation 5773:Weisstein, Eric W. 5756:AMS Feature Column 5327: 5299:10.1007/BF02187687 5124:10.1007/BF02579228 4919:10.1007/BF02189318 4902:ordinary points", 4892: 4588:10.1007/BF02112289 4535:Ziegler, Günter M. 4500:10.1007/BF02579184 4403:Ziegler, Günter M. 3997: 3966: 3857: 3777: 3750: 3724: 3704: 3684: 3654: 3634: 3596: 3568: 3526: 3506: 3465: 3445: 3417: 3390: 3340: 3298: 3272: 3237: 3211: 3183: 3146: 3126: 3061: 3004: 2942: 2919: 2899: 2879: 2859: 2839: 2796: 2767: 2743: 2719: 2669: 2657: 2638: 2587:; see for example 2573: 2553: 2498: 2444: 2424: 2376: 2334: 2314: 2286: 2274: 2234: 2202: 2185:is the closest to 2175: 2148: 2119: 2092: 2065: 2035: 2008: 1978: 1948: 1918: 1891: 1853: 1811: 1769: 1725: 1697:brute-force search 1685: 1590: 1589: 1560: 1502: 1501: 1466: 1430: 1410: 1383: 1338: 1306:{\displaystyle 3V} 1303: 1280: 1245: 1225: 1183: 1163: 1143: 1119: 1099: 1051: 1031: 1011: 984: 953: 922: 894: 866: 849:{\displaystyle B'} 846: 821: 801: 781: 761: 744:{\displaystyle P'} 741: 716: 696: 676: 656: 636: 619:{\displaystyle P'} 616: 591: 571: 544: 524: 504: 494:must have a point 484: 464: 445:Leroy Milton Kelly 441: 417:Leroy Milton Kelly 388: 349: 329: 293: 264: 237:projective duality 231:RP instead of the 213:Leonard Blumenthal 148:algebraic geometry 112: 74: 37:states that every 27: 6058: 6057: 5330:{\displaystyle n} 4813:Coxeter, H. S. M. 4774:Coxeter, H. S. M. 4540:Oriented matroids 4426:978-3-662-57265-8 4382:Pambuccian (2009) 4234:Mandelkern (2016) 4218:Pambuccian (2009) 4202:Pambuccian (2009) 4023:Distance geometry 4009:Sylvester matroid 3969:{\displaystyle n} 3727:{\displaystyle n} 3707:{\displaystyle n} 3657:{\displaystyle n} 3637:{\displaystyle n} 3529:{\displaystyle C} 3468:{\displaystyle n} 3221:upper bound. The 3149:{\displaystyle n} 2945:{\displaystyle n} 2922:{\displaystyle v} 2902:{\displaystyle v} 2882:{\displaystyle m} 2862:{\displaystyle m} 2770:{\displaystyle m} 2753:-gon in the real 2746:{\displaystyle m} 2672:{\displaystyle n} 2576:{\displaystyle n} 2510:Gabriel Dirac 2496: 2447:{\displaystyle n} 2337:{\displaystyle n} 1874:Construct a line 1828:The algorithm of 1629:Pambuccian (2009) 1545: 1515:or equivalently, 1451: 1433:{\displaystyle k} 1248:{\displaystyle F} 1186:{\displaystyle F} 1166:{\displaystyle E} 1146:{\displaystyle V} 1122:{\displaystyle 1} 1014:{\displaystyle P} 996:similar triangles 869:{\displaystyle m} 824:{\displaystyle B} 804:{\displaystyle C} 784:{\displaystyle P} 764:{\displaystyle m} 726:being closest to 719:{\displaystyle B} 699:{\displaystyle C} 679:{\displaystyle B} 639:{\displaystyle P} 594:{\displaystyle S} 507:{\displaystyle P} 487:{\displaystyle S} 467:{\displaystyle S} 443:This proof is by 352:{\displaystyle n} 296:{\displaystyle n} 174:H. J. Woodall 152:inflection points 77:{\displaystyle n} 41:of points in the 6088: 5893:Projective plane 5845:Incidence matrix 5824: 5817: 5810: 5801: 5800: 5786: 5785: 5767: 5762:, archived from 5738: 5718: 5702: 5691:Sylvester, J. J. 5686: 5648: 5616:(380): 136–156, 5601: 5592: 5565: 5545: 5536: 5513: 5493: 5476: 5450: 5432: 5407: 5384: 5373: 5356: 5336: 5334: 5333: 5328: 5310: 5301: 5275: 5256: 5248:Grünbaum, Branko 5243: 5218: 5190: 5188: 5182:, archived from 5155: 5142: 5107: 5094: 5061: 5036: 5010: 5001: 4971: 4930: 4921: 4901: 4899: 4898: 4893: 4888: 4867: 4829: 4808: 4769: 4760: 4734: 4725: 4702: 4664: 4645: 4633:de Bruijn, N. G. 4628: 4606: 4565: 4531:Sturmfels, Bernd 4518: 4494:(3–4): 281–297, 4477: 4452: 4429: 4384: 4371: 4365: 4359: 4353: 4347: 4341: 4335: 4329: 4323: 4317: 4311: 4305: 4299: 4293: 4288: 4279: 4273: 4264: 4258: 4249: 4243: 4237: 4231: 4225: 4211: 4205: 4195: 4189: 4179: 4173: 4167: 4156: 4150: 4135: 4129: 4123: 4115: 4109: 4101: 4095: 4085: 4079: 4073: 4064: 4058: 4013:forbidden minors 4006: 4004: 4003: 3998: 3993: 3975: 3973: 3972: 3967: 3946:oriented matroid 3907:of nine points, 3865:projective plane 3833:Chakerian (1970) 3829:Theodore Motzkin 3821:families of sets 3817:Donald J. Newman 3786: 3784: 3783: 3778: 3759: 3757: 3756: 3751: 3733: 3731: 3730: 3725: 3713: 3711: 3710: 3705: 3693: 3691: 3690: 3685: 3663: 3661: 3660: 3655: 3643: 3641: 3640: 3635: 3605: 3603: 3602: 3597: 3592: 3577: 3575: 3574: 3569: 3561: 3535: 3533: 3532: 3527: 3515: 3513: 3512: 3507: 3496: 3474: 3472: 3471: 3466: 3454: 3452: 3451: 3446: 3441: 3426: 3424: 3423: 3418: 3416: 3415: 3399: 3397: 3396: 3391: 3389: 3388: 3349: 3347: 3346: 3341: 3324: 3323: 3307: 3305: 3304: 3299: 3281: 3279: 3278: 3273: 3246: 3244: 3243: 3238: 3220: 3218: 3217: 3212: 3207: 3192: 3190: 3189: 3184: 3170: 3155: 3153: 3152: 3147: 3135: 3133: 3132: 3127: 3119: 3093: 3092: 3071:ordinary lines. 3070: 3068: 3067: 3062: 3054: 3032:projective plane 3024:projective space 3014:One example, by 3013: 3011: 3010: 3005: 3000: 2968: 2967: 2951: 2949: 2948: 2943: 2928: 2926: 2925: 2920: 2908: 2906: 2905: 2900: 2888: 2886: 2885: 2880: 2868: 2866: 2865: 2860: 2848: 2846: 2845: 2840: 2835: 2805: 2803: 2802: 2797: 2776: 2774: 2773: 2768: 2755:projective plane 2752: 2750: 2749: 2744: 2728: 2726: 2725: 2720: 2715: 2695: 2694: 2678: 2676: 2675: 2670: 2647: 2645: 2644: 2639: 2634: 2611: 2610: 2591:, p. 304). 2582: 2580: 2579: 2574: 2562: 2560: 2559: 2554: 2546: 2532: 2531: 2507: 2505: 2504: 2499: 2497: 2492: 2478: 2477: 2453: 2451: 2450: 2445: 2433: 2431: 2430: 2425: 2414: 2413: 2385: 2383: 2382: 2377: 2360: 2359: 2343: 2341: 2340: 2335: 2323: 2321: 2320: 2315: 2304: 2303: 2283: 2281: 2280: 2275: 2270: 2243: 2241: 2240: 2235: 2233: 2232: 2211: 2209: 2208: 2203: 2201: 2200: 2184: 2182: 2181: 2176: 2174: 2173: 2157: 2155: 2154: 2149: 2147: 2146: 2131:Return the line 2128: 2126: 2125: 2120: 2118: 2117: 2101: 2099: 2098: 2093: 2091: 2090: 2074: 2072: 2071: 2066: 2064: 2063: 2044: 2042: 2041: 2036: 2034: 2033: 2017: 2015: 2014: 2009: 2007: 2006: 1987: 1985: 1984: 1979: 1977: 1976: 1957: 1955: 1954: 1949: 1947: 1946: 1927: 1925: 1924: 1919: 1917: 1916: 1900: 1898: 1897: 1892: 1890: 1889: 1862: 1860: 1859: 1854: 1852: 1851: 1820: 1818: 1817: 1812: 1778: 1776: 1775: 1770: 1765: 1764: 1734: 1732: 1731: 1726: 1721: 1720: 1694: 1692: 1691: 1686: 1681: 1680: 1621:ordered geometry 1599: 1597: 1596: 1591: 1585: 1584: 1559: 1535: 1534: 1511: 1509: 1508: 1503: 1491: 1490: 1465: 1439: 1437: 1436: 1431: 1419: 1417: 1416: 1411: 1409: 1408: 1392: 1390: 1389: 1384: 1347: 1345: 1344: 1339: 1312: 1310: 1309: 1304: 1289: 1287: 1286: 1281: 1254: 1252: 1251: 1246: 1234: 1232: 1231: 1226: 1221: 1192: 1190: 1189: 1184: 1172: 1170: 1169: 1164: 1152: 1150: 1149: 1144: 1128: 1126: 1125: 1120: 1108: 1106: 1105: 1100: 1065:Melchior's proof 1060: 1058: 1057: 1052: 1040: 1038: 1037: 1032: 1020: 1018: 1017: 1012: 993: 991: 990: 985: 980: 962: 960: 959: 954: 949: 931: 929: 928: 923: 921: 904:is shorter than 903: 901: 900: 895: 893: 875: 873: 872: 867: 855: 853: 852: 847: 845: 830: 828: 827: 822: 810: 808: 807: 802: 790: 788: 787: 782: 771:passing through 770: 768: 767: 762: 750: 748: 747: 742: 740: 725: 723: 722: 717: 705: 703: 702: 697: 685: 683: 682: 677: 665: 663: 662: 657: 645: 643: 642: 637: 625: 623: 622: 617: 615: 600: 598: 597: 592: 580: 578: 577: 572: 556:by contradiction 553: 551: 550: 545: 533: 531: 530: 525: 513: 511: 510: 505: 493: 491: 490: 485: 473: 471: 470: 465: 425:ordered geometry 421:H. S. M. Coxeter 397: 395: 394: 389: 378: 377: 358: 356: 355: 350: 338: 336: 335: 330: 319: 318: 302: 300: 299: 294: 243:in a nontrivial 229:projective plane 121: 119: 118: 113: 83: 81: 80: 75: 6096: 6095: 6091: 6090: 6089: 6087: 6086: 6085: 6061: 6060: 6059: 6054: 6033: 5997: 5919: 5854: 5850:Incidence graph 5833: 5828: 5777:"Ordinary Line" 5746: 5741: 5676:10.2307/2303021 5658:Steenrod, N. E. 5622:10.2307/3612678 5606:Shephard, G. C. 5564:, pp. 1–12 5474:10.2307/1990609 5383:(Ph.D. Thesis). 5322: 5319: 5318: 5254: 5186: 5153: 5105: 5084:10.2307/2304011 4884: 4876: 4873: 4872: 4849:10.2307/2687957 4827: 4790:10.2307/2305324 4684:10.2307/2317330 4643: 4626: 4555: 4533:; White, Neil; 4523:Björner, Anders 4427: 4393: 4388: 4387: 4372: 4368: 4360: 4356: 4348: 4344: 4339:Grünbaum (1999) 4336: 4332: 4326:Lenchner (2008) 4324: 4320: 4312: 4308: 4300: 4296: 4289: 4282: 4274: 4267: 4259: 4252: 4244: 4240: 4232: 4228: 4212: 4208: 4196: 4192: 4180: 4176: 4170:Melchior (1941) 4168: 4159: 4151: 4138: 4132:Shephard (1968) 4130: 4126: 4116: 4112: 4102: 4098: 4086: 4082: 4074: 4067: 4059: 4055: 4050: 4025: 3989: 3981: 3978: 3977: 3961: 3958: 3957: 3942: 3903:there exists a 3893:complex numbers 3861:Euclidean plane 3841: 3809: 3793: 3791:Generalizations 3766: 3763: 3762: 3739: 3736: 3735: 3719: 3716: 3715: 3699: 3696: 3695: 3673: 3670: 3669: 3649: 3646: 3645: 3629: 3626: 3625: 3618: 3612: 3588: 3583: 3580: 3579: 3557: 3546: 3543: 3542: 3521: 3518: 3517: 3492: 3484: 3481: 3480: 3460: 3457: 3456: 3437: 3432: 3429: 3428: 3411: 3407: 3405: 3402: 3401: 3384: 3380: 3372: 3369: 3368: 3319: 3315: 3313: 3310: 3309: 3287: 3284: 3283: 3252: 3249: 3248: 3226: 3223: 3222: 3203: 3198: 3195: 3194: 3166: 3161: 3158: 3157: 3141: 3138: 3137: 3115: 3088: 3084: 3082: 3079: 3078: 3050: 3039: 3036: 3035: 2996: 2963: 2959: 2957: 2954: 2953: 2937: 2934: 2933: 2914: 2911: 2910: 2894: 2891: 2890: 2874: 2871: 2870: 2854: 2851: 2850: 2831: 2811: 2808: 2807: 2782: 2779: 2778: 2762: 2759: 2758: 2738: 2735: 2734: 2731:Károly Böröczky 2711: 2690: 2686: 2684: 2681: 2680: 2664: 2661: 2660: 2630: 2606: 2602: 2600: 2597: 2596: 2568: 2565: 2564: 2542: 2527: 2523: 2521: 2518: 2517: 2491: 2473: 2469: 2467: 2464: 2463: 2439: 2436: 2435: 2409: 2405: 2403: 2400: 2399: 2355: 2351: 2349: 2346: 2345: 2329: 2326: 2325: 2299: 2295: 2293: 2290: 2289: 2284:ordinary lines. 2266: 2261: 2258: 2257: 2250: 2228: 2224: 2222: 2219: 2218: 2196: 2192: 2190: 2187: 2186: 2169: 2165: 2163: 2160: 2159: 2142: 2138: 2136: 2133: 2132: 2113: 2109: 2107: 2104: 2103: 2086: 2082: 2080: 2077: 2076: 2059: 2055: 2053: 2050: 2049: 2029: 2025: 2023: 2020: 2019: 2002: 1998: 1996: 1993: 1992: 1972: 1968: 1966: 1963: 1962: 1942: 1938: 1936: 1933: 1932: 1912: 1908: 1906: 1903: 1902: 1885: 1881: 1879: 1876: 1875: 1847: 1843: 1841: 1838: 1837: 1836:Choose a point 1788: 1785: 1784: 1760: 1756: 1748: 1745: 1744: 1716: 1712: 1704: 1701: 1700: 1676: 1672: 1664: 1661: 1660: 1653: 1606: 1580: 1576: 1549: 1530: 1526: 1523: 1520: 1519: 1486: 1482: 1455: 1448: 1445: 1444: 1425: 1422: 1421: 1404: 1400: 1398: 1395: 1394: 1372: 1369: 1368: 1365: 1357:Norman Steenrod 1318: 1315: 1314: 1295: 1292: 1291: 1260: 1257: 1256: 1240: 1237: 1236: 1217: 1203: 1200: 1199: 1196:double counting 1178: 1175: 1174: 1158: 1155: 1154: 1138: 1135: 1134: 1114: 1111: 1110: 1082: 1079: 1078: 1067: 1046: 1043: 1042: 1026: 1023: 1022: 1006: 1003: 1002: 973: 968: 965: 964: 942: 937: 934: 933: 914: 909: 906: 905: 886: 881: 878: 877: 861: 858: 857: 838: 836: 833: 832: 816: 813: 812: 796: 793: 792: 776: 773: 772: 756: 753: 752: 733: 731: 728: 727: 711: 708: 707: 691: 688: 687: 671: 668: 667: 651: 648: 647: 631: 628: 627: 608: 606: 603: 602: 586: 583: 582: 566: 563: 562: 539: 536: 535: 519: 516: 515: 499: 496: 495: 479: 476: 475: 459: 456: 455: 433: 404: 373: 369: 364: 361: 360: 344: 341: 340: 314: 310: 308: 305: 304: 288: 285: 284: 233:Euclidean plane 225: 194:projective dual 150:, in which the 128: 89: 86: 85: 84:points in time 69: 66: 65: 43:Euclidean plane 17: 12: 11: 5: 6094: 6084: 6083: 6081:Matroid theory 6078: 6073: 6056: 6055: 6053: 6052: 6047: 6041: 6039: 6035: 6034: 6032: 6031: 6026: 6024:Beck's theorem 6021: 6016: 6011: 6005: 6003: 5999: 5998: 5996: 5995: 5990: 5985: 5980: 5975: 5970: 5965: 5960: 5955: 5950: 5945: 5940: 5935: 5929: 5927: 5925:Configurations 5921: 5920: 5918: 5917: 5916: 5915: 5907: 5906: 5905: 5897: 5896: 5895: 5890: 5880: 5879: 5878: 5876:Steiner system 5873: 5862: 5860: 5856: 5855: 5853: 5852: 5847: 5841: 5839: 5838:Representation 5835: 5834: 5827: 5826: 5819: 5812: 5804: 5798: 5797: 5787: 5768: 5745: 5744:External links 5742: 5740: 5739: 5723:Woodall, H. J. 5719: 5707:Woodall, H. J. 5703: 5687: 5670:(3): 169–171, 5649: 5602: 5583:(3): 245–260, 5566: 5546: 5527:(3): 127–130, 5514: 5505:(4): 330–341, 5494: 5467:(3): 451–464, 5451: 5433: 5385: 5374: 5326: 5311: 5292:(2): 101–104, 5276: 5260:Geombinatorics 5244: 5209:(2): 409–468, 5191: 5166:(2): 247–299, 5143: 5118:(3): 207–212, 5095: 5062: 5027:(3): 361–373, 5011: 4992:(1): 165–194, 4972: 4931: 4891: 4887: 4883: 4880: 4868: 4830: 4825: 4809: 4770: 4751:(2): 175–195, 4739:Chvátal, Vašek 4735: 4716:(2): 193–199, 4703: 4678:(2): 164–167, 4665: 4629: 4624: 4607: 4582:(1): 111–135, 4566: 4553: 4519: 4478: 4443:(4): 778–808, 4430: 4425: 4399:Aigner, Martin 4394: 4392: 4389: 4386: 4385: 4374:Chvátal (2004) 4366: 4354: 4342: 4330: 4318: 4306: 4294: 4280: 4265: 4250: 4238: 4226: 4214:Coxeter (1948) 4206: 4190: 4174: 4157: 4136: 4124: 4110: 4096: 4080: 4065: 4052: 4051: 4049: 4046: 4035:and proved by 4033:Chvátal (2004) 4024: 4021: 3996: 3992: 3988: 3985: 3965: 3941: 3938: 3840: 3837: 3808: 3807:Colored points 3805: 3792: 3789: 3776: 3773: 3770: 3749: 3746: 3743: 3723: 3703: 3683: 3680: 3677: 3653: 3633: 3614:Main article: 3611: 3608: 3595: 3591: 3587: 3567: 3564: 3560: 3556: 3553: 3550: 3525: 3505: 3502: 3499: 3495: 3491: 3488: 3464: 3444: 3440: 3436: 3414: 3410: 3387: 3383: 3379: 3376: 3355:Beck's theorem 3339: 3336: 3333: 3330: 3327: 3322: 3318: 3297: 3294: 3291: 3271: 3268: 3265: 3262: 3259: 3256: 3236: 3233: 3230: 3210: 3206: 3202: 3193:of the proven 3182: 3179: 3176: 3173: 3169: 3165: 3145: 3125: 3122: 3118: 3114: 3111: 3108: 3105: 3102: 3099: 3096: 3091: 3087: 3060: 3057: 3053: 3049: 3046: 3043: 3003: 2999: 2995: 2992: 2989: 2986: 2983: 2980: 2977: 2974: 2971: 2966: 2962: 2941: 2918: 2898: 2878: 2858: 2838: 2834: 2830: 2827: 2824: 2821: 2818: 2815: 2795: 2792: 2789: 2786: 2777:points (thus, 2766: 2742: 2718: 2714: 2710: 2707: 2704: 2701: 2698: 2693: 2689: 2668: 2637: 2633: 2629: 2626: 2623: 2620: 2617: 2614: 2609: 2605: 2572: 2552: 2549: 2545: 2541: 2538: 2535: 2530: 2526: 2495: 2490: 2487: 2484: 2481: 2476: 2472: 2443: 2423: 2420: 2417: 2412: 2408: 2375: 2372: 2369: 2366: 2363: 2358: 2354: 2333: 2313: 2310: 2307: 2302: 2298: 2273: 2269: 2265: 2249: 2246: 2231: 2227: 2214: 2213: 2199: 2195: 2172: 2168: 2145: 2141: 2129: 2116: 2112: 2089: 2085: 2062: 2058: 2048:For each line 2046: 2032: 2028: 2005: 2001: 1989: 1975: 1971: 1959: 1945: 1941: 1929: 1915: 1911: 1888: 1884: 1872: 1850: 1846: 1810: 1807: 1804: 1801: 1798: 1795: 1792: 1768: 1763: 1759: 1755: 1752: 1724: 1719: 1715: 1711: 1708: 1684: 1679: 1675: 1671: 1668: 1652: 1649: 1605: 1602: 1601: 1600: 1588: 1583: 1579: 1575: 1572: 1569: 1566: 1563: 1558: 1555: 1552: 1548: 1544: 1541: 1538: 1533: 1529: 1513: 1512: 1500: 1497: 1494: 1489: 1485: 1481: 1478: 1475: 1472: 1469: 1464: 1461: 1458: 1454: 1429: 1407: 1403: 1382: 1379: 1376: 1364: 1361: 1337: 1334: 1331: 1328: 1325: 1322: 1302: 1299: 1279: 1276: 1273: 1270: 1267: 1264: 1244: 1224: 1220: 1216: 1213: 1210: 1207: 1182: 1162: 1142: 1118: 1098: 1095: 1092: 1089: 1086: 1066: 1063: 1050: 1030: 1010: 983: 979: 976: 972: 952: 948: 945: 941: 920: 917: 913: 892: 889: 885: 865: 844: 841: 820: 800: 780: 760: 739: 736: 715: 695: 675: 655: 635: 614: 611: 590: 570: 543: 523: 503: 483: 463: 432: 429: 403: 400: 387: 384: 381: 376: 372: 368: 348: 328: 325: 322: 317: 313: 292: 241:ordinary point 224: 221: 198:Paul Erdős 127: 124: 111: 108: 105: 102: 99: 96: 93: 73: 15: 9: 6: 4: 3: 2: 6093: 6082: 6079: 6077: 6074: 6072: 6069: 6068: 6066: 6051: 6048: 6046: 6043: 6042: 6040: 6036: 6030: 6027: 6025: 6022: 6020: 6017: 6015: 6012: 6010: 6007: 6006: 6004: 6000: 5994: 5991: 5989: 5986: 5984: 5981: 5979: 5976: 5974: 5971: 5969: 5966: 5964: 5961: 5959: 5956: 5954: 5951: 5949: 5946: 5944: 5941: 5939: 5936: 5934: 5931: 5930: 5928: 5926: 5922: 5914: 5911: 5910: 5908: 5904: 5901: 5900: 5899:Graph theory 5898: 5894: 5891: 5889: 5886: 5885: 5884: 5881: 5877: 5874: 5872: 5869: 5868: 5867: 5866:Combinatorics 5864: 5863: 5861: 5857: 5851: 5848: 5846: 5843: 5842: 5840: 5836: 5832: 5825: 5820: 5818: 5813: 5811: 5806: 5805: 5802: 5795: 5791: 5788: 5784: 5783: 5778: 5774: 5769: 5766:on 2006-10-10 5765: 5761: 5757: 5753: 5748: 5747: 5736: 5732: 5728: 5724: 5720: 5716: 5712: 5708: 5704: 5700: 5696: 5692: 5688: 5685: 5681: 5677: 5673: 5669: 5665: 5664: 5659: 5655: 5650: 5647: 5643: 5639: 5635: 5631: 5627: 5623: 5619: 5615: 5611: 5607: 5603: 5600: 5596: 5591: 5586: 5582: 5578: 5577: 5572: 5567: 5563: 5559: 5555: 5554:Sharir, Micha 5551: 5547: 5544: 5540: 5535: 5530: 5526: 5522: 5521: 5515: 5512: 5508: 5504: 5500: 5495: 5492: 5488: 5484: 5480: 5475: 5470: 5466: 5462: 5461: 5456: 5452: 5448: 5444: 5443: 5438: 5434: 5431: 5427: 5423: 5419: 5415: 5411: 5406: 5401: 5397: 5393: 5392: 5386: 5382: 5381: 5375: 5372: 5368: 5364: 5360: 5355: 5350: 5346: 5342: 5341: 5324: 5316: 5312: 5309: 5305: 5300: 5295: 5291: 5287: 5286: 5281: 5277: 5274: 5270: 5266: 5262: 5261: 5253: 5249: 5245: 5242: 5238: 5234: 5230: 5226: 5222: 5217: 5212: 5208: 5204: 5200: 5196: 5192: 5189:on 2010-09-24 5185: 5181: 5177: 5173: 5169: 5165: 5161: 5160: 5152: 5148: 5147:Geelen, J. F. 5144: 5141: 5137: 5133: 5129: 5125: 5121: 5117: 5113: 5112: 5111:Combinatorica 5104: 5100: 5096: 5093: 5089: 5085: 5081: 5077: 5073: 5072: 5067: 5063: 5060: 5056: 5052: 5048: 5044: 5040: 5035: 5030: 5026: 5022: 5021: 5016: 5012: 5009: 5005: 5000: 4995: 4991: 4987: 4986: 4981: 4977: 4973: 4970: 4966: 4962: 4958: 4954: 4950: 4946: 4942: 4941: 4936: 4932: 4929: 4925: 4920: 4915: 4911: 4907: 4906: 4889: 4885: 4881: 4878: 4869: 4866: 4862: 4858: 4854: 4850: 4846: 4842: 4838: 4837: 4831: 4828: 4826:0-471-50458-0 4822: 4818: 4814: 4810: 4807: 4803: 4799: 4795: 4791: 4787: 4783: 4779: 4775: 4771: 4768: 4764: 4759: 4754: 4750: 4746: 4745: 4740: 4736: 4733: 4729: 4724: 4719: 4715: 4711: 4710: 4704: 4701: 4697: 4693: 4689: 4685: 4681: 4677: 4673: 4672: 4666: 4663: 4659: 4655: 4651: 4650: 4642: 4638: 4634: 4630: 4627: 4625:0-387-23815-8 4621: 4617: 4613: 4608: 4605: 4601: 4597: 4593: 4589: 4585: 4581: 4577: 4576: 4571: 4567: 4564: 4560: 4556: 4554:0-521-41836-4 4550: 4546: 4542: 4541: 4536: 4532: 4528: 4524: 4520: 4517: 4513: 4509: 4505: 4501: 4497: 4493: 4489: 4488: 4487:Combinatorica 4483: 4479: 4476: 4472: 4468: 4464: 4460: 4456: 4451: 4446: 4442: 4438: 4437: 4431: 4428: 4422: 4418: 4414: 4410: 4409: 4404: 4400: 4396: 4395: 4383: 4379: 4375: 4370: 4363: 4358: 4351: 4346: 4340: 4334: 4327: 4322: 4315: 4310: 4303: 4298: 4292: 4287: 4285: 4277: 4272: 4270: 4262: 4257: 4255: 4247: 4242: 4235: 4230: 4223: 4219: 4215: 4210: 4203: 4199: 4194: 4187: 4183: 4178: 4171: 4166: 4164: 4162: 4154: 4149: 4147: 4145: 4143: 4141: 4133: 4128: 4122: 4119: 4114: 4108: 4105: 4100: 4093: 4089: 4084: 4077: 4072: 4070: 4062: 4057: 4053: 4045: 4042: 4038: 4034: 4030: 4029:metric spaces 4020: 4018: 4014: 4010: 3994: 3990: 3986: 3983: 3963: 3955: 3951: 3947: 3937: 3935: 3931: 3926: 3922: 3918: 3917:colinearities 3914: 3910: 3906: 3905:configuration 3902: 3898: 3894: 3889: 3887: 3883: 3882:finite fields 3878: 3874: 3870: 3866: 3862: 3854: 3850: 3845: 3836: 3834: 3830: 3826: 3822: 3818: 3814: 3813:Ronald Graham 3804: 3802: 3798: 3788: 3774: 3771: 3768: 3747: 3744: 3741: 3721: 3701: 3681: 3678: 3675: 3667: 3651: 3631: 3623: 3617: 3607: 3593: 3589: 3585: 3562: 3558: 3554: 3551: 3541:Csima-Sawyer 3539: 3523: 3503: 3500: 3497: 3493: 3489: 3486: 3478: 3462: 3442: 3438: 3434: 3412: 3408: 3385: 3381: 3377: 3374: 3366: 3362: 3358: 3356: 3351: 3337: 3334: 3328: 3320: 3316: 3295: 3292: 3289: 3269: 3266: 3260: 3254: 3234: 3231: 3228: 3208: 3204: 3200: 3177: 3174: 3171: 3167: 3163: 3143: 3120: 3116: 3112: 3109: 3103: 3097: 3089: 3085: 3076: 3072: 3055: 3051: 3047: 3041: 3033: 3029: 3026:known as the 3025: 3021: 3020:configuration 3017: 3001: 2997: 2990: 2987: 2984: 2978: 2972: 2964: 2960: 2939: 2930: 2916: 2896: 2876: 2856: 2836: 2832: 2825: 2822: 2819: 2813: 2793: 2790: 2787: 2784: 2764: 2756: 2740: 2732: 2716: 2712: 2708: 2705: 2699: 2691: 2687: 2666: 2653: 2649: 2635: 2631: 2627: 2624: 2621: 2615: 2607: 2603: 2594: 2590: 2586: 2570: 2547: 2543: 2539: 2533: 2528: 2524: 2515: 2511: 2493: 2488: 2482: 2474: 2470: 2461: 2457: 2441: 2418: 2410: 2406: 2397: 2393: 2390: and 2389: 2373: 2370: 2364: 2356: 2352: 2331: 2308: 2300: 2296: 2271: 2267: 2263: 2254: 2245: 2229: 2225: 2197: 2193: 2170: 2166: 2143: 2139: 2130: 2114: 2110: 2087: 2083: 2060: 2056: 2047: 2030: 2026: 2003: 1999: 1990: 1973: 1969: 1960: 1943: 1939: 1930: 1913: 1909: 1886: 1882: 1873: 1870: 1866: 1848: 1844: 1835: 1834: 1833: 1831: 1826: 1824: 1805: 1802: 1799: 1796: 1790: 1782: 1761: 1757: 1750: 1742: 1738: 1717: 1713: 1706: 1698: 1695:, based on a 1677: 1673: 1666: 1658: 1648: 1645: 1641: 1637: 1632: 1630: 1626: 1622: 1618: 1614: 1610: 1586: 1581: 1577: 1570: 1567: 1564: 1556: 1553: 1550: 1546: 1542: 1539: 1536: 1531: 1527: 1518: 1517: 1516: 1498: 1495: 1492: 1487: 1483: 1476: 1473: 1470: 1462: 1459: 1456: 1452: 1443: 1442: 1441: 1427: 1405: 1401: 1380: 1377: 1374: 1360: 1358: 1354: 1349: 1335: 1332: 1329: 1326: 1323: 1320: 1300: 1297: 1277: 1274: 1271: 1268: 1265: 1262: 1242: 1222: 1218: 1214: 1211: 1208: 1205: 1197: 1180: 1160: 1140: 1132: 1116: 1096: 1093: 1090: 1087: 1084: 1076: 1071: 1062: 1048: 1028: 1008: 999: 997: 981: 977: 974: 970: 950: 946: 943: 939: 918: 915: 911: 890: 887: 883: 863: 842: 839: 818: 798: 778: 758: 737: 734: 713: 693: 673: 653: 633: 612: 609: 588: 568: 559: 557: 554:is ordinary, 541: 521: 501: 481: 461: 452: 450: 446: 437: 431:Kelly's proof 428: 426: 422: 418: 414: 410: 407:details, see 399: 382: 374: 370: 366: 346: 323: 315: 311: 290: 281: 277: 276:line segments 273: 272:Minkowski sum 269: 261: 257: 252: 248: 246: 242: 238: 234: 230: 220: 218: 214: 209: 207: 203: 199: 195: 191: 187: 183: 179: 175: 171: 169: 165: 164:configuration 161: 157: 153: 149: 145: 141: 137: 133: 123: 106: 103: 100: 97: 91: 71: 63: 59: 58:ordinary line 54: 52: 48: 44: 40: 36: 32: 23: 19: 6038:Applications 6008: 5871:Block design 5780: 5764:the original 5755: 5734: 5730: 5714: 5710: 5698: 5694: 5667: 5661: 5654:Grünwald, T. 5613: 5609: 5580: 5574: 5557: 5524: 5518: 5502: 5498: 5464: 5458: 5455:Motzkin, Th. 5446: 5440: 5437:Melchior, E. 5395: 5389: 5379: 5344: 5338: 5315:Kelly, L. M. 5289: 5283: 5280:Kelly, L. M. 5264: 5258: 5206: 5202: 5199:Tao, Terence 5184:the original 5163: 5162:, Series B, 5157: 5115: 5109: 5078:(1): 65–66, 5075: 5069: 5034:math/0403023 5024: 5018: 5015:Elkies, Noam 4989: 4983: 4944: 4938: 4909: 4903: 4843:(1): 30–34, 4840: 4834: 4816: 4784:(1): 26–28, 4781: 4777: 4748: 4742: 4713: 4707: 4675: 4669: 4653: 4647: 4615: 4579: 4573: 4539: 4491: 4485: 4482:Beck, József 4440: 4434: 4407: 4369: 4357: 4345: 4333: 4321: 4309: 4297: 4241: 4229: 4209: 4193: 4177: 4127: 4113: 4099: 4092:Erdős (1982) 4083: 4056: 4026: 3943: 3925:Kelly (1986) 3890: 3869:real numbers 3859:Just as the 3858: 3810: 3797:metric space 3794: 3619: 3359: 3352: 3136:except when 3077:proved that 3073: 2931: 2757:and another 2658: 2595:proved that 2584: 2287: 2215: 1827: 1654: 1633: 1607: 1514: 1366: 1350: 1072: 1068: 1000: 666:. Call them 561:Assume that 560: 453: 442: 405: 265: 240: 226: 210: 206:Tibor Gallai 172: 129: 57: 55: 51:Tibor Gallai 30: 28: 18: 5909:Statistics 5794:Terence Tao 5550:Pach, János 5398:: 121–130, 5347:: 210–219, 4947:: 221–227, 4912:: 187–202, 4656:: 421–423, 4612:Pach, János 4570:Borwein, P. 4378:Chen (2006) 4302:Beck (1983) 4037:Chen (2006) 3930:affine hull 3923:. However, 3897:quaternions 3801:finite sets 3365:Terence Tao 1869:convex hull 1109:must equal 245:arrangement 156:cubic curve 6065:Categories 5938:Fano plane 5903:Hypergraph 5717:(385): 231 5701:(383): 156 5405:2402.03662 5267:(1): 3–9, 5195:Green, Ben 4450:1611.08740 4391:References 3886:Fano plane 3825:Property B 3734:points to 3622:Paul Erdős 3028:Fano plane 1863:that is a 1604:Axiomatics 260:zonohedron 39:finite set 5888:Incidence 5782:MathWorld 5725:(1893b), 5646:250442107 5449:: 461–475 5430:124023963 5371:123865536 5337:points", 5216:1208.4714 5099:Erdős, P. 5066:Erdős, P. 4935:Dirac, G. 4637:Erdős, P. 4604:122052678 4475:125616042 3772:− 3745:− 3566:⌉ 3549:⌈ 3501:− 3361:Ben Green 3335:≥ 3267:≤ 3181:% 3175:≈ 3124:⌉ 3107:⌈ 3104:≥ 3059:⌋ 3045:⌊ 2988:− 2823:− 2706:≤ 2622:≥ 2551:⌋ 2537:⌊ 2534:≥ 2489:≥ 2388:de Bruijn 2371:≥ 2167:ℓ 2140:ℓ 2111:ℓ 2084:ℓ 2057:ℓ 1883:ℓ 1803:⁡ 1568:− 1554:≥ 1547:∑ 1537:⩾ 1496:− 1493:≤ 1474:− 1460:≥ 1453:∑ 1378:≥ 1333:− 1324:≤ 1275:− 1266:≤ 1209:≤ 1088:− 1049:ℓ 1029:ℓ 654:ℓ 569:ℓ 542:ℓ 522:ℓ 268:zonohedra 104:⁡ 62:algorithm 6002:Theorems 5913:Blocking 5883:Geometry 5250:(1999), 5241:15813230 5101:(1982), 4639:(1948), 4614:(2005), 4537:(1993), 4516:31011939 3950:matroids 3940:Matroids 2932:For odd 1075:embedded 978:′ 947:′ 919:′ 891:′ 843:′ 738:′ 613:′ 35:geometry 5684:2303021 5638:0231278 5630:3612678 5599:2572973 5543:2853475 5511:1607014 5491:0041447 5483:1990609 5422:3542040 5363:0097014 5308:0834051 5273:1698297 5233:3090525 5180:1769191 5140:1135308 5132:0698647 5092:2304011 5059:1647360 5051:2202107 5008:0990055 4969:0043485 4949:Bibcode 4928:1194036 4865:0235452 4857:2687957 4806:0024137 4798:2305324 4767:2060634 4732:2195050 4700:0258659 4692:2317330 4662:0028289 4596:1069788 4563:1226888 4508:0729781 4467:3943495 4121:0056941 4107:0041447 2512: ( 2458: ( 2394: ( 1867:of the 1611: ( 876:. Then 706:, with 200: ( 188: ( 176: ( 162:form a 158:in the 142: ( 134: ( 126:History 5859:Fields 5682:  5644:  5636:  5628:  5597:  5541:  5509:  5489:  5481:  5428:  5420:  5369:  5361:  5306:  5271:  5239:  5231:  5178:  5138:  5130:  5090:  5057:  5049:  5006:  4967:  4926:  4863:  4855:  4823:  4804:  4796:  4765:  4730:  4698:  4690:  4660:  4622:  4602:  4594:  4561:  4551:  4514:  4506:  4473:  4465:  4423:  1865:vertex 1627:; see 1393:, let 1173:, and 1129:, the 402:Proofs 5680:JSTOR 5642:S2CID 5626:JSTOR 5479:JSTOR 5426:S2CID 5400:arXiv 5367:S2CID 5255:(PDF) 5237:S2CID 5211:arXiv 5187:(PDF) 5154:(PDF) 5136:S2CID 5106:(PDF) 5088:JSTOR 5055:S2CID 5029:arXiv 4853:JSTOR 4794:JSTOR 4688:JSTOR 4644:(PDF) 4600:S2CID 4512:S2CID 4471:S2CID 4445:arXiv 4048:Notes 2392:Erdős 2102:with 182:1893b 178:1893a 154:of a 140:Kelly 5993:Dual 5737:: 98 4821:ISBN 4620:ISBN 4549:ISBN 4421:ISBN 4015:for 3847:The 3378:> 3363:and 3178:92.3 2514:1951 2460:1951 2396:1948 1617:1969 1613:1948 1021:and 994:are 963:and 791:and 686:and 258:, a 254:The 202:1943 190:1941 144:1986 138:). 136:1893 29:The 5792:by 5672:doi 5618:doi 5585:doi 5529:doi 5469:doi 5410:doi 5396:150 5349:doi 5294:doi 5221:doi 5168:doi 5120:doi 5080:doi 5039:doi 4994:doi 4957:doi 4914:doi 4845:doi 4786:doi 4753:doi 4718:doi 4680:doi 4584:doi 4545:273 4496:doi 4455:doi 4413:doi 3895:or 3863:or 3620:As 3477:odd 3475:is 2508:. 1800:log 1351:As 856:on 831:to 646:on 101:log 33:in 6067:: 5779:, 5775:, 5758:, 5754:, 5735:59 5733:, 5729:, 5715:46 5713:, 5699:46 5697:, 5678:, 5668:51 5666:, 5656:; 5640:, 5634:MR 5632:, 5624:, 5614:52 5612:, 5595:MR 5593:, 5581:50 5579:, 5573:, 5552:; 5539:MR 5537:, 5525:45 5523:, 5507:MR 5501:, 5487:MR 5485:, 5477:, 5465:70 5463:, 5445:, 5424:, 5418:MR 5416:, 5408:, 5394:, 5365:, 5359:MR 5357:, 5345:10 5343:, 5304:MR 5302:, 5288:, 5269:MR 5263:, 5257:, 5235:, 5229:MR 5227:, 5219:, 5207:50 5205:, 5197:; 5176:MR 5174:, 5164:79 5156:, 5134:, 5128:MR 5126:, 5114:, 5108:, 5086:, 5076:50 5074:, 5053:, 5047:MR 5045:, 5037:, 5025:35 5023:, 5004:MR 5002:, 4990:38 4988:, 4978:; 4965:MR 4963:, 4955:, 4943:, 4924:MR 4922:, 4908:, 4890:13 4861:MR 4859:, 4851:, 4841:41 4839:, 4802:MR 4800:, 4792:, 4782:55 4780:, 4763:MR 4761:, 4749:31 4747:, 4728:MR 4726:, 4714:35 4712:, 4696:MR 4694:, 4686:, 4676:77 4674:, 4658:MR 4654:10 4652:, 4646:, 4635:; 4598:, 4592:MR 4590:, 4580:40 4578:, 4559:MR 4557:, 4547:, 4529:; 4525:; 4510:, 4504:MR 4502:, 4490:, 4469:, 4463:MR 4461:, 4453:, 4441:61 4439:, 4419:, 4401:; 4380:; 4376:; 4283:^ 4268:^ 4253:^ 4216:; 4200:; 4160:^ 4139:^ 4118:MR 4104:MR 4090:; 4068:^ 4019:. 3835:. 3563:13 3350:. 3172:13 3164:12 3121:13 2648:. 2454:. 2386:. 1825:. 1615:, 1499:3. 1348:. 1153:, 558:. 447:. 427:. 219:. 180:, 122:. 5823:e 5816:t 5809:v 5674:: 5620:: 5587:: 5531:: 5503:4 5471:: 5447:5 5412:: 5402:: 5351:: 5325:n 5296:: 5290:1 5265:9 5223:: 5213:: 5170:: 5122:: 5116:2 5082:: 5041:: 5031:: 4996:: 4959:: 4951:: 4945:2 4916:: 4910:9 4886:/ 4882:n 4879:6 4847:: 4788:: 4755:: 4720:: 4682:: 4586:: 4498:: 4492:3 4457:: 4447:: 4415:: 4364:. 4352:. 4328:. 4316:. 4304:. 4278:. 4263:. 4248:. 4236:. 4224:. 4204:. 4188:. 4172:. 4155:. 4134:. 4094:. 4078:. 4063:. 3995:7 3991:/ 3987:n 3984:3 3964:n 3855:. 3775:1 3769:n 3748:1 3742:n 3722:n 3702:n 3682:3 3679:= 3676:n 3652:n 3632:n 3594:2 3590:/ 3586:n 3559:/ 3555:n 3552:6 3524:C 3504:C 3498:4 3494:/ 3490:n 3487:3 3463:n 3443:2 3439:/ 3435:n 3413:0 3409:n 3386:0 3382:n 3375:n 3338:4 3332:) 3329:7 3326:( 3321:2 3317:t 3296:7 3293:= 3290:n 3270:3 3264:) 3261:7 3258:( 3255:t 3235:7 3232:= 3229:n 3209:2 3205:/ 3201:n 3168:/ 3144:n 3117:/ 3113:n 3110:6 3101:) 3098:n 3095:( 3090:2 3086:t 3056:4 3052:/ 3048:n 3042:3 3002:2 2998:/ 2994:) 2991:1 2985:n 2982:( 2979:= 2976:) 2973:n 2970:( 2965:2 2961:t 2940:n 2917:v 2897:v 2877:m 2857:m 2837:2 2833:/ 2829:) 2826:1 2820:m 2817:( 2814:m 2794:m 2791:2 2788:= 2785:n 2765:m 2741:m 2717:2 2713:/ 2709:n 2703:) 2700:n 2697:( 2692:2 2688:t 2667:n 2636:7 2632:/ 2628:n 2625:3 2619:) 2616:n 2613:( 2608:2 2604:t 2571:n 2548:2 2544:/ 2540:n 2529:2 2525:t 2494:n 2486:) 2483:n 2480:( 2475:2 2471:t 2442:n 2422:) 2419:n 2416:( 2411:2 2407:t 2374:3 2368:) 2365:n 2362:( 2357:2 2353:t 2332:n 2312:) 2309:n 2306:( 2301:2 2297:t 2272:2 2268:/ 2264:n 2230:0 2226:p 2212:. 2198:0 2194:p 2171:0 2144:i 2115:0 2088:i 2061:i 2031:0 2027:p 2004:0 2000:p 1988:. 1974:0 1970:p 1944:0 1940:p 1914:0 1910:p 1887:0 1849:0 1845:p 1809:) 1806:n 1797:n 1794:( 1791:O 1767:) 1762:2 1758:n 1754:( 1751:O 1723:) 1718:2 1714:n 1710:( 1707:O 1683:) 1678:3 1674:n 1670:( 1667:O 1587:. 1582:k 1578:t 1574:) 1571:3 1565:k 1562:( 1557:4 1551:k 1543:+ 1540:3 1532:2 1528:t 1488:k 1484:t 1480:) 1477:3 1471:k 1468:( 1463:2 1457:k 1428:k 1406:k 1402:t 1381:2 1375:k 1336:3 1330:V 1327:3 1321:E 1301:V 1298:3 1278:3 1272:V 1269:3 1263:E 1243:F 1223:3 1219:/ 1215:E 1212:2 1206:F 1181:F 1161:E 1141:V 1117:1 1097:F 1094:+ 1091:E 1085:V 1009:P 982:C 975:B 971:B 951:C 944:P 940:P 916:P 912:P 888:B 884:B 864:m 840:B 819:B 799:C 779:P 759:m 735:P 714:B 694:C 674:B 634:P 610:P 589:S 502:P 482:S 462:S 386:) 383:n 380:( 375:2 371:t 367:2 347:n 327:) 324:n 321:( 316:2 312:t 291:n 110:) 107:n 98:n 95:( 92:O 72:n

Index


geometry
finite set
Euclidean plane
James Joseph Sylvester
Tibor Gallai
algorithm
J. J. Sylvester
1893
Kelly
1986
algebraic geometry
inflection points
cubic curve
complex projective plane
configuration
Hesse configuration
H. J. Woodall
1893a
1893b
Eberhard Melchior
1941
projective dual
Paul Erdős
1943
Tibor Gallai
Leonard Blumenthal
mathematical topics named after Sylvester
projective plane
Euclidean plane

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.