Knowledge

Stream power

Source 📝

752:
experimentally to validate whether it would indeed work or not. This was successful and since then, many variations and applications of stream power have surfaced. The lack of fixed guidelines on how to define stream power in this early stage lead to many authors publishing work under the name "stream power" while not always measuring the entity in the same way; this led to partially failed efforts to establish naming conventions for the various forms of the formula by Rhoads two decades later in 1986. Today stream power is still used and new ways of applying it are still being discovered and researched, with a large integration into modern numerical models utilizing
2008: 26: 2043:
Stream power has also been used as a criterion to determine whether a river is in a state of reshaping itself or whether it is stable. A value of unit stream power between 30 and 35 W m in which this transition occurs has been found by multiple studies. Another technique gaining popularity is using a
722:
in the 1960s, is the amount of energy the water in a river or stream is exerting on the sides and bottom of the river. Stream power is the result of multiplying the density of the water, the acceleration of the water due to gravity, the volume of water flowing through the river, and the slope of that
1692:
is the width of the channel. Normalizing the stream power by the width of the river allows for a better comparison between rivers of various widths. This also provides a better estimation of the sediment carrying capacity of the river as wide rivers with high stream power are exerting less force per
2134:
Stream power can be used as an indicator of potential damages to bridges as a result of large rain events and how strong bridges should be designed in order to avoid damage during these events. Stream power can also be used to guide culvert and bridge design in order to maintain healthy stream
751:
Although many authors had suggested the use of power formulas in sediment transport in the decades preceding Bagnold's work, and in fact Bagnold himself suggested it a decade before putting it into practice in one of his other works, it wasn't until 1966 that R. A. Bagnold tested this theory
1378:
is the cross-sectional area, which can often be reasonably approximated as a rectangle with the characteristic width and depth. This absorbs velocity, width, and depth. We define stream power per unit channel length, so that term goes to 1, and the derivation is
723:
water. There are many forms of the stream power formula with varying utilities, such as comparing rivers of various widths or quantifying the energy required to move sediment of a certain size. Stream power is closely related to other criteria such as
1786:
of a river, which is a measure to determine the largest grain size that will be moved by a river. In rivers with large sediment sizes the relationship between critical unit stream power and sediment diameter displaced can be reduced
846: 1017: 764:
It can be derived by the fact that if the water is not accelerating and the river cross-section stays constant (generally good assumptions for an averaged reach of a stream over a modest distance), all of the
2124: 2126:) to identify patterns such as sudden jumps or drops in stream power, these features can help identify locations where the local terrain controls the flow or widens out as well as areas prone to erosion. 1206: 1096: 1429: 1154: 1617: 2019:
and river incision. Unit stream power is often used for this, because simple models use and evolve a 1-dimensional downstream profile of the river channel. It is also used with relation to
1890: 1836: 1752: 1679: 2035:
By plotting stream power along the length of a river course as a second-order exponential curve, you are able to identify areas where flood plains may form and why they will form there.
153: 1903:
is another variable used in erosion and sediment transport models representing the force applied on a surface by a perpendicular force, and can be calculated using the following formula
887: 1989: 1484: 1939: 1693:
surface area than a narrow river with the same stream power, as they are losing the same amount of energy but in the narrow river it is concentrated into a smaller area.
1247: 934: 1353: 914: 1376: 1314: 1290: 1270: 1040: 1766: 2452:"The Use of Stream Power as an Indicator of Channel Sensitivity to Erosion and Deposition Processes: SP AS AN INDICATOR OF EROSION AND DEPOSITION" 782: 1529:
Total stream power often refers simply to stream power, but some authors use it as the rate of energy dissipation against the bed and banks of a
942: 702: 1159:
Remembering that power is energy per time and using the equivalence between work against the bed and loss in potential energy, we can write:
1761:
is the critical shear stress of the grain size that will be moved which can be found in the literature or experimentally determined while v
2047: 851:
where water mass and gravitational acceleration are constant. We can use the channel slope and the stream velocity as a stand-in for
1701:
Critical unit stream power is the amount of stream power needed to displace a grain of a specific size, it is given by the equation:
2756:"Where do floodplains begin? The role of total stream power and longitudinal profile form on floodplain initiation processes" 1165: 1956:
is acceleration due to gravity (9.8 m/s). Shear stress can be used to compute the unit stream power using the formula
1045: 1385: 1104: 2536:"Stream Power Application for Bridge-Damage Probability Mapping Based on Empirical Evidence from Tropical Storm Irene" 1211:
Finally, we know that mass is equal to density times volume. From this, we can rewrite the mass on the right hand side
1539: 695: 2135:
morphology in which fish are able to continuing traversing the water course and no erosion processes are initiated.
1847: 2011:
An example of a map displaying a stream power index (SPI) alongside an index displaying how wet the ground is (TWI)
1793: 1707: 1640: 773:. Therefore, the potential energy drop is equal to the work done to the bed and banks, which is the stream power. 109: 2492:
Gartner, John D.; Dade, William B.; Renshaw, Carl E.; Magilligan, Francis J.; Buraas, Eirik M. (November 2015).
668: 2755: 2710: 769:
lost as the water flows downstream must be used up in friction or work against the bed: none can be added to
369: 206: 854: 688: 409: 295: 2590: 364: 273: 156: 2493: 2335:
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
1502: 81: 2695:"Paleohydraulic reconstruction of flash-flood peaks from boulder deposits in the Colorado Front Range" 2655: 2613: 1962: 1454: 2044:
gradient of stream power by comparing the unit stream power upstream to the local unit stream power (
2016: 280: 2535: 1909: 575: 570: 359: 352: 185: 2825: 2794: 2020: 638: 633: 302: 1217: 2921: 2916: 190: 2574: 2007: 1510: 919: 613: 231: 2551: 2174: 1326: 892: 451: 268: 248: 236: 180: 8: 753: 653: 501: 394: 100: 2892: 2471: 2451: 2358: 2169: 2159: 2024: 1634:
Unit stream power is stream power per unit channel width, and is given by the equation:
1361: 1299: 1275: 1255: 1025: 673: 307: 263: 258: 2736: 2405: 2386: 889:: the water will lose elevation at a rate given by the downward component of velocity 2896: 2884: 2845: 2775: 2714: 2675: 2633: 2594: 2555: 2513: 2475: 2425: 2421: 2362: 2350: 2311: 2272: 2233: 1783: 776:
We know that change in potential energy over change in time is given by the equation:
743:, who use it in the planning and construction of roads, bridges, dams, and culverts. 740: 724: 290: 241: 2694: 2534:
Anderson, Ian; Rizzo, Donna M.; Huston, Dryver R.; Dewoolkar, Mandar M. (May 2017).
2494:"Gradients in stream power influence lateral and downstream sediment flux in floods" 2876: 2837: 2810: 2806: 2767: 2706: 2671: 2667: 2629: 2625: 2586: 2547: 2505: 2463: 2417: 2342: 2303: 2264: 2228: 2223: 2213: 1626:
is the stream power, per unit downstream length and L is the length of the stream.
766: 628: 603: 516: 491: 486: 441: 2864: 618: 542: 506: 456: 387: 376: 321: 223: 25: 770: 623: 481: 446: 347: 253: 1444:
Stream power is the rate of energy dissipation against the bed and banks of a
2910: 2888: 2849: 2779: 2718: 2679: 2637: 2598: 2559: 2517: 2429: 2354: 2315: 2291: 2276: 2252: 2237: 2149: 736: 719: 663: 496: 2869:
Transportation Research Record: Journal of the Transportation Research Board
2330: 2307: 2268: 841:{\displaystyle {\frac {\Delta PE}{\Delta t}}=mg{\frac {\Delta z}{\Delta t}}} 2841: 2346: 2164: 1900: 1012:{\displaystyle {\frac {\Delta z}{\Delta t}}=u_{z}=u\sin(\alpha )\approx uS} 728: 648: 643: 608: 340: 57: 2179: 658: 561: 1841:
While in intermediate-sized rivers the relationship was found to follow:
580: 476: 2771: 2509: 2467: 2144: 732: 552: 547: 381: 2880: 2737:"Stream Power: Origins, Geomorphic Applications, and GIS Procedures" 2387:"Stream Power: Origins, Geomorphic Applications, and GIS Procedures" 2206:"An approach to the sediment transport problem from general physics" 1042:
is the downstream flow velocity. It is noted that for small angles,
2826:"The distribution and management of channelized streams in Denmark" 2793:
Orr, H.G.; Large, A.R.G.; Newson, M.D.; Walsh, C.L. (August 2008).
2218: 2205: 531: 436: 416: 402: 1448:
or stream per unit downstream length. It is given by the equation:
2865:"Consideration of Stream Morphology in Culvert and Bridge Design" 2154: 2119:{\displaystyle \Delta \omega =\omega _{local}-\omega _{upstream}} 285: 46: 2654:
Petit, F.; Gob, F.; Houbrechts, G.; Assani, A. A. (2005-07-01).
2612:
Petit, F.; Gob, F.; Houbrechts, G.; Assani, A. A. (2005-07-01).
1533:
or stream per entire stream length. It is given by the equation:
1406: 426: 1411: 1530: 1518: 1445: 330: 2533: 2491: 916:. For a channel slope (as measured from the horizontal) of 2795:"A predictive typology for characterising hydromorphology" 2711:
10.1130/0016-7606(1983)94<986:PROFPF>2.0.CO;2
466: 2653: 2611: 2292:"Energy-balance in stream-flows carrying suspended load" 2863:
Kosicki, Andrzej J.; Davis, Stanley R. (January 2001).
2656:"Critical specific stream power in gravel-bed rivers" 2614:"Critical specific stream power in gravel-bed rivers" 2050: 1965: 1912: 1850: 1796: 1710: 1643: 1542: 1457: 1388: 1364: 1329: 1302: 1278: 1258: 1220: 1201:{\displaystyle \Omega ={\frac {\Delta PE}{\Delta t}}} 1168: 1107: 1048: 1028: 945: 922: 895: 857: 785: 112: 1994:
Where V is the velocity of the water in the stream.
1091:{\displaystyle \sin(\alpha )\approx \tan(\alpha )=S} 2792: 2030: 1782:Critical stream power can be used to determine the 1772: 2753: 2118: 1983: 1948:is the shear stress, S is the slope of the water, 1933: 1884: 1830: 1746: 1673: 1629: 1611: 1478: 1424:{\displaystyle \Omega =\rho gQ{\cancelto {1}{L}}S} 1423: 1370: 1347: 1308: 1284: 1264: 1241: 1200: 1149:{\displaystyle {\frac {\Delta PE}{\Delta t}}=mguS} 1148: 1090: 1034: 1011: 928: 908: 881: 840: 739:tackling sediment transport issues as well as for 147: 2754:Jain, V.; Fryirs, K.; Brierley, G. (2008-01-01). 2908: 2253:"Equilibrium-conditions in debris-laden streams" 1612:{\displaystyle Total\ stream\ power=\Omega \ L} 1885:{\displaystyle \omega _{0}=0.130D_{i}^{1.438}} 1831:{\displaystyle \omega _{0}=0.030D_{i}^{1.69}} 1777: 1747:{\displaystyle \omega _{0}=\tau _{0}\nu _{0}} 1696: 1674:{\displaystyle \omega ={\frac {\rho gQS}{b}}} 731:. Stream power is a valuable measurement for 696: 2862: 2575:"Critical Shear Stress of Natural Sediments" 2129: 1098:. Rewriting the first equation, we now have: 2830:Regulated Rivers: Research & Management 2449: 2331:"The flow of cohesionless grains in fluids" 148:{\displaystyle J=-D{\frac {d\varphi }{dx}}} 1952:is the density of water (1000 kg/m), 1497:is the density of water (1000 kg/m), 1320:eight). We use the definition of discharge 703: 689: 24: 2450:Bizzi, S.; Lerner, D. N. (January 2015). 2227: 2217: 2038: 2296:Transactions, American Geophysical Union 2257:Transactions, American Geophysical Union 2006: 2823: 2734: 2591:10.1061/(asce)0733-9429(1993)119:4(491) 2572: 2384: 2328: 2203: 1439: 2909: 2760:Geological Society of America Bulletin 2649: 2647: 2403: 2002: 2730: 2728: 2692: 2445: 2443: 2441: 2439: 2380: 2378: 2376: 2374: 2372: 2289: 2250: 1524: 882:{\displaystyle {\Delta z}/{\Delta t}} 2529: 2527: 2487: 2485: 2199: 2197: 2195: 2015:Stream power is used extensively in 2644: 2605: 13: 2725: 2552:10.1061/(ASCE)BE.1943-5592.0001022 2436: 2369: 2051: 2023:, and in some cases is applied to 1600: 1458: 1389: 1189: 1178: 1169: 1122: 1111: 957: 949: 872: 859: 829: 821: 800: 789: 14: 2933: 2524: 2482: 2192: 2579:Journal of Hydraulic Engineering 2573:Wilcock, Peter R. (April 1993). 2422:10.1111/j.0033-0124.1987.00189.x 2329:Bagnold, Ralph A. (1956-12-18). 2031:Predicting flood plain formation 1984:{\displaystyle \omega =\tau \ V} 1773:Relationships to other variables 1479:{\displaystyle \Omega =\rho gQS} 1434: 2856: 2817: 2786: 2747: 2686: 2566: 2456:River Research and Applications 1997: 1895: 1630:Unit (or Specific) Stream power 2811:10.1016/j.geomorph.2007.10.022 2672:10.1016/j.geomorph.2004.12.004 2630:10.1016/j.geomorph.2004.12.004 2397: 2322: 2283: 2244: 1934:{\displaystyle \tau =hS\rho g} 1688:is the unit stream power, and 1079: 1073: 1061: 1055: 997: 991: 1: 2693:COSTA, JOHN E. (1983-08-01). 2540:Journal of Bridge Engineering 2404:Rhoads, Bruce L. (May 1987). 2185: 2017:models of landscape evolution 759: 2735:Gartner, John (2016-01-01). 2385:Gartner, John (2016-01-01). 7: 2410:The Professional Geographer 2138: 1503:acceleration due to gravity 10: 2938: 2406:"Stream Power Terminology" 2204:Bagnold, Ralph A. (1966). 1778:Size of displaced sediment 1697:Critical Unit Stream Power 1242:{\displaystyle m=\rho Lbh} 746: 2290:Knapp, Robert T. (1938). 2130:Bridge and culvert design 80: 68: 55: 45: 35: 23: 18: 2824:Brookes, Andrew (1987). 718:, originally derived by 207:Clausius–Duhem (entropy) 157:Fick's laws of diffusion 2308:10.1029/tr019i001p00501 2269:10.1029/tr014i001p00497 2229:2027/uc1.31210020748099 2021:river channel migration 1272:is the channel length, 929:{\displaystyle \alpha } 365:Navier–Stokes equations 303:Material failure theory 2842:10.1002/rrr.3450010103 2347:10.1098/rsta.1956.0020 2120: 2039:Sensitivity to erosion 2012: 1992: 1985: 1942: 1935: 1893: 1886: 1839: 1832: 1755: 1748: 1682: 1675: 1620: 1613: 1487: 1480: 1432: 1425: 1372: 1356: 1349: 1316:is the channel depth ( 1310: 1292:is the channel width ( 1286: 1266: 1250: 1243: 1209: 1202: 1157: 1150: 1092: 1036: 1020: 1013: 930: 910: 883: 849: 842: 149: 30:Water flowing in creek 2251:Rubey, W. W. (1933). 2121: 2010: 1986: 1958: 1936: 1905: 1887: 1843: 1833: 1789: 1749: 1703: 1676: 1636: 1614: 1535: 1493:is the stream power, 1481: 1450: 1426: 1381: 1373: 1350: 1348:{\displaystyle Q=ubh} 1322: 1311: 1287: 1267: 1244: 1213: 1203: 1161: 1151: 1100: 1093: 1037: 1014: 938: 931: 911: 909:{\displaystyle u_{z}} 884: 843: 778: 360:Bernoulli's principle 353:Archimedes' principle 150: 2175:Deposition (geology) 2048: 1963: 1910: 1848: 1794: 1708: 1641: 1540: 1455: 1440:(Total) Stream power 1410: 1386: 1362: 1327: 1300: 1276: 1256: 1218: 1166: 1105: 1046: 1026: 943: 920: 893: 855: 783: 754:computer simulations 452:Cohesion (chemistry) 274:Infinitesimal strain 110: 2003:Landscape evolution 1881: 1827: 1415: 370:Poiseuille equation 101:Continuum mechanics 95:Part of a series on 2741:Water Publications 2391:Water Publications 2210:Professional Paper 2170:Hydrogeomorphology 2160:Sediment transport 2116: 2025:sediment transport 2013: 1981: 1931: 1882: 1867: 1828: 1813: 1767:mobilization speed 1744: 1671: 1609: 1525:Total Stream Power 1476: 1421: 1368: 1345: 1306: 1282: 1262: 1239: 1198: 1146: 1088: 1032: 1009: 926: 906: 879: 838: 576:Magnetorheological 571:Electrorheological 308:Fracture mechanics 145: 59:SI base units 1977: 1784:stream competency 1669: 1605: 1581: 1560: 1371:{\displaystyle A} 1309:{\displaystyle h} 1285:{\displaystyle b} 1265:{\displaystyle L} 1196: 1129: 1035:{\displaystyle u} 964: 836: 807: 725:stream competency 713: 712: 588: 587: 522: 521: 291:Contact mechanics 214: 213: 143: 90: 89: 2929: 2901: 2900: 2860: 2854: 2853: 2821: 2815: 2814: 2790: 2784: 2783: 2772:10.1130/B26092.1 2766:(1–2): 127–141. 2751: 2745: 2744: 2732: 2723: 2722: 2690: 2684: 2683: 2651: 2642: 2641: 2609: 2603: 2602: 2570: 2564: 2563: 2531: 2522: 2521: 2510:10.1130/G36969.1 2489: 2480: 2479: 2468:10.1002/rra.2717 2447: 2434: 2433: 2401: 2395: 2394: 2382: 2367: 2366: 2341:(964): 235–297. 2326: 2320: 2319: 2287: 2281: 2280: 2248: 2242: 2241: 2231: 2221: 2201: 2125: 2123: 2122: 2117: 2115: 2114: 2081: 2080: 1990: 1988: 1987: 1982: 1975: 1947: 1940: 1938: 1937: 1932: 1891: 1889: 1888: 1883: 1880: 1875: 1860: 1859: 1837: 1835: 1834: 1829: 1826: 1821: 1806: 1805: 1765:is the critical 1753: 1751: 1750: 1745: 1743: 1742: 1733: 1732: 1720: 1719: 1680: 1678: 1677: 1672: 1670: 1665: 1651: 1618: 1616: 1615: 1610: 1603: 1579: 1558: 1505:(9.8 m/s), 1485: 1483: 1482: 1477: 1430: 1428: 1427: 1422: 1417: 1416: 1377: 1375: 1374: 1369: 1354: 1352: 1351: 1346: 1315: 1313: 1312: 1307: 1291: 1289: 1288: 1283: 1271: 1269: 1268: 1263: 1248: 1246: 1245: 1240: 1207: 1205: 1204: 1199: 1197: 1195: 1187: 1176: 1155: 1153: 1152: 1147: 1130: 1128: 1120: 1109: 1097: 1095: 1094: 1089: 1041: 1039: 1038: 1033: 1018: 1016: 1015: 1010: 978: 977: 965: 963: 955: 947: 935: 933: 932: 927: 915: 913: 912: 907: 905: 904: 888: 886: 885: 880: 878: 870: 865: 847: 845: 844: 839: 837: 835: 827: 819: 808: 806: 798: 787: 767:potential energy 737:geomorphologists 705: 698: 691: 537: 536: 502:Gay-Lussac's law 492:Combined gas law 442:Capillary action 327: 326: 170: 169: 154: 152: 151: 146: 144: 142: 134: 126: 92: 91: 72:other quantities 70:Derivations from 60: 28: 16: 15: 2937: 2936: 2932: 2931: 2930: 2928: 2927: 2926: 2907: 2906: 2905: 2904: 2881:10.3141/1743-08 2861: 2857: 2822: 2818: 2791: 2787: 2752: 2748: 2733: 2726: 2705:(8): 986–1004. 2691: 2687: 2652: 2645: 2610: 2606: 2571: 2567: 2546:(5): 05017001. 2532: 2525: 2504:(11): 983–986. 2490: 2483: 2448: 2437: 2402: 2398: 2383: 2370: 2327: 2323: 2288: 2284: 2249: 2245: 2202: 2193: 2188: 2141: 2132: 2089: 2085: 2064: 2060: 2049: 2046: 2045: 2041: 2033: 2005: 2000: 1964: 1961: 1960: 1945: 1911: 1908: 1907: 1898: 1876: 1871: 1855: 1851: 1849: 1846: 1845: 1822: 1817: 1801: 1797: 1795: 1792: 1791: 1780: 1775: 1764: 1760: 1738: 1734: 1728: 1724: 1715: 1711: 1709: 1706: 1705: 1699: 1652: 1650: 1642: 1639: 1638: 1632: 1541: 1538: 1537: 1527: 1517:is the channel 1456: 1453: 1452: 1442: 1437: 1405: 1404: 1387: 1384: 1383: 1363: 1360: 1359: 1328: 1325: 1324: 1301: 1298: 1297: 1277: 1274: 1273: 1257: 1254: 1253: 1219: 1216: 1215: 1188: 1177: 1175: 1167: 1164: 1163: 1121: 1110: 1108: 1106: 1103: 1102: 1047: 1044: 1043: 1027: 1024: 1023: 973: 969: 956: 948: 946: 944: 941: 940: 921: 918: 917: 900: 896: 894: 891: 890: 871: 866: 858: 856: 853: 852: 828: 820: 818: 799: 788: 786: 784: 781: 780: 762: 749: 741:civil engineers 709: 680: 679: 678: 598: 590: 589: 543:Viscoelasticity 534: 524: 523: 511: 461: 457:Surface tension 421: 324: 322:Fluid mechanics 314: 313: 312: 226: 224:Solid mechanics 216: 215: 167: 159: 135: 127: 125: 111: 108: 107: 73: 71: 58: 38: 31: 12: 11: 5: 2935: 2925: 2924: 2919: 2903: 2902: 2855: 2816: 2805:(1–2): 32–40. 2785: 2746: 2724: 2685: 2643: 2604: 2585:(4): 491–505. 2565: 2523: 2481: 2435: 2416:(2): 189–195. 2396: 2368: 2321: 2282: 2243: 2219:10.3133/pp422i 2190: 2189: 2187: 2184: 2183: 2182: 2177: 2172: 2167: 2162: 2157: 2152: 2147: 2140: 2137: 2131: 2128: 2113: 2110: 2107: 2104: 2101: 2098: 2095: 2092: 2088: 2084: 2079: 2076: 2073: 2070: 2067: 2063: 2059: 2056: 2053: 2040: 2037: 2032: 2029: 2004: 2001: 1999: 1996: 1980: 1974: 1971: 1968: 1930: 1927: 1924: 1921: 1918: 1915: 1897: 1894: 1879: 1874: 1870: 1866: 1863: 1858: 1854: 1825: 1820: 1816: 1812: 1809: 1804: 1800: 1779: 1776: 1774: 1771: 1762: 1758: 1741: 1737: 1731: 1727: 1723: 1718: 1714: 1698: 1695: 1668: 1664: 1661: 1658: 1655: 1649: 1646: 1631: 1628: 1608: 1602: 1599: 1596: 1593: 1590: 1587: 1584: 1578: 1575: 1572: 1569: 1566: 1563: 1557: 1554: 1551: 1548: 1545: 1526: 1523: 1475: 1472: 1469: 1466: 1463: 1460: 1441: 1438: 1436: 1433: 1420: 1414: 1409: 1403: 1400: 1397: 1394: 1391: 1367: 1344: 1341: 1338: 1335: 1332: 1305: 1281: 1261: 1238: 1235: 1232: 1229: 1226: 1223: 1194: 1191: 1186: 1183: 1180: 1174: 1171: 1145: 1142: 1139: 1136: 1133: 1127: 1124: 1119: 1116: 1113: 1087: 1084: 1081: 1078: 1075: 1072: 1069: 1066: 1063: 1060: 1057: 1054: 1051: 1031: 1008: 1005: 1002: 999: 996: 993: 990: 987: 984: 981: 976: 972: 968: 962: 959: 954: 951: 925: 903: 899: 877: 874: 869: 864: 861: 834: 831: 826: 823: 817: 814: 811: 805: 802: 797: 794: 791: 771:kinetic energy 761: 758: 748: 745: 711: 710: 708: 707: 700: 693: 685: 682: 681: 677: 676: 671: 666: 661: 656: 651: 646: 641: 636: 631: 626: 621: 616: 611: 606: 600: 599: 596: 595: 592: 591: 586: 585: 584: 583: 578: 573: 565: 564: 558: 557: 556: 555: 550: 545: 535: 530: 529: 526: 525: 520: 519: 513: 512: 510: 509: 504: 499: 494: 489: 484: 479: 473: 470: 469: 463: 462: 460: 459: 454: 449: 447:Chromatography 444: 439: 433: 430: 429: 423: 422: 420: 419: 400: 399: 398: 379: 367: 362: 350: 337: 334: 333: 325: 320: 319: 316: 315: 311: 310: 305: 300: 299: 298: 288: 283: 278: 277: 276: 271: 261: 256: 251: 246: 245: 244: 234: 228: 227: 222: 221: 218: 217: 212: 211: 210: 209: 201: 200: 196: 195: 194: 193: 188: 183: 175: 174: 168: 165: 164: 161: 160: 155: 141: 138: 133: 130: 124: 121: 118: 115: 104: 103: 97: 96: 88: 87: 84: 78: 77: 74: 69: 66: 65: 62: 53: 52: 49: 43: 42: 39: 37:Common symbols 36: 33: 32: 29: 21: 20: 9: 6: 4: 3: 2: 2934: 2923: 2922:Water streams 2920: 2918: 2917:Geomorphology 2915: 2914: 2912: 2898: 2894: 2890: 2886: 2882: 2878: 2874: 2870: 2866: 2859: 2851: 2847: 2843: 2839: 2835: 2831: 2827: 2820: 2812: 2808: 2804: 2800: 2799:Geomorphology 2796: 2789: 2781: 2777: 2773: 2769: 2765: 2761: 2757: 2750: 2742: 2738: 2731: 2729: 2720: 2716: 2712: 2708: 2704: 2700: 2696: 2689: 2681: 2677: 2673: 2669: 2666:(1): 92–101. 2665: 2661: 2660:Geomorphology 2657: 2650: 2648: 2639: 2635: 2631: 2627: 2624:(1): 92–101. 2623: 2619: 2618:Geomorphology 2615: 2608: 2600: 2596: 2592: 2588: 2584: 2580: 2576: 2569: 2561: 2557: 2553: 2549: 2545: 2541: 2537: 2530: 2528: 2519: 2515: 2511: 2507: 2503: 2499: 2495: 2488: 2486: 2477: 2473: 2469: 2465: 2461: 2457: 2453: 2446: 2444: 2442: 2440: 2431: 2427: 2423: 2419: 2415: 2411: 2407: 2400: 2392: 2388: 2381: 2379: 2377: 2375: 2373: 2364: 2360: 2356: 2352: 2348: 2344: 2340: 2336: 2332: 2325: 2317: 2313: 2309: 2305: 2301: 2297: 2293: 2286: 2278: 2274: 2270: 2266: 2262: 2258: 2254: 2247: 2239: 2235: 2230: 2225: 2220: 2215: 2211: 2207: 2200: 2198: 2196: 2191: 2181: 2178: 2176: 2173: 2171: 2168: 2166: 2163: 2161: 2158: 2156: 2153: 2151: 2150:Geomorphology 2148: 2146: 2143: 2142: 2136: 2127: 2111: 2108: 2105: 2102: 2099: 2096: 2093: 2090: 2086: 2082: 2077: 2074: 2071: 2068: 2065: 2061: 2057: 2054: 2036: 2028: 2026: 2022: 2018: 2009: 1995: 1991: 1978: 1972: 1969: 1966: 1957: 1955: 1951: 1941: 1928: 1925: 1922: 1919: 1916: 1913: 1904: 1902: 1892: 1877: 1872: 1868: 1864: 1861: 1856: 1852: 1842: 1838: 1823: 1818: 1814: 1810: 1807: 1802: 1798: 1788: 1785: 1770: 1768: 1754: 1739: 1735: 1729: 1725: 1721: 1716: 1712: 1702: 1694: 1691: 1687: 1681: 1666: 1662: 1659: 1656: 1653: 1647: 1644: 1635: 1627: 1625: 1619: 1606: 1597: 1594: 1591: 1588: 1585: 1582: 1576: 1573: 1570: 1567: 1564: 1561: 1555: 1552: 1549: 1546: 1543: 1534: 1532: 1522: 1520: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1486: 1473: 1470: 1467: 1464: 1461: 1449: 1447: 1435:Various Forms 1431: 1418: 1412: 1407: 1401: 1398: 1395: 1392: 1380: 1365: 1355: 1342: 1339: 1336: 1333: 1330: 1321: 1319: 1303: 1296:readth), and 1295: 1279: 1259: 1249: 1236: 1233: 1230: 1227: 1224: 1221: 1212: 1208: 1192: 1184: 1181: 1172: 1160: 1156: 1143: 1140: 1137: 1134: 1131: 1125: 1117: 1114: 1099: 1085: 1082: 1076: 1070: 1067: 1064: 1058: 1052: 1049: 1029: 1019: 1006: 1003: 1000: 994: 988: 985: 982: 979: 974: 970: 966: 960: 952: 937: 923: 901: 897: 875: 867: 862: 848: 832: 824: 815: 812: 809: 803: 795: 792: 777: 774: 772: 768: 757: 755: 744: 742: 738: 734: 730: 726: 721: 720:R. A. Bagnold 717: 706: 701: 699: 694: 692: 687: 686: 684: 683: 675: 672: 670: 667: 665: 662: 660: 657: 655: 652: 650: 647: 645: 642: 640: 637: 635: 632: 630: 627: 625: 622: 620: 617: 615: 612: 610: 607: 605: 602: 601: 594: 593: 582: 579: 577: 574: 572: 569: 568: 567: 566: 563: 560: 559: 554: 551: 549: 546: 544: 541: 540: 539: 538: 533: 528: 527: 518: 515: 514: 508: 505: 503: 500: 498: 495: 493: 490: 488: 487:Charles's law 485: 483: 480: 478: 475: 474: 472: 471: 468: 465: 464: 458: 455: 453: 450: 448: 445: 443: 440: 438: 435: 434: 432: 431: 428: 425: 424: 418: 415: 411: 408: 404: 401: 396: 395:non-Newtonian 393: 389: 385: 384: 383: 380: 378: 375: 371: 368: 366: 363: 361: 358: 354: 351: 349: 346: 342: 339: 338: 336: 335: 332: 329: 328: 323: 318: 317: 309: 306: 304: 301: 297: 294: 293: 292: 289: 287: 284: 282: 281:Compatibility 279: 275: 272: 270: 269:Finite strain 267: 266: 265: 262: 260: 257: 255: 252: 250: 247: 243: 240: 239: 238: 235: 233: 230: 229: 225: 220: 219: 208: 205: 204: 203: 202: 198: 197: 192: 189: 187: 184: 182: 179: 178: 177: 176: 173:Conservations 172: 171: 163: 162: 158: 139: 136: 131: 128: 122: 119: 116: 113: 106: 105: 102: 99: 98: 94: 93: 85: 83: 79: 75: 67: 63: 61: 54: 50: 48: 44: 40: 34: 27: 22: 17: 2875:(1): 57–59. 2872: 2868: 2858: 2833: 2829: 2819: 2802: 2798: 2788: 2763: 2759: 2749: 2740: 2702: 2699:GSA Bulletin 2698: 2688: 2663: 2659: 2621: 2617: 2607: 2582: 2578: 2568: 2543: 2539: 2501: 2497: 2462:(1): 16–27. 2459: 2455: 2413: 2409: 2399: 2390: 2338: 2334: 2324: 2299: 2295: 2285: 2260: 2256: 2246: 2209: 2165:Shear stress 2133: 2042: 2034: 2014: 1998:Applications 1993: 1959: 1953: 1949: 1943: 1906: 1901:Shear stress 1899: 1896:Shear stress 1844: 1840: 1790: 1781: 1756: 1704: 1700: 1689: 1685: 1683: 1637: 1633: 1623: 1621: 1536: 1528: 1514: 1506: 1498: 1494: 1490: 1488: 1451: 1443: 1382: 1357: 1323: 1317: 1293: 1251: 1214: 1210: 1162: 1158: 1101: 1021: 939: 850: 779: 775: 763: 750: 733:hydrologists 729:shear stress 716:Stream power 715: 714: 562:Smart fluids 507:Graham's law 413: 406: 391: 377:Pascal's law 373: 356: 344: 199:Inequalities 47:SI unit 19:Stream power 2836:(1): 3–16. 2180:Water slope 1513:(m/s), and 581:Ferrofluids 482:Boyle's law 254:Hooke's law 232:Deformation 2911:Categories 2302:(1): 501. 2263:(1): 497. 2186:References 760:Derivation 634:Gay-Lussac 597:Scientists 497:Fick's law 477:Atmosphere 296:frictional 249:Plasticity 237:Elasticity 2897:109792586 2889:0361-1981 2850:1099-1646 2780:0016-7606 2719:0016-7606 2680:0169-555X 2638:0169-555X 2599:0733-9429 2560:1084-0702 2518:0091-7613 2476:129164405 2430:0033-0124 2363:124012787 2355:0080-4614 2316:0002-8606 2277:0002-8606 2238:2330-7102 2145:Hydrology 2087:ω 2083:− 2062:ω 2055:ω 2052:Δ 1973:τ 1967:ω 1926:ρ 1914:τ 1853:ω 1799:ω 1736:ν 1726:τ 1713:ω 1654:ρ 1645:ω 1601:Ω 1511:discharge 1465:ρ 1459:Ω 1396:ρ 1390:Ω 1379:complete. 1228:ρ 1190:Δ 1179:Δ 1170:Ω 1123:Δ 1112:Δ 1077:α 1071:⁡ 1065:≈ 1059:α 1053:⁡ 1001:≈ 995:α 989:⁡ 958:Δ 950:Δ 924:α 873:Δ 860:Δ 830:Δ 822:Δ 801:Δ 790:Δ 674:Truesdell 604:Bernoulli 553:Rheometer 548:Rheometry 388:Newtonian 382:Viscosity 132:φ 120:− 82:Dimension 2139:See also 532:Rheology 437:Adhesion 417:Pressure 403:Buoyancy 348:Dynamics 186:Momentum 2498:Geology 2155:Erosion 1757:where τ 747:History 619:Charles 427:Liquids 341:Statics 286:Bending 2895:  2887:  2848:  2778:  2717:  2678:  2636:  2597:  2558:  2516:  2474:  2428:  2361:  2353:  2314:  2275:  2236:  1976:  1944:Where 1684:where 1622:where 1604:  1580:  1559:  1489:where 1358:where 1252:where 1022:where 669:Stokes 664:Pascal 654:Navier 649:Newton 639:Graham 614:Cauchy 517:Plasma 412:  410:Mixing 405:  390:  372:  355:  343:  331:Fluids 264:Strain 259:Stress 242:linear 191:Energy 76:Ω=ρgQS 64:kg m s 2893:S2CID 2472:S2CID 2359:S2CID 1878:1.438 1865:0.130 1811:0.030 1531:river 1519:slope 1446:river 644:Hooke 624:Euler 609:Boyle 467:Gases 86:M L T 51:Watts 2885:ISSN 2873:1743 2846:ISSN 2776:ISSN 2715:ISSN 2676:ISSN 2634:ISSN 2595:ISSN 2556:ISSN 2514:ISSN 2426:ISSN 2351:ISSN 2312:ISSN 2273:ISSN 2234:ISSN 1824:1.69 735:and 727:and 659:Noll 629:Fick 181:Mass 166:Laws 41:Ω, ω 2877:doi 2838:doi 2807:doi 2803:100 2768:doi 2764:120 2707:doi 2668:doi 2626:doi 2587:doi 2583:119 2548:doi 2506:doi 2464:doi 2418:doi 2343:doi 2339:249 2304:doi 2265:doi 2224:hdl 2214:doi 1787:to: 1509:is 1501:is 1068:tan 1050:sin 986:sin 56:In 2913:: 2891:. 2883:. 2871:. 2867:. 2844:. 2832:. 2828:. 2801:. 2797:. 2774:. 2762:. 2758:. 2739:. 2727:^ 2713:. 2703:94 2701:. 2697:. 2674:. 2664:69 2662:. 2658:. 2646:^ 2632:. 2622:69 2620:. 2616:. 2593:. 2581:. 2577:. 2554:. 2544:22 2542:. 2538:. 2526:^ 2512:. 2502:43 2500:. 2496:. 2484:^ 2470:. 2460:31 2458:. 2454:. 2438:^ 2424:. 2414:39 2412:. 2408:. 2389:. 2371:^ 2357:. 2349:. 2337:. 2333:. 2310:. 2300:19 2298:. 2294:. 2271:. 2261:14 2259:. 2255:. 2232:. 2222:. 2212:. 2208:. 2194:^ 2027:. 1769:. 1521:. 756:. 2899:. 2879:: 2852:. 2840:: 2834:1 2813:. 2809:: 2782:. 2770:: 2743:. 2721:. 2709:: 2682:. 2670:: 2640:. 2628:: 2601:. 2589:: 2562:. 2550:: 2520:. 2508:: 2478:. 2466:: 2432:. 2420:: 2393:. 2365:. 2345:: 2318:. 2306:: 2279:. 2267:: 2240:. 2226:: 2216:: 2112:m 2109:a 2106:e 2103:r 2100:t 2097:s 2094:p 2091:u 2078:l 2075:a 2072:c 2069:o 2066:l 2058:= 1979:V 1970:= 1954:g 1950:ρ 1946:τ 1929:g 1923:S 1920:h 1917:= 1873:i 1869:D 1862:= 1857:0 1819:i 1815:D 1808:= 1803:0 1763:0 1759:0 1740:0 1730:0 1722:= 1717:0 1690:b 1686:ω 1667:b 1663:S 1660:Q 1657:g 1648:= 1624:Ω 1607:L 1598:= 1595:r 1592:e 1589:w 1586:o 1583:p 1577:m 1574:a 1571:e 1568:r 1565:t 1562:s 1556:l 1553:a 1550:t 1547:o 1544:T 1515:S 1507:Q 1499:g 1495:ρ 1491:Ω 1474:S 1471:Q 1468:g 1462:= 1419:S 1413:1 1408:L 1402:Q 1399:g 1393:= 1366:A 1343:h 1340:b 1337:u 1334:= 1331:Q 1318:h 1304:h 1294:b 1280:b 1260:L 1237:h 1234:b 1231:L 1225:= 1222:m 1193:t 1185:E 1182:P 1173:= 1144:S 1141:u 1138:g 1135:m 1132:= 1126:t 1118:E 1115:P 1086:S 1083:= 1080:) 1074:( 1062:) 1056:( 1030:u 1007:S 1004:u 998:) 992:( 983:u 980:= 975:z 971:u 967:= 961:t 953:z 936:: 902:z 898:u 876:t 868:/ 863:z 833:t 825:z 816:g 813:m 810:= 804:t 796:E 793:P 704:e 697:t 690:v 414:· 407:· 397:) 392:· 386:( 374:· 357:· 345:· 140:x 137:d 129:d 123:D 117:= 114:J

Index


SI unit
SI base units
Dimension
Continuum mechanics
Fick's laws of diffusion
Mass
Momentum
Energy
Clausius–Duhem (entropy)
Solid mechanics
Deformation
Elasticity
linear
Plasticity
Hooke's law
Stress
Strain
Finite strain
Infinitesimal strain
Compatibility
Bending
Contact mechanics
frictional
Material failure theory
Fracture mechanics
Fluid mechanics
Fluids
Statics
Dynamics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑