Knowledge

Bent bond

Source 📝

107: 1045: 1039: 1051: 40: 173:
p-density) makes it possible to reduce the bond angles to 60°. At the same time, the carbon-to-hydrogen bonds gain more s-character, which shortens them. In cyclopropane, the maximum electron density between two carbon atoms does not correspond to the internuclear axis, hence the name
204:
is a larger ring, but still has bent bonds. In this molecule, the carbon bond angles are 90° for the planar conformation and 88° for the puckered one. Unlike in cyclopropane, the C–C bond lengths actually increase rather than decrease; this is mainly due to 1,3-nonbonded
369:, the C–F bond gains p-orbital character leading to high s-character in the C–H bonds, and H–C–H bond angles approaching those of sp orbitals – e.g. 120° – leaving less for the F–C–H bond angle. The difference is again explained in terms of bent bonds. 344:
concluded that "although a conclusive statement cannot be made on the basis of the currently available information, it seems likely that we can continue to consider the σ/π and bent-bond descriptions of ethylene to be equivalent."
580:
Allen, Frank H.; Kennard, Olga; Watson, David G.; Brammer, Lee; Orpen, A. Guy; Taylor, Robin (1987). "Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds".
611:(1931). "The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules". 225:
in which cyclopropane is described as a carbon sp sigma bonding and in-plane pi bonding system. Critics of the Walsh orbital theory argue that this model does not represent the
187: 1138: 546: 17: 837: 365:
F), for instance, the experimental F–C–H bond angle is 109°, which is greater than the calculated value. This is because according to
1256: 1183: 864: 238: 229:
of cyclopropane as it cannot be transformed into the localized or fully delocalized descriptions via a unitary transformation.
818: 349:
goes further in a 2010 textbook, noting that "the overall distribution of electrons is exactly the same" in the two models.
255:
proposed that the double bond results from two equivalent tetrahedral orbitals from each atom, which later came to be called
275:. The Hückel representation is the better-known one, and it is the one found in most textbooks since the late-20th century. 1178: 529: 1103: 927: 1118: 954: 915: 905: 910: 857: 407:
Burnelle, Louis; Kaufmann, Joyce J. (1965). "Molecular Orbitals of Diborane in Terms of a Gaussian Basis".
554: 31: 1282: 1173: 1163: 1153: 1128: 1098: 90:) or as a representation of double or triple bonds within a compound that is an alternative to the 944: 1205: 1108: 1080: 850: 279: 1249: 1210: 808: 804: 346: 119: 1244: 376:, explaining the preference for gauche conformations in certain substituted alkanes and the 78:
or configuration resembling a similar "bent" structure within small ring molecules, such as
1168: 1059: 922: 881: 775: 734: 687: 648: 455: 416: 8: 1070: 934: 900: 1234: 779: 738: 691: 652: 459: 420: 989: 703: 127: 278:
Both models represent the same total electron density, with the orbitals related by a
122:
state of two atoms making up a chemical bond are modified with increased or decreased
1220: 1009: 969: 959: 814: 707: 525: 490: 377: 341: 183: 52: 209:. In terms of reactivity, cyclobutane is relatively inert and behaves like ordinary 1261: 1001: 974: 783: 742: 695: 656: 639:
Wintner, Claude E. (1987). "Stereoelectronic effects, tau bonds, and Cram's rule".
620: 590: 562: 502: 463: 424: 248: 206: 131: 75: 1239: 1113: 984: 149:
In these compounds, it is not possible for the carbon atoms to assume the 109.5°
675: 264: 1148: 949: 723:"The Theory of the Structure of Ethylene and a Note on the Structure of Ethane" 366: 357:
The bent bond theory can also explain other phenomena in organic molecules. In
190:
is outside the line of centers between the two carbon atoms. The carbon–carbon
1276: 1197: 1157: 1090: 1044: 1019: 892: 873: 608: 373: 358: 252: 244: 222: 115: 106: 67: 64: 1143: 788: 763: 747: 722: 566: 226: 135: 79: 44: 1229: 979: 594: 201: 191: 624: 764:"The Theory of the Stability of the Benzene Ring and Related Compounds" 699: 385: 268: 153:
with standard sp hybridization. Increasing the p-character to sp (i.e.
150: 91: 39: 660: 506: 467: 428: 964: 195: 143: 123: 547:"Bonding Properties of Cyclopropane and Their Chemical Consequences" 1038: 267:
proposed a representation of the double bond as a combination of a
110:
A humorously literal depiction of the banana bonds in cyclopropane
842: 272: 139: 95: 243:
Two different explanations for the nature of double and triple
210: 71: 1050: 579: 282:. We can construct the two equivalent bent bond orbitals 182:
is 104°. This bending can be observed experimentally by
30:
This article is about chemistry. For other uses, see
194:
are shorter than in a regular alkane bond: 151 
813:(Reference ed.). London: Wiley. p. 61. 810:Molecular Orbitals and Organic Chemical Reactions 74:. The term itself is a general representation of 1274: 678:(1930). "Zur Quantentheorie der Doppelbindung". 406: 126:character in order to accommodate a particular 858: 519: 384:associated with some unusually stable alkene 221:An alternative model utilizes semi-localized 442:Klessinger, Martin (1967). "Triple Bond in N 326:π for an appropriate choice of coefficients 493:(1996). "Bent Bonds in Organic Compounds". 865: 851: 544: 441: 232: 70:with a geometry somewhat reminiscent of a 27:Type of covalent bond in organic chemistry 787: 746: 186:of certain cyclopropane derivatives: the 101: 1257:Polyhedral skeletal electron pair theory 485: 483: 481: 479: 477: 105: 43:One of the first bent bond theories for 38: 803: 638: 607: 14: 1275: 761: 720: 674: 601: 520:Carey, F. A.; Sundberg, R. J. (1985). 489: 372:Bent bonds also come into play in the 251:molecules were proposed in the 1930s. 239:Sigma-pi and equivalent-orbital models 216: 846: 474: 352: 47:was the Coulson-Moffitt model (1947). 130:. Bent bonds are found in strained 24: 872: 25: 1294: 831: 114:Bent bonds are a special type of 1049: 1043: 1037: 290:' by taking linear combinations 797: 755: 714: 668: 632: 583:J. Chem. Soc., Perkin Trans. 2 573: 538: 513: 435: 400: 13: 1: 394: 7: 555:Angew. Chem. Int. Ed. Engl. 10: 1299: 955:Metal–ligand multiple bond 545:De Meijere, Armin (1979). 522:Advanced Organic Chemistry 236: 32:Bent bond (disambiguation) 29: 18:Strained organic compounds 1219: 1196: 1127: 1089: 1069: 1058: 1035: 1018: 1000: 891: 880: 233:Double and triple bonds 178:. In cyclopropane, the 789:10.1098/rspa.1934.0151 762:Penney, W. G. (1934). 748:10.1098/rspa.1934.0041 721:Penney, W. G. (1934). 567:10.1002/anie.197908093 280:unitary transformation 118:in which the ordinary 111: 102:Small cyclic molecules 48: 237:Further information: 109: 42: 945:Coordinate (dipolar) 595:10.1039/P298700000S1 340:. In a 1996 review, 198:versus 153 pm. 1119:C–H···O interaction 901:Electron deficiency 780:1934RSPSA.146..223P 739:1934RSPSA.144..166P 692:1930ZPhy...60..423H 653:1987JChEd..64..587W 625:10.1021/ja01355a027 460:1967JChPh..46.3261K 421:1965JChPh..43.3540B 217:Walsh orbital model 188:deformation density 1104:Resonance-assisted 700:10.1007/BF01341254 491:Wiberg, Kenneth B. 353:Other applications 180:interorbital angle 128:molecular geometry 112: 59:, also known as a 49: 1270: 1269: 1221:Electron counting 1192: 1191: 1081:London dispersion 1033: 1032: 1010:Metal aromaticity 820:978-0-470-74658-5 661:10.1021/ed064p587 507:10.1021/ar950207a 468:10.1063/1.1841197 429:10.1063/1.1696513 342:Kenneth B. Wiberg 184:X-ray diffraction 132:organic compounds 53:organic chemistry 16:(Redirected from 1290: 1283:Chemical bonding 1262:Jemmis mno rules 1114:Dihydrogen bonds 1067: 1066: 1053: 1047: 1041: 975:Hyperconjugation 889: 888: 867: 860: 853: 844: 843: 826: 824: 801: 795: 793: 791: 774:(856): 223–238. 759: 753: 752: 750: 733:(851): 166–187. 718: 712: 711: 686:(7–8): 423–456. 672: 666: 664: 636: 630: 628: 619:(4): 1367–1400. 613:J. Am. Chem. Soc 605: 599: 598: 577: 571: 570: 551: 542: 536: 535: 517: 511: 510: 487: 472: 471: 439: 433: 432: 404: 207:steric repulsion 172: 171: 167: 162: 161: 157: 116:chemical bonding 76:electron density 21: 1298: 1297: 1293: 1292: 1291: 1289: 1288: 1287: 1273: 1272: 1271: 1266: 1215: 1188: 1131: 1123: 1085: 1072: 1062: 1054: 1048: 1042: 1029: 1014: 996: 884: 876: 871: 834: 829: 821: 802: 798: 760: 756: 719: 715: 673: 669: 637: 633: 606: 602: 578: 574: 561:(11): 809–886. 549: 543: 539: 532: 518: 514: 488: 475: 445: 440: 436: 415:(10): 3540–45. 405: 401: 397: 364: 355: 339: 332: 325: 318: 307: 300: 241: 235: 219: 169: 165: 164: 159: 155: 154: 104: 89: 85: 63:, is a type of 35: 28: 23: 22: 15: 12: 11: 5: 1296: 1286: 1285: 1268: 1267: 1265: 1264: 1259: 1254: 1253: 1252: 1247: 1242: 1237: 1226: 1224: 1217: 1216: 1214: 1213: 1208: 1202: 1200: 1194: 1193: 1190: 1189: 1187: 1186: 1181: 1176: 1171: 1166: 1161: 1151: 1146: 1141: 1135: 1133: 1125: 1124: 1122: 1121: 1116: 1111: 1106: 1101: 1095: 1093: 1087: 1086: 1084: 1083: 1077: 1075: 1064: 1060:Intermolecular 1056: 1055: 1036: 1034: 1031: 1030: 1028: 1027: 1024: 1022: 1016: 1015: 1013: 1012: 1006: 1004: 998: 997: 995: 994: 993: 992: 987: 977: 972: 967: 962: 957: 952: 947: 942: 937: 932: 931: 930: 920: 919: 918: 913: 908: 897: 895: 886: 882:Intramolecular 878: 877: 874:Chemical bonds 870: 869: 862: 855: 847: 841: 840: 838:NMR experiment 833: 832:External links 830: 828: 827: 819: 796: 754: 713: 667: 631: 609:Pauling, Linus 600: 589:(12): S1–S19. 572: 537: 530: 512: 495:Acc. Chem. Res 473: 454:(8): 3261–62. 443: 434: 398: 396: 393: 362: 354: 351: 337: 330: 323: 316: 305: 298: 245:covalent bonds 234: 231: 223:Walsh orbitals 218: 215: 163:s-density and 103: 100: 87: 83: 26: 9: 6: 4: 3: 2: 1295: 1284: 1281: 1280: 1278: 1263: 1260: 1258: 1255: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1235:Hückel's rule 1233: 1232: 1231: 1228: 1227: 1225: 1222: 1218: 1212: 1209: 1207: 1204: 1203: 1201: 1199: 1198:Bond cleavage 1195: 1185: 1182: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1164:Intercalation 1162: 1159: 1155: 1154:Metallophilic 1152: 1150: 1147: 1145: 1142: 1140: 1137: 1136: 1134: 1130: 1126: 1120: 1117: 1115: 1112: 1110: 1107: 1105: 1102: 1100: 1097: 1096: 1094: 1092: 1088: 1082: 1079: 1078: 1076: 1074: 1071:Van der Waals 1068: 1065: 1061: 1057: 1052: 1046: 1040: 1026: 1025: 1023: 1021: 1017: 1011: 1008: 1007: 1005: 1003: 999: 991: 988: 986: 983: 982: 981: 978: 976: 973: 971: 968: 966: 963: 961: 958: 956: 953: 951: 948: 946: 943: 941: 938: 936: 933: 929: 926: 925: 924: 921: 917: 914: 912: 909: 907: 904: 903: 902: 899: 898: 896: 894: 890: 887: 883: 879: 875: 868: 863: 861: 856: 854: 849: 848: 845: 839: 836: 835: 822: 816: 812: 811: 806: 800: 790: 785: 781: 777: 773: 769: 765: 758: 749: 744: 740: 736: 732: 728: 724: 717: 709: 705: 701: 697: 693: 689: 685: 681: 677: 671: 662: 658: 654: 650: 646: 642: 641:J. Chem. Educ 635: 626: 622: 618: 614: 610: 604: 596: 592: 588: 584: 576: 568: 564: 560: 557: 556: 548: 541: 533: 531:0-306-41198-9 527: 523: 516: 508: 504: 501:(5): 229–34. 500: 496: 492: 486: 484: 482: 480: 478: 469: 465: 461: 457: 453: 449: 448:J. Chem. Phys 438: 430: 426: 422: 418: 414: 410: 409:J. Chem. Phys 403: 399: 392: 390: 388: 383: 381: 375: 374:gauche effect 370: 368: 360: 359:fluoromethane 350: 348: 343: 336: 329: 322: 315: 311: 304: 297: 293: 289: 285: 281: 276: 274: 270: 266: 262: 258: 254: 253:Linus Pauling 250: 246: 240: 230: 228: 224: 214: 212: 208: 203: 199: 197: 193: 189: 185: 181: 177: 152: 147: 145: 141: 137: 133: 129: 125: 121: 120:hybridization 117: 108: 99: 97: 93: 81: 77: 73: 69: 68:chemical bond 66: 62: 58: 54: 46: 41: 37: 33: 19: 1240:Baird's rule 960:Charge-shift 939: 923:Hypervalence 809: 805:Fleming, Ian 799: 771: 768:Proc. R. Soc 767: 757: 730: 727:Proc. R. Soc 726: 716: 683: 679: 670: 644: 640: 634: 616: 612: 603: 586: 582: 575: 558: 553: 540: 521: 515: 498: 494: 451: 447: 437: 412: 408: 402: 386: 379: 371: 356: 334: 327: 320: 313: 309: 302: 295: 291: 287: 283: 277: 265:Erich Hückel 260: 257:banana bonds 256: 242: 227:ground state 220: 200: 192:bond lengths 179: 175: 148: 136:cyclopropane 113: 80:cyclopropane 60: 56: 50: 45:cyclopropane 36: 1230:Aromaticity 1206:Heterolysis 1184:Salt bridge 1129:Noncovalent 1099:Low-barrier 980:Aromaticity 970:Conjugation 950:Pi backbond 367:Bent's rule 347:Ian Fleming 202:Cyclobutane 151:bond angles 61:banana bond 1158:aurophilic 1139:Mechanical 676:Hückel, E. 647:(7): 587. 395:References 269:sigma bond 1250:spherical 1211:Homolysis 1174:Cation–pi 1149:Chalcogen 1109:Symmetric 965:Hapticity 708:120342054 446:and CO". 261:tau bonds 176:bent bond 144:aziridine 124:s-orbital 57:bent bond 1277:Category 1179:Anion–pi 1169:Stacking 1091:Hydrogen 1002:Metallic 893:Covalent 885:(strong) 807:(2010). 134:such as 65:covalent 1144:Halogen 990:bicyclo 935:Agostic 776:Bibcode 735:Bibcode 688:Bibcode 680:Z. Phys 649:Bibcode 456:Bibcode 417:Bibcode 389:isomers 378:alkene 273:pi bond 271:plus a 249:organic 211:alkanes 168:⁄ 158:⁄ 140:oxirane 98:model. 96:pi bond 1245:Möbius 1073:forces 1063:(weak) 817:  706:  528:  382:effect 308:π and 72:banana 1223:rules 1132:other 1020:Ionic 928:3c–4e 916:8c–2e 911:4c–2e 906:3c–2e 704:S2CID 550:(PDF) 92:sigma 985:homo 940:Bent 815:ISBN 772:A146 731:A144 587:1987 526:ISBN 333:and 319:σ – 312:' = 301:σ + 286:and 142:and 94:and 55:, a 784:doi 743:doi 696:doi 657:doi 621:doi 591:doi 563:doi 503:doi 464:doi 425:doi 387:cis 380:cis 361:(CH 259:or 247:in 51:In 1279:: 782:. 770:. 766:. 741:. 729:. 725:. 702:. 694:. 684:60 682:. 655:. 645:64 643:. 617:53 615:. 585:. 559:18 552:. 524:. 499:29 497:. 476:^ 462:. 452:46 450:. 423:. 413:43 411:. 391:. 294:= 263:. 213:. 196:pm 146:. 138:, 82:(C 1160:) 1156:( 866:e 859:t 852:v 825:. 823:. 794:. 792:. 786:: 778:: 751:. 745:: 737:: 710:. 698:: 690:: 665:. 663:. 659:: 651:: 629:. 627:. 623:: 597:. 593:: 569:. 565:: 534:. 509:. 505:: 470:. 466:: 458:: 444:2 431:. 427:: 419:: 363:3 338:2 335:c 331:1 328:c 324:2 321:c 317:1 314:c 310:h 306:2 303:c 299:1 296:c 292:h 288:h 284:h 170:6 166:5 160:6 156:1 88:6 86:H 84:3 34:. 20:)

Index

Strained organic compounds
Bent bond (disambiguation)

cyclopropane
organic chemistry
covalent
chemical bond
banana
electron density
cyclopropane
sigma
pi bond

chemical bonding
hybridization
s-orbital
molecular geometry
organic compounds
cyclopropane
oxirane
aziridine
bond angles
X-ray diffraction
deformation density
bond lengths
pm
Cyclobutane
steric repulsion
alkanes
Walsh orbitals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.