Knowledge

Solid-state chemistry

Source đź“ť

194: 324: 75: 2618: 492:, temperature-dependent powder diffraction. Increased knowledge of the phase relations often leads to further refinement in synthetic procedures in an iterative way. New phases are thus characterized by their melting points and their stoichiometric domains. The latter is important for the many solids that are non-stoichiometric compounds. The cell parameters obtained from XRD are particularly helpful to characterize the homogeneity ranges of the latter. 2642: 444: 412: 2654: 172: 2630: 1676: 456:
be coupled to achieve a better effect. For example, SEM is a useful complement to EDX due to its focused electron beam, it produces a high-magnification image that provides information on the surface topography. Once the area of interest has been identified, EDX can be used to determine the elements present in that specific spot.
66:, make solid-state materials. Solids can be classified as crystalline or amorphous on basis of the nature of order present in the arrangement of their constituent particles. Their elemental compositions, microstructures, and physical properties can be characterized through a variety of analytical methods. 455:
analysis (XRD) involves the generation of characteristic X-rays upon interaction with the sample. The intensity of diffracted rays scattered at different angles is used to analyze the physical properties of a material such as phase composition and crystallographic structure. These techniques can also
419:
Once the unit cell of a new phase is known, the next step is to establish the stoichiometry of the phase. This can be done in several ways. Sometimes the composition of the original mixture will give a clue, under the circumstances that only a product with a single powder pattern is found or a phase
402:
because many solid-state reactions will produce polycrystalline molds or powders. Powder diffraction aids in the identification of known phases in the mixture. If a pattern is found that is not known in the diffraction data libraries, an attempt can be made to index the pattern. The characterization
205:
Crucible materials have a great role to play in molten flux synthesis. The crucible should not react with the flux or the starting reagent. If any of the material is volatile, it is recommended to conduct the reaction in a sealed ampule. If the target phase is sensitive to oxygen, a carbon- coated
201:
Molten flux synthesis can be an efficient method for obtaining single crystals. In this method, the starting reagents are combined with flux, an inert material with a melting point lower than that of the starting materials. The flux serves as a solvent. After the reaction, the excess flux can be
136:
The ceramic method is one of the most common synthesis techniques. The synthesis occurs entirely in the solid state.  The reactants are ground together, formed into a pellet using a pellet press and hydraulic press, and heated at high temperatures. When the temperature of the reactants are
440:(EDX) is a technique that uses electron beam excitation. Exciting the inner shell of an atom with incident electrons emits characteristic X-rays with specific energy to each element. The peak energy can identify the chemical composition of a sample, including the distribution and concentration. 85:
Because of its direct relevance to products of commerce, solid state inorganic chemistry has been strongly driven by technology. Progress in the field has often been fueled by the demands of industry, sometimes in collaboration with academia. Applications discovered in the 20th century include
398:, a numerical relationship between the quantities of reactant and product, is typically varied systematically. It is important to find which stoichiometries will lead to new solid compounds or solid solutions between known ones. A prime method to characterize the reaction products is 532:
For metallic materials, their optical properties arise from the collective excitation of conduction electrons. The coherent oscillations of electrons under electromagnetic radiation along with associated oscillations of the electromagnetic field are called
217:
results in very pure materials. The reaction typically occurs in a sealed ampoule. A transporting agent, added to the sealed ampoule, produces a volatile intermediate species from the solid reactant. For metal oxides, the transporting agent is usually
160:. A chemist forms pellets from the ground reactants and places the pellets into containers for heating. The choice of container depends on the precursors, the reaction temperature and the expected product. For example, 222:
or HCl. The ampoule has a temperature gradient, and, as the gaseous reactant travels along the gradient, it eventually deposits as a crystal. An example of an industrially-used chemical vapor transport reaction is the
118:
Given the diversity of solid-state compounds, an equally diverse array of methods are used for their preparation. Synthesis can range from high-temperature methods, like the ceramic method, to gas methods, like
94:-based catalysts for petroleum processing in the 1950s, high-purity silicon as a core component of microelectronic devices in the 1960s, and “high temperature” superconductivity in the 1980s. The invention of 423:
Often, considerable effort in refining the synthetic procedures is required to obtain a pure sample of the new material. If it is possible to separate the product from the rest of the reaction mixture,
608:
Kanatzidis, Mercouri G. (2018). "Report from the third workshop on future directions of solid-state chemistry: The status of solid-state chemistry and its impact in the physical sciences".
436:(TEM) can be used. The detection of scattered and transmitted electrons from the surface of the sample provides information about the surface topography and composition of the material. 560:
In many cases, new solid compounds are further characterized by a variety of techniques that straddle the fine line that separates solid-state chemistry from solid-state physics. See
1016:
Rajapakse, Manthila; Karki, Bhupendra; Abu, Usman O.; Pishgar, Sahar; Musa, Md Rajib Khan; Riyadh, S. M. Shah; Yu, Ming; Sumanasekera, Gamini; Jasinski, Jacek B. (2021-03-10).
472:
and refining the preparative procedures and that are linked to the question of which phases are stable at what composition and what stoichiometry. In other words, what the
394:
Synthetic methodology and characterization often go hand in hand in the sense that not one but a series of reaction mixtures are prepared and subjected to heat treatment.
537:. The excitation wavelength and frequency of the plasmon resonances provide information on the particle's size, shape, composition, and local optical environment. 355:. Such reactions are conducted in open-ended tubes, which the gasses are passed through. Also, these reactions can take place inside a measuring device such as a 1686: 548:
that represents the minimum energy difference between the top of the valence band and the bottom of the conduction band. The band gap can be determined using
137:
sufficient, the ions at the grain boundaries react to form desired phases. Generally ceramic methods give polycrystalline powders, but not single crystals.
386:
This is the process in which a material’s chemical composition, structure, and physical properties are determined using a variety of analytical techniques.
967:
Laipan, Minwang; Xiang, Lichen; Yu, Jingfang; Martin, Benjamin R.; Zhu, Runliang; Zhu, Jianxi; He, Hongping; Clearfield, Abraham; Sun, Luyi (2020-04-01).
106:'s work on oxidation rate theory, counter diffusion of ions, and defect chemistry. Because of his contributions, he has sometimes been referred to as the 516:
are very sensitive to small changes caused by lattice expansion/compression (thermal or pressure), phase changes, or local defects. Common methods are
206:
fused silica tube or a carbon crucible inside a fused silica tube is often used which prevents the direct contact between the tube wall and reagents.
62:
with a focus on the synthesis of novel materials and their characterization. A diverse range of synthetic techniques, such as the ceramic method and
700: 699:
Ben Smida, Youssef; Marzouki, Riadh; Kaya, SavaĹź; Erkan, Sultan; Faouzi Zid, Mohamed; Hichem Hamzaoui, Ahmed (2020-10-07), Marzouki, Riadh (ed.),
1713: 843: 1814: 102:
was an enabling innovation. Our understanding of how reactions proceed at the atomic level in the solid state was advanced considerably by
1819: 1688:, Sadoway, Donald. 3.091SC; Introduction to Solid State Chemistry, Fall 2010. (Massachusetts Institute of Technology: MIT OpenCourseWare) 202:
washed away using an appropriate solvent or it can be heat again to remove the flux by sublimation if it is a volatile compound.
1797: 1841: 1680: 1570: 1424: 1389: 1343: 1159: 819: 722: 1853: 1792: 561: 549: 437: 1706: 859:"Outstanding Advantages, Current Drawbacks, and Significant Recent Developments in Mechanochemistry: A Perspective View" 468:
X-ray diffraction is also used due to its imaging capabilities and speed of data generation. The latter often requires
1660: 1534: 1128: 1086: 592: 481: 433: 2658: 1593:"How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra" 460:
can be coupled with TEM or SEM to investigate the level of crystallinity and the lattice parameters of a sample.
1065:
Fromhold, Albert T.; Fromhold, Regina G. (1984-01-01), Bamford, C. H.; Tipper, C. F. H.; Compton, R. G. (eds.),
2680: 2537: 1699: 676: 1980: 1734: 521: 485: 1018:"Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials" 429: 2257: 1744: 214: 898: 378:
from molecular precursors. A carrier gas transports the gaseous precursors to the material for coating.
2685: 2634: 2183: 2154: 2134: 2087: 1183: 371: 356: 1151:
Handbook of deposition technologies for films and coatings : science, applications and technology
1108: 1066: 755: 251:
synthesis is the insertion of molecules or ions between layers of a solid. The layered solid has weak
1772: 534: 457: 296: 248: 120: 63: 517: 2527: 2443: 2082: 2465: 2376: 2339: 2223: 2149: 1970: 1953: 1896: 1107:
Koga, Y.; Harrison, L. G. (1984-01-01), Bamford, C. H.; Tipper, C. F. H.; Compton, R. G. (eds.),
513: 2383: 2371: 2262: 2127: 1901: 1767: 264: 99: 2532: 2429: 2414: 2344: 2267: 2049: 1958: 1883: 1782: 1441: 930: 452: 95: 30:, structure, and properties of solid phase materials. It therefore has a strong overlap with 1529:
cf. Chapter 12 of Elements of X-ray diffraction, B.D. Cullity, Addison-Wesley, 2nd ed. 1977
2522: 2477: 2252: 2072: 2002: 1759: 1739: 1502: 1210: 969:"Layered intercalation compounds: Mechanisms, new methodologies, and advanced applications" 505: 415:
A scanning electron microscope (SEM) used to observe the surface topography and composition
252: 621: 403:
of a material's properties is typically easier for a product with crystalline structures.
193: 8: 2545: 2499: 2424: 2397: 2295: 2277: 2230: 2168: 2064: 2044: 1913: 1908: 1809: 323: 280: 157: 31: 1550: 1506: 1214: 2622: 2588: 2450: 2419: 2300: 2242: 1940: 1923: 1918: 1873: 1836: 1826: 1787: 1630: 1349: 1303: 1241: 1198: 1177: 1047: 998: 837: 728: 425: 399: 176: 27: 1406: 1120: 1078: 652: 639: 2641: 2603: 2568: 2551: 2489: 2407: 2402: 2330: 2315: 2285: 2206: 2173: 2144: 2139: 2114: 2104: 2024: 2012: 1891: 1804: 1656: 1634: 1622: 1614: 1566: 1530: 1471: 1420: 1385: 1353: 1339: 1325: 1307: 1295: 1287: 1246: 1228: 1165: 1155: 1124: 1082: 1051: 1039: 1002: 990: 880: 825: 815: 775: 732: 718: 672: 588: 447:
An X-ray diffractometer (XRD) used to identify the crystalline phases in the material
141: 55: 1371: 363:
information can be obtained during the reaction, which helps identify the products.
2646: 2563: 2218: 2077: 2054: 2007: 1948: 1604: 1558: 1510: 1461: 1453: 1412: 1377: 1331: 1277: 1236: 1218: 1116: 1074: 1029: 980: 942: 929:
Binnewies, Michael; Glaum, Robert; Schmidt, Marcus; Schmidt, Peer (February 2013).
870: 767: 708: 647: 617: 477: 268: 168:
heats the pellet. Tube furnaces are available up to maximum temperatures of 2800C.
985: 968: 2504: 2460: 2455: 2349: 2325: 2159: 2122: 1975: 1965: 1848: 1562: 1515: 1490: 501: 420:
of a certain composition is made by analogy to known material, but this is rare.
348: 279:
is produced by the intercalation method, and this method is the principle behind
232: 153: 152:
of the reactants. If the mixing is not sufficient, we can use techniques such as
39: 1609: 1592: 2388: 2366: 2361: 2356: 2311: 2307: 2290: 2247: 2178: 2039: 2034: 2019: 1831: 1749: 1034: 1017: 509: 360: 123:. Often, the methods prevent defect formation or produce high-purity products. 51: 1416: 1335: 2674: 2593: 2482: 2438: 2163: 1997: 1992: 1985: 1863: 1618: 1475: 1408:
X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems
1291: 1266:"Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials" 1232: 1169: 1043: 994: 884: 829: 779: 713: 541: 473: 395: 375: 308: 78: 1282: 1265: 2470: 2320: 2235: 2211: 2201: 2193: 2094: 2029: 1928: 1777: 1652: 1626: 1457: 1299: 1250: 946: 304: 260: 224: 165: 149: 1381: 1149: 1073:, Reactions of Solids with Gases, vol. 21, Elsevier, pp. 1–117, 875: 858: 809: 1868: 771: 489: 312: 300: 271:. The intercalation method was first used in China with the discovery of 188: 103: 59: 1691: 504:
describes the interaction of the nearest neighbouring atoms. Methods of
148:, the reactants are ground together, which decreases size and increases 74: 2494: 1223: 315:, which use a salt with a relatively low melting point as the solvent. 47: 35: 1466: 2556: 1858: 1723: 272: 256: 145: 2578: 545: 544:, they can be characterized by their band structure. It contains a 512:
to probe the electric and magnetic fields around the nucleus. E.g.
411: 352: 332: 276: 91: 2598: 1442:"What Can Electron Microscopy Tell Us Beyond Crystal Structures?" 292: 87: 43: 171: 1675: 1591:
Makuła, Patrycja; Pacia, Michał; Macyk, Wojciech (2018-12-06).
552:
to predict the photochemical properties of the semiconductors.
344: 340: 336: 228: 443: 307:
that is under pressure at temperatures higher than the normal
1549:
Harris, Nadine; Blaber, Martin G.; Schatz, George C. (2016),
1154:. Peter M. Martin (3rd ed.). Amsterdam: Elsevier. 2010. 754:
Mond, Ludwig; Langer, Carl; Quincke, Friedrich (1890-01-01).
164:
are typically synthesized in silica or alumina containers. A
161: 1109:"Chapter 2 Reactions of Solids with Gases other than Oxygen" 928: 374:
is a method widely used for the preparation of coatings and
2573: 1405:
Waseda, Yoshio; Matsubara, Eiichiro; Shinoda, Kozo (2011).
1373:
Energy Dispersive X-ray Analysis in the Electron Microscope
931:"Chemical Vapor Transport Reactions - A Historical Review" 698: 2583: 1015: 1557:, Dordrecht: Springer Netherlands, pp. 3027–3048, 476:
looks like. An important tool in establishing this are
1404: 1199:"Special Issue: Advances in Chemical Vapor Deposition" 640:"Life and achievements of Carl Wagner, 100th birthday" 1264:
Holder, Cameron F.; Schaak, Raymond E. (2019-07-23).
500:
In contrast to the large structures of crystals, the
1495:
Current Opinion in Solid State and Materials Science
255:
holding its layers together. The process occurs via
16:
Study of solid materials' properties and composition
966: 331:Many solids react vigorously with gas species like 1548: 1411:. Berlin, Heidelberg: Springer Berlin Heidelberg. 935:Zeitschrift fĂĽr anorganische und allgemeine Chemie 1491:"X-ray nanobeam diffraction imaging of materials" 1067:"Chapter 1 An Overview of Metal Oxidation Theory" 753: 2672: 1590: 1369: 1064: 175:Tube furnace being used during the synthesis of 1655:and J. Gopalakrishnan. Cambridge U. Press 1997 1440:Zhou, Wuzong; Greer, Heather F. (March 2016). 749: 747: 406: 1707: 760:Journal of the Chemical Society, Transactions 366: 1263: 1115:, vol. 21, Elsevier, pp. 119–149, 1106: 701:"Synthesis Methods in Solid-State Chemistry" 488:and increasingly also, due to the advent of 209: 1551:"Optical Properties of Metal Nanoparticles" 1330:. Cham: Springer International Publishing. 811:Essentials of inorganic materials synthesis 744: 666: 555: 327:Chemical vapour deposition reaction chamber 227:. The Mond process involves heating impure 126: 1714: 1700: 842:: CS1 maint: location missing publisher ( 607: 585:Solid State Chemistry and Its Applications 311:. A variation on this theme is the use of 238: 1721: 1608: 1597:The Journal of Physical Chemistry Letters 1514: 1465: 1439: 1370:Bell, Dc; Garratt-Reed, Aj (2003-07-10). 1281: 1240: 1222: 1196: 1033: 984: 874: 712: 651: 814:. Kanishka Biswas. Hoboken, New Jersey. 756:"L.—Action of carbon monoxide on nickel" 442: 410: 322: 192: 182: 170: 73: 1649:New directions in Solid State Chemistry 1488: 1446:European Journal of Inorganic Chemistry 243: 197:Steps involved in molten flux synthesis 2673: 1327:Handbook of Materials Characterization 1323: 856: 637: 578: 576: 1695: 1544: 1542: 1489:SchĂĽlli, Tobias U. (September 2018). 1365: 1363: 1319: 1317: 962: 960: 958: 956: 924: 922: 920: 918: 705:Synthesis Methods and Crystallization 694: 692: 690: 688: 622:10.1016/j.progsolidstchem.2007.02.002 527: 259:. Intercalation is further driven by 2629: 1324:Sharma, Surender Kumar, ed. (2018). 803: 801: 799: 797: 795: 793: 791: 789: 667:Cheetham, A. K.; Day, Peter (1988). 633: 631: 624:– via Elsevier Science Direct. 582: 562:Characterisation in material science 438:Energy dispersive X-ray spectroscopy 113: 2653: 1197:Vernardou, Dimitra (January 2020). 807: 573: 463: 381: 286: 13: 1539: 1360: 1314: 953: 915: 685: 495: 458:Selected area electron diffraction 14: 2697: 1668: 1022:npj 2D Materials and Applications 786: 669:Solid State Chemistry: Techniques 638:Martin, Manfred (December 2002). 628: 610:Progress in Solid State Chemistry 131: 2652: 2640: 2628: 2617: 2616: 1674: 857:Pagola, Silvina (January 2023). 550:Ultraviolet-visible spectroscopy 434:transmission electron microscopy 1641: 1584: 1523: 1482: 1433: 1398: 1376:(0 ed.). Garland Science. 1257: 1190: 1142: 1113:Comprehensive Chemical Kinetics 1100: 1071:Comprehensive Chemical Kinetics 1058: 1009: 108:father of solid state chemistry 1555:Encyclopedia of Nanotechnology 891: 850: 660: 601: 540:For non-metallic materials or 318: 1: 1981:Interface and colloid science 1735:Glossary of chemical formulae 1121:10.1016/s0069-8040(08)70007-4 1079:10.1016/s0069-8040(08)70006-2 986:10.1016/j.pmatsci.2019.100631 973:Progress in Materials Science 653:10.1016/S0167-2738(02)00318-1 567: 522:perturbed angular correlation 389: 303:. At times, the solvent is a 81:for use in electronic devices 22:, also sometimes referred as 1563:10.1007/978-94-017-9780-1_22 1553:, in Bhushan, Bharat (ed.), 1516:10.1016/j.cossms.2018.09.003 564:for additional information. 430:scanning electron microscopy 7: 2258:Bioorganometallic chemistry 1745:List of inorganic compounds 1610:10.1021/acs.jpclett.8b02892 407:Compositions and structures 10: 2702: 2184:Dynamic covalent chemistry 2155:Enantioselective synthesis 2135:Physical organic chemistry 2088:Organolanthanide chemistry 1035:10.1038/s41699-021-00211-6 535:surface plasmon resonances 372:Chemical vapour deposition 367:Chemical vapour deposition 186: 121:chemical vapour deposition 69: 2612: 2515: 2276: 2192: 2113: 2063: 1939: 1882: 1773:Electroanalytical methods 1758: 1730: 1417:10.1007/978-3-642-16635-8 1336:10.1007/978-3-319-92955-2 583:West, Anthony R. (2004). 269:electrochemical reactions 215:Chemical vapour transport 210:Chemical vapour transport 64:chemical vapour depostion 2528:Nobel Prize in Chemistry 2444:Supramolecular chemistry 2083:Organometallic chemistry 714:10.5772/intechopen.93337 556:Further characterization 514:electric field gradients 235:to produce pure nickel. 127:High-temperature methods 2466:Combinatorial chemistry 2377:Food physical chemistry 2340:Environmental chemistry 2224:Bioorthogonal chemistry 2150:Retrosynthetic analysis 1971:Chemical thermodynamics 1954:Spectroelectrochemistry 1897:Computational chemistry 1283:10.1021/acsnano.9b05157 587:. John Wiley and Sons. 239:Low-temperature methods 2538:of element discoveries 2384:Agricultural chemistry 2372:Carbohydrate chemistry 2263:Bioinorganic chemistry 2128:Alkane stereochemistry 2073:Coordination chemistry 1902:Mathematical chemistry 1768:Instrumental chemistry 1458:10.1002/ejic.201501342 1182:: CS1 maint: others ( 947:10.1002/zaac.201300048 808:Rao, C. N. R. (2015). 518:Mössbauer spectroscopy 448: 416: 328: 291:It is possible to use 198: 179: 100:William Lawrence Bragg 98:in the early 1900s by 82: 26:, is the study of the 2681:Solid-state chemistry 2533:Timeline of chemistry 2430:Post-mortem chemistry 2415:Clandestine chemistry 2345:Atmospheric chemistry 2268:Biophysical chemistry 2100:Solid-state chemistry 2050:Equilibrium chemistry 1959:Photoelectrochemistry 1681:Solid state chemistry 1382:10.4324/9780203483428 876:10.3390/cryst13010124 446: 414: 326: 295:to prepare solids by 281:lithium-ion batteries 196: 183:Molten flux synthesis 174: 96:X-ray crystallography 77: 20:Solid-state chemistry 2523:History of chemistry 2478:Chemical engineering 2253:Bioorganic chemistry 2003:Structural chemistry 1740:List of biomolecules 1683:at Wikimedia Commons 772:10.1039/CT8905700749 506:nuclear spectroscopy 343:. Other solids form 253:intermolecular bonds 244:Intercalation method 2546:The central science 2500:Ceramic engineering 2425:Forensic toxicology 2398:Chemistry education 2296:Radiation chemistry 2278:Interdisciplinarity 2231:Medicinal chemistry 2169:Fullerene chemistry 2045:Microwave chemistry 1914:Molecular mechanics 1909:Molecular modelling 1507:2018COSSM..22..188S 1215:2020Mate...13.4167V 265:acid-base reactions 32:solid-state physics 24:materials chemistry 2589:Chemical substance 2451:Chemical synthesis 2420:Forensic chemistry 2301:Actinide chemistry 2243:Clinical chemistry 1924:Molecular geometry 1919:Molecular dynamics 1874:Elemental analysis 1827:Separation process 1224:10.3390/ma13184167 646:. 152–153: 15–17. 644:Solid State Ionics 528:Optical properties 449: 426:elemental analysis 417: 400:powder diffraction 329: 199: 180: 177:aluminium chloride 83: 2686:Materials science 2668: 2667: 2604:Quantum mechanics 2569:Chemical compound 2552:Chemical reaction 2490:Materials science 2408:General chemistry 2403:Amateur chemistry 2331:Photogeochemistry 2316:Stellar chemistry 2286:Nuclear chemistry 2207:Molecular biology 2174:Polymer chemistry 2145:Organic synthesis 2140:Organic reactions 2105:Ceramic chemistry 2095:Cluster chemistry 2025:Chemical kinetics 2013:Molecular physics 1892:Quantum chemistry 1805:Mass spectrometry 1679:Media related to 1647:cf. Chapter 2 of 1603:(23): 6814–6817. 1572:978-94-017-9779-5 1426:978-3-642-16634-1 1391:978-1-135-33140-5 1345:978-3-319-92954-5 1161:978-0-08-095194-2 821:978-1-118-89267-1 724:978-1-83880-223-3 453:X-ray diffraction 142:mortar and pestle 114:Synthetic methods 56:materials science 2693: 2656: 2655: 2644: 2632: 2631: 2620: 2619: 2564:Chemical element 2219:Chemical biology 2078:Magnetochemistry 2055:Mechanochemistry 2008:Chemical physics 1949:Electrochemistry 1854:Characterization 1716: 1709: 1702: 1693: 1692: 1678: 1663: 1645: 1639: 1638: 1612: 1588: 1582: 1581: 1580: 1579: 1546: 1537: 1527: 1521: 1520: 1518: 1486: 1480: 1479: 1469: 1437: 1431: 1430: 1402: 1396: 1395: 1367: 1358: 1357: 1321: 1312: 1311: 1285: 1276:(7): 7359–7365. 1261: 1255: 1254: 1244: 1226: 1194: 1188: 1187: 1181: 1173: 1146: 1140: 1139: 1138: 1137: 1104: 1098: 1097: 1096: 1095: 1062: 1056: 1055: 1037: 1013: 1007: 1006: 988: 964: 951: 950: 926: 913: 912: 910: 908: 903: 895: 889: 888: 878: 854: 848: 847: 841: 833: 805: 784: 783: 751: 742: 741: 740: 739: 716: 696: 683: 682: 664: 658: 657: 655: 635: 626: 625: 605: 599: 598: 580: 480:techniques like 478:thermal analysis 464:More information 451:Similar to EDX, 428:methods such as 382:Characterization 359:. In that case, 287:Solution methods 154:co-precipitation 2701: 2700: 2696: 2695: 2694: 2692: 2691: 2690: 2671: 2670: 2669: 2664: 2608: 2511: 2505:Polymer science 2461:Click chemistry 2456:Green chemistry 2350:Ocean chemistry 2326:Biogeochemistry 2272: 2188: 2160:Total synthesis 2123:Stereochemistry 2109: 2059: 1976:Surface science 1966:Thermochemistry 1935: 1878: 1849:Crystallography 1754: 1726: 1720: 1671: 1666: 1646: 1642: 1589: 1585: 1577: 1575: 1573: 1547: 1540: 1528: 1524: 1487: 1483: 1438: 1434: 1427: 1403: 1399: 1392: 1368: 1361: 1346: 1322: 1315: 1262: 1258: 1195: 1191: 1175: 1174: 1162: 1148: 1147: 1143: 1135: 1133: 1131: 1105: 1101: 1093: 1091: 1089: 1063: 1059: 1014: 1010: 965: 954: 927: 916: 906: 904: 901: 899:"Tube Furnaces" 897: 896: 892: 855: 851: 835: 834: 822: 806: 787: 752: 745: 737: 735: 725: 697: 686: 679: 665: 661: 636: 629: 606: 602: 595: 581: 574: 570: 558: 530: 502:local structure 498: 496:Local structure 466: 409: 392: 384: 369: 321: 289: 246: 241: 233:carbon monoxide 231:in a stream of 221: 212: 191: 185: 134: 129: 116: 72: 40:crystallography 17: 12: 11: 5: 2699: 2689: 2688: 2683: 2666: 2665: 2663: 2662: 2650: 2638: 2626: 2613: 2610: 2609: 2607: 2606: 2601: 2596: 2591: 2586: 2581: 2576: 2571: 2566: 2561: 2560: 2559: 2549: 2542: 2541: 2540: 2530: 2525: 2519: 2517: 2513: 2512: 2510: 2509: 2508: 2507: 2502: 2497: 2487: 2486: 2485: 2475: 2474: 2473: 2468: 2463: 2458: 2448: 2447: 2446: 2435: 2434: 2433: 2432: 2427: 2417: 2412: 2411: 2410: 2405: 2394: 2393: 2392: 2391: 2389:Soil chemistry 2381: 2380: 2379: 2374: 2367:Food chemistry 2364: 2362:Carbochemistry 2359: 2357:Clay chemistry 2354: 2353: 2352: 2347: 2336: 2335: 2334: 2333: 2328: 2318: 2312:Astrochemistry 2308:Cosmochemistry 2305: 2304: 2303: 2298: 2293: 2291:Radiochemistry 2282: 2280: 2274: 2273: 2271: 2270: 2265: 2260: 2255: 2250: 2248:Neurochemistry 2245: 2240: 2239: 2238: 2228: 2227: 2226: 2216: 2215: 2214: 2209: 2198: 2196: 2190: 2189: 2187: 2186: 2181: 2179:Petrochemistry 2176: 2171: 2166: 2157: 2152: 2147: 2142: 2137: 2132: 2131: 2130: 2119: 2117: 2111: 2110: 2108: 2107: 2102: 2097: 2092: 2091: 2090: 2080: 2075: 2069: 2067: 2061: 2060: 2058: 2057: 2052: 2047: 2042: 2040:Spin chemistry 2037: 2035:Photochemistry 2032: 2027: 2022: 2020:Femtochemistry 2017: 2016: 2015: 2005: 2000: 1995: 1990: 1989: 1988: 1978: 1973: 1968: 1963: 1962: 1961: 1956: 1945: 1943: 1937: 1936: 1934: 1933: 1932: 1931: 1921: 1916: 1911: 1906: 1905: 1904: 1894: 1888: 1886: 1880: 1879: 1877: 1876: 1871: 1866: 1861: 1856: 1851: 1846: 1845: 1844: 1839: 1832:Chromatography 1829: 1824: 1823: 1822: 1817: 1812: 1802: 1801: 1800: 1795: 1790: 1785: 1775: 1770: 1764: 1762: 1756: 1755: 1753: 1752: 1750:Periodic table 1747: 1742: 1737: 1731: 1728: 1727: 1719: 1718: 1711: 1704: 1696: 1690: 1689: 1684: 1670: 1669:External links 1667: 1665: 1664: 1640: 1583: 1571: 1538: 1522: 1501:(5): 188–201. 1481: 1452:(7): 941–950. 1432: 1425: 1397: 1390: 1359: 1344: 1313: 1256: 1189: 1160: 1141: 1129: 1099: 1087: 1057: 1008: 952: 941:(2): 219–229. 914: 890: 849: 820: 785: 743: 723: 707:, IntechOpen, 684: 677: 659: 627: 616:(1–2): 1–133. 600: 593: 571: 569: 566: 557: 554: 542:semiconductors 529: 526: 497: 494: 465: 462: 408: 405: 391: 388: 383: 380: 376:semiconductors 368: 365: 361:stoichiometric 320: 317: 288: 285: 245: 242: 240: 237: 219: 211: 208: 187:Main article: 184: 181: 133: 132:Ceramic method 130: 128: 125: 115: 112: 71: 68: 52:thermodynamics 15: 9: 6: 4: 3: 2: 2698: 2687: 2684: 2682: 2679: 2678: 2676: 2661: 2660: 2651: 2649: 2648: 2643: 2639: 2637: 2636: 2627: 2625: 2624: 2615: 2614: 2611: 2605: 2602: 2600: 2597: 2595: 2594:Chemical bond 2592: 2590: 2587: 2585: 2582: 2580: 2577: 2575: 2572: 2570: 2567: 2565: 2562: 2558: 2555: 2554: 2553: 2550: 2547: 2543: 2539: 2536: 2535: 2534: 2531: 2529: 2526: 2524: 2521: 2520: 2518: 2514: 2506: 2503: 2501: 2498: 2496: 2493: 2492: 2491: 2488: 2484: 2483:Stoichiometry 2481: 2480: 2479: 2476: 2472: 2469: 2467: 2464: 2462: 2459: 2457: 2454: 2453: 2452: 2449: 2445: 2442: 2441: 2440: 2439:Nanochemistry 2437: 2436: 2431: 2428: 2426: 2423: 2422: 2421: 2418: 2416: 2413: 2409: 2406: 2404: 2401: 2400: 2399: 2396: 2395: 2390: 2387: 2386: 2385: 2382: 2378: 2375: 2373: 2370: 2369: 2368: 2365: 2363: 2360: 2358: 2355: 2351: 2348: 2346: 2343: 2342: 2341: 2338: 2337: 2332: 2329: 2327: 2324: 2323: 2322: 2319: 2317: 2313: 2309: 2306: 2302: 2299: 2297: 2294: 2292: 2289: 2288: 2287: 2284: 2283: 2281: 2279: 2275: 2269: 2266: 2264: 2261: 2259: 2256: 2254: 2251: 2249: 2246: 2244: 2241: 2237: 2234: 2233: 2232: 2229: 2225: 2222: 2221: 2220: 2217: 2213: 2210: 2208: 2205: 2204: 2203: 2200: 2199: 2197: 2195: 2191: 2185: 2182: 2180: 2177: 2175: 2172: 2170: 2167: 2165: 2164:Semisynthesis 2161: 2158: 2156: 2153: 2151: 2148: 2146: 2143: 2141: 2138: 2136: 2133: 2129: 2126: 2125: 2124: 2121: 2120: 2118: 2116: 2112: 2106: 2103: 2101: 2098: 2096: 2093: 2089: 2086: 2085: 2084: 2081: 2079: 2076: 2074: 2071: 2070: 2068: 2066: 2062: 2056: 2053: 2051: 2048: 2046: 2043: 2041: 2038: 2036: 2033: 2031: 2028: 2026: 2023: 2021: 2018: 2014: 2011: 2010: 2009: 2006: 2004: 2001: 1999: 1998:Sonochemistry 1996: 1994: 1993:Cryochemistry 1991: 1987: 1986:Micromeritics 1984: 1983: 1982: 1979: 1977: 1974: 1972: 1969: 1967: 1964: 1960: 1957: 1955: 1952: 1951: 1950: 1947: 1946: 1944: 1942: 1938: 1930: 1927: 1926: 1925: 1922: 1920: 1917: 1915: 1912: 1910: 1907: 1903: 1900: 1899: 1898: 1895: 1893: 1890: 1889: 1887: 1885: 1881: 1875: 1872: 1870: 1867: 1865: 1864:Wet chemistry 1862: 1860: 1857: 1855: 1852: 1850: 1847: 1843: 1840: 1838: 1835: 1834: 1833: 1830: 1828: 1825: 1821: 1818: 1816: 1813: 1811: 1808: 1807: 1806: 1803: 1799: 1796: 1794: 1791: 1789: 1786: 1784: 1781: 1780: 1779: 1776: 1774: 1771: 1769: 1766: 1765: 1763: 1761: 1757: 1751: 1748: 1746: 1743: 1741: 1738: 1736: 1733: 1732: 1729: 1725: 1717: 1712: 1710: 1705: 1703: 1698: 1697: 1694: 1687: 1685: 1682: 1677: 1673: 1672: 1662: 1661:0-521-49559-8 1658: 1654: 1650: 1644: 1636: 1632: 1628: 1624: 1620: 1616: 1611: 1606: 1602: 1598: 1594: 1587: 1574: 1568: 1564: 1560: 1556: 1552: 1545: 1543: 1536: 1535:0-201-01174-3 1532: 1526: 1517: 1512: 1508: 1504: 1500: 1496: 1492: 1485: 1477: 1473: 1468: 1463: 1459: 1455: 1451: 1447: 1443: 1436: 1428: 1422: 1418: 1414: 1410: 1409: 1401: 1393: 1387: 1383: 1379: 1375: 1374: 1366: 1364: 1355: 1351: 1347: 1341: 1337: 1333: 1329: 1328: 1320: 1318: 1309: 1305: 1301: 1297: 1293: 1289: 1284: 1279: 1275: 1271: 1267: 1260: 1252: 1248: 1243: 1238: 1234: 1230: 1225: 1220: 1216: 1212: 1208: 1204: 1200: 1193: 1185: 1179: 1171: 1167: 1163: 1157: 1153: 1152: 1145: 1132: 1130:9780444422880 1126: 1122: 1118: 1114: 1110: 1103: 1090: 1088:9780444422880 1084: 1080: 1076: 1072: 1068: 1061: 1053: 1049: 1045: 1041: 1036: 1031: 1027: 1023: 1019: 1012: 1004: 1000: 996: 992: 987: 982: 978: 974: 970: 963: 961: 959: 957: 948: 944: 940: 936: 932: 925: 923: 921: 919: 900: 894: 886: 882: 877: 872: 868: 864: 860: 853: 845: 839: 831: 827: 823: 817: 813: 812: 804: 802: 800: 798: 796: 794: 792: 790: 781: 777: 773: 769: 765: 761: 757: 750: 748: 734: 730: 726: 720: 715: 710: 706: 702: 695: 693: 691: 689: 680: 674: 670: 663: 654: 649: 645: 641: 634: 632: 623: 619: 615: 611: 604: 596: 594:981-253-003-7 590: 586: 579: 577: 572: 565: 563: 553: 551: 547: 543: 538: 536: 525: 523: 519: 515: 511: 508:use specific 507: 503: 493: 491: 487: 483: 479: 475: 474:phase diagram 471: 461: 459: 454: 445: 441: 439: 435: 431: 427: 421: 413: 404: 401: 397: 396:Stoichiometry 387: 379: 377: 373: 364: 362: 358: 354: 350: 346: 342: 338: 334: 325: 316: 314: 310: 309:boiling point 306: 302: 298: 297:precipitation 294: 284: 282: 278: 274: 270: 266: 262: 258: 254: 250: 249:Intercalation 236: 234: 230: 226: 216: 207: 203: 195: 190: 178: 173: 169: 167: 163: 159: 155: 151: 147: 143: 138: 124: 122: 111: 109: 105: 101: 97: 93: 89: 80: 79:Silicon wafer 76: 67: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 2657: 2645: 2633: 2621: 2471:Biosynthesis 2321:Geochemistry 2236:Pharmacology 2212:Cell biology 2202:Biochemistry 2099: 2030:Spectroscopy 1929:VSEPR theory 1778:Spectroscopy 1722:Branches of 1653:C. N. R. Rao 1648: 1643: 1600: 1596: 1586: 1576:, retrieved 1554: 1525: 1498: 1494: 1484: 1449: 1445: 1435: 1407: 1400: 1372: 1326: 1273: 1269: 1259: 1209:(18): 4167. 1206: 1202: 1192: 1150: 1144: 1134:, retrieved 1112: 1102: 1092:, retrieved 1070: 1060: 1025: 1021: 1011: 976: 972: 938: 934: 905:. Retrieved 893: 866: 862: 852: 810: 763: 759: 736:, retrieved 704: 668: 662: 643: 613: 609: 603: 584: 559: 539: 531: 499: 490:synchrotrons 469: 467: 450: 422: 418: 393: 385: 370: 330: 313:flux methods 305:hydrothermal 290: 261:ion exchange 247: 225:Mond process 213: 204: 200: 166:tube furnace 162:metal oxides 150:surface area 139: 135: 117: 107: 84: 23: 19: 18: 2659:WikiProject 1884:Theoretical 1869:Calorimetry 1028:(1): 1–21. 766:: 749–753. 319:Gas methods 301:evaporation 189:Flux method 104:Carl Wagner 60:electronics 2675:Categories 2495:Metallurgy 2194:Biological 1760:Analytical 1578:2023-04-15 1467:10023/8104 1136:2023-04-03 1094:2023-04-03 979:: 100631. 869:(1): 124. 738:2023-04-16 678:0198552866 568:References 470:revisiting 432:(SEM) and 390:New phases 347:, such as 48:metallurgy 36:mineralogy 2557:Catalysis 2065:Inorganic 1859:Titration 1724:chemistry 1635:105763124 1619:1948-7185 1476:1434-1948 1354:199491129 1308:198194051 1292:1936-0851 1233:1996-1944 1203:Materials 1178:cite book 1170:670438909 1052:232164576 1044:2397-7132 1003:213438764 995:0079-6425 907:March 30, 885:2073-4352 838:cite book 830:908260711 780:0368-1645 733:225173857 273:porcelain 257:diffusion 146:ball mill 28:synthesis 2623:Category 2579:Molecule 2516:See also 1941:Physical 1627:30990726 1300:31336433 1270:ACS Nano 1251:32961715 863:Crystals 546:band gap 353:ethylene 333:chlorine 293:solvents 277:graphene 275:. Also, 140:Using a 92:platinum 44:ceramics 2635:Commons 2599:Alchemy 2115:Organic 1503:Bibcode 1242:7560419 1211:Bibcode 345:adducts 158:sol-gel 88:zeolite 70:History 2647:Portal 1793:UV-Vis 1659:  1633:  1625:  1617:  1569:  1533:  1474:  1423:  1388:  1352:  1342:  1306:  1298:  1290:  1249:  1239:  1231:  1168:  1158:  1127:  1085:  1050:  1042:  1001:  993:  883:  828:  818:  778:  731:  721:  675:  591:  510:nuclei 341:oxygen 339:, and 337:iodine 299:or by 229:nickel 1820:MALDI 1788:Raman 1631:S2CID 1350:S2CID 1304:S2CID 1048:S2CID 999:S2CID 902:(PDF) 729:S2CID 2574:Atom 1842:HPLC 1657:ISBN 1623:PMID 1615:ISSN 1567:ISBN 1531:ISBN 1472:ISSN 1450:2016 1421:ISBN 1386:ISBN 1340:ISBN 1296:PMID 1288:ISSN 1247:PMID 1229:ISSN 1184:link 1166:OCLC 1156:ISBN 1125:ISBN 1083:ISBN 1040:ISSN 991:ISSN 909:2023 881:ISSN 844:link 826:OCLC 816:ISBN 776:ISSN 719:ISBN 673:ISBN 589:ISBN 520:and 156:and 90:and 58:and 2584:Ion 1815:ICP 1798:NMR 1605:doi 1559:doi 1511:doi 1462:hdl 1454:doi 1413:doi 1378:doi 1332:doi 1278:doi 1237:PMC 1219:doi 1117:doi 1075:doi 1030:doi 981:doi 977:109 943:doi 939:639 871:doi 768:doi 709:doi 648:doi 618:doi 486:DTA 484:or 482:DSC 357:TGA 351:or 267:or 144:or 2677:: 2314:/ 2310:/ 2162:/ 1837:GC 1810:EI 1783:IR 1651:. 1629:. 1621:. 1613:. 1599:. 1595:. 1565:, 1541:^ 1509:. 1499:22 1497:. 1493:. 1470:. 1460:. 1448:. 1444:. 1419:. 1384:. 1362:^ 1348:. 1338:. 1316:^ 1302:. 1294:. 1286:. 1274:13 1272:. 1268:. 1245:. 1235:. 1227:. 1217:. 1207:13 1205:. 1201:. 1180:}} 1176:{{ 1164:. 1123:, 1111:, 1081:, 1069:, 1046:. 1038:. 1024:. 1020:. 997:. 989:. 975:. 971:. 955:^ 937:. 933:. 917:^ 879:. 867:13 865:. 861:. 840:}} 836:{{ 824:. 788:^ 774:. 764:57 762:. 758:. 746:^ 727:, 717:, 703:, 687:^ 671:. 642:. 630:^ 614:36 612:. 575:^ 524:. 349:CO 335:, 283:. 263:, 218:Cl 110:. 54:, 50:, 46:, 42:, 38:, 34:, 2548:" 2544:" 1715:e 1708:t 1701:v 1637:. 1607:: 1601:9 1561:: 1519:. 1513:: 1505:: 1478:. 1464:: 1456:: 1429:. 1415:: 1394:. 1380:: 1356:. 1334:: 1310:. 1280:: 1253:. 1221:: 1213:: 1186:) 1172:. 1119:: 1077:: 1054:. 1032:: 1026:5 1005:. 983:: 949:. 945:: 911:. 887:. 873:: 846:) 832:. 782:. 770:: 711:: 681:. 656:. 650:: 620:: 597:. 220:2

Index

synthesis
solid-state physics
mineralogy
crystallography
ceramics
metallurgy
thermodynamics
materials science
electronics
chemical vapour depostion

Silicon wafer
zeolite
platinum
X-ray crystallography
William Lawrence Bragg
Carl Wagner
chemical vapour deposition
mortar and pestle
ball mill
surface area
co-precipitation
sol-gel
metal oxides
tube furnace

aluminium chloride
Flux method

Chemical vapour transport

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑